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Evidence suggests that consumers do not perfectly optimize, contrary to a critical
assumption of classical consumer theory. We propose a model in which consumer
types can vary in both their preferences and their choice behavior. Given data
on demand and the distribution of prices, we identify the set of possible values
of the consumer surplus based on minimal rationality conditions: every type of
consumer must be no worse off than if they either always bought the good or never
did. We develop a procedure to narrow the set of surplus values using richer data
sets and provide bounds on counterfactual demands.
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1. Introduction

A key assumption of the standard approach to analyzing consumer demand and welfare
is that consumers perfectly optimize. Yet it is clear from a number of empirical studies—
if not from introspection alone—that this assumption does not generally hold in prac-
tice. For example, simply changing the way that prices are presented to consumers
can have significant effects on demand (Chetty, Looney, and Kroft (2009), Finkelstein
(2009)).1
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Failures to optimize perfectly can occur for a variety of reasons. The consumers may
not be fully attentive to the price of a good they buy, perhaps because it is a habitual pur-
chase or because prices involve complexities that require effort to understand. Similarly,
consumers may not always be aware of the price of a good they do not buy. Alternatively,
they may simply make stochastic errors, as is typically assumed in random utility mod-
els. Varying salience of certain features of the product, such as whether it is on sale, may
also influence consumers’ choices.

How are we to make inferences about a consumer’s preferences and welfare in the
absence of optimal choices? We propose an approach grounded in minimal assump-
tions about the consumer’s rationality. We focus on a setting with unit demand in which
the data consist of a demand curve indicating the probability of purchase at each price
together with a distribution of prices. Our rationality conditions require only that no
types of consumer would be better off if they switched to either always buying or never
buying the good.2

We consider an analyst who seeks to rationalize the data with a model describing a
distribution of types of the consumer, with each type specifying the consumers’ value
together with their demand curve. A model rationalizes the data if, at each price, the
observed purchase probability is equal to the expected demand across the types in the
model. We study two main questions. First, what can the analyst infer from the observed
data about the surplus the consumer receives from participating in the market for this
good? Our approach can help to quantify the uncertainty due to bounded rationality in
estimated measures of consumer surplus contributed by new products.3 Second, what
can the analyst predict about the counterfactual demand if the consumer were able to
fully optimize? This question could be of interest to a regulator or a monopolist consid-
ering fixing the price in the market, thereby eliminating any errors in choice arising from
inattention to fluctuations in prices. For each of these questions, we first obtain bounds
using simple data sets and then show how to narrow these bounds with richer data.

There are two formally equivalent interpretations of our framework. Under one
interpretation—which is the one we use in our description—there is a single consumer
with a stochastic type. Under the other interpretation, there is a continuum of con-
sumers, and each type describes an individual consumer whose preferences and behav-
ior are fixed.

The consumer’s type captures both fluctuations in value (as in a random utility
model) and varying attention that could be correlated with the value. For example, it
could be that when the consumer’s value is high, she pays little attention to the price,
whereas when it is low, she checks more carefully. Alternatively, her attention could vary
due to external factors such as time pressure. We think of a type’s demand as resulting

unable to accurately report the price of an item immediately after placing it in their cart. Taubinsky and
Rees-Jones (2018) and Tipoe (2021) find that there is significant heterogeneity in attention to prices.

2We evaluate expected utilities with respect to the distribution of prices observed by the analyst, making
an implicit identifying assumption that this distribution agrees with the consumer’s subjective belief or
experience.

3For example, Cohen, Hahn, Hall, Levitt, and Metcalfe (2016) estimate the total consumer surplus due
to Uber, Goolsbee and Petrin (2004) estimate that due to direct broadcast satellites, and Petrin (2002) esti-
mates that due to the Introduction of the minivan.
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from a combination of her value for the good and her attention (which is unobserved
and unmodelled).

One special case of our model of particular interest arises when each type of the
consumer is Bayes rational and imperfections in optimization are due to incomplete
information about prices. In that case, each type is described by a value for the good
together with an information structure about prices, with their demand following from
optimization of their expected payoff. Each such type of consumer satisfies our minimal
rationality conditions since the strategies of always or never buying the good can be im-
plemented by ignoring any information they have about prices. One might think, then,
that this case would lead to narrower bounds on surplus and counterfactual demand
than the ones resulting from our general rationality conditions. It turns out, however,
that the bounds are identical: any model satisfying our general rationality conditions
can be obtained with Bayes rational consumer types for appropriately chosen informa-
tion structures.

Relative to our setting, the standard assumption of optimal choice (coupled with
quasilinear preferences) simplifies the analysis in two ways. First, each type has a
threshold demand, buying the good if and only if the price is below that type’s value
for the good, and thus the value can be directly inferred from its demand. Second, any
demand curve admits a unique decomposition into threshold demands of individual
consumer types; thus, the distribution of values can be directly inferred from the de-
mand observed in the data. In contrast, in our setting, types with the same value may
differ in their demand, corresponding to differences in attention or sophistication. Thus
types’ values cannot be directly inferred from their demands, and their demands need
not take a simple threshold form.

