
Theoretical Economics 19 (2024), 1305–1349 1555-7561/20241305

Buying voters with uncertain instrumental preferences
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We analyze a vote-buying model where the members of a committee vote on a
proposal important to a vote buyer. Each member incurs a privately-drawn disu-
tility if the proposal passes. We characterize the cheapest combination of bribes
that guarantees the proposal passes in all equilibria. When members vote simul-
taneously, the number of bribes is at least 50% larger than the number of votes
required to pass the proposal (vote threshold). The number of bribes increases
with the dispersion of the disutility distribution and all members are bribed with
sufficient dispersion. A proportional increase in the number of members and the
vote threshold leads to a less-than-proportional increase in capture cost, and the
cost may increase with the vote threshold. With sequential voting and disutility
distributionU[0, 1], all members are bribed and bribes are equal. Finally, sequen-
tial voting increases capture cost in small committees and decreases it in large
committees.
Keywords. Vote buying, legislatures, political economy.

JEL classification. D71, D72.

1. Introduction

Governments often introduce bills that go against the interests of parliament members,
such as a law limiting dual mandates.1 To overcome members’ opposition, the govern-
ment can offer rewards to those who support the bill, e.g., investments in legislative
districts.
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We develop a vote-buying model to analyze these situations. A committee votes on a
proposal that favors the interests of a vote buyer. However, committee members prefer
the proposal not to pass. To gain support, the vote buyer offers bribes to members in ex-
change for their votes. Our key innovation is introducing uncertainty to members’ pref-
erences. For instance, in the case of a dual mandate prohibition, this uncertainty reflects
each member’s uncertain future (re)election prospects. Our first example illustrates how
a vote buyer exploits the implications of this uncertainty for pivotal probabilities.

Example 1. A three-member committee votes on a proposal. The proposal passes if at
least two members vote for it. In this example, members vote simultaneously. Mem-
bers dislike the proposal. Crucially, each member draws his disutility vi privately at the

beginning of the game: vi
i.i.d.∼ U[0, 1].

A vote buyer (feminine pronoun) is interested in the proposal passing. Before the
vote, she publicly commits to paying a bribe to some members if they individually vote
for the proposal. We assume the value of the bribe is b ≥ 0 and that it is the same for
all bribed members. The vote buyer knows the distribution of members’ disutilities but
does not observe their realizations. The proposal is important to her so she wants to
guarantee that it passes with certainty in all equilibria of the voting subgame. Subject to
this condition, she minimizes the cost of bribes.

We compare two strategies for the vote buyer. First, suppose she bribes two mem-
bers. We assume the unbribed member plays his weakly dominant strategy and votes
against the proposal. The proposal passes with certainty if the two bribed members
vote for regardless of their disutility. This strategy profile is clearly the unique equilib-
rium if b > 1 because voting for is a dominant strategy for all disutilities. However, if
b < 1, bribed members with disutility vi > bwould deviate and the strategy profile is not
an equilibrium. Moreover, as will be established, there exists an equilibrium where the
proposal is rejected with a positive probability. Thus, the cheapest bribe such that the
proposal passes with certainty in any equilibrium is b = 1 to the two members, which
yields a cost of 2.

Instead, suppose the vote buyer bribes all three members. We will show that if b > 8
27 ,

there is no equilibrium where the proposal is rejected with positive probability; that is,
buying a third member is cheaper for the vote buyer. For each member, voting for the
proposal guarantees bribe payment. However, if the member is pivotal (i.e., if exactly
one other member votes for the proposal), it also leads to the passing of the proposal.
Denoting the pivotal probability by π, member i votes for if b > vi ×π.

The equilibrium of the voting subgame takes a cutoff form: a member votes for the
proposal if his disutility is below a threshold. For now, focus on symmetric strategies
and call the common cutoff v. Then π(v) = 2v(1−v) and an equilibrium cutoff v ∈ (0, 1)
satisfies

b= vπ(v).

In Figure 1, we plot the right-hand side of this equation. For small bribes like b1, two
equilibria exist with cutoffs v1 and v2. Moreover, there is a third equilibrium where all
members accept the bribe: committee members are not pivotal and have no incentive
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Figure 1. The structure of equilibrium in the voting subgame. Notes: As the cutoff used by
other members changes, so does the value of vπ(v) (solid blue). The value of the maximum is
8

27 (reached for v = 2
3 ). For a given bribe b1 below 8

27 , there are three equilibria of the voting
subgame: one with cutoff v1, one with cutoff v2, and one in which all members vote for the
proposal. For bribes above 8

27 , only the latter exists.

to deviate. Throughout the paper, we assume committee members play the equilibrium
in which the proposal is rejected with the highest probability. For instance, faced with
b1, they would play v1 as this lower cutoff implies the lowest probability of passing.

When b is larger than the maximum of vπ(v), the third equilibrium, where the pro-
posal passes with certainty, is the only equilibrium of the voting subgame. Here, the
maximum is 8

27 . Thus, it is sufficient to pay slightly more than 8
9 , which is the cost of

bribing all three members, to guarantee there is no equilibrium where the proposal is
rejected with positive probability. Intuitively, bribing more members reduces members’
pivotal probabilities, forcing them to accept smaller bribes. ♦

We characterize the cheapest combination of bribes required for passing the pro-
posal with certainty in all equilibria. We consider various factors such as the disutility
distribution, the number of committee members, and the vote threshold. Specifically,
we examine simultaneous voting in Section 2. First, in Section 2.1, we assume sym-
metric strategies and equal bribes for all members bribed. Our main finding is that the
cheapest capture always involves a number of bribes at least 50% higher than the vote
threshold. Furthermore, the number of bribes increases with dispersion, and all mem-
bers are bribed when there is enough dispersion. As for the capture cost, increasing
the vote threshold and the number of members proportionally results in a less-than-
proportional increase in cost (because members are less likely to be pivotal in a large
committee), while increasing only the vote threshold increases the capture cost if more
than half of the members must vote for to pass the proposal.

In Section 2.2, members may play asymmetric strategies. Depending on the distri-
bution, there may exist asymmetric equilibria where the proposal can be rejected when
members receive the bribes of Section 2.1. This is the case when the disutility disper-
sion is small, but not when it is large. Section 2.3 considers unequal bribes. With large
dispersion, we show with an example that unequal bribes can yield a lower capture cost.

However, we establish that if vi
i.i.d.∼ U[0, 1] as in Example 1, the capture cost is minimized

by equal bribes.
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We study sequential voting with vi
i.i.d.∼ U[0, 1] in Section 3. The vote buyer also ex-

ploits pivotal considerations and the cheapest capture requires offering the same bribe
to all members. Finally, Section 4 shows that compared to sequential voting, simulta-
neous voting yields a higher capture cost if the committee is large, while the opposite is
true for small committees or very high or very low vote thresholds.

The model has a variety of applications. Our setup primarily applies to decision-
making in organizations. For example, a CEO may want to persuade board members
to make a decision favoring his interests. If board members expect the decision to be
approved regardless of their vote, the CEO can obtain their support in exchange for
small favors. Alternatively, consider the application of Genicot and Ray (2006) in which
a raider takes over a company. In such a case, the post-takeover value of nontendered
shares could be diluted, harming all shareholders.2 Nevertheless, if shareholders expect
the takeover to happen regardless of their selling decision, shares could be bought at lit-
tle cost. Finally, our model has implications for lobbying and vote-buying in committees
of experts (like FDA committees) or juries.

We contribute to the vote-buying literature by combining a single vote buyer with
committee members who care about the vote’s outcome but are uncertain about each
other’s preferences. The combination is novel, though literature on each ingredient ex-
ists.

Several papers study vote-buying when members have publicly known preferences
over outcomes. Dal Bo (2007) shows that a vote buyer bribes a committee at no cost by
conditioning the bribes on the complete voting profile. She offers to pay an infinitesimal
amount if members are not pivotal and a large bribe if votes are decisive. By contrast,
we exclude any contracts based on the joint realization of votes. Moreover, the models
of Rasmusen and Ramseyer (1994) and Dahm and Glazer (2015) feature some equilibria
unfavorable to committee members in which a supermajority accepts small bribes be-
cause no member is pivotal. Instead, we allow members to coordinate on their preferred
equilibrium. Cheap capture also occurs in Genicot and Ray (2006) and Chen and Zápal
(2020) where the vote buyer approaches members sequentially and exploits the timing
of offers. On the contrary, the vote buyer makes all offers at the same time in our model,
both in simultaneous and sequential voting.

We focus on the probability of a vote being decisive and do not consider information
aggregation (Feddersen and Pesendorfer 1996, 1997, 1998). Feddersen and Pesendorfer
(1998) highlight that unanimity, which in our setup maximizes capture cost, and makes
information harder to aggregate. Henry (2008) and Felgenhauer and Grüner (2008) com-
bine vote-buying and information aggregation. In Henry (2008), each committee mem-
ber receives a signal about the quality of a common value proposal. Bribes determine
the number of members who vote informatively, shaping members’ inferences condi-
tional on being pivotal. Similarly, in Ekmekci and Lauermann (2019) an election orga-
nizer chooses turnout to manipulate the information aggregated. These papers consider
a common value proposal while we focus on private values.

2For instance, this happens in Grossman and Hart (1980) where the raider uses the dilution to force
atomistic shareholders to sell, but Bagnoli and Lipman (1988) show that dilution does not necessarily hap-
pen with a finite number of shareholders.
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The mechanism exploited by the vote buyer in our model relies on pivotality and is
not present in the literature on vote-buying with expressive preferences, e.g., in Zápal
(2017), members’ responses to a bribe are uncertain, but pivotal considerations are ab-
sent because members do not take into account the effect of their vote on the outcome.
Groseclose and Snyder (1996), Banks (2000), Dekel, Jackson, and Wolinsky (2008), Mor-
gan and Várdy (2011), and Iaryczower and Oliveros (2017) also assume expressive pref-
erences and introduce a second vote buyer. They find that the first mover bribes a large
coalition to increase the cost for the follower.

Our paper proposes a new explanation for the high empirical frequency of super-
majorities. While early theories of coalition formation predicted minimal winning coali-
tions (Axelrod (1970)), some later papers predict supermajorities (Koehler (1975), Wein-
gast (1979), Shepsle and Weingast (1981), Baron and Diermeier (2001)). The closest to
us is Carrubba and Volden (2000), in which a larger-than-necessary coalition ensures no
member can prevent the costly passing of other members’ bills. Supermajorities are also
found in the literature on legislative bargaining (Volden and Wiseman (2007), Tsai and
Yang (2010), Dahm, Dur, and Glazer (2014)); for an overview, see Eraslan and Evdoki-
mov (2019). For instance, Norman (2002) characterizes the nonsymmetric equilibria of
the classical model of Baron and Ferejohn (1989) and shows that some proposals can be
unanimously approved.

Chen and Eraslan (2013, 2014) look at the other side of the problem and study a
vote-selling model where members with uncertain preferences send messages to the
vote buyer to influence the proposal.

Finally, we are also related to the larger literature on unique implementation with
moral hazard. In Winter (2004) and Winter (2006), agents separately perform individual
tasks for a project that succeeds if all agents succeed. In case of success, the princi-
pal rewards agents who support the project. Contributions are simultaneous in Winter
(2004) and sequential in Winter (2006). Our paper differs as members’ preferences are
uncertain. Winter’s principal aims to prevent asymmetric equilibria where the project
fails and Winter establishes that discriminatory rewards can be optimal. With sufficient
uncertainty, we find that asymmetric equilibria cannot be sustained, and equal bribes
may be preferred.

2. Simultaneous voting

We consider a committee of n members voting simultaneously on a proposal. The vote
threshold m is the minimum number of votes for required to pass the proposal. We ex-
clude m = n (unanimity required to pass the proposal) and m = 1 (unanimity required
to reject it).3 At the beginning of the game, committee members draw their disutilities
from the passing of the proposal. These disutilities are drawn privately and indepen-

dently from a common distribution: vi
i.i.d.∼ F(·), where vi is the disutility of member i.

F(·) has support [vmin, vmax] with vmin ≥ 0 and vmax finite. We assume that the disutil-
ity distribution F(·) is continuously differentiable on (vmin, vmax ), and has an increasing

3We discuss unanimous vote thresholds at the end of Section 2.1; they require technical modifications of
the results but do not affect our conclusions.
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generalized hazard rate:

∂

∂v

(
vF ′(v)

1 − F(v)

)
≥ 0.

Other models (e.g., Lariviere (2006)) use this assumption, which is satisfied by all Uni-
form and Beta distributions.

Before the voting subgame, a vote buyer who favors the proposal publicly offers
bribes (b1, � � � , bn ), where bi ≥ 0 is member i’s payment if he votes for the proposal. We
assume the proposal is important to the vote buyer, so she minimizes the capture cost,
i.e., the amount spent on bribes, subject to the proposal passing with certainty.

We focus on Bayesian Nash equilibria for the voting subgame. When multiple equi-
libria exist, we assume committee members play one of the equilibria where the pro-
posal passes with the smallest probability. This assumption is in the spirit of Winter
(2004) and Genicot and Ray (2006). First, it rules out equilibria where the proposal
passes with arbitrarily small bribes because all bribed members accept and are not piv-
otal. Second, it follows naturally if a vote buyer to whom the proposal is important is
uncertain about which equilibrium will be played. Third, it selects an equilibrium pre-
ferred by committee members.

The game’s timing is as follows. First, committee members privately observe their
disutility. Then the vote buyer offers bribes (b1, � � � , bn ). Members observe the bribes
and simultaneously choose whether to vote for or against the proposal. Finally, the pro-
posal passes if at leastmmembers vote for it.

2.1 Symmetric voting strategies and equal bribes

This subsection focuses on equal bribes: the vote buyer bribes k members who all re-
ceive the same bribe b. Thus, the combination of bribes is characterized by (b, k). For
committee member i, a strategy σi : vi → [0, 1] is a mapping from disutility vi into a
probability of voting for the proposal. We only consider members to whom the vote
buyer offers a bribe; unbribed members are assumed to use their weakly dominant strat-
egy and vote against the proposal. We focus on symmetric equilibria, i.e., equilibria in
which bribed members play the same strategy.

