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Distributions of posterior quantiles via matching
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We offer a simple analysis of the problem of choosing a statistical experiment
to optimize the induced distribution of posterior medians or, more generally, q-
quantiles for any q ∈ (0, 1). We show that a single experiment—the q-quantile
matching experiment—implements all implementable distributions of posterior
q-quantiles, with different distributions spanned by different selections from the
sets of posterior q-quantiles. A dense subset of implementable distributions of
posterior q-quantiles can be uniquely implemented by perturbing the q-quantile
matching experiment. A linear functional is optimized over distributions of pos-
terior q-quantiles by taking the optimal selection from each set of posterior q-
quantiles. The q-quantile matching experiment is the only experiment that simul-
taneously implements all implementable distributions of posterior q-quantiles.
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1. Introduction

Several problems of recent economic interest amount to characterizing the set of distri-
butions of posterior quantiles that can be induced by some statistical experiment or to
finding a distribution in this set that maximizes some objective. These problems include
apparent overconfidence (Benoît and Dubra (2011)) (e.g., what distributions of medians
of individuals’ beliefs about their own abilities are consistent with Bayesian updating?),
partisan gerrymandering (Friedman and Holden (2008), Kolotilin and Wolitzky (2020b))
(e.g., what is the highest distribution of district median voters attained by any districting
plan?), and quantile persuasion (Kolotilin and Wolitzky (2020a)) (e.g., what experiment
maximizes the expected action of a receiver who minimizes the expected absolute devi-
ation of her action from the unknown state of the world?).1
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1Yang and Zentefis (2024) explore these and other applications. Kolotilin and Wolitzky (2020b) consider
a more general gerrymandering model, which reduces to optimizing the distribution of posterior quantiles
in a special case. Kolotilin and Wolitzky (2020a, Proposition 2’) introduce quantile persuasion as a special
case of a more general persuasion model, which is further developed in Kolotilin, Corrao, and Wolitzky
(forthcoming).
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Our problem is as follows. There is a real-valued state θ. A statistical experiment
induces a distribution over posteriors μ. For any q ∈ (0, 1), each posterior μ has at least
one q-quantile. In general, a posterior can have multiple q-quantiles due to gaps in the
support of μ: for example, if μ puts equal weight on two states θ < θ′, then the set of
medians of μ is the entire interval [θ, θ′]. An experiment, together with a selection rule
to break ties for posteriors with multiple q-quantiles, induces a distribution of posterior
q-quantiles. A distribution of posterior q-quantiles is implementable if it is induced by
some experiment and selection rule; it is uniquely implementable if it is induced by an
experiment that almost always induces posteriors with unique q-quantiles. We ask what
distributions of posterior q-quantiles are implementable or uniquely implementable,
how to implement them, and how to optimize a linear functional over distributions of
posterior q-quantiles.

We provide a simple solution to this problem. For any q ∈ (0, 1), there is a single
experiment—the q-quantile matching experiment—that simultaneously implements
all implementable distributions of posterior q-quantiles, with different distributions
spanned by different selection rules. For example, if the state is uniformly distributed on

[0, 1] and the relevant quantile is the median, the q-quantile matching experiment is the
median matching experiment that, whenever the true state is θ ∈ [0, 1/2], reveals only
that the state is either θ or 1/2 + θ (and, hence, whenever the true state is θ ∈ (1/2, 1],
reveals only that the state is either θ or θ− 1/2).2 In general, the q-quantile matching ex-
periment pools pairs of states across a q-quantile of the prior in a positively assortative
manner, with weight q on the lower state in each pair.

To see why the q-quantile matching experiment implements all implementable dis-
tributions of posterior q-quantiles, consider again the median matching experiment
with a uniform state. When the experiment reveals that the state is θ or 1/2+θ with equal
probability, every value x ∈ [θ, 1/2 + θ] is a posterior median. The median matching ex-
periment thus simultaneously implements (i) the distribution H(x) = max{0, 2x−1}, (ii)
the distribution H(x) = min{2x, 1}, and (iii) every distribution H satisfying H ≤ H ≤ H.
Conversely, simple Markov-type inequalities imply that every implementable distribu-
tion is bounded by H and H. Moreover, the set of uniquely implementable distributions
of posterior quantiles is essentially the same: any desired selection from each set of q-
quantiles induced by the q-quantile matching experiment can be uniquely selected by
mixing each posterior under the q-quantile matching with the degenerate distribution
on the desired selection with probabilities 1 − ε and ε, respectively. Finally, optimiz-
ing a linear functional over distributions of posterior quantiles simply requires taking
the optimal selection from each set of q-quantiles induced by the q-quantile matching
experiment. See Figure 1 for an illustration of our results.3

2To our knowledge, the median matching experiment first appears in Kolotilin and Wolitzky (2020a, p.
29). It is closely related to the median one-to-one matching introduced by Kremer and Maskin (1996) and
further studied by Legros and Newman (2002); the title of the present paper acknowledges this connection.