There are generally many different models that can rationalize the data. First, the
analyst must consider various decompositions of the overall demand into demands of
individual types. Second, for each type, given its demand, there is a range of incentive-
compatible values, i.e., values for which our rationality conditions are satisfied. In light
of this flexibility, it is not possible to pin down the surplus exactly. For instance, the
analyst can assume perfect optimization and rationalize the demand in the standard
way to obtain the usual consumer surplus. At the opposite extreme, the analyst can
attribute all stochasticity in behavior to errors by assuming a single type whose demand
matches the observed demand. Alternatively, the analyst can employ a richer model
with many types that may be optimizing to varying degrees.

We characterize the levels of consumer surplus (and counterfactual demands) across
all rationalizations of the data. The levels of surplus consistent with the data comprise
an interval ranging from 0 to an upper bound that has a simple mathematical structure
akin to that of the standard consumer surplus. Just as the standard surplus is the area
between the price line and the inverse demand up to the quantity demanded, the upper
bound is the area between the price line and an “elevated” inverse demand up to the
quantity demanded. As the name suggests, this elevated demand, which depends on
both the observed demand and the price distribution, lies above the observed demand.

At first blush, it may be surprising that the consumer surplus could be higher than
the standard surplus under perfect optimization. To see how this may happen, consider
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a consumer who believes that the price of the good is normally too high for it to be
worth purchasing. She therefore ignores it and checks the price only if she notices that
it is on sale. If sales are announced at prices below some threshold that is lower than
the consumer’s value for the good, an analyst who treats the consumer as if she is fully
optimizing will infer that the threshold price for a sale is the consumer’s value, thereby
underestimating her surplus.

Each feasible level of surplus can be obtained with a simple model: as in the standard
approach, the observed demand is decomposed into threshold demands of individual
types. However, the value of a type that does not perfectly optimize need not be equal
to the price at the corresponding threshold. Our rationality conditions imply bounds
on the value that a type with a given demand threshold could have: the value can be no
greater than the expected price conditional on not buying the good, and no lower than
the expected price conditional on buying the good. The full range of levels of consumer
surplus consistent with the data can be attained by varying the types’ values within these
bounds.

It turns out to be useful to focus on the value a randomly chosen type assigns to the
good, which we refer to as the stochastic value. (Thus a stochastic value only partially
describes a model in that it does not specify the demand of each type.) Our bounds
on surplus and counterfactual demand are based on bounds on the stochastic value
with respect to various stochastic orders. For the upper bound on consumer surplus, we
make use of the increasing convex order (ICX);4 for the lower bound on surplus, we use
second-order stochastic dominance (SOSD); for the bounds on counterfactual demand,
we use first-order stochastic dominance (FOSD).

Bounds on the stochastic value are particularly useful with richer data. In Section 6,
we consider data sets comprising two or more market regimes that may differ in the
distribution of prices and/or the consumer’s behavior at any given price. For example,
it could be that, as in Chetty, Looney, and Kroft (2009), sales taxes are included in the
posted price in one regime but not included in the other. The analyst considers all ra-
tionalizations of the data sets in which the value of each type is fixed across regimes
(though its demand may vary, for example, due to changes in salience or attention); in
other words, the stochastic value is held constant across regimes.

We propose a simple procedure for narrowing the bounds on surplus or counterfac-
tual demand within each regime using the data from the other regimes. This procedure
involves taking the collection of bounds on the stochastic value across regimes and com-
bining them to obtain a common tighter bound. (In particular, this procedure can give
rise to a nonzero lower bound.) To compute this combined bound, we exploit a map-
ping between stochastic values and convex functions and identify a common bound on
these convex functions.

In a similar spirit to Bernheim and Rangel (2009), we propose a revealed-preference
approach to measuring the welfare of a decision-maker who may not be perfectly ratio-

4The ICX order can be viewed as the analogue of second-order stochastic dominance for a decision-
maker who is risk loving instead of risk averse. Thus, whereas second-order stochastic dominance favors
higher means and smaller spreads, ICX favors higher means and larger spreads.
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nal. Empirical studies of behavioral welfare typically assume, either explicitly or implic-
itly, that certain observed choices reveal the decision-maker’s true preferences.5 These
preferences can then be used to assess the welfare associated with other choices that
could be suboptimal. For example, Chetty, Looney, and Kroft (2009) and Taubinsky and
Rees-Jones (2018) recover true preferences from consumer choices when a tax is made
salient and use these preferences to measure the welfare loss arising from mistakes that
occur when the taxes are not salient; Bronnenberg, Dubé, Gentzkow, and Shapiro (2015)
identify the true preferences from experts’ choices and use these preferences to evaluate
non-experts’ welfare. An alternative approach, taken by Gruber and Köszegi (2001), is to
use a structural model that relates true preferences to choice behavior. Relative to these
empirical studies, we make much weaker assumptions about the extent to which true
preferences can be inferred from the data, requiring only that behavior satisfies certain
minimal rationality conditions.