We first solve the voting subgame. Given a combination of bribes (b, k), if a member
is not pivotal, the payoff difference between voting for and against is the bribe’s value. If
he is pivotal, a vote for the proposal makes it pass and he incurs his disutility. We denote
the pivotal probability of committee member i by πi. He accepts the bribe and votes
for the proposal if b > viπi, where viπi is the expected cost of voting for the proposal.
Moreover, he votes against if b < viπi and can vote for with any probability if b = viπi.
Thus, equilibrium strategies take a cutoff form. Since we focus on symmetric equilib-
ria, all members vote for the proposal if their disutility is smaller than some cutoff v
determined in equilibrium.

Our first lemma characterizes the equilibrium of the voting subgame where the pro-
posal passes with the smallest probability. When fewer members are bribed than the
vote threshold (k < m), there exists an equilibrium of the voting subgame where the
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proposal is always rejected, and hence no bribe can guarantee that the proposal passes
with certainty in any equilibrium. As a result, we focus on k ∈ {m, � � � , n}.

Lemma 1. Suppose the vote buyer offers a bribe b > 0 to k members with m ≤ k ≤ n. In
the symmetric equilibrium of the voting subgame in which the proposal passes with the
smallest probability:

(a) If b≤ maxv∈[vmin,vmax] vπ
k(v), bribed members vote for the proposal if their disutility

is smaller than a cutoff v that satisfies v= min{v ∈ [vmin, vmax] : b= vπk(v)} where

πk(v) =
(
k− 1
m− 1

)
F(v)m−1(1 − F(v)

)k−m
.

Moreover, they vote against if their disutility is larger than v and a member with
vi = v can vote for with any probability.

(b) If b >maxv∈[vmin,vmax] vπ
k(v), all bribed members vote for the proposal regardless of

their disutility: v > vmax.

(Proof in Appendix A.2.) First, consider the case where m members are bribed.
vπm(v) is increasing in v and πm(v) → 1 as v→ vmax. For b≤ vmax, Lemma 1(a) charac-
terizes the unique equilibrium cutoff and the proposal is rejected with positive probabil-
ity. For b > vmax, the strategy profile described in Lemma 1(b) is the unique equilibrium,
and the proposal passes with certainty.

Now consider k > m. As established in Lemma A.2.1 in Appendix A.2, increasing
generalized hazard rates imply that vπk(v) is single-peaked in v for v ∈ [vmin, vmax].
By the intermediate value theorem, the equation vπk(v) = b admits two solutions if
b <maxv∈[vmin,vmax] vπ

k(v), one if b= maxv∈[vmin,vmax] vπ
k(v), and none otherwise. Thus,

equilibrium cutoffs are illustrated by Figure 1. The equilibrium where the proposal
passes with the smallest probability is associated with the smallest cutoff, and this cut-
off is characterized by Lemma 1(a). If we let v∗

k := arg maxv∈[vmin,vmax] vπ
k(v), the small-

est bribe such that the proposal passes with certainty in any symmetric equilibrium is
b∗
k = v∗

kπ
k(v∗

k ).4 For Example 1, and hence in Figure 1, b∗
3 = 8

27 .
We now turn to the vote buyer’s problem. As just established, if the vote buyer offers

k bribes, she needs to offer b∗
k to make the proposal pass with certainty. Hence, her cost

c(k) is determined by the equilibrium where the cutoff is v∗
k,

c(k) = k× max
v∈[vmin,vmax]

vπk(v) = k× v∗
kπ

k
(
v∗
k

)= k× b∗
k.

We want to determine a cost-minimizing number of bribes arg mink∈{m, ���,n} c(k).5 In-
tuitively, while bribing additional members requires paying more bribes, it also makes it

4More precisely, b∗
k is the “smallest number above v∗

kπ
k(v∗

k ),” which is not defined because bribes are on
a continuum, but makes sense as the limit of a grid.

5As k has to be an integer, there are distributions for which arg mink∈{m, ���,n} c(k) is not unique. In partic-
ular, c(k) can be minimized for two consecutive integers.
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harder for committee members to be pivotal with a high probability. Hence, it decreases
b∗
k. Which effect dominates depends on the number of bribes, on the vote threshold,

and on the disutility distribution. Our main result characterizes arg mink∈{m, ���,n} c(k).

Proposition 1.

(a) For any disutility distribution, any cost-minimizing number of bribes is at least
min{ 3

2m− 1, n};

(b) For any number of bribes k ∈ N such that min{ 3
2m + 1, n} ≤ k ≤ n, there exists a

disutility distribution such that k is a cost-minimizing number of bribes.

(Proof in Appendix A.2.) Proposition 1 implies that the vote buyer always wants to
offer a number of bribes substantially larger than the vote threshold. If she could offer
any number of bribes, she would choose at least k= 3

2m−1, which form large represents
a number of bribes 50% larger than the vote threshold. However, the number of bribes
cannot exceed the number of members. As a result, when there are fewer members than
3
2m − 1, this constraint binds and the vote buyer bribes all members. With more than
3
2m members, it can still be the case that all members are bribed, but it depends on the
disutility distribution. This is true even when the number of members is arbitrarily large:
for some distributions, the vote buyer’s cost is always decreasing in the number of bribes
and she offers as many bribes as possible.

We now show Proposition 1 in three steps. First, we establish that the vote buyer
bribes more members when the disutility distribution is more dispersed. Second, we
show that even when dispersion is small, any cost-minimizing number of bribes is at
least 3

2m− 1. Finally, we demonstrate that with a sufficiently dispersed distribution, all
members are bribed regardless of their number. The definition of dispersion used for
this analysis is from Shaked and Shanthikumar (2007, p. 213).

Definition 1. F̃(·) is more dispersed than F(·) if the ratio of the inverse CDFs,
F̃−1(q)/F−1(q), is nondecreasing in q for all q ∈ (0, 1). In such a case, we write F ≤∗ F̃ .6

An example of distributions ranked in this order are U[ 1
2 − α, 1

2 + α] with α ∈ (0, 1
2 ],

which become more dispersed as α increases.7 We use these uniform distributions to
simulate the cost-minimizing number of bribes arg mink∈{m, ���,n} c(k) in Figure 2. In line
with Proposition 1, the smallest cost-minimizing number of bribes is approximately 3

2m

and is obtained for small dispersion (α→ 0). Moreover, the cost-minimizing number of
bribes increases with dispersion, which is not specific to uniform distributions: for all
distributions that can be ranked in our dispersion order,

6The increasing generalized hazard rate assumption implies that F ′(v)> 0, so the CDF is strictly mono-
tone. Hence, F−1(q) is well-defined for q ∈ (0, 1).

7These distributions are centered around 1
2 , but some distributions with different means can also be dis-

persion ranked. In particular, moving the uniform support to the right on the real line decreases the vari-
ance relative to the mean, which results in less dispersion. However, note that the ≤∗ order is not complete
and some distributions cannot be ranked.
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Figure 2. Cost-minimizing number of bribes as dispersion varies. Notes: We depict the solu-

tions to the cost-minimization problem arg mink∈{m, ...,n} c(k) when vi
i.i.d.∼ U[ 1

2 − α, 1
2 + α] as we

vary the dispersion α. The simulation assumes (m, n) = (8, 54); n is large compared to m so that
the constraint k≤ n does not bind.

Lemma 2. The set of cost-minimizing numbers of bribes with a distribution F̃(·) domi-
nates in the strong set order the set of cost-minimizing numbers of bribes with a less dis-
persed distribution F(·).

(Proof in Appendix A.2.) Lemma 2 simply states that the vote buyer bribes more
members when the distribution is more dispersed. However, it needs to be expressed in
terms of dominating sets because arg mink∈{m, ���,n} c(k) is not necessarily a singleton. It
is an application of Theorem 5 of Milgrom and Shannon (1994). Formally, if Y ′ and Y
are subsets of R, set Y ′ dominates Y in the strong set order if for any x′ ∈ Y ′ and x ∈ Y ,
and we have max{x′, x} ∈ Y ′ and min{x′, x} ∈ Y .

The committee consists of members who each make an individually rational deci-
sion governed by Lemma 1. However, to build intuition, we abstract from the behavior
of individual members and pretend the committee, as a single player, is choosing the
cutoff that maximizes the value of the bribes, and hence the vote buyer’s cost. With this
approach, the vote buyer and committee are playing a two-player game: the vote buyer
moves first and chooses the number of bribes k to minimize c(k). Then the committee
chooses the cutoff v that maximizes vπk(v). We refer to any member who draws vi = v

as a cutoff member. Hence, vπk(v) corresponds to a cutoff member’s expected cost of
voting for the proposal. This cost can be represented in the (v, πk(v)) graph: it is the
area of the rectangle spanned by the origin and a point (v, πk(v)). In each panel of Fig-
ure 3, we plot πk(v) for k ∈ {3, 4} with vote threshold m= 2. The cutoff v affects a cutoff
member’s expected cost through two channels. First, a larger cutoff implies a higher
disutility for a cutoff member, and hence a larger width of the rectangle. Second, the
cutoff determines the probability that a cutoff member is pivotal, which corresponds to
the height of the rectangle. Increasing the cutoff increases this probability up to a point
and then decreases it. A cutoff member’s largest expected cost of voting for the proposal
is b∗

k = maxv∈[vmin,vmax] vπ
k(v), the area of the largest possible rectangle.

Turning to the vote buyer, we can see that offering four bribes instead of three de-
creases b∗

k through both channels. First, v∗
4 < v

∗
3: if an additional member can vote

for, the committee maintains a high pivotal probability by decreasing the probabil-
ity that each member votes for, which amounts to decreasing the cutoff. Second,
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Figure 3. The effect of additional bribes as dispersion varies. Notes: We depictπ3(v) (solid) and
π4(v) (dashed) for less (left) and more (right) dispersed disutility distributions. The hashed area
rectangle represents b∗

3 = v∗
3π

3(v∗
3 ) and the grey area represents b∗

4 = v∗
4π

4(v∗
4 ). For both panels,

m= 2.

π4(v∗
4 ) < π3(v∗

3 ): the lower cutoff is not sufficient to prevent a decrease in the pivotal
probability. Hence, the additional bribe reduces the width as well as the height of the
largest possible rectangle. The vote buyer trades off the decrease in b∗

k against the cost
of the additional bribe.

Crucially, this trade-off depends on dispersion. The two panels of Figure 3 illustrate
that b∗

k decreases more with a dispersed distribution. Hence, the incentive to offer an ad-
ditional bribe increases with dispersion. The distribution is less dispersed in Figure 3(a),
where U[ 1

2 − α, 1
2 + α] with a small dispersion parameter α, than in Figure 3(b), which

illustrates the case of vi
i.i.d.∼ U[0, 1]. First, with arbitrarily small dispersion, v∗

3 → 1
2 and

v∗
4 → 1

2 and the width of the rectangle is (almost) independent of k. By contrast, with
more dispersion, the committee relies more on a cutoff member’s disutility to increase
his cost of voting for the proposal. Hence, v∗

k is more sensitive to k, and offering a fourth
bribe has a larger effect on the width of the rectangle.

Moreover, we now argue that the pivotal probability at the cutoff v∗
k, which is the

height πk(v∗
k ) of the largest rectangle, is also more sensitive to k with dispersion. To be-

gin with, dispersion induces reliance on disutilities, which implies lower pivotal proba-
bilities: both π3(v∗

3 ) and π4(v∗
4 ) are lower in Figure 3(b) than in Figure 3(a). The pivotal

probability is lower, however, because members are more likely to vote “for” with disper-
sion. This, in turn, implies that the pivotal probability is also more sensitive to changes
in the number of bribes k: bribing an additional member implies that an additional vote
against the proposal is needed for the pivotal event. As the additional bribed member
is less likely to vote against the proposal with dispersion, bribing an additional member
lowers the pivotal probability more when the distribution is dispersed.

To summarize, dispersion implies that both v∗
k and πk(v∗

k ) are more sensitive to k.
Hence, the vote buyer offers fewer bribes when the distribution is not dispersed. As
dispersion is bounded below by a Dirac measure, we can now derive the lower bound
for any cost-minimizing number of bribes stated in Proposition 1(a).
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Lemma 3. Any cost-minimizing number of bribes is at least min{ 3
2m− 1, n}.

(Proof in Appendix A.2.) Figure 3(a) illustrates that when vi
i.i.d.∼ U[ 1

2 −α, 1
2 +α], for all

k ∈ {m, � � � , n}, v∗
k → 1

2 as α→ 0. This is not specific to uniform distributions and v∗
k → 1

2
for any distribution for which the density concentrates around 1

2 . In such cases, the
cutoff member’s disutility (and hence, the width of the rectangle) has to be close to 1

2 .
As a result, the committee can only affect the cutoff member’s cost through the pivotal
probability (the height of the rectangle) by choosing the probability that a member votes

for. Denoting this probability by p, we have for vi
i.i.d.∼ U[ 1

2 − α, 1
2 + α] and α→ 0:8

b∗
k → 1

2
max
p∈[0,1]

πk(p) = 1
2

max
p∈[0,1]

(
k− 1
m− 1

)
pm−1(1 −p)k−m.

Hence, the game played by the committee and the vote buyer simplifies as follows:
the committee (who plays second) chooses p to maximize the pivotal probability; the
vote buyer (who plays first) chooses k to minimize

c(k) = k× 1
2

max
p∈[0,1]

(
k− 1
m− 1

)
pm−1(1 −p)k−m.

Jointly, p and k determine the leave-one-out vote tally distribution, i.e., the distribution
Binomial(k− 1, p) of the number of other members voting for the proposal, evaluated
from the perspective of any given bribed member. Hence, the effects of p and k on
Binomial(k−1, p) are key to understanding their effect on the pivotal probability, which
is the probability mass of Binomial(k− 1, p) atm− 1.