3Similar figures in the literature include Figure 1 of Owen and Grofman (1988), Figure 2 of Kamenica and
Gentzkow (2011), and Figure 3 of Yang and Zentefis (2024).
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Figure 1. Implementable distributions of posterior medians. When the prior F is uniform on
[0, 1], H and H are the lowest and highest implementable distributions of posterior medians.
A distribution H is implementable if and only if H ≤ H ≤ H. Optimizing a linear functional
over distributions of posterior medians requires taking the optimal selection from each hori-
zontal dotted line. For example, the blue (red) dots are the optimal selections for an increasing
(decreasing) objective function.

We also show that the q-quantile matching experiment is the unique experi-
ment that simultaneously implements all implementable distributions of posterior q-
quantiles. To see why, consider again a uniform state, and compare the median match-
ing experiment with the negative assortative matching experiment that, whenever the
true state is θ ∈ [0, 1], reveals only that the state is either θ or 1 − θ. The negative as-
sortative matching experiment simultaneously implements the lowest and highest dis-
tributions of posterior medians, H and H, but it does not implement all intermedi-
ate distributions, such as the distribution H1/2 given by H1/2(x) = H(x) for x < 1/4,
H1/2(x) = 1/2 for x ∈ [1/4, 3/4), and H1/2(x) = H(x) for x ≥ 3/4. Indeed, the negative
assortative matching experiment induces posteriors with medians between 1/4 and 3/4
when the true state lies between 1/4 and 3/4, while H1/2 assigns probability 0 to these
medians.

The current paper is closely related to Benoît and Dubra (2011) and Yang and Zen-
tefis (2024). Both of these papers establish results that are very similar to our Theorem
1 (albeit Benoît and Dubra do so for discrete experiments with finitely many induced
posteriors). Our main contribution is introducing the q-quantile matching experiment,
which yields a much simpler proof of Theorem 1, as well as new results (Theorems 2 and
3).

2. Implementable distributions of posterior quantiles

This section shows that the q-quantile matching experiment implements all imple-
mentable distributions of posterior q-quantiles.

Let � = [θ, θ] ⊂ R, with θ < θ, be a compact state space, let C(�) be the set of con-
tinuous functions on �, let �(�) be the set of cumulative distribution functions on �,
endowed with the weak� topology, and let �(�(�)) be the set of probability measures
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on �(�). Recall that G ∈ �(�) is a nondecreasing, right-continuous function satisfying
G(θ) ≥ 0 and G(θ) = 1. Let δx, with x ∈ �, denote the degenerate distribution at x, so
that δx(θ) = 1{θ ≥ x}.

Fix a prior distribution F ∈ �(�) and a quantile of interest q ∈ (0, 1). Following Ka-
menica and Gentzkow (2011), define an experiment as a distribution τ ∈ �(�(�)) of pos-
terior distributions G ∈ �(�) such that

∫
Gdτ(G) = F . For each posterior G, define the

set of q-quantiles of G as

X(G) = {
x ∈� : G

(
x−) ≤ q ≤G(x)

}
,

where G(x− ) denotes the left limit limθ↑xG(θ), with the convention G(θ− ) = 0. In addi-
tion, for each G, define its generalized inverse G−1 as

G−1(p) = inf
{
θ ∈� : G(θ) ≥ p

}
for all p ∈ [0, 1].

That is, G−1(p) is the smallest p-quantile of G.
To define the q-quantile matching experiment, let ω be uniformly distributed on

[0, 1], and for each ω ∈ [0, q], let G =Gω be the distribution that assigns probability q to
F−1(ω) and assigns probability 1 − q to F−1(q + (1 − q)ω/q). The q-quantile matching
experiment is defined as an experiment τ� such that for τ�-almost all G, there exists
ω ∈ [0, q] such that G =Gω.4 Formally, τ� is defined by

τ�(M ) =
∫ q

0
1
{
qδF−1(ω) + (1 − q)δF−1(q+(1−q)ω/q) ∈M

}
dω/q for all M ⊂ �(�).

While all of our results hold for general F and q, for simplicity we will provide intu-
ition only for the uniform-median case where F is uniform on [0, 1] and q = 1/2.

A distribution H of q-quantiles is implemented by an experiment τ if there exists a
(measurable) selection χ from the correspondence X such that the distribution of χ(G)
induced by τ is H. A distribution H of q-quantiles is uniquely implemented by an ex-
periment τ if H is implemented by τ and X(G) is a singleton for τ-almost all G. Let
H and H� be the sets of implementable and uniquely implementable distributions of
q-quantiles.

The following theorem characterizes H and H�.

Theorem 1. The following statements hold:

(i) We have H = {H ∈ �(�) : H ≤ H ≤ H}, where H(x) = max{0, (F(x) − q)/(1 − q)}
and H(x) = min{F(x)/q, 1} for all x ∈�.

(ii) Every H ∈H is implemented by τ�.