In the special case of our model in which errors are due to imperfect information, our
work can be viewed as combining revealed preference with information design, where
the design has the goal of maximizing or minimizing the surplus or counterfactual de-
mand consistent with the observed data.6 Bergemann, Brooks, and Morris (2022) iden-
tify bounds on counterfactual behavior in abstract games. Theorem 4 in the present
paper concerns counterfactual behavior in a more specific setting, but unlike in Berge-
mann, Brooks, and Morris (2022), the distribution of preferences in our model is not
known to the analyst. Bergemann, Brooks, and Morris (2015, 2017) identify the range of
surplus values that can be attained for given preferences as information varies in a mo-
nopolistic market or a first-price auction. Condorelli and Szentes (2020, 2022) character-
ize the range of surplus values consistent with partial knowledge of demand in settings
with market power on the supply side. Regarding revealed preference, we are closest to
the branch of the literature that uses choice data to jointly identify preferences and infor-
mation, as in Masatlioglu, Nakajima, and Ozbay (2012) and Manzini and Mariotti (2014).

When considering bounds on surplus using data from multiple regimes, we repre-
sent random variables as convex functions to construct bounds with respect to the ICX
or SOSD order. A similar technique has been used in Bayesian persuasion problems by
Gentzkow and Kamenica (2016) and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017).
Müller and Scarsini (2006) establish lattice properties of these orders using the same
transformation. This technique has a natural interpretation in our context: the convex
function that represents a given stochastic value maps each price to the consumer sur-
plus that would arise under that stochastic value under perfect optimization. Kleiner,
Moldovanu, and Strack (2021) characterize the extreme points of a set of distributions
bounded by a random variable with respect to the ICX or SOSD order.7 In contrast, we
identify random variables that provide bounds with respect to these orders on a set sat-
isfying certain constraints.

5See Bernheim and Taubinsky (2018) for a survey.
6While information design problems typically place no restrictions on the information structure, we im-

pose an implicit restriction to ensure that each type has monotone demand.
7In related work, Yang and Zentefis (2023) characterize extreme points of a set of distributions bounded

with respect to the FOSD order.
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Several other papers study complementary problems of identifying bounds on con-
sumer surplus. Varian (1985) considers issues of measurement due to gaps in observed
demand. Kang and Vasserman (2022) analyze how functional form restrictions narrow
these bounds. Sandomirskiy and Ushchev (2022) identify bounds on consumer welfare
across possible disaggregations of an observed aggregate demand curve without quasi-
linear utility. Allen and Rehbeck (2021) provide bounds on surplus from finite data sets
for consumers who approximately optimize; in contrast, we focus on idealized infinite
data with different bounded rationality assumptions that are not nested with theirs.

2. Setup

An analyst observes data (Q, F ) describing the stochastic purchasing behavior of a con-
sumer with unit demand together with the distribution of prices. The demand func-
tion Q : [p, p] −→ [0, 1], which we assume is non-increasing, specifies the probability
Q(p) of purchase at each price p; we denote by P(q) the inverse demand associated
with Q(p).8 Prices are distributed according to the continuous distribution F(p) with
support [p, p], where p ≥ 0. As is standard when measuring consumer welfare, we as-
sume that the analyst observes the choke price, i.e., Q(p) = 0; similarly, we assume that
Q(p) = 1.

The demand Q is an aggregation of many choices made by the consumer across
which both her value for the good and her behavior may vary. In each such choice,
the consumer faces a take-it-or-leave-it offer at a random price p drawn according to F .
(We denote random variables in boldface and their realizations with the corresponding
non-bold symbol; all probabilities and expectations are evaluated with respect to these
bold variables.) The consumer has a stochastic type i with support I ⊂ R. Each type i

specifies the consumer’s value vi for the good together with a non-increasing demand
Qi(p).

We interpret the data as describing the choices of a single individual whose value for
the good may be changing and whose behavior also varies due to unobserved factors
such as attention or salience. We allow for the possibility that these factors are related to
the value since, for example, consumers may be more attentive to the price when their
value is lower. An alternative interpretation of the data is that they combine choices
made by a large population of consumers, with each type corresponding to a distinct
individual whose value and behavior are fixed.