Solving the game backward, if the vote buyer offered k bribes, the committee max-
imizes the pivotal probability by choosing p = (m− 1)/(k− 1) = p∗

k. This implies that
the expectation as well as the mode of Binomial(k − 1, p∗

k ) are m− 1. Hence, the piv-
otal probability is the mass of Binomial(k− 1, p) at its mode. Anticipating p∗

k, the vote
buyer’s choice of k does not affect the mode. However, it affects the mass at the mode
through the variance of Binomial(k−1, p∗

k ). Intuitively, the more variance, the less mass
at the mode. As k increases, so do the number of trials as well as the variance. However,
by the Poisson limit theorem, the mass at the mode is approaching that of a Poisson ran-
dom variable with the same mean as k becomes large. Hence, increases in k eventually
barely affect the variance but still increase the cost by requiring more bribes. Thus, any
cost-minimizing number of bribes is finite.

For large committees, there is a closed form that links the variance of Binomial(k−
1, p∗

k ) to the mass at its mode. We can use it to show that arg mink∈{m, ���,n} c(k) ≈ 3
2m.

By any central limit theorem, as k → ∞, Binomial(k − 1, p∗
k ) approximates N((k −

1)p∗
k, σ =

√
(k− 1)p∗

k(1 −p∗
k )). Evaluated at its mean (k− 1)p∗

k =m− 1, this approxi-

mation gives a pivotal probabilityφ(0)/σ . Using
√
k− 1 ≈ √

k (true for large k), the vote

8Technically, this follows from Berge’s maximum theorem; see the proof of Proposition 1.
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buyer’s problem can be rewritten as a variance maximization

arg min
k∈{m, ���,n}

kb∗
k ≈ arg min

k∈{m, ���,n}
k× φ(0)√

kp∗
k

(
1 −p∗

k

) = arg max
k∈{m, ���,n}

p∗
k

(
1 −p∗

k

)
k

.

The realization of an individual vote is determined by Bernoulli(p∗
k ). Hence, the

variance of an individual vote is p∗
k(1 − p∗

k ). Dividing by k, we obtain the variance of
the share of votes for among bribed members. Maximizing this variance with respect to
k is equivalent to the vote buyer’s problem. The value of k affects the variance through
two channels. First, increasing k decreases the variance through the denominator: the
vote share becomes more predictable when the number of trials increases. Second, k
affects the individual vote variance p∗

k(1 −p∗
k ) through its impact on p∗

k, and p∗
k(1 −p∗

k )
is maximized when p∗

k = 1
2 . Since p∗

k ≈m/k for large m and k, increasing k pushes p∗
k

toward 1
2 for k < 2m and away from 1

2 for k ≥ 2m. The optimal k lies between k = m

and k = 2m, with the solution being approximately 3
2m. Thus, the optimal k trades off

these two channels, half-way between the smallest number of bribes that can make the
proposal pass and the point above which k decreases the individual vote variance.

We have now established that any cost-minimizing number of bribes is at least
3
2m − 1 and that it increases with dispersion. Our next result shows that there is
no upper bound on the number of bribes: for sufficiently dispersed distributions,
arg mink∈{m, ���,n} c(k) = n for any number of committee members n.

Lemma 4. If the disutility distribution is U[0, 1], all members are bribed.

(Proof in Appendix A.2.) We now consider vi
i.i.d.∼ U[0, 1], which was depicted in Fig-

ure 3(b) and corresponds to the case where the vote buyer offers more bribes. With this
distribution, we have F(v) = v. Thus, the cutoff chosen by the committee is equal to
the probability that a member votes for. This allows us to reexpress a cutoff member’s
expected cost of voting for the proposal:

vπk(v) = v
(
k− 1
m− 1

)
vm−1(1 − v)k−m = m

k

(
k

m

)
vm(1 − v)k−m

= m

k
P(m votes for | k have cutoff v).

Hence, the game played by the committee and the vote buyer is as follows: the commit-
tee maximizes the probability ofm votes for and the vote buyer chooses k to minimize

c(k) = k× max
v∈[vmin,vmax]

vπk(v) =m× max
v∈[vmin,vmax]

P(m votes for | k have cutoff v).

Notice that the number of bribes k cancels out when we factor out m/k in vπk(v). This
final expression for the cost contrasts with the discussion of Lemma 3: with vi ∼U[0, 1],
the vote buyer chooses k to minimize the probability ofm votes for amongst kmembers,
not k times the probability of m − 1 votes for among k − 1 members. Hence, the key
component is the distribution of the number of votes for among the k bribed members,
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which is Binomial(k, v). Again, we can analyze the effects of v and k on this distribution
to understand the result.

If the vote buyer offered k bribes, the committee maximizes the probability of m
votes for by choosing v = v∗

k =m/k. Hence, the mode of Binomial(k, v∗
k ) is m. Antici-

pating this, the vote buyer chooses k to minimize the probability of this modal event.
As explained in the discussion of Lemma 3, this amounts to maximizing the variance of
Binomial(k, v∗

k ), which is k×m/k(1 −m/k) =m(1 −m/k). As this expression is strictly
increasing in k, the vote buyer chooses k as large as feasible: arg mink∈{m, ���,n} c(k) = n.

To summarize, we have established that the cost-minimizing number of bribes
arg mink∈{m, ���,n} c(k) is close to 3

2m when the distribution is not dispersed, that it in-
creases with dispersion, and that all members are bribed with a sufficiently dispersed
distribution. Finally, the proof of Proposition 1(b) uses disutility distributions U[ 1

2 −
α, 1

2 + α] to establish that, as illustrated by Figure 2, all numbers of bribes k ∈ N such
that min{ 3

2m+ 1, n} ≤ k≤ n are a cost-minimizing number of bribes for some value of α.
We now move on to comparative statics for the capture cost, which we define as the

cost paid by the vote buyer with a cost-minimizing number of bribes:

Csim(m, n) = min
k∈{m, ���,n}

c(k).

The capture cost depends on the structure of the committee, and in particular on the
number of committee members n and on the vote threshold m. Trivially, Csim(m, n)
(weakly) decreases with n: n does not affect b∗

k for any k, and increasing n only relaxes
the constraint k ≤ n. Our next result considers the less trivial effects of a proportional
increase inm and n, as well as the effect ofm.

Proposition 2.

(a) Proportional increases in vote threshold m and number of committee members n
raise capture cost subproportionally: Csim(λm, λn)< λCsim(m, n) with λ ∈ N+.

(b) Suppose only a majority can pass the proposal, i.e., n≤ 2m− 1. Then, for any num-
ber of bribes k, b∗

k, and Csim(m, n) increase in the vote thresholdm.

(Proof in Appendix A.3.) Considering Proposition 2(a), suppose we multiply both m
and n by the same scalar λ ∈N+. The proportional vote thresholdm/n is unaffected and
for all k ∈ {m, � � � , n}, λk ∈ N. Intuitively, holding the share of members bribed constant,
pivotal probabilities are smaller in a larger committee. Thus, b∗

k in a committee (m, n) is
larger than b∗

λk in a committee (λm, λn). If kminimizes the capture cost for a committee
(m, n), the vote buyer can bribe λk members in a committee (λm, λn), even if doing so
does not necessarily minimize the capture cost. Hence, as b∗

λk < b
∗
k, the capture cost is

multiplied by less than λ.
We turn to Proposition 2.b, which shows that when more than half of the mem-

bers must vote for to pass the proposal, an increase in the vote threshold m leads to
larger bribes, and thus to an increase in the cost. The effect of m on the capture cost
depends on how it affects b∗

k for the cost-minimizing number of bribes. However, as
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arg mink∈{m, ���,n} c(k) has no closed-form characterization, we need to consider the effect
ofm on b∗

k for all k ∈ {m, � � � , n}.
The effect of m on b∗

k goes through the same two channels as the effect of k, which
we illustrated in Figure 3. First,m has an effect opposite to k on v∗

k; if an additional vote
for is needed, the committee increases the probability of a vote for to maintain a high
pivotal probability. This increase amounts to choosing a higher v∗

k and raises b∗
k.

However, turning to the second channel, the effect of m on the pivotal probabil-
ity πk(v∗

k ) depends on the relationship between k and m. Importantly, when k >

2m − 1, πk(v∗
k ) may decrease with m, and hence the net effect of m on b∗

k is ambigu-
ous. To see this, focus on the small dispersion case and consider the effect of m on
Binomial(k− 1, p∗

k ). As explained in the discussion of Lemma 3, this distribution deter-
mines the pivotal probability, which decreases with its variance (k−1) ×p∗

k(1−p∗
k ). We

recognize the individual vote variance p∗
k(1 −p∗

k ). If p∗
k = (m− 1)/(k− 1)< 1

2 , raisingm
increases the individual vote variance and πk(p∗

k ) decreases withm. Thus, if n > 2m− 1,
b∗
k could decrease with m for some k ∈ {2m, � � � , n}. In a previous version of the paper

(Louis-Sidois and Musolff 2023), we proposed an example that confirms that such cases
exist. Hence, we need the restriction n≤ 2m− 1 to rule out k> 2m− 1.

We conclude with a discussion of unanimous vote thresholds. When unanimity is
required to pass the proposal (m= n), all members need to be bribed to make the pro-
posal pass with certainty. Hence, Proposition 1 is trivially true. However, the vote buyer
must offer b∗

m = vmax to all n members. Thus, multiplying both m and n by the same
scalar λ ∈ N+ would multiply the capture cost by exactly λ, which contrasts with Propo-
sition 2(a); requiring unanimity to pass the proposal uniquely protects the committee
from outside influence by severing the pivotal channel.

Moreover, requiring unanimity to reject the proposal (m = 1) also alters the pivotal
channel. πk(v) is not single-peaked but rather decreasing in v, with πk(vmin ) = 1; all
members are pivotal if they all vote against. Hence, if b < vmin, there is an equilibrium of
the voting subgame where all bribed members vote against and the proposal is always
rejected. Thus, Lemma 1 would have to be modified, but it does not affect other key

findings; the number of bribes trivially exceeds 3
2m− 1 = 1

2 . Moreover, for vi
i.i.d.∼ U[0, 1],

vmin = 0 and we cannot have b < vmin. Hence, the argument of Lemma 4 implies that all
members are bribed. To summarize, unanimous vote thresholds require some modifi-
cations of the results but do not affect the conclusions of the paper.

2.2 Asymmetric voting strategies

If members could play asymmetric strategies, would there be an equilibrium of the vot-
ing subgame where the proposal is rejected with positive probability if the vote buyer
offers the cost-minimizing bribes derived with symmetric strategies? Example 2 shows
that the focus on symmetric strategies is indeed not always without loss of generality.

Example 2. Let (m, n) = (2, 3) and all members have the same disutility: vi = 1
2 for all

i.9 Suppose the vote buyer offers b to all three members. With symmetric strategies, all

9In this example, we relax the assumption that F(·) is continuously differentiable and has an increasing
generalized hazard rate to provide the clearest illustration.
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members vote for with the same probabilityp (the equilibrium is formally derived in the
proof of Lemma A.2.3). An equilibrium probability p̄ ∈ [0, 1] solves

b= 1
2
π(p̄) = p̄(1 − p̄).

This expression is single-peaked and its maximum is 1
4 . As long as b ≤ 1

4 , there is an
equilibrium with p̄ < 1 where the proposal is rejected with a positive probability. Thus,
if the vote buyer offers (slightly more than) b = 1

4 , she pays 3
4 and the proposal passes

with certainty in all equilibria where members play symmetric strategies.
Now we allow for asymmetric strategies when the three members receive b = 1

4 .
There is an equilibrium where one member accepts his bribe with a probability of one
and the other two decline with a probability of one. Thus, the focus on symmetric strate-
gies is not without loss. Indeed, with no dispersion, the cheapest bribes such that the
proposal passes with certainty in all equilibria are b= 1

2 offered to two members. ♦

For sufficiently dispersed distributions, however, there is no equilibrium of the vot-
ing subgame where the proposal is rejected with a positive probability if the vote buyer
offers the cost-minimizing bribes derived in Section 2.1.

Proposition 3. Suppose the distribution is at least as dispersed as U[0, 1]. Offering b∗
n

to n members, which minimizes the capture cost if members use symmetric strategies,
ensures the proposal passes with certainty in any equilibrium of the voting subgame.

(Proof in Appendix A.3.) Intuitively, dispersion makes the behavior of other mem-
bers harder to predict, which prevents the existence of asymmetric equilibria. Formally,
the proposition’s proof relies on an iterated deletion of strictly dominated strategies.
Member i’s pivotal probability is maximized if others split suitably between two extreme
cutoffs. In particular, if m− 1 other members always accept (cutoff at vmax) and n−m

always decline (cutoff at vmin), member i is pivotal with certainty. Even then, member i
still votes for if vi < b∗

n. Hence, cutoffs below b∗
n are not rationalizable. Once those strate-

gies have been eliminated, member i cannot anticipate being pivotal with certainty, and
another set of cutoffs is not rationalizable. For distributions at least as dispersed as
U[0, 1], eventually, no cutoff below vmax is rationalizable, and the proposal passes with
certainty in all equilibria.

We useU[0, 1] as a benchmark to provide a lower bound on dispersion for the propo-
sition to be true. However, not all distributions are ranked in our dispersion order. Thus,
this lower bound is sufficient but not necessary and there exist other distributions for
which offering b∗

n to n members would also ensure that the proposal passes with cer-
tainty in any equilibrium; e.g., see Example 3.

2.3 Unequal bribes

Can unequal bribes reduce the capture cost? Example 3 illustrates that the vote buyer
can “divide and conquer” for some distributions, and hence that unequal bribes can
yield a lower capture cost.
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Example 3. Let (m, n) = (2, 3) and vi
i.i.d.∼ Bernoulli( 1

2 ).10 For bribed member i, a strategy
consists of a probability of accepting the bribe if vi = 0, and a probability of accept-
ing if vi = 1. We first characterize the cost-minimizing bribes for k = 3 and k = 2 if the
vote buyer offers the same bribe to all bribed members. Next, we show that there exist
unequal bribes that yield a lower capture cost.