4For example, when F is atomless, we can let ω = F(θ), so that the q-quantile matching experiment
induces posteriors that assign probability q to θ and assign probability 1 − q to F−1(q + (1 − q)F(θ)/q) for
θ ∈ [0, F−1(q)].
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(iii) If F has a positive density on �, then H is the closure of H�. In particular, for any
objective function V ∈ C(�), we have

sup
H∈H�

∫
�
V (x) dH(x) = max

H∈H

∫
�
V (x) dH(x). (1)

Figure 1 illustrates the set H. The intuition for Theorem 1 is straightforward. First,
by simple Markov-type inequalities, any implementable H must satisfy H ≤H ≤ H. For
example, if the posterior median is less than x with probability p, then θ must be less
than x with probability at least p/2. When F(x) = x, this implies that p ≤ 2x, so the
probability that the posterior median is less than x is at most min{2x, 1} =H(x).5

Conversely, to see that any H satisfying H ≤ H ≤ H is implementable, consider the
median matching experiment τ� that induces only posteriors Gθ that assign equal prob-
ability to some θ ∈ [0, 1/2] and to 1/2 + θ. The set of medians of such a posterior is
X(Gθ ) = [θ, 1/2 +θ]. At the same time, H ≤H implies that H−1(2θ) ≥ θ, and H ≥H im-
plies that H−1(2θ) ≤ 1/2 + θ, so we have H−1(2θ) ∈ [θ, 1/2 + θ]. Thus, χ(Gθ ) =H−1(2θ)
is a selection from X(Gθ ). Finally, the distribution of χ(Gθ ) induced by τ� is H, because
the states that induce medians below x under τ� with selection χ(Gθ ) are precisely those
in [0, H(x)/2] and [1/2, 1/2 +H(x)/2], and the measure of these states is H(x).

As to unique implementation, for any e ∈ (0, 1] and any implementable and ab-
solutely continuous distribution H with density h, we explicitly construct a modifica-
tion of the median matching experiment τ�e that uniquely implements the distribution
(1 − e)H + eF of medians, by making every posterior Gθ a convex combination of the
median matching distribution (δθ + δ1/2+θ )/2 and the degenerate distribution δH−1(2θ)
at the unique median H−1(2θ) ∈ [θ, 1/2 + θ]. Intuitively, for each θ ∈ [0, 1/2], τ�e induces
posteriors Gθ and GH(θ)/2 with probabilities 1 − e and e; similarly, for each θ ∈ (1/2, 1],
τ�e induces posteriors Gθ−1/2 and GH(θ)/2 with probabilities 1 − e and e. Then posterior
medians in [x, x+dx] are induced at θ ∈ [H(x)/2, H(x+ dx)/2] with probability 1−e, at
θ ∈ [1/2 +H(x)/2, 1/2 +H(x+ dx)/2] with probability 1 − e, and at θ ∈ [x, x+ dx] with
probability e. Since H(x + dx) = H(x) + h(x) dx, the density of the posterior median x

multiplied by the posterior at x is equal to (1 − e)h(x)(δH(x)/2 + δ1/2+H(x)/2 )/2 + eδx, as
required. To complete the proof of Theorem 1, we provide a simple argument showing
that any distribution in H can be approximated by uniquely implementable distribu-
tions (1 − e)H + eF .6

The literature contains several close antecedents of Theorem 1. Friedman and
Holden (2008) study partisan gerrymandering with a finite number of legislative dis-
tricts. Benoît and Dubra (2011) study testing for overconfidence in a self-ranking ex-
periment with a finite number of bins. In our notation, Friedman and Holden and

5This argument is closely related to Kamenica and Gentzkow’s 2011 “prosecutor–judge” example. As in
their example, the key observation is that if the prior probability of an event (e.g., the event that θ ≤ x) is x,
then the maximum probability that the posterior probability of this event is at least 1/2 is min{2x, 1}.

6A complete characterization of the set H� remains an open problem. Two observations are that H� is
a proper subset of H (as H and H do not belong to H�) and that not all uniquely implementable distribu-
tions can be implemented by our modification of q-quantile matching. For example, H = δ1/2 is uniquely
implemented by complete pooling but not by our modification of median matching.
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Benoît and Dubra consider discrete experiments with finitely many induced posteri-
ors. Friedman and Holden show that a discrete version of H is the highest imple-
mentable distribution of posterior medians. Benoît and Dubra show that the set of
uniquely implementable distributions of posterior medians is a discrete version of the
set {H ∈ �(�) : H <H <H}. In a general setting with possibly infinitely many induced
posteriors in the contexts of quantile persuasion and partisan gerrymandering, respec-
tively, Kolotilin and Wolitzky (2020a) and Kolotilin and Wolitzky (2020b) show that H

is the highest implementable distribution of posterior medians. Finally, in a general
setting, Yang and Zentefis (2024) show that the set of implementable distributions of
posterior medians is {H ∈ �(�) : H ≤ H ≤ H}, and also construct a dense subset of dis-
tributions that are uniquely implementable.7 Relative to Benoît and Dubra and Yang
and Zentefis, Theorem 1 shows that the q-quantile matching experiment implements
every H ∈ H and also yields a much simpler proof.

Farther afield, Blackwell (1953), Strassen (1965), and Kolotilin (2018) character-
ize implementable distributions of posterior means. An interesting open question is
whether a useful analogue of Theorem 1 (for medians) and Strassen’s theorem (for
means) exists for intermediate statistics that interpolate between the median and the
mean.8

3. Optimal distributions of posterior quantiles

This section uses the q-quantile matching experiment to characterize the distributions
of posterior q-quantiles that maximize a continuous linear functional.