Suppose the vote buyer offers the same bribe b > 0 to all three members. Each ac-
cepts if vi = 0. Hence, the pivotal probability of member i would be maximized if the
other two members vote against if their disutility is 1. Then πi = 1

2 . Thus, if b < 1
2 , there

is an equilibrium where members vote for if their disutility is 0 and vote against if their
disutility is 1. As a result, the bribe needs to be at least b= 1

2 . If it is (slightly more than)
1
2 , an iterated deletion of dominated strategies proves that no equilibrium of the voting
subgame exists where the proposal is rejected with positive probability. A member with
disutility vi = 0 votes “for.” Thus, no member can be pivotal with probability larger than
1
2 , and all of them accept. Hence, capture costs 3

2 .
Now, suppose two members are bribed. The unbribed member votes “against.”

Thus, a bribed member would always be pivotal if the other accepts regardless of his
disutility. As a result, the vote buyer needs to offer 1 to both members to guarantee that
the proposal passes with certainty in all equilibria; hence, capture costs 2.

However, the unequal bribes (b1, b2, b3 ) = (0.51, 0.51, 0.01) yield a lower capture
cost. All members vote “for” if their disutility is 0, and no pivotal probability can ex-
ceed 1

2 . Thus, members 1 and 2 always accept. In turn, member 3 is not pivotal and also
accepts. As a result, the proposal is accepted with certainty in all equilibria. ♦

Nevertheless, equal bribes can be preferred for other distributions. In particular,
equal bribes do minimize capture cost in Example 1.

Example 4. Consider (m, n) = (2, 3) with vi
i.i.d.∼ U[0, 1] and allow the vote buyer to of-

fer unequal bribes (b1, b2, b3 ). Denoting by vi the equilibrium cutoff of member i, an
equilibrium of the voting subgame where all cutoffs are in (0, 1) satisfies:11

v1π1(v2, v3 ) = b1,

v2π2(v1, v3 ) = b2, (1)

v3π3(v1, v2 ) = b3.

When bribes are large enough, an equilibrium satisfying (1) does not exist and all com-
mittee members voting for regardless of their disutility is the unique equilibrium. Thus,
the vote buyer offers the cheapest (b1, b2, b3 ) such that (1) has no solution. To identify

10In this example, we relax the assumption that F(·) is continuously differentiable and has an increasing
generalized hazard rate to provide the clearest illustration.

11Appendix A.4 considers cases where some cutoffs are 0 or 1. They do not affect our conclusion: if there
exists a local perturbation of the bribes that guarantees there is no equilibrium where the proposal can be
rejected, then the bribes are more expensive than bi = 8

27 for all members.
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these bribes, it is useful to look at the Jacobian of (1):

J =
⎛
⎜⎝v2(1 − v3 ) + (1 − v2 )v3 v1(1 − 2v3 ) v1(1 − 2v2 )

v2(1 − 2v3 ) v1(1 − v3 ) + (1 − v1 )v3 (1 − 2v1 )v2

(1 − 2v2 )v3 (1 − 2v1 )v3 v1(1 − v2 ) + (1 − v1 )v2

⎞
⎟⎠

For given bribes (b1, b2, b3 ), suppose there exist (v1, v2, v3 ) solving (1). As long as J is
nonsingular, following any ε-perturbation of (b1, b2, b3 ) there also exists a solution to
(1). By contrast, when the determinant of J is 0, we can find an ε-perturbation of the
bribes such that (1) has no solution within a neighborhood of (v1, v2, v3 ) and, poten-
tially, no solution at all.

The cost cannot be minimized if some bribes are larger than needed to pass the pro-
posal. Therefore, the cheapest bribes such that the proposal passes with certainty in
equilibrium must be arbitrarily close to a (b1, b2, b3 ) for which there is an ε-perturbation
of the bribes such that (1) has no solution (the sufficient condition). This can only be the
case when the determinant of J is zero (the necessary condition). In the following, we
first establish that the bribes of Example 1 (bi = 8

27 for all members) satisfy the necessary
condition, and then show they also satisfy the sufficient condition. Finally, we argue that
they are the cheapest bribes satisfying the necessary condition.

To begin with, computing the determinant of J gives 2v1v2v3(2−v1 −v2 −v3 ), i.e., the
matrix is singular if v1 +v2 +v3 = 2.12 Thus, if a combination of bribes is associated with
an equilibrium satisfying

∑3
i=1 vi = 2, then there exists an ε-perturbation of the bribes

that ensures that (1) has no solution within a neighborhood of (v1, v2, v3 ). In particular,∑3
i=1 vi = 2 is satisfied for v1 = v2 = v3 = 2

3 . Plugging these values into (1) shows that
these cutoffs are an equilibrium if bi = 8

27 for all members; hence, these bribes satisfy
the necessary condition.

Moreover, the iterated deletion of dominated strategies used for Proposition 3 guar-
antees that if all bribes are (slightly more than) 8

27 , no cutoff in [0, 1) is rationalizable.
Hence, the ε-perturbation consisting in marginally increasing all bribes guarantees that
(1) has no solution, and bi = 8

27 for all members satisfies the sufficient condition.
Finally, we establish that bi = 8

27 for all members are the cheapest bribes satisfying
the necessary condition. We look for (v1, v2, v3 ) ∈ [0, 1]3,

∑3
i=1 vi = 2 that minimizes∑3

i=1 bi. Without loss of generality, suppose v1 < v2 < v3. We now show that decreasing
the difference between cutoffs decreases

∑3
i=1 bi. In particular, let us increase v1 and

decrease v3 by the same amount: dv1 = 1, dv3 = −1 and dv2 = 0, which keeps
∑3
i=1 vi

constant. Using the Jacobian, the change in the capture cost is

3∑
i=1

dbi = (v1 − v3 )(6v2 − 2),

which is negative because v1 < v3 and v2 > 1/3.13 As a result, under the constraint∑3
i=1 vi = 2, v1 = v2 = v3 = 2

3 , minimize
∑3
i=1 bi. These cutoffs are an equilibrium if

12The determinant is also 0 if some cutoffs are 0. As vi ≥ bi, vi = 0 can only be part of an equilibrium if
bi = 0. But then the proposal passes with probability 1 if the two other members receive a bribe of 1, which
does not minimize the capture cost.

13As v1 + v2 + v3 = 2 and v3 < 1, we obtain v1 + v2 ≥ 1. Combining with v2 > v1, we must have v2 > 1/3.
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bi = 8
27 for all members. Thus, the equal bribes identified in Example 1 do minimize

the capture cost. ♦

Is it generally true that the vote buyer offers the same bribes when vi
i.i.d.∼ U[0, 1]? Ex-

ample 4 established this for (m, n) = (2, 3) by demonstrating that the Jacobian of (1) is
not invertible if and only if

∑n
i=1 vi =m. We find the same condition for (m, n) = (1, 2),

(1, 3), (3, 4), and (1, 4). Hence, in all these cases, equal bribes minimize the capture
cost. However, we could not find a general formula for the determinant and prove the
result for any (m, n).

Even if Example 3 showed that the restriction to equal bribes is not always without
loss of generality, Example 4 indicates that the main model generates economic insights
going beyond the equal bribes assumption. To see this, notice that equal bribes did not
prevent the vote buyer from setting k < n (i.e., offering some bribes of zero). Restricted
to offering equal bribes, the vote buyer did not want to exploit this extreme form of in-

equality with vi
i.i.d.∼ U[0, 1] and instead bribed all members. Example 4 further establishes

that for (m, n) = (2, 3), she never benefits from any form of inequality in the bribes.

3. Sequential voting

We now consider a committee voting sequentially. The proposal passes if at least m of
n members vote for it. Members draw their disutilities from the passing of the proposal

at the beginning of the game: vi
i.i.d.∼ U[0, 1]. The order of votes is known in advance and

members observe previous votes, like in the US Senate where members vote in alpha-
betical order. The vote buyer minimizes the capture cost subject to the proposal passing
with certainty. Bribes are simultaneously and publicly offered to all members before the
vote begins, and a bribe is paid if a member votes for the proposal. Bribes can be un-
equal, but they cannot depend on the number of votes still needed to pass the proposal
when the member votes.14

This section shows that the vote buyer also offers a number of bribes larger than the
vote threshold to exploit pivotal considerations with sequential voting.

Proposition 4. When voting is sequential and vi
i.i.d.∼ U[0, 1], the vote buyer bribes all

members equally, offering b= 1/(n− (m− 1)) to all nmembers.

(Proof in text below.) Hence, with vi
i.i.d.∼ U[0, 1], bribing all members equally ensures

that the proposal passes with certainty in all equilibria at the lowest possible cost for
both simultaneous and sequential voting.

14As in Genicot and Ray (2006), this assumption rules out bribes, which depend on the number of other
members accepting. However, it has very different implications because we consider bribes offered before
the vote, while members can be approached sequentially in Genicot and Ray (2006). Therefore, in their
setup, bribes may depend on the number of votes still needed to pass the proposal. In our model, this
would imply that the vote buyer offers 1 to all remaining members if all of their votes are required to pass
the proposal, and small bribes when there are more members. If n > m, all members would vote for and
receive small bribes on the equilibrium path.
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Table 1. Equilibrium of the voting subgame, an example.

v(x, y ) p(x, y )

x= 0 x= 1 x= 2 x= 0 x= 1 x= 2

y = 1 1 b1 1 1 b1 0
y = 2 1 b2

1−b1

b2
b1

1 b1 + b2 b2

Note: Equilibrium cutoffs (left panel) and passing probabilities (right panel) for b2 ≤ b1 and b1 + b2 ≤ 1. x is the number of
votes required to pass the proposal and y the number of members still to vote.

To establish this result, we first characterize the equilibrium of the voting subgame,
which itself has to be decomposed into multiple subgames. Without loss of generality,
we focus on members who receive strictly positive bribes. Define S(x, y ) as the subgame
where x votes are needed to pass the proposal and y members still have to vote. The
voting subgame begins in S(m, n). If in S(x, y ) the member votes for the proposal, S(x−
1, y − 1) is reached while a vote against leads to S(x, y − 1). Members and bribes by are
now indexed by y ∈ {1, � � � , n}, with the number of members still to vote.

Members use backward induction to infer their pivotal probability as in Spenkuch,
Montagnes, and Magleby (2018, July). Let v(x, y ) be the cutoff played in S(x, y ) and
p(x, y ) be the probability that the proposal passes given that S(x, y ) is reached. We
jointly characterize v(x, y ) and p(x, y ) to find the equilibrium of the voting subgame,
beginning with two-member committees. Table 1 gives an example for the expressions
of v(x, y ) in the left and p(x, y ) in the right panel. When a member votes for the pro-
posal, the subgame located North-West is reached; if he votes against, we move North.

Example 5. Let (m, n) = (1, 2) and assume members receive positive bribes with b1 +
b2 ≤ 1. We solve the game backward and start with the last member, y = 1. If member
y = 2 voted “for,” y = 1 votes in S(0, 1). The proposal passes regardless of the vote of
member y = 1, who accepts with certainty. Thus, v(0, 1) = 1 and p(0, 1) = 1. If member
y = 2 voted against, member y = 1 votes in S(1, 1), where he is pivotal. He votes for if
b1 > v1 and we have v(1, 1) = p(1, 1) = b1.

Moving backwards, member y = 2 starts in S(1, 2). A vote “for” passes the proposal.
Alternatively, if he votes against, S(1, 1) is reached, where the proposal passes with prob-
ability b1. Thus, member y = 2 votes “for” if

b2 − v2 >−v2b1 ⇐⇒ v2 <
b2

1 − b1
,

so that v(1, 2) = b2/(1 − b1 ) and the proposal passes with probability

p(1, 2) = b2

1 − b1
+
(

1 − b2

1 − b1

)
b1 = b1 + b2.

Thus, bribes are substitutes from the perspective of the vote buyer: the proposal passes
with certainty for any bribes such that b1 + b2 = 1 at a cost of 1. ♦

Using a recursive characterization of v(1, y ) and p(1, y ), this substitutability of
bribes generalizes when one vote is needed to pass the proposal.
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Lemma 5. In equilibrium, p(1, y ) = min{
∑y
s=1 bs , 1}.

(Proof in Appendix B.) With vi
i.i.d.∼ U[0, 1], the vote buyer is exactly indifferent be-

tween bribing the first member to vote or a member voting later. For general distribu-
tions, the problem is not tractable, but there is still a tradeoff. On the one hand, the first
member can always determine the passing of the proposal: as x= 1, this member is piv-
otal. On the other hand, a member who votes late is less likely to be pivotal (the proposal
may be already accepted), but his cutoff affects members who vote earlier: they forecast
that voting against is less likely to make the proposal rejected when later members re-
ceive higher bribes. Hence, their cutoffs also increase, as we can see in Example 5 where
the cutoff of the first member v(1, 2) = b2/(1−b1 ) increases with the bribe of the second
member b1.

The next example shows that when more than one vote is needed to pass the pro-
posal, bribes are not perfect substitutes.

Example 6. Let (m, n) = (2, 2) and assume b1 + b2 ≤ 1. We start with b2 < b1. First,
consider member y = 1. If member y = 2 voted “for,” S(1, 1) is reached, for which we
have established v(1, 1) = p(1, 1) = b1. If member y = 2 voted against, the proposal will
be rejected and member y = 1 votes “for.” Turning to member y = 2, he starts in S(2, 2)
and votes “for” if

b2 − v2b1 > 0 ⇐⇒ v2 <
b2

b1

so that v(2, 2) = b2/b1 and the proposal passes with probability

p(2, 2) = v(2, 2)p(1, 1) = b2.

Bribes are not substitutes anymore: only b2, the smaller of the two bribes, affects the
probability of passing.

Instead, suppose b2 ≥ b1. The strategy of member y = 1 is as before and member
y = 2 votes “for” if v2 < b2/b1. As b2/b1 > 1, he always votes “for” and the proposal passes
with probability p(1, 1) = b1. Again, only the smaller of the bribes affects the probability
of passing.

As a result, the vote buyer offers equal bribes. If not, the largest bribe does not affect
the probability of passing and should be decreased. Finally, given that the probability
of passing is equal to the smaller bribe, this bribe must be 1 to make the proposal pass
with certainty. Hence, capture cost is minimized when b2 = b1 = 1. ♦

The example generalizes as follows.15

Lemma 6. Let b(s)
y be the sth order statistic (i.e., the sth lowest value) among {b1, � � � , by }.

Then, for x≥ 1, in equilibrium p(x, y ) = min{
∑y−(x−1)
s=1 b(s)

y , 1}.

15This lemma uses the convention that empty sums evaluate to zero.
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(Proof in Appendix B.) Hence, the probability of passing is the sum of the n− (m− 1)
smallest bribes. Intuitively, for given bribes, a member is more likely to accept if he
votes early. For instance, in Example 6, when the member who receives the largest bribe
votes first (b2 ≥ b1), he accepts regardless of his disutility and free-rides on the second
member, relying on him to reject the proposal. This finding generalizes: in S(x, y ) with
x > 1, if by is one of the x − 1 largest bribes among members still to vote, member y
accepts regardless of his disutility. Now, suppose the first m − 1 members receive the
largest bribes. They accept regardless of their disutility and S(1, n− (m+ 1)) is reached
with a probability of one. We have the same pattern when all bribes are equal: them− 1
first members accept and free-ride on the n− (m− 1) last members, who can potentially
reject the proposal. Then we have x= 1 and, by Lemma 5, the probability of passing is
the sum of the remaining bribes, which are the n− (m− 1) lowest bribes.

Instead, if the member who receives the largest bribe votes last in Example 6 (b2 <

b1), both members decline if their disutility is large enough. In such cases, increasing
the largest bribe b1 has two countervailing effects on the probability of passing. On the
one hand, increasing b1 directly increases the probability of passing because it raises the
cutoff of the second member v(1, 1) = b1. On the other hand, b1 decreases the proba-
bility of passing through the first member: he forecasts that voting “for” is more likely to
make the proposal pass, and hence becomes more likely to decline and make the pro-

posal rejected. When vi
i.i.d.∼ U[0, 1], the two effects cancel out and an increase in b1 does

not affect the probability of passing. This mechanism generalizes and the probability of
passing is also the sum of the n− (m− 1) lowest bribes if the members who receive the
largest bribes do not vote first.

We can now consider the problem of the vote buyer. Given that voting starts in
subgame S(m, n), the vote buyer chooses the cheapest combination {by }ny=1 such that
p(m, n) = 1. Using Lemma 6, we can write this problem as

min
{by }ny=1

n∑
y=1

by such that
n−(m−1)∑
s=1

b(s)
y ≥ 1.

The m − 1 largest bribes do not affect the probability of passing. Thus, the cost is
minimized when the m− 1 largest bribes are equal to b(n−(m−1))

y , the maximum of the
n− (m− 1) smallest bribes. As the sum of these bribes must be 1 to make the proposal
pass with certainty, the smallest b(n−(m−1))

y is achieved when they are all equal to 1/(n−
(m−1)). Therefore, the lowest bribes are 1/(n−(m−1)), which implies that all members
are bribed. Furthermore, them−1 largest bribes are also equal to the n−(m−1) smallest
bribes. As a result, all bribes are equal and we obtain Proposition 4.

We conclude this section with comparative statics for the capture cost. Given that
the vote buyer pays b∗

n = 1/(n− (m− 1)) to nmembers, the resulting cost is

Cseq(m, n) = n

n− (m− 1)
.

Comparative statics are similar to Proposition 2. If we multiply m and n by the same
scalar λ satisfying (λm, λn) ∈ N

2+, the cost is multiplied by less than λ. Moreover, the
effect ofm is now clearly positive. Finally, the capture cost decreases with n.
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Figure 4. Cost comparison. Notes: Simulation of the lowest cost as a function ofm and n.

4. Cost comparison

We compare the capture costs under simultaneous and sequential voting for vi
i.i.d.∼

U[0, 1]. With simultaneous voting, all members are bribed and the cost is

Csim(m, n) = n
(
n− 1
m− 1

)(
m

n

)m(
1 − m

n

)n−m
.

Which voting timing minimizes capture cost depends on the number of members n and
on the vote threshold m. The result of the comparison, illustrated in Figure 4, is as fol-
lows.

Proposition 5. Suppose vi
i.i.d.∼ U[0, 1].

(a) If it takes one or all but one votes to pass the proposal, the capture cost is lower with
simultaneous voting: Csim(m, n)<Cseq(m, n) form= 1 andm= n− 1.

(b) If unanimity is not required to pass the proposal (i.e.,m< n), there is a λ∗ such that
Cseq(λm, λn)<Csim(λm, λn) with λ > λ∗ and (λm, λn) ∈N

2+.

(Proof in Appendix C.) The models with sequential and simultaneous voting differ
in multiple aspects. However, the equilibrium structure of the voting subgame with se-
quential voting provides an intuition for the cost comparison. When all bribes are equal
to b∗

n, all members accept on the equilibrium path, which shuts down some interac-
tions and prevents a clear exposition of the underlying mechanisms. Instead, suppose
members receive equal bribes slightly lower than b∗

n. The cost of these bribes is close
to the capture cost, but some members can vote against on the equilibrium path. As
explained after Lemma 6, the group of the m− 1 first members accept their bribes and
rely on the group of the n− (m−1) last members to potentially reject the proposal. Intu-
itively, the first group free-rides on the second group and this free-riding decreases the
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capture cost. Moreover, free-riding is particularly pronounced if both groups are large:
there should be both members who free-ride and members to free-ride on to make the
capture cost lower under sequential voting.

If one of the two groups is small, there is a limited effect of free-riding and we find
that the capture cost is smaller with simultaneous voting. In particular, if m = 1, one
vote is sufficient to pass the proposal and the group of free-riders is empty. Indeed, we
have Cseq(1, n) = 1. Meanwhile, Csim(1, n) = (1 − 1/n)n−1 is 1

2 for n= 2 and decreases in
n.16 Thus, Cseq(1, n)>Csim(1, n) as stated in Proposition 5(a).

Now consider a vote threshold close to unanimity m= n− 1 (for m= n, pivotal con-
siderations cannot be exploited for both sequential and simultaneous voting and the
capture cost is m either way). The group of the n− (m− 1) last members is empty and
there is no one to free-ride on. Hence, we also find that the capture cost is lower with
simultaneous voting in Proposition 5(a). Formally, Cseq(n − 1, n) = n/2 and Csim(n −
1, n) = n× (1 − 1/n)n. As (1 − 1/n)n is increasing in n, and 1

2 > e
−1 = limn→∞(1 − 1/n)n,

we have Cseq(n− 1, n)>Csim(n− 1, n).
Turning to Proposition 5(b), the result simply states that the capture cost is smaller

under sequential voting if m and n are sufficiently large and the vote threshold is not
one of the extreme cases already discussed. This result can also be explained with free-
riding: the size of the two groups is limited when m and n are small, and Figure 4 con-
firms that the capture cost is smaller with simultaneous voting. As we multiply both m
and n by a given λ such that (λm, λn) ∈ N

2+, the size of the two groups increases and the
capture cost becomes eventually smaller with sequential voting because of free-riding.
In the limit, we have

lim
λ→∞C

seq(λm, λn) = 1

1 − m

n

<∞ = lim
λ→∞C

sim(λm, λn).

Hence, free-riding even implies that the cost grows bounded with sequential voting,
which is not the case with simultaneous voting. With sequential voting, the cost de-
pends on the share of members in the two groups. The proposal is accepted with cer-
tainty if the sum of the bribes in the group of the n− (m− 1) last members is one. These
bribes represent a share (n− (m− 1))/n of the capture cost because all members receive
the same bribe, and the total cost is the inverse of this share. As λ becomes large, this
share converges to (n−m)/n and free-riding implies that the cost is bounded.

5. Concluding remarks

When members have uncertain preferences, the vote buyer bribes supermajorities to ex-
ploit pivotal considerations. As we considered bribes conditioned on individual voting
decisions, we conclude with a discussion of other contractual environments.

If bribes are conditioned on the passing of the proposal, a pivotal vote also decides
the payment of the bribes. Thus, it is a weakly dominant strategy to vote against if the

16As vmin = 0, the assumption m > 1 in Section 2.1 plays no role and Csim(m, n) accurately defines the
capture cost form= 1.
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disutility exceeds the bribe. The vote buyer cannot exploit pivotal considerations with
such contracts: to make the proposal pass with certainty, she has to offer vmax tommem-
bers. Hence, conditioning on passing is bad for the vote buyer. Instead, suppose bribes
depend on the number of votes “for.” A vote matters for the bribe even when it is not
pivotal for the passing of the proposal. In a previous version of the paper (Louis-Sidois
and Musolff 2023), we proposed an example where the vote buyer exploited pivotal con-
siderations: she bribed a number of members larger than the vote threshold and paid
less than when she only conditioned on passing.

In an unrestricted contractual environment, bribes can be contingent on the entire
vector of votes. In such a case, Dal Bo (2007) has established that capture occurs at no
cost: the vote buyer promises a bribe vmax if a member is pivotal and an arbitrarily small
bribe otherwise. Voting “for” is then a dominant strategy, and when more thanmmem-
bers receive such offers, the proposal always passes. If such contracts are allowed, our
solution is still relevant for a budget-constrained vote buyer: even if members are never
pivotal in equilibrium, the vote buyer must be able to pay the large pivotal bribes for
Dal Bo’s strategy to be credible. Therefore, while our solution is more expensive (as the
vote buyer actually pays the bribes), it would nevertheless be feasible for lower budget
constraints.

We have considered offers visible to all. If offers are privately communicated to each
member, the vote buyer cannot credibly claim to have bribed more members than nec-
essary and the number of bribes is equal to the vote threshold in equilibrium. Each bribe
is equal to vmax, and capture is more expensive with private offers. To see why offering
more bribes than the vote threshold is not credible, consider a voting profile where more
than m members vote for with certainty. The vote buyer would deviate and propose ex-
actly m bribes. This deviation cannot be detected by members who continue receiving
the bribe, but in equilibrium, a bribed member cannot believe there are more thanm−1
other bribes. The bribe must be equal to vmax for him to always vote “for.”

Finally, our model can be reinterpreted with punishments for members who vote
against instead of bribes. For the vote buyer, enforcing punishment is likely to be costly,
which implies she effectively pays for members who vote against the proposal. If she has
enough resources for punishment, she uses the strategy of this paper. Capture is cost-
less because all approached members vote “for.” The capture cost we computed corre-
sponds to the minimum resources needed to secure certain passing of the proposal.

Appendix A: Proofs (simultaneous voting)

A.1 Helpful facts

Before proceeding to the proofs, we establish some necessary prerequisites. Recall that

(·) is a continuous extension of the factorial function. In particular, 
(x) = (x− 1)! for
x ∈N. Thus, (

k

m

)
= exp

(
log
(k+ 1) − log
(m+ 1) − log
(k−m+ 1)

)
.
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The digamma function is defined as ψ(x) = ∂
∂x log
(x). Hence,

∂ log
(
k
m

)
∂k

=ψ(k+ 1) −ψ(k−m+ 1),
∂ log

(
k
m

)
∂m

=ψ(k−m+ 1) −ψ(m+ 1).

To characterize these derivatives, our proofs below will make use of the fact that ψ(x+
1) =ψ(x)+ 1

x , and henceψ(b)−ψ(a) =∑b−1
c=a 1

c for b > a. For these and more facts about
ψ(·), see Abramowitz and Stegun (1972, page 258).

A.2 Proof of Proposition 1

We build toward the proof of Proposition 1 via several intermediate results.

Lemma A.2.1. If k > m and F(·) has an increasing generalized hazard rate, vπk(v) is
single-peaked in v ∈ [vmin, vmax].

Proof. Writing out the pivotal probability, we want to show the single-peakedness of

vπk(v) = v
(
k− 1
m− 1

)
F(v)m−1(1 − F(v)

)k−m
,

with associated log derivative

d logvπk(v)
dv

= 1
v

(
1 + vF ′(v)

1 − F(v)

m− 1 − (k− 1)F(v)
F(v)

)
.

As F ′(v) ≥ 0, limv→vmin
d logvπk(v)

dv > 0. We now establish limv→vmax
d logvπk(v)

dv < 0. Suppose

(for later contradiction) that F ′(v)
1−F(v) is bounded above by someA. Then

− log
(
1 − F(v)

)= ∫ v

vmin

F ′(x)
1 − F(x)

dx≤A(v− vmin ).

But this would imply that the LHS is finite as v→ vmax, a contradiction. Hence, F ′(v)
1−F(v)

is unbounded, and as vF ′(v)
1−F(v) is increasing, limv→vmax

vF ′(v)
1−F(v) = ∞. Finally, this implies

limv→vmax
d logvπk(v)

dv < 0.

Thus, as d logvπk(v)
dv is continuous in v, there has to be at least one solution to FOC

d logvπk(v)
dv = 0. Furthermore, we can rearrange this FOC to yield

[
(k− 1) − m− 1

F(v)

]−1

= vF ′(v)
1 − F(v)

. (2)

The RHS is the generalized hazard rate. It is weakly increasing (by assumption) and
positive. The LHS is negative for F(v)< m−1

k−1 , so we can restrict attention to F(v) ≥ m−1
k−1 .

On this domain, the LHS is strictly decreasing. Thus, (2) has a unique solution. As the
FOC has a unique solution and vπk(v) is initially increasing and eventually decreasing
in v, it must be single-peaked in v.
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Lemma 1. Suppose the vote buyer offers a bribe b > 0 to k members with m ≤ k ≤ n. In
the symmetric equilibrium of the voting subgame in which the proposal passes with the
smallest probability:

(a) If b≤ maxv∈[vmin,vmax] vπ
k(v), bribed members vote for the proposal if their disutility

is smaller than a cutoff v that satisfies v= min{v ∈ [vmin, vmax] : b= vπk(v)} where

πk(v) =
(
k− 1
m− 1

)
F(v)m−1(1 − F(v)

)k−m
.