Theorem 2. Let V ∈ C(�). Then H (uniquely) maximizes
∫
V (x) dH(x) on H if and

only if H−1(p) (uniquely) maximizes V on [H
−1

(p), H−1(p)] for (almost) all p ∈ [0, 1].
Consequently, the value of the maximization problem is

max
H∈H

∫
�
V (x) dH(x) =

∫ 1

0
max

{
V (x) : x ∈ [

H
−1

(p), H−1(p)
]}

dp. (2)

Conceptually, Theorem 2 follows easily from Theorem 1. Since the median match-
ing experiment τ� implements all implementable distributions of medians, optimiza-
tion just requires selecting an optimal median χ(Gθ ) ∈ arg maxx∈[θ,1/2+θ] V (x) for each
posterior Gθ induced by τ�, as illustrated in Figure 1. The value of the maximization
problem is, thus, 2

∫ 1/2
0 maxx∈[θ,1/2+θ] V (x) dθ, and a distribution H of medians is opti-

mal if and only if H−1(2θ) ∈ arg maxx∈[θ,1/2+θ] V (x) for all θ ∈ [0, 1/2]. That is, optimal
solutions can be obtained by pointwise maximization without any ironing procedure.

7To establish results similar to our Theorem 1, Yang and Zentefis characterize the extreme points of the
set {H ∈ �(�) : H ≤H ≤H}. As recently emphasized by Kleiner, Moldovanu, and Strack (2021), characteriz-
ing a convex set by its extreme points can be useful for establishing some properties of the set. In contrast,
we show that directly characterizing the set of implementable distributions of posterior quantiles is much
easier than characterizing the extreme points of this set.

8Kolotilin, Corrao, and Wolitzky (forthcoming) study the question of characterizing optimal distributions
of such intermediate statistics—the analogous problem to that of Theorem 2 in the current paper.
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In general, by Theorem 1, for each H ∈ H and p ∈ [0, 1], we have H
−1

(p) ≤H−1(p) ≤
H−1(p). If we consider the relaxed problem of finding a measurable function J : [0, 1] →
� to

maximize
∫ 1

0
V

(
J(p)

)
dp

subject to H
−1

(p) ≤ J(p) ≤H−1(p) for all p ∈ [0, 1],

one solution is

J�(p) = min arg max
{
V (x) : x ∈ [

H
−1

(p), H−1(p)
]}

for all p ∈ [0, 1].

This function J� is monotone; moreover, the proof of Theorem 2 shows that there exists
H� ∈ �(�) such that J� = H�−1, so H� solves the optimization problem (2).

The closest antecedent to Theorem 2 is Corollary 4 of Yang and Zentefis (2024),
which solves the maximization problem (2) in the special cases where V is quasi-
concave or quasi-convex. The solution follows immediately from Theorem 2. To see
how, suppose that V is quasi-concave with a maximum at x� ∈ [0, 1]. For each inter-
val [θ, 1/2 + θ], it is optimal to select x� if x� ∈ [θ, 1/2 + θ], θ if x� < θ, and 1/2 + θ if
x� > 1/2 + θ. This induces the distribution of posterior medians

H(x) =
{
H(x), x < x�,

H(x), x≥ x�.

Next, suppose that V is quasi-convex with V (x� ) = V (1/2 + x� ) for some x� ∈ [0, 1/2].
Then, for each interval [θ, 1/2 + θ], it is optimal to select θ if x� > θ and 1/2 + θ if x� < θ.
This induces the distribution of posterior medians

H(x) =

⎧⎪⎪⎨
⎪⎪⎩
H(x), x < x�,

2x�, x ∈ [x�, 1/2 + x� ),

H(x), x≥ 1/2 + x�.

From the perspective of optimization, it is natural to ask whether each extreme point
of H is exposed, meaning that it is the unique maximizer in H of

∫
V (x) dH(x) for some

V ∈ C(�). It turns out that some extreme points are not exposed. To see this, note that
in the uniform-median case, the distribution H� = (δ1/4 + δ1/2 )/2 is an extreme point
of H, as there are no distinct H1, H2 ∈ H such that H� = (H1 + H2 )/2. By Theorem 2,
if H� maximizes

∫
V (x) dH(x) on H for some V ∈ C(�), then V (1/4) ≥ V (x) for all x ∈

[θ, 1/2 + θ] and all θ ∈ [0, 1/4], and, similarly, V (1/2) ≥ V (x) for all x ∈ [θ, 1/2 + θ] and
all θ ∈ [0, 1/2]. Thus, V (1/4) = V (1/2) ≥ V (x) for all x ∈ [0, 1]. But then the distribution
δ1/2 ∈ H also maximizes

∫
V (x) dH(x), which shows that H� is not an exposed point of

H.9

9The distribution H� does uniquely maximize
∫
V (x) dH(x) for V = 2 · 1{x = 1/4} + 1{x = 1/2}, which

is upper semi-continuous, but not continuous. An open question is whether each extreme point of H,
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4. Unique properties of the quantile matching experiment

Theorem 1 shows that the q-quantile matching experiment simultaneously implements
all implementable distributions of posterior q-quantiles. We now show that it is the
unique experiment to do so. For simplicity, in this section we assume that F has a posi-
tive density on �.