Moreover, they vote against if their disutility is larger than v and a member with
vi = v can vote for with any probability.

(b) If b >maxv∈[vmin,vmax] vπ
k(v), all bribed members vote for the proposal regardless of

their disutility: v > vmax.

Proof. In a symmetric equilibrium, bribed members’ strategies σi depend only on
their disutility vi, i.e., σi = σ(vi ). As established in the main text, σ takes a cutoff form,
i.e., σ(vi ) = 1 if vi < v, σ(v) ∈ [0, 1], and σ(vi ) = 0 if vi > v. σ(v) does not affect pivotal
probabilities as F(·) is continuous. Furthermore, we assume unbribed members vote
against. We consider the possible values of v:

1. If v ∈ [vmin, vmax], 0 ≤ πk(v) ≤ 1 and v is an equilibrium if vπk(v) = b. Lemma
A.2.1 guarantees that there are at most two such equilibria, so that either min{v ∈
[vmin, vmax] : vπk(v) = b} is well-defined or there is no such equilibrium.

2. If v > vmax, every bribed member votes for regardless of his disutility.

(i) If k >m, members are pivotal with a probability of zero, and all members vot-
ing for is an equilibrium.

(ii) If k = m, members are pivotal with a probability of one if they all vote “for.”
Hence, all members voting “for” is an equilibrium if and only if b≥ vmax.

Lemma A.2.2. Suppose F̃(·) andF(·) have increasing generalized hazard rates, where F̃(·)
is more dispersed than F(·). Then, for any number of bribed members k ∈ {m, � � � , n},
F̃(ṽ∗

k ) ≥ F(v∗
k ), i.e., in equilibrium each bribed member is more likely to vote for when the

distribution is more dispersed.

Proof. Here, v∗
k and ṽ∗

k refer to the solutions to FOC (2) with F and F̃ , respectively. We
can express this FOC in terms of p= F(v) as

[
(k− 1) − m− 1

p

]−1

= F−1(p)F ′(F−1(p)
)

1 −p . (3)

Consider (3) separately for the two distributions F and F̃ . The LHSs are identical and,
for p ≥ m−1

k−1 , decreasing in p while the RHSs are increasing. We now establish that for
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p ∈ [0, 1] the RHS is smaller for F̃ than for F using the definition of dispersion:

∂

∂p

(
F̃−1(p)

F−1(p)

)
≥ 0 ⇒ 1

F̃ ′(F̃−1(p)
)F−1(p) ≥ F̃−1(p)

1

F ′(F−1(p)
)

⇒ F−1(p)F ′(F−1(p)
)≥ F̃−1(p)F̃ ′(F̃−1(p)

)
⇒ F−1(p)F ′(F−1(p)

)
1 −p ≥ F̃−1(p)F̃ ′(F̃−1(p)

)
1 −p

It follows that F̃(ṽ∗
k ) ≥ F(v∗

k ).

Lemma A.2.3. For any number of bribed members k ∈ {m, � � � , n}, letp∗
k be the probability

of voting for that maximizes a cutoff member’s expected cost of voting for when vi = δ ∈R+
for all i, i.e., the disutility distribution has no dispersion:

p∗
k := arg max

p∈[0,1]
δπk(p) = arg max

p∈[0,1]

(
k− 1
m− 1

)
pm−1(1 −p)k−m.

For any disutility distribution F(·) that is continuously differentiable on [vmin, vmax] and
has an increasing generalized hazard rate, F(v∗

k ) ≥ p∗
k.

Proof. When vi = δ ∈ R+ for all i, in an equilibrium where bribed members play the
same strategy, they mix and vote for with a common probabilityp. Assuming kmembers
are bribed, the pivotal probability is

πk(p) =
(
k− 1
m− 1

)
pm−1(1 −p)k−m.

This function is single-peaked in p. Furthermore, members vote “for” if b > δπk(p),
against if b < δπk(p), and are indifferent if b= δπk(p). If b= δπk(p) for some p, then
all members voting for with probability p is an equilibrium in which the proposal is
not accepted with certainty. Hence, to make the proposal pass with certainty in any
equilibrium of the voting subgame, b must be at least b∗

k = maxp∈[0,1] δπ
k(p), and the

vote buyer’s cost is kb∗
k. δπk(p) is maximized if dδπ

k(p)
dp = 0, which is satisfied if

(m− 1) − (k− 1)p= 0. (4)

Hence, p∗
k = arg maxp∈[0,1] δπ

k(p) = m−1
k−1 . By contrast, the FOC defining F(v∗

k ) for a

distribution with dispersion is (3), with p = F(v). The p solving (3) is above m−1
k−1 : for

p< m−1
k−1 , the LHS of (3) is negative and the RHS is positive. Hence, F(v∗

k ) ≥ p∗
k.

Lemma 2. The set of cost-minimizing numbers of bribes with a distribution F̃(·) domi-
nates in the strong set order the set of cost-minimizing numbers of bribes with a less dis-
persed distribution F(·).
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Proof. As a prerequisite, we find a simple expression for d log c
dk . Note

log
(
c(k)

) = log(k) + log
(
v∗
k

)+ log

(
k− 1
m− 1

)
+ (m− 1) logF

(
v∗
k

)
+ (k−m) log

(
1 − F(v∗

k

))
.

Interpreting k as a real number, taking the total derivative with respect to k and applying
the envelope theorem:

d log
(
c(k)

)
dk

= ∂ log
(
c(k)

)
∂k

+ ∂ log
(
c(k)

)
∂v

∣∣∣∣
v=v∗k︸ ︷︷ ︸

0

×dv
∗
k

dk

= 1
k

+ψ(k) −ψ(k−m+ 1) + log
(
1 − F(v∗

k

))
. (5)

We can now prove the result. Consider distributions F̄(·) and F̃(·), with F̃(·) more
dispersed. Making the dependence of cost on distribution F explicit for this proof only,
for any k1, k2 ∈ {m, � � � , n}, k1 <k2,

[
log c(k2, F ) − log c(k1, F )

] =
∫ k2

k1

d log c(k, F )
dk

dk

=
∫ k2

k1

1
k

+ψ(k) −ψ(k−m+ 1) + log
(
1 − F(v∗

k

))
dk. (6)

From Lemma A.2.2, F̃(ṽ∗
k ) ≥ F̄(v̄∗

k ), and thus d log c(k,F̃ )
dk ≤ d log c(k,F̄ )

dk , i.e., the cost de-
creases faster (or increases slower) in k for more dispersed distributions. Hence, if
c(k2, F̃ ) ≥ c(k1, F̃ ), then also c(k2, F̄ ) ≥ c(k1, F̄ ) (and the same for strict inequali-
ties). We indicate usage of this fact and its contrapositive by ⇒∗ below. Suppose (A)
k̄ ∈ arg mink∈{m, ���,n} c(k, F̄ ) and (B) k̃ ∈ arg mink∈{m, ���,n} c(k, F̃ ). Then:

1. min{k̄, k̃} ∈ arg min
k∈{m, ���,n}

c(k, F̄ ). If k̄ ≤ k̃, this follows from (A). If k̄ > k̃, by (B),

c(k̄, F̃ ) ≥ c(k̃, F̃ ) ⇒∗ c(k̄, F̄ ) ≥ c(k̃, F̄ ). Thus, k̃ also minimizes c(k, F̄ ) as required.

2. max{k̄, k̃} ∈ arg min
k∈{m, ���,n}

c(k, F̃ ). If k ≤ k̃, this follows from (B). If k > k̃, by (A),

c(k̃, F̄ ) ≥ c(k̄, F̄ ) ⇒∗ c(k̃, F̃ ) ≥ c(k̄, F̃ ). Thus, k̄ also minimizes c(k, F̃ ) as re-
quired.

Lemma A.2.4. When the disutility distribution has no dispersion

(a) any cost-minimizing number of bribes weakly exceeds min{ 3
2m− 1, n},

(b) any cost-minimizing number of bribes is at most min{ 3
2m+ 1, n}.
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Proof. We establish that c(k) is decreasing for k≤ 3
2m− 1

2 and increasing for k≥ 3
2m+

1
2 . Recall that with no dispersion, vi = δ ∈R+ for all members i ∈ {1, � � � , n}. The solution
to (4) is p∗

k = m−1
k−1 , giving a cost for the vote buyer of

c(k) = k× δ
(
k− 1
m− 1

)(
m− 1
k− 1

)m−1(k−m
k− 1

)k−m
.

The log derivative of this expression with respect to k is

∂ log c(k)
∂k

= 1
k

+ [ψ(k) − log(k− 1)
]− [ψ(k−m+ 1) − log(k−m)

]=: ξ(k,m),

where ψ is the digamma function. We employ the following inequality from Qi, Cui,
Chen, and Guo (Qi et al. (2005), p. 305, Corollary 1) to bound ξ:

1
2x

− 1

12x2 <ψ(x+ 1) − log(x)<
1

2x
.

In particular, we have ξ(k,m)< ξ(k,m)< ξ(k,m), where

ξ(k,m) = 1
k

+ 1
2(k− 1)

− 1

12(k− 1)2 − 1
2(k−m)

,

ξ(k,m) = 1
k

+ 1
2(k− 1)

+ 1

12(k−m)2 − 1
2(k−m)

.

We use these bounds to establish the two claims.

(a) c(k) is decreasing for k≤ (3/2)m− (1/2).

(i) Form= 2, there is nothing to prove as only k= 2 satisfies k≤ 3
2m− 1

2 .

(ii) Form= 3, 3
2m− 1

2 ≤m+ 1 so it suffices to show c(m+ 1)< c(m):

c(m+ 1) = δ(m+ 1) ×
(
m− 1
m

)m−1

< δ(m+ 1) × m

m+ 1
= c(m).

This inequality did not usem= 3 and implies that c(k) decreases for k≤m+
1.

(iii) Form> 3, we also require that for k ∈ [m+ 1, 3
2m− 1

2 ], ξ(k,m)< ξ(k,m)< 0.
But note

ξ

(
3
2
m− 1

2
,m
)

= 3 −m
3(m− 1)2(3m− 1)

< 0,

where the inequality follows asm> 3. Furthermore,

∂ξ(k,m)
∂k

= 1
6

(
− 6

k2 + 3

(k−m)2 + 1

(m− k)3 − 3

(k− 1)2

)
> 0,
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where the inequality follows for k ∈ [m + 1, 3
2m − 1

2 ]. To conclude, ξ(k,m)
increases on k ∈ [m+ 1, 3

2m− 1
2 ] and is negative for k= 3

2m− 1
2 ; it must there-

fore be negative on the interval. Hence, ξ(k,m) is also negative, and c(k) is
decreasing in k.

(b) c(k) is increasing for k≥ (3/2)m+ (1/2). We now establish that ξ(k,m) > 0 for

k≥ 3
2m+ 1

2 . Consider k(k−m)ξ(k,m), which has the sign of ξ(k,m) as k>m. We
have

∂
[
k(k−m)ξ(k,m)

]
∂k

= k(5m+ 32) + 12k2(k− 3) − 7m− 6

12(k− 1)3 .

The denominator is positive. The numerator has value 5+3m(2+m(−22+27m))
2 > 0 for

k = 3
2m+ 1

2 and increases with k (the derivative with respect to k is 32 + 36(k−
2)k + 5m, which is positive as k ≥ 2). Thus, ∂[k(k − m)ξ(k,m)]/∂k > 0 for k ≥
3m/2 + 1/2. Thus, if k(k−m)ξ(k,m), and hence ξ(k,m) are positive for some k̄,

then ξ(k,m)> 0 for k> k̄. Moreover,

ξ

(
3
2
m+ 1

2
,m
)

= m(69m− 28) − 1

3(1 − 3m)2(m+ 1)(3m+ 1)
> 0.

Thus, ξ(k,m) > 0 for k ≥ 3
2m+ 1

2 . As a result, ξ(k,m) > 0 and the cost increases
for k≥ 3

2m+ 1
2 .

Finally, notice that if m is even, 3
2m − 1, 3

2m, and 3
2m + 1 are integers. If m is odd,

3
2m− 1

2 or 3
2m+ 1

2 are integers. Thus, any integer minimizing c(k) weakly exceeds 3
2m−1

and is at most 3
2m+ 1.

Lemma 3. Any cost-minimizing number of bribes is at least min{ 3
2m− 1, n}.

Proof. First of all, the set of cost-minimizing numbers of bribes with a distribution
F(·) that is continuously differentiable on [vmin, vmax] and has an increasing generalized
hazard rate dominates in the strong set order the set of cost-minimizing numbers of
bribes when the disutility distribution has no dispersion. This follows from the proof
of Lemma 2. Consider (6). With no dispersion, F(v∗

k ) has to be replaced by p∗
k. By

Lemma A.2.3, F(v∗
k ) exceeds p∗

k. Hence, the cost decreases faster (or increases slower)
in k with dispersion than without. Thus, the proof of Lemma 2 establishes set order
dominance. Moreover, with no dispersion, every element of arg mink∈{m, ���,n} c(k) is at
least min{ 3

2m− 1, n} (Lemma A.2.4). As a result, every element of arg mink∈{m, ���,n} c(k) is
at least min{ 3

2m− 1, n}.

Lemma 4. If the disutility distribution is U[0, 1], all members are bribed.

Proof. If vi
i.i.d.∼ U[0, 1], we have F(v∗

k ) = m
k . Plugging into (5) yields

∂ log c(k)
∂k

= log
(
k−m
k

)
+ψ(k) −ψ(k−m+ 1) + 1

k
,
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Using the properties of the digamma function given in Appendix A.1 and noting that for
any decreasing function

∑b
s=a+1 g(s)<

∫ b
a g(s)ds,

ψ(k) −ψ(k−m+ 1) + 1
k

=
m∑
s=1

1
k−m+ s

<

∫ m

0

1
k−m+ s ds = − log

(
k−m
k

)
.

Thus, the cost strictly decreases in k so that arg mink∈{m, ���,n} c(k) = n.

Lemma A.2.5. For vi ∼ U[ 1
2 − α, 1

2 + α], the cost function c(k) has a unique global real
minimizer.

Proof. Recall that

d log c(k)
dk

= 1
k

+ψ(k) −ψ(k−m+ 1) + log
(
1 − F(v∗

k

))
.

We establish that this expression crosses the horizontal axis at most once, and neces-
sarily from below. To do so, we will show that when the FOC is satisfied (i.e., when
d log c(k)
dk = 0), d

2 log c(k)
dk2 > 0.17

1. Consider:

d2 log c(k)

dk2 = − 1

k2 +ψ′(k) −ψ′(k−m+ 1) − F ′(v∗
k

)
1 − F(v∗

k

) dv∗
k

dk
.

The expression has the same sign as

k

(
− 1

k2 +ψ′(k) −ψ′(k−m+ 1) − F ′(v∗
k

)
1 − F(v∗

k

) dv∗
k

dk

)
. (7)

We now argue that for vi ∼U[ 1
2 − α, 1

2 + α], (7) is increasing in α so that if we want
to show that it is positive, we only need to do so for α→ 0.

2. For vi ∼U[ 1
2 − α, 1

2 + α], the FOC for the choice of v∗
k reduces to

2(k−m)
2α− 2v∗

k + 1
= 2(m− 1)

2α+ 2v∗
k − 1

+ 1
v∗
k

(8)

Hence,

v∗
k =

√
(4αk− 8αm+ 4α− 2k− 2)2 − 16

(
1 − 4α2

)
k− 4αk+ 8αm− 4α+ 2k+ 2

8k
. (9)

17One may worry that there could be multiple local minima. However, this cannot be the case as the

derivative is continuous: v∗
k is continuous, and hence so is d log c(k)

dk . This means c(k) has (at most) one local
minimum (otherwise it would have to have at least one local maximum, which is ruled out by the proof).
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Furthermore, we can implicitly differentiate (8) to get an expression for
dv∗k
dk and

plug the value of v∗
k from (9) into

F ′(v∗k )
1−F(v∗k ) to find

− F ′(v∗
k

)
1 − F(v∗

k

) dv∗
k

dk

= m

√
4
(
4α2 − 1

)
k+ (−2α(k− 2m+ 1) + k+ 1

)2 − ((2α− 1)k(m− 2)
)+ αm(4m− 2) +m

2k(k−m)
√

4
(
4α2 − 1

)
k+ (−2α(k− 2m+ 1) + k+ 1

)2 . (10)

The derivative of this last expression with respect to α is

d

dα

(
− F ′(v∗

k

)
1 − F(v∗

k

) dv∗
k

dk

)
= 8(m− 1)(1 − 2α)(

4
(
4α2 − 1

)
k+ (−2α(k− 2m+ 1) + k+ 1

)2)3/2 > 0.

Hence, it is increasing in α, and so is (7).

3. For α→ 0, (10) implies

− F ′(v∗
k

)
1 − F(v∗

k

) dv∗
k

dk
→ m− 1

(k− 1)(k−m)

and (7) becomes

k

(
− 1

k2 +ψ′(k) −ψ′(k−m+ 1) + m− 1

(k− 1)(k−m)

)
.

We only need to show this expression is positive for k such that the FOC ( d log c(k)
dk =

0) is satisfied. We establish a strictly stronger claim: we prove that a different ex-
pression (Z below) that reduces to this expression when the FOC is satisfied is pos-
itive for all k:

Z = ψ(k) −ψ(k−m+ 1) + log
(

1 − m− 1
k− 1

)

+ k
(
ψ′(k) −ψ′(k−m+ 1) + m− 1

(k− 1)(k−m)

)

For α→ 0, F(v∗
k ) → m−1

k−1 and the FOC is satisfied if 1
k +ψ(k)−ψ(k−m+1)+ log(1−

m−1
k−1 ) = 0. In this case, Z = (7).

4. To show Z > 0, we first utilize the bounds of Qi et al. (2005) to provide a lower
bound for the first line (and then for Z). To this end, note that their Corollary 8
implies

1
2x

+ log(x) − 1

12x2 ≤ψ(x+ 1) ≤ 1
2x

+ log(x),

and hence

ψ(k) −ψ(k−m+ 1) + log(k−m) − log(k− 1)
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≥ − 1
2(k−m)

− 1

12(k− 1)2 + 1
2(k− 1)

≥ 1
k− 1

− 1
k−m .

Plugging this back into Z, it now suffices to show

1
k− 1

− 1
k−m + k

(
ψ′(k) −ψ′(k−m+ 1) + m− 1

(k− 1)(k−m)

)
≥ 0.

This simplifies to

m− 1
k(k−m)

+ψ′(k) −ψ′(k−m+ 1) ≥ 0.

We again utilize bounds from Corollary 8 of Qi et al. (2005), this time

1
x

− 1

2x2 + 1

6x3 − 1

30x5 ≤ψ′(x+ 1) ≤ 1
x

− 1

2x2 + 1

6x3 .

Thus, we need to show

1
m− k − 1

k
+ 1

30

(
15

(k−m)2 + 5

(m− k)3 − 15

(k− 1)2 + 5

(k− 1)3 − 1

(k− 1)5 + 30
k− 1

)
≥ 0.

This holds for k ≥m+ 1. As we have shown in the proof of Lemma A.2.4 that the
cost decreases between k =m and k =m+ 1, the FOC cannot be satisfied for k ∈
[m,m+ 1]. Hence, whenever d log c(k)

dk = 0, d
2 log c(k)
dk2 > 0.

Proposition 1.

(a) For any disutility distribution, any cost-minimizing number of bribes is at least
min{ 3

2m− 1, n};

(b) For any number of bribes k ∈ N such that min{ 3
2m + 1, n} ≤ k ≤ n, there exists a

disutility distribution such that k is a cost-minimizing number of bribes.

Proof. Notice that this proof does not follow the order of the text: it builds on Lem-
mata 2, 3, and 4.

(a) See Lemma 3.

(b) We establish the claim using uniform distributions: vi
i.i.d.∼ U[ 1

2 − α, 1
2 + α]. For this

proof only, let k∗ := arg mink∈[m,n] c(k) be the real (as opposed to integer) num-
ber of bribes that minimizes the cost; this number is unique by Lemma A.2.5.
We first show that k∗ is continuous in α. Then we establish that limα→0 k

∗ ≤
3
2m + 1

2 and limα→ 1
2
k∗ = n. Hence, by the intermediate value theorem, for all

k ≥ 3
2m + 1

2 , there exists an α ∈ (0, 1
2 ) such that k∗ = k. Finally, for any inte-

ger k ∈ {m, � � � , n}, k∗ = k implies k ∈ arg minκ∈{m, ���,n} c(κ). Hence, if m is odd,
3
2m + 1

2 ∈ N and for all k ∈ N such that min{ 3
2m + 1

2 , n} ≤ k ≤ n, there exists an α
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such that k ∈ arg minκ∈{m, ���,n} c(κ). If m is even, 3
2m+ 1 ∈ N and for all k ∈ N such

that min{ 3
2m+ 1, n} ≤ k≤ n, there exists an α such that k ∈ arg minκ∈{m, ���,n} c(κ).

(i) k∗ is continuous in α. To begin with, v∗
k is continuous in α as the roots of

a polynomial are continuous functions of its coefficients and (2), the FOC

defining v∗
k, simplifies to a polynomial when vi

i.i.d.∼ U[ 1
2 − α, 1

2 + α]:

4α2 − 1 = (−2 + 4α− 2k+ 4αk− 8αm)v∗
k + 4k

(
v∗
k

)2
.

This, in turn, implies that c(k) is continuous in α, which implies via Berge’s
maximum theorem that its minimizer k∗ is continuous in α.

(ii) lim
α→0

k∗ ≤ (3/2)m+ 1/2. As vi ∼ U[ 1
2 − α, 1

2 + α] implies F(v) = v−(1/2−α)
2α for

v ∈ [ 1
2 − α, 1

2 + α], we have F−1(p) = 1
2 − α + 2αp for p ∈ [0, 1] and we can

express the maximization defining b∗
k in terms of p= F(v):

b∗
k = max

p∈[0,1]

[
1
2

− α+ 2αp
]

×
(
k− 1
m− 1

)
pm−1(1 −p)k−m.

As α → 0, we have [ 1
2 − α + 2αp] → 1

2 for all p ∈ [0, 1]: as the distribution
converges to a mass point, all its quantiles converge to this point. By Berge’s
maximum theorem, this convergence implies the convergence of the maxi-
mum:

b∗
k → max

p∈[0,1]

1
2

×
(
k− 1
m− 1

)
pm−1(1 −p)k−m.

Hence, all b∗
k converge to the values they have in Lemma A.2.3 (with δ = 1

2 )
where the disutility distribution has no dispersion. By Berge’s maximum the-
orem, k∗ thus converges to the minimizer of the cost under no dispersion as
α → 0. Finally, Lemma A.2.4 establishes that the cost under no dispersion
increases for k≥ 3

2m+ 1
2 . Hence, we also have k∗ ≤ 3

2m+ 1
2 when α→ 0.

(iii) lim
α→1/2

k∗ = n. This follows from the proof of Lemma 4, which establishes that

c(k) decreases with k when α= 1
2 .

A.3 Other simultaneous voting proofs

Proposition 2.

(a) Proportional increases in vote threshold m and number of committee members n
raise capture cost subproportionally: Csim(λm, λn)< λCsim(m, n) with λ ∈N+.

(b) Suppose only a majority can pass the proposal, i.e., n≤ 2m− 1. Then, for any num-
ber of bribes k, b∗

k, and Csim(m, n) increase in the vote thresholdm.
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Proof.

(a) Suppose the vote buyer bribes k members in a committee (m, n). As λ ∈ N+, she
can bribe λk members in a committee (λm, λn). While λk bribes need not min-
imize cost in the larger committee, they give an upper bound on its minimized
value. Thus, recalling p= F(v), it suffices to show that if

b(λ, p) = F−1(p)
p

×
(
λk− 1
λm− 1

)[
pm(1 −p)k−m]λ,

then b(λ, p∗ ) = maxp∈[0,1] b(λ, p) decreases in λ. The log derivative of b(λ, p∗ ) is

d logb
(
λ, p∗)

dλ
= ∂ logb

(
λ, p∗)

∂λ
+ ∂ logb(λ, p)

∂p

∣∣∣∣
p=p∗

dp∗

dλ

=(A)
∂ logb

(
λ, p∗)

∂λ

= log
((
p∗)m(1 −p∗)k−m)− (k−m)ψ(λk− λm+ 1)

+ kψ(λk) −mψ(λm)

=(B) log
((
p∗)m(1 −p∗)k−m)− (k−m)ψ(λk− λm+ 1)

+ kψ(λk+ 1) −mψ(λm+ 1)

≤(C ) log
((

m

k

)m(
1 − m

k

)k−m)
− (k−m)ψ(λk− λm+ 1)

+ kψ(λk+ 1) −mψ(λm+ 1)

=(D) mg(m) − kg(k)

<(E) 0,

where

(A) letting p∗ = arg maxp∈[0,1] b(λ, p), ∂ logb(λ,p)
∂p |p=p∗ = 0 by the envelope theorem,

(B) uses xψ(λx) = x[ψ(λx+ 1) − 1
λx ] = xψ(λx+ 1) − 1/λ,

(C) uses the fact that pm(1 −p)k−m ≤ maxp∈[0,1]p
m(1 −p)k−m = (mk )m(1 − m

k )k−m,

(D) defines g(x) := [log(x) − log(k−m)] − [ψ(λx+ 1) −ψ(λk− λm+ 1)], and

(E) follows because g(·) is increasing. To see this, note

g′(x) = 1
x

− λψ′(λx+ 1)

=(i)
1
x

− λψ′(λx) + λ

λ2x2

>(ii)
1
x

− λ
[

1
λx

+ 1

λ2x2

]
+ λ

λ2x2 = 0,
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where (i) uses ψ′(u+ 1) =ψ′(u) − 1
u2 and (ii) uses ψ′(u)< 1

u + 1
u2 from Guo and

Qi (2010, Lemma 3, p. 107).

(b) If n ≤ 2m − 1, we show that b∗
k is increasing in m for all k ∈ {m, � � � , n}. Hence,

mink∈{m, ���,n} c(k) must also be increasing in m as c(k) = kb∗
k. By the envelope the-

orem,
∂ logb∗

k
∂v |v=v∗k = 0 and

d logb∗
k

dm
= ∂ logb∗

k

∂m
+ ∂ logb∗

k

∂v

∣∣∣∣
v=v∗k

dv

dm
= ∂ logb∗

k

∂m

= ψ(k−m+ 1) −ψ(m) + logF
(
v∗
k

)− log
(
1 − F(v∗

k

))
.

Lemma A.2.3 implies F(v∗
k ) ≥ m−1

k−1 . Thus,

d logb∗
k

dm
≥ ψ(k−m+ 1) −ψ(m) + log

(
m− 1
k− 1

)
− log

(
k−m
k− 1

)
= [log(m− 1) − log(k−m)

]− [ψ(m) −ψ(k−m+ 1)
]
.

n≤ 2m− 1 impliesm− 1 ≥ k−m. Then

[
log(m− 1) − log(k−m)

] =
∫ m−1

s=k−m
1
s
ds

>

m−1∑
s=k−m+1

1
s

=ψ(m) −ψ(k−m+ 1),

where the last equality results from the property of the digamma function at the

beginning of the proof section. As a result,
d logb∗

k
dm > 0.

Proposition 3. Suppose the distribution is at least as dispersed as U[0, 1]. Offering b∗
n

to n members, which minimizes the capture cost if members use symmetric strategies,
ensures the proposal passes with certainty in any equilibrium of the voting subgame.