We actually establish the stronger result that the q-quantile matching experiment
is the unique experiment that simultaneously implements all optimal distributions for
strictly quasi-convex objective functions.

Theorem 3. The q-quantile matching experiment τ� is the unique experiment τ that, for
each p ∈ [0, 1], implements the distribution Hp ∈ H given by

Hp(x) =

⎧⎪⎪⎨
⎪⎪⎩
H(x), x < xp,

p, x ∈ [xp, xp ),

H(x), x ≥ xp,

where xp = F−1(qp) and xp = F−1(q+ (1 − q)p).

In other words, for any experiment τ 	= τ�, there is some p ∈ [0, 1] such that τ does
not implement Hp. For example, in the uniform-median case, the negative assortative
matching experiment does not implement H1/2, as noted in the Introduction.

An immediate corollary of Theorem 3 is that the q-quantile matching experiment is
the unique experiment that minimizes the maximum regret of a designer who chooses
an experiment τ before learning her objective V , but chooses a selection χ after learning
V . Formally, for each experiment τ ∈ �(�(�)) and each objective V ∈ C(�), define the
designer’s regret as

r(τ, V ) = max
H∈H

∫
�
V (x) dH(x) − sup

H∈H

{∫
�
V (x) dH(x) : H is implemented by τ

}
.

Note that r(τ, V ) ≥ 0 for all τ and V . Say that a set of possible objective functions V ⊂
C(�) is rich if, for all x0, x1 ∈ �, there exists a strictly quasi-convex V ∈ V with V (x0 ) =
V (x1 ). We then have the following result.

Corollary 1. If V is rich, then the q-quantile matching experiment τ� is the unique
experiment τ such that r(τ, V ) = 0 for all V ∈ V .

Appendix: Proofs

Proof of Theorem 1. Consider any experiment τ ∈ �(�(�)) and any measurable se-
lection χ(G) from X(G). Let H be the distribution of χ(G) induced by τ. Then, for each

characterized in Theorem 1 of Yang and Zentefis (2024), is the unique maximizer of
∫
V (x) dH(x) for some

upper-semicontinuous V . This is a weaker property than exposedness, as the usual theory of exposed
points relies on continuity.
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x ∈ �, we have

F(x) =
∫

G(x) dτ(G) =
∫

1
{
G(x) ≥ q

}
G(x) dτ(G) +

∫
1
{
G(x) < q

}
G(x) dτ(G)

≥
∫

1
{
G(x) ≥ q

}
qdτ(G) ≥

∫
1
{
χ(G) ≤ x

}
qdτ(G) = qH(x),

showing that H ≤ H. A symmetric argument shows that H ≥ H.
For the converse, we first note that the median matching experiment τ� is well de-

fined because
∫
Gdτ�(G) = F : indeed, for all θ ∈�, we have

∫
G(θ) dτ�(G) =

∫ q

0

(
qδF−1(ω) + (1 − q)δF−1(q+ 1−q

q ω)

)
(θ)

dω
q

=

⎧⎪⎪⎨
⎪⎪⎩

∫ F(θ)

0
q

dω
q

, F(θ) < q∫ q

0
q

dω
q

+
∫ q

1−q (F(θ)−q)

0
(1 − q)

dω
q

, F(θ) ≥ q

= F(θ),

where the second equality holds because F−1(ω) ≤ θ if and only if ω≤ F(θ), and F−1(q+
1−q
q ω) ≤ θ if and only if ω ≤ q

1−q (F(θ) − q). Note also that for each ω ∈ [0, q], the set of

q-quantiles of Gω is X(Gω ) = [F−1(ω), F−1(q+ 1−q
q ω)].

Now fix a distribution H ∈ �(�) satisfying H ≤ H ≤ H. Note that, for each ω ∈
[0, q], since H ≤ H, we have H−1( ωq ) ≥ H

−1
( ωq ) = F−1(ω), and since H ≥ H, we have

H−1( ωq ) ≤ H−1( ωq ) = F−1(q + 1−q
q ω). Thus, H−1( ωq ) ∈ X(Gω ). We can, therefore, define

a selection χ(G) from X(G) by letting χ(G) = H−1( ωq ) in the τ�-almost sure event that
G = Gω for some ω ∈ [0, q], and (for concreteness) letting χ(G) = minX(G) otherwise.
Finally, the distribution of χ(G) induced by τ� is H, because, for all x ∈ �, we have

∫
1
{
χ(G) ≤ x

}
dτ�(G) =

∫
1
{
H−1

(
ω

q

)
≤ x

}
dω
q

=
∫ qH(x)

0

dω
q

=H(x).

For unique implementation, assume that F has a positive density on � = [θ, θ]. Fix
any H ∈ H. Consider a sequence of partitions of � given by θi,n = θ + (θ − θ) i

2n , with
i ∈ {0, 1, � � � , 2n}. Define a sequence Hn ∈ �(�) by

Hn(x) =H(θi−1,n )
F(θi,n ) − F(x)

F(θi,n ) − F(θi−1,n )
+H(θi,n )

F(x) − F(θi−1,n )
F(θi,n ) − F(θi−1,n )

for all i ∈ {1, � � � , 2n} and all x ∈ [θi−1,n, θi,n]. Note that Hn is well defined, because F

is strictly increasing on �. Since H ∈ H, we have Hn ∈ H. Moreover, Hn has a simple
density function hn with respect to F , given by

hn(x) = H(θi,n ) −H(θi−1,n )
F(θi,n ) − F(θi−1,n )

for all i ∈ {1, � � � , 2n} and all x ∈ (θi−1,n, θi,n ).
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Next, for each e ∈ (0, 1] and each n, there exists an experiment τ�e,n ∈ �(�(�)) satisfy-
ing the following two properties. First, for τ�e,n-almost all G, there exists x ∈ � such that
G =Gx, where

Gx = (1 − e)hn(x)
(
qδF−1(qHn(x)) + (1 − q)δF−1(q+(1−q)Hn(x))

) + eδx

(1 − e)hn(x) + e
.

This implies that X(Gx ) is the singleton {x}, because e > 0 and F−1(qHn(x)) ≤ x ≤
F−1(q + (1 − q)Hn(x)) (which holds because H(x) ≤ Hn(x) ≤ H(x)). Second, the dis-
tribution of unique quantiles χ(Gx ) = x induced by τ�e,n is (1 − e)Hn + eF .

Formally, τ�e,n is defined by

τ�e,n(M ) =
∫ 1

0
1
{
Gx ∈M

}(
(1 − e)hn(x) + e

)
dF(x) for all M ⊂ �(�).

Note that τ�e,n is a well defined experiment because
∫
Gdτ�e,n(G) = F . Indeed, for all

θ ∈�, we have∫
G(θ) dτ�e,n(G)

= (1 − e)
∫ 1

0
hn(x)

(
qδF−1(qHn(x)) + (1 − q)δF−1(q+(1−q)Hn(x))

)
(θ) dF(x)

+ e

∫ 1

0
δx(θ) dF(x)

= (1 − e)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ H−1
n ( F(θ)

q )

0
qdHn(x), F(θ) < q,∫ H−1

n (1)

0
qdHn(x) +

∫ H−1
n ( F(θ)−q

1−q )

0
(1 − q) dHn(x), F(θ) ≥ q,

+ e

∫ θ

0
dF(x) = F(θ),

where the second equality holds because F−1(qHn(x)) ≤ θ if and only if x ≤ H−1
n ( F(θ)

q ),

and F−1(q+(1−q)Hn(x)) ≤ θ if and only if x ≤ H−1
n ( F(θ)−q

1−q ), and the third equality holds

because Hn(H−1
n (p)) = p for all p ∈ [0, 1], by continuity of Hn (which holds because Hn

has a density with respect to F and F has a density with respect to the Lebesgue mea-
sure). Finally, the distribution of unique quantiles χ(G) induced by τ�e,n is (1−e)Hn+eF ,
because, for all y ∈�, we have∫

1
{
χ(G) ≤ y

}
dτ�e,n(G) =

∫ y

0

(
(1 − e)hn(x) + e

)
dF(x) = (1 − e)Hn(y ) + eF(y ).

Now fix V ∈ C(�). By continuity of V and compactness of �, for all ε > 0, there exists
N ∈ N such that (i) |V (x) − V (y )| ≤ ε for all x, y ∈ [θi−1,n, θi,n], all i ∈ {1, � � � ., 2n}, and all
n ≥ N , and (ii) e|V (x) − V (y )| ≤ ε for all x, y ∈ � and all e ∈ (0, 1

N ]. Then, for all n ≥ N
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and e ∈ (0, 1
N ], we have

∣∣∣∣
∫

V (x) dH(x) −
∫

V (x) d
(
(1 − e)Hn + eF

)
(x)

∣∣∣∣
≤ (1 − e)

∣∣∣∣
∫

V (x) d(H −Hn )(x)

∣∣∣∣ + e

∣∣∣∣
∫

V (x) d(H − F )(x)

∣∣∣∣ ≤ ε+ ε.

Since this holds for any V ∈ C(�), it follows that (1 − 1
n )Hn + 1

nF converges weakly to H.
In turn, since we have seen that the experiment τ�1/n,n uniquely implements (1 − 1

n )Hn +
1
nF , we conclude that H� is dense in H. Finally, H is compact, as �(�) is compact by
Theorem 15.11 in Aliprantis and Border (2006) and H is the intersection over x ∈ � of
the closed subsets Hx := {H ∈ �(�) : H(x) ≤ H(x) ≤ H(x)} of �(�). Thus, the closure of
H� is H and, hence, (1) holds for any V ∈ C(�).

Proof of Theorem 2. For each H ∈ �(�), we have

∫
�
V (x) dH(x) =

∫ 1

0
V

(
H−1(p)

)
dp.