Proof. Recall that footnote 4 defines b∗
n as the smallest number above v∗

nπ
n(v∗

n ). For
this proof, we assume there exists a fixed minimum currency ε > 0, so that b∗

n =
v∗
nπn(v∗

n ) + ε. We use a simultaneous iterated deletion of strictly dominated strategies
to argue that when n members are bribed with b∗

n, the proposal passes with certainty in
any equilibrium.

We eliminate cutoffs in increasing order. Let �ti be the smallest rationalizable cutoff
for member i after iteration t. Then �t+1

i is the smallest rationalizable cutoff for member
i when no other member j plays a cutoff below �tj . At each iteration, we simultaneously

eliminate cutoffs for all members. We have ∀i : �0
i = vmin and, as the disutility distribu-

tion is the same for all members, the same set of cutoffs is eliminated for all members at
each step. Thus, �ti = �t∀i.

Let fx(vy ) be the probability that among all members but y there are exactly x votes
for (writing vy = (v1, � � � , vy−1, vy+1, � � � , vn ) for the vector of cutoffs of all members other
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than y). Without loss of generality, consider member 1. Let πmax(�) denote the maximal
pivotal probability he can expect if every other member has a cutoff of at least �:

πmax(�) := max
{(v2, ���,vn ):∀i∈{2, ���,n}�≤vi≤vmax}

fm−1
(
v1).

Then the smallest rationalizable cutoff �t+1 at iteration t + 1 solves

�t+1 ×πmax(�t)= b∗
n.

The remainder of the proof shows that if �t < vmax, then(
�t+1 − �t)πmax(�t)= b∗

n − �tπmax(�t)≥ ε, (11)

whence �t+1 ≥ �t + ε (as πmax ≤ 1) and all cutoffs smaller than vmax are eventually elim-
inated. We proceed by bounding �tπmax(�t ).

1. For any i �= 1, we can rewrite fm−1(v1 ) as

fm−1
(
v1)= F(vi )fm−2

(
v1,i)+ (1 − F(vi )

)
fm−1

(
v1,i),

where v1,i = (v2, � � � , vi−1, vi+1, � � � , vn ) is the vector of cutoffs of all members other

than 1 and i. Hence, the sign of ∂fm−1(v1 )
∂vi

is independent of vi. Thus, there is a
solution to the maximization problem πmax(�t ) with vi ∈ {�t , vmax} for all i. In light
of this, let πn,h(�t ) be the value of the pivotal probability if exactly h of the n − 1
other bribed members choose a cutoff of vmax and n− 1 − h choose a cutoff of �t ;
then

πmax(�t)= max
h∈{0, ���,n−1}

πn,h(�t).
2. To bound �t maxh πn,h(�t ) from above, note

�t max
h∈{0, ���,n−1}

πn,h(�t)≤ max
h∈{0, ���,n−1},�t∈[vmin,vmax]

�tπn,h(�t)= max
h∈{0, ���,n−1}

b̂n,h,

where b̂n,h is such that when offering any amount strictly above b̂n,h to n−hmem-
bers with vote thresholdm−h, there is no equilibrium where members vote against
the proposal with positive probability. Thus, b̂n,h = 0 for h≥m and else

b̂n,h = max
v∈[vmin,vmax]

v

(
n− h− 1
m− h− 1

)[
F(v)

]m−1−h[
1 − F(v)

]n−m
︸ ︷︷ ︸

πn,h(v)

.

3. By definition, b̂n,0 = b∗
n − ε. When the distribution is more dispersed than U[0, 1],

we now show that b̂n,h < b
∗
n − ε for all h ∈ {1, � � � ,m}. We have

∂ log b̂n,h

∂h
= −{ψ(n− h) −ψ(m− h) + log

[
F
(
v∗
n,h

)]}
, (12)

whereψ is the digamma function and we define v∗
n,h := arg maxv∈[vmin,vmax] vπ

n,h(v).
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• If vi
i.i.d.∼ U[0, 1], F(v∗

n,h ) = m−h
n−h and (12) is

−{[ψ(n− h) −ψ(m− h)
]− [log(n− h) − log(m− h)

]}
.

Using the properties of the digamma function given in Appendix A.1 and not-
ing that for any decreasing function

∑b−1
s=a g(s)>

∫ b
a g(s)ds,

ψ(n− h) −ψ(m− h) =
n−1∑
s=m

1
s− h

>

∫ n

m

1
s− h ds = log(n− h) − log(m− h).

Therefore, (12) is negative for U[0, 1].

• By Lemma A.2.2, F(v∗
n,h ) is larger for more dispersed distributions. Thus, (12)

must also be negative for distributions more dispersed than U[0, 1].

Putting these steps together,18

�t ×πmax(�t) =(1) �
t max
h∈{0, ���,n−1}

πn,h(�t)
≤(2) max

h∈{0, ���,n−1}
b̂n,h

=(3) b̂n,0

=(3) b
∗
n − ε.

Plugging this into (11) indeed yields �t+1 − �t ≥ ε.

A.4 Boundary solutions in Example 4

When some members have cutoffs at the boundary, i.e., when for at least one i ∈ {1, 2, 3},
vi ∈ {0, 1}, the nonsingularity of the Jacobian is not informative about the existence of
nearby equilibria for any local perturbation of the bribes: while local perturbations such
that equation (1) continues to hold must exist, these local perturbations may take some
vi outside of the feasible region [0, 1]. To address this concern, we consider bribes asso-
ciated with an equilibrium with cutoffs at the boundary and such that a local perturba-
tion of the bribes guarantees there is no equilibrium where the proposal can be rejected.
We show that such bribes are more expensive than bi = 8

27 for all members:

• Cutoffs at 1.
– (v1, v2, v3 ) = (1, 1, 1) is an equilibrium for any (b1, b2, b3 ), but it is irrelevant for

the existence of other equilibria.

– (v2, v3 ) = (1, 1). v1 < 1 only if b1 = 0. Wlog, suppose b2 ≤ b3. Then, if b2 < 1,
(v1, v2, v3 ) = (0, b2, 1) is an equilibrium. Hence, the cost is at least 2 to make the
proposal pass with certainty.

18The index on equalities/inequalities refers to the relevant step in the proof.
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– v3 = 1, v1 ≤ v2 < 1. Then (v1, v2 ) satisfy

v1(1 − v2 ) = b1; v2(1 − v1 ) = b2. (13)

The vote buyer minimizes b1 + b2 + b3. Notice v3 = 1 requires b3 ≥ π3 = v1(1 −
v2 ) + v2(1 − v1 ) = b1 + b2. Thus, b1 + b2 + b3 is at least

2(b1 + b2 ) = 2(v1 + v2 − 2v1v2 ). (14)

The Jacobian of (13) is

J =
(

1 − v2 −v1

−v2 1 − v1

)
.

The determinant is 1 − v1 − v2, which is 0 if v1 + v2 = 1. Under this condition,
the cost in (14) is minimized for v1 = v2 = 1

2 for which it is equal to 1. Thus, the
cheapest bribes such that (13) has no solution are necessarily more expensive
than 8

9 (the capture cost with equal bribes).

• Cutoffs at 0.
– vi = 0 only if bi = 0. With two or three cutoffs (and hence bribes) at 0, the proposal

never passes.

– v1 = 0 and 0< v2 ≤ v3 requires b1 = 0, b2 > 0, and b3 > 0. An equilibrium would
have to satisfy v2v3 = b2 and v3v2 = b3. If b2 �= b3, this system does not have a so-
lution. Suppose b2 = b3. Then, if b2 < 1, (v1, v2, v3 ) = (0, b2, 1) is an equilibrium.
Hence, with one cutoff at 0, the cost is at least 2 to make the proposal pass with
certainty.

Appendix B: Proofs (sequential voting)

Lemma 5. In equilibrium, p(1, y ) = min{
∑y
s=1 bs, 1}.

Proof. In general, if member y votes for, his expected utility is by − vyp(x − 1, y − 1)
while a vote against gives −vyp(x, y − 1). Therefore, in S(x, y ), the member votes for of
the proposal if his disutility is larger than a cutoff v(x, y ) defined by

v(x, y ) = min
{

by

p(x− 1, y − 1) −p(x, y − 1)
, 1
}

.

For all y, p(0, y − 1) = 1. Thus, the cutoff of member y in S(1, y ) is

v(1, y ) = min
{

by

1 −p(1, y − 1)
, 1
}

.

If
by

1−p(1,y−1) < 1, the probability of passing is

p(1, y ) = v(1, y )p(0, y − 1) + (1 − v(1, y )
)
p(1, y − 1)
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= by

1 −p(1, y − 1)
× 1 +

(
1 − by

1 −p(1, y − 1)

)
×p(1, y − 1)

= by +p(1, y − 1)

We use an induction to complete the proof. Notice that the lemma holds for y = 1
and assume that it holds for y − 1. Then p(1, y − 1) = min{

∑y−1
s=1 bs , 1} and we do have

p(1, y ) = min{
∑y
s=1 bs , 1}, which proves the claim.

Lemma 6. Let b(s)
y be the sth order statistic (i.e., the sth lowest value) among {b1, � � � , by }.

Then, for x≥ 1, in equilibrium p(x, y ) = min{
∑y−(x−1)
s=1 b(s)

y , 1}.

Proof. We proceed by induction on x. Lemma 5 proves the base case (x= 1). Suppose
the result holds for x− 1. We prove that it also holds for x. To do so, we use an induction
on y.

• Base case: y = 1. If x ≥ 2, p(x, 1) = 0; if x = 1, then p(x, 1) = b1 as required (recall
we use the convention that empty sums evaluate to zero).

• Inductive step. Rearranging the equation for a member’s cutoff and then employing
the inductive hypothesis, we have

v(x, y ) = min
{

by

p(x− 1, y − 1) −p(x, y − 1)
, 1
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{

by

b
(y−(x−1))
y−1

, 1
}

if p(x− 1, y − 1)< 1,

min

{
by

1 −
y−x∑
s=1

b(s)
y−1

, 1

}
if p(x− 1, y − 1) = 1

and p(x, y − 1)< 1,

1 if p(x, y − 1) = 1.

We now verify the expression for p(x, y ) following these cases:
– Assume p(x− 1, y − 1)< 1.

∗ Assume by > b
(y−(x−1))
y−1 . Then v(x, y ) = 1 so that

p(x, y ) = p(x− 1, y − 1)

= min

{y−(x−1)∑
s=1

b(s)
y−1, 1

}

= min

{y−(x−1)∑
s=1

b(s)
y , 1

}
.

∗ Assume by ≤ b(y−(x−1))
y−1 . Then

p(x, y ) = p(x, y − 1) + v(x, y )
[
p(x− 1, y − 1) −p(x, y − 1)

]
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=
y−x∑
s=1

b(s)
y−1 + by

b
(y−(x−1))
y−1

b
(y−(x−1))
y−1

=
y−x∑
s=1

b(s)
y−1 + by =

y−(x−1)∑
s=1

b(s)
y .

– Assume p(x− 1, y − 1) = 1 and p(x, y − 1)< 1.
∗ Assume by ≥ 1 −∑y−x

s=1 b
(s)
y−1. Then v(x, y ) = 1, and hence p(x, y ) = p(x− 1, y −

1) = 1. Thus, we need to show that

y−(x−1)∑
s=1

b(s)
y ≥ 1.

If by < b
(y−(x−1))
y−1 , this follows from by ≥ 1 −∑y−x

s=1 b
(s)
y−1; if not, it follows from

p(x− 1, y − 1) = 1.

∗ Assume by < 1 −∑y−x
s=1 b

(s)
y−1. Then

p(x, y ) = p(x, y − 1) + v(x, y )
[
1 −p(x, y − 1)

]
= by +

(y−1)−(x−1)∑
s=1

b(s)
y−1

If by < b
(y−(x−1))
y−1 , we are done. Moreover, by ≥ b

(y−(x−1))
y−1 contradicts the case

assumption: it implies

y−(x−1)∑
s=1

b(s)
y =

y−(x−1)∑
s=1

b(s)
y−1,

which is at least 1 as p(x− 1, y − 1) = 1. But also

by +
y−x∑
s=1

b(s)
y−1 ≥

y−(x−1)∑
s=1

b(s)
y

This is a contradiction with by < 1 −∑y−x
s=1 b

(s)
y−1.

– Assume p(x, y − 1) = 1. Then p(x, y ) = 1, so we need to show that

y−(x−1)∑
s=1

b(s)
y ≥ 1.

First, notice that p(x, y − 1) = 1 implies

y−x∑
s=1

b(s)
y−1 ≥ 1.



1346 Louis-Sidois and Musolff Theoretical Economics 19 (2024)

If by > b
(y−(x−1))
y−1 , the desired result follows as

∑y−x
s=1 b

(s)
y =∑y−x

s=1 b
(s)
y−1. Otherwise,

it follows by adding by to
∑y−x
s=1 b

(s)
y−1.

Appendix C: Proofs (cost comparison)

Proposition 5. Suppose vi
i.i.d.∼ U[0, 1].

(a) If it takes one or all but one votes to pass the proposal, the capture cost is lower with
simultaneous voting: Csim(m, n)<Cseq(m, n) form= 1 andm= n− 1.

(b) If unanimity is not required to pass the proposal (i.e.,m< n), there is a λ∗ such that
Cseq(λm, λn)<Csim(λm, λn) with λ > λ∗ and (λm, λn) ∈N

2+.

Proof.

(a) m= 1. Recall Cseq(1, n) = 1. Meanwhile, Csim(1, n) = (1 − 1
n )n−1 is 1

2 for n = 2
and decreases in n. Thus, Cseq(1, n)>Csim(1, n).
m= n− 1. RecallCseq(n−1, n) = n

2 andCsim(n−1, n) = n× (1− 1
n )n. As (1− 1

n )n

is increasing in n, and 1
2 > e

−1 = limn→∞(1 − 1
n )n, we have Cseq(n− 1, n)>Csim(n−

1, n).

(b) We have limλ→∞Cseq(λm, λn) = 1
1−m

n
<∞ = limλ→∞Csim(λm, λn).
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