Recall that

J�(p) = min arg max
{
V (x) : x ∈ [

H
−1

(p), H−1(p)
]}

for all p ∈ [0, 1].

Since J� is defined as the minimum selection from the arg max, it follows that (i) J� is

nondecreasing (and, hence, measurable), because H
−1

and H−1 are nondecreasing,

(ii) J� is left-continuous, because H
−1

and H−1 are left-continuous and V ∈ C(�), (iii)

J�(1) ≤ θ, because H−1(1) ≤ θ, and (iv) J�(0) = θ, because H
−1

(0) = H−1(0) = θ. This
implies that J� = H�−1, where H� ∈ �(�) is given by

H�(x) = sup
{
p ∈ [0, 1] : J�(p) ≤ x

}
for all x ∈�.

Moreover, since H
−1 ≤ J� ≤ H−1, it follows that H� ∈ H, so H� solves the original prob-

lem, and its value coincides with the value of the relaxed problem, yielding (2). Con-
sequently, H ∈ H maximizes

∫
V (x) dH(x) on H if and only if H−1(p) maximizes V

on [H
−1

(p), H−1(p)] for almost all p ∈ [0, 1]. Moreover, by continuity of V and left-

continuity of H
−1

and H−1, H−1(p) maximizes V on [H
−1

(p), H−1(p)] for almost all
p ∈ [0, 1] if and only if it does so for all p ∈ [0, 1].

Next, if V has a unique maximum on [H
−1

(p), H−1(p)] for almost all p ∈ [0, 1], then
J� is the unique solution of the relaxed problem that satisfies properties (i)–(iv), and,
hence, H� is the unique solution of the original problem. Conversely, if there exists a

nonnegligible set P ⊂ [0, 1] such that V has multiple maxima on [H
−1

(p), H−1(p)] for
each p ∈ P , then there are multiple solutions of the relaxed problem that satisfy prop-
erties (i)–(iv). For example, Ĵ defined as the maximum selection from the arg max also
solves the relaxed problem, and so does Ĵ� defined by Ĵ�(p) = Ĵ(p− ) for all p ∈ (0, 1]
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and Ĵ�(0) = θ. But, by construction, Ĵ� satisfies properties (i)–(iv) and is not equal to J�.
Then Ĵ� = Ĥ�−1, where Ĥ� ∈ �(�) is given by

Ĥ�(x) = sup
{
p ∈ [0, 1] : Ĵ�(p) ≤ x

}
for all x ∈�.

Thus, Ĥ� 	=H� also solves the original problem.

Proof of Theorem 3. Suppose that an experiment τ ∈ �(�(�)) implements all Hp.
Fix any p ∈ [0, 1]. Since τ implements Hp, there exists a measurable selection χp(G)
from X(G) such that the distribution of χp(G) induced by τ is Hp. Since F has a density
on �, we have

qp = F(xp ) =
∫

G(xp ) dτ(G)

=
∫

1
{
G(xp ) ≥ q

}
G(xp ) dτ(G) +

∫
1
{
G(xp ) < q

}
G(xp ) dτ(G)

≥
∫

1
{
G(xp ) ≥ q

}
qdτ(G)

≥
∫

1
{
χp(G) ≤ xp

}
qdτ(G) = qHp(xp ) = qp,

so all inequalities hold with equality. Thus, τ(G(xp ) = 0) = 1 − p, τ(G(xp ) = q) = p,
and τ(χp(G) ≤ xp ) = p. A symmetric argument yields τ(G(xp ) = q) = 1 −p, τ(G(xp ) =
1) = p, and τ(χp(G) > xp ) = 1 − p. Next, since G(xp ) = 0 and G(xp ) = 1 imply that
xp < χp(G) ≤ xp, it follows that τ(G(xp ) = 0, G(xp ) = 1) = 0, because

τ
(
xp < χp(G) ≤ xp

) = 1 − τ
(
χp(G) ≤ xp

) − τ
(
χp(G) > xp

) = 1 −p− (1 −p) = 0.

So τ(G(xp ) = 0, G(xp ) = q) = τ(G(xp ) = 0) − τ(G(xp ) = 0, G(xp ) = 1) = 1 − p and
τ(G(xp ) = q, G(xp ) = 1) = τ(G(xp ) = 1) − τ(G(xp ) = 0, G(xp ) = 1) = p. In sum,

τ
(
G(xp ) = 0, G(xp ) = q

) = 1 −p

τ
(
G(xp ) = q, G(xp ) = 1

) = p
for all p ∈ [0, 1]. (3)

We now show that (3) yields τ = τ�. Let X0 = [x0, x0] = [θ, F−1(q)] and X1 = [x1, x1] =
[F−1(q), θ]. For each experiment τ̃ ∈ �(�(�)), define a joint distribution function Iτ̃ :
X0 ×X1 → [0, 1] by

Iτ̃(x0, x1 ) = τ̃
(
G= qδθ0 + (1 − q)δθ1 , θ0 ∈ [x0, x0], θ1 ∈ [x1, x1]

)
.

To prove that τ = τ�, it suffices to show that Iτ(x0, x1 ) = Iτ�(x0, x1 ) for all (x0, x1 ) ∈
X0 × X1, with Iτ(x0, x1 ) = Iτ�(x0, x1 ) = 1. Fix any (x0, x1 ) ∈ X0 × X1 and let p̂ =
min{ F(x0 )

q , F(x1 )−q
1−q }. First, by definition of τ�, we have

Iτ�(x0, x1 ) =
∫ q

0
1
{
F−1(ω) ≤ x0, F−1

(
q+ 1 − q

q
ω

)
≤ x1

}
dω
q

= p̂,
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with Iτ�(x0, x1 ) = 1, because F(x0 ) = F(F−1(q)) = q and F(x1 ) = F(θ) = 1. Second, by
(3) and definition of Iτ , we have

p̂ = τ
(
G(xp̂ ) = q, G(xp̂ ) = 1

) ≤ Iτ(x0, x1 ) ≤ τ
((
G(xp̂ ), G(xp̂ )

) 	= (0, q)
) = 1 − (1 − p̂),

showing that Iτ(x0, x1 ) = p̂= Iτ�(x0, x1 ).

Proof of Corollary 1. Consider any experiment τ 	= τ�. By Theorem 3, there exists
p ∈ [0, 1] such that τ does not implement Hp. Since V is rich, there exists a continuous
and strictly quasi-convex V ∈ V with V (xp ) = V (xp ). Then xp̃ uniquely maximizes V on
[xp̃, xp̃] for all p̃ ∈ [0, p), and xp̃ uniquely maximizes V on [xp̃, xp̃] for all p̃ ∈ (p, 1]. By
Theorem 2, Hp uniquely maximizes

∫
V (x) dH(x) on H.

Suppose for contradiction that r(τ, V ) = 0. Then there exists a sequence Hn ∈ H
implemented by τ such that

∫
V (x) dHn(x) → ∫

V (x) dHp(x). Since H is weak� com-
pact, passing to a subsequence if necessary, we can assume that Hn → Ĥ ∈ H. Note that
Ĥ = Hp, because Hp uniquely maximizes

∫
V (x) dH(x) on H. In sum, there exists a se-

quence of measurable selections χn(G) from X(G) such that Hn(x) = τ(χn(G) ≤ x) and
Hn(x) →Hp(x) for all x ∈�.

Next, we show that τ cannot simultaneously satisfy the three conditions

τ
(
G(xp̃ ) = 0

) = 1 − p̃ and τ
(
G(xp̃ ) = q

) = p̃ for all p̃ ∈ [0, p] (4)

τ
(
G(xp̃ ) = q

) = 1 − p̃ and τ
(
G(xp̃ ) = 1

) = p̃ for all p̃ ∈ [p, 1] (5)

τ
(
G(xp ) = 0, G(xp ) = q

) = 1 −p and τ
(
G(xp ) = q, G(xp ) = 1

) = p, (6)

as otherwise τ would implement Hp. Indeed, if τ satisfies (4)–(6), we can define a se-
lection χ(G) from X(G) by letting χ(G) = θ0 if θ0 < xp and χ(G) = θ1 if θ0 > xp in the
τ-almost sure event that G = qδθ0 + (1 − q)δθ1 for some θ0 ∈ [x0, x0] and θ1 ∈ [x1, x1].
Then the distribution of χ(G) induced by τ is Hp, because, by (4), for all p̃ ≤ p, we have

τ
(
χ(G) ≤ xp̃

) = τ
(
G(xp̃ ) = q

) = p̃ = F(xp̃ )

q
=Hp(xp̃ ),

and, by (5) and (6), for all p̃ ≥ p, we have

τ
(
χ(G) ≤ xp̃

) = τ
(
G(xp̃ ) = 1

) + τ
(
G(xp ) = q,

G(xp̃ ) = q
) = p̃ = F(xp̃ ) − q

1 − q
=Hp(xp̃ ).

Finally, we show that if at least one of conditions (4)–(6) fails, then Hn
�Hp. First, if

(4) fails at some p̃ ∈ [0, p], then there exists ε > 0 such that

F(xp̃ ) =
∫

G(xp̃ ) dτ(G) =
∫

1
{
G(xp̃ ) ≥ q

}
G(xp̃ ) dτ(G) +

∫
1
{
G(xp̃ ) < q

}
G(xp̃ ) dτ(G)

≥ ε+
∫

1
{
G(xp̃ ) ≥ q

}
qdτ(G) ≥ ε+

∫
1
{
χn(G) ≤ xp̃

}
qdτ(G) = ε+ qHn(xp̃ ),
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so Hn(xp̃ ) � Hp(xp̃ ). Similarly, if (5) fails at some p̃ ∈ [p, 1], then Hn(xp̃ ) � Hp(xp̃ ).
Finally, if (4) and (5) hold, but (6) fails, then there exists ε > 0 such that

Hn(xp ) −Hn(xp ) = τ
(
xp < χn(G) ≤ xp

) ≥ τ
(
G(xp ) = 0, G(xp ) = 1

)
≥ ε > 0 =Hp(xp ) −Hp(xp ),

so Hn(xp ) �Hp(xp ) or Hn(xp ) �Hp(xp ).
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