We assume that the consumer’s type is independent of the price. This assumption
is natural for individual-level data, such as scanner data, where the individual is neg-
ligible from the perspective of the seller. If consumers’ values vary systematically over
time, as, for instance, would be expected for a seasonal product, then the analyst should
split the data into periods within which independence of values and prices is plausible.
(The tools developed in Section 6 can be applied to the separated data.) If, however, the
analyst fails to account for temporal variation that affects the seller’s pricing strategy,

8That is, P(q) := inf{p : Q(p) ≤ q}. Analogously, given any inverse demand function P̃ , we define the

corresponding demand function Q̃(p) = inf{q : P̃(q) ≤ p}.
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then our results may not apply. Similarly, if the seller engages in third-degree price dis-
crimination or otherwise screens consumers by offering different distributions of prices
depending on attributes correlated with the consumer’s value, the analyst should group
the data according to the same attributes; our results may not apply to the original com-
bined data.

The analyst assumes that all types of the consumer satisfy minimal rationality re-
strictions: we require that no type can be worse off than she would be if she never
bought the good (regardless of its realized price), nor can she be worse off than if she
always bought the good. Letting si = E[(vi − p)Qi(p)] denote type i’s expected surplus,
this restriction corresponds to the pair of incentive-compatibility constraints

si ≥ 0 (1)

si ≥ vi − E[p]. (2)

This requirement imposes discipline on the relationship between a type’s value and its
demand: substituting the definition of si and isolating vi yields

E
[
p
(
1 −Qi(p)

)]
E

[
1 −Qi(p)

] ≥ vi ≥
E

[
pQi(p)

]
E

[
Qi(p)

] . (3)

There are several reasons to expect that a consumer’s demand may not perfectly re-
flect her value. It could be that she does not always check the price of the good or does
so only if she notices that it is on sale, the posted price may not include taxes that the
consumer does not accurately compute, or the consumer may make random errors in
assessing the value of the good, as in a random utility model. In each of these cases,
the consumer’s attentiveness and likelihood of making a mistake could depend on the
current value. The analyst therefore allows for types’ demands to vary along with their
values in a general way, imposing only that no type makes systematic errors such that
they would be better off either always buying or never buying.

The analyst seeks to explain the observed choices with a model that consists of a
distribution M of types i ∈ I together with a specification (vi, Qi )i∈I of values and non-
increasing demand functions for each type satisfying (1) and (2). We say that a given
model rationalizes data (Q, F ) if Q(p) = E[Qi(p)] for all p. Given a model that ratio-
nalizes the data, the (ex ante) consumer surplus is s = E[si]. In general, data can be ra-
tionalized by many different models which in turn yield different values of surplus. We
say that surplus s ∈ R is consistent with the data if there exists a model that rationalizes
(Q, F ) and generates surplus s.

A special case of our environment that may be of particular interest arises when the
consumer is Bayesian but observes only a noisy signal of the price of the good. The noise
in this signal could result from inattention; for example, the consumer may assume that
the price of the good exceeds her willingness to pay unless she notices that it is on sale
(in which case she checks the price). In this case, a type of the consumer can be de-
scribed by a value and an information structure. The type’s demand is then determined
by the condition that she buys precisely when her value exceeds her posterior expec-
tation of the price. Bayesian optimality implies that (1) and (2) are satisfied for each
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type. Conversely, for each type (vi, Qi ) satisfying (1) and (2), there exists an information
structure for which a Bayesian type with value vi would have demand Qi. Namely, given
a type (vi, Qi ), take the binary information structure that generates a “buy” signal with
probability Qi(p) and an “abstain” signal otherwise. By (1) and (2), following the action
recommended by the signal is incentive compatible. Consequently, all of our results
apply as written to this special case; in particular, Bayesian optimality does not narrow
the bounds on consumer surplus relative to those obtained with our minimal rationality
assumptions.

Example 1. The analyst observes the linear demand function Q(p) = 1 − p and prices
uniformly distributed on [0, 1]. There are many possible models that rationalize this
data. For instance, it could be that, as in the standard analysis, the consumer always
makes the optimal decision: her value vi is uniformly distributed on [0, 1] and each
type i demands the good precisely when p< vi. For any realized price p, this consumer
receives surplus (1 − p)2/2 (corresponding to the area between the demand curve and
the price). The expected consumer surplus for this model is therefore s = E[(1−p)2/2] =
1/6.

Alternatively, the data can be rationalized by a model with stochastic choices. Per-
haps the simplest such rationalization features a consumer with a single type. For each
price realization p, the consumer purchases the good with probability Q(p), which triv-
ially generates the observed aggregate demand. The inequalities in (3) place limits on
this type’s value, v: it must be at least v = E[pQ(p)]/E[Q(p)] = 1/3 to ensure that she
does not prefer to abstain from buying, and at most v = E[p(1 − Q(p))]/E[1 − Q(p)] =
2/3 to ensure that she does not prefer to always buy. Taking v = v leads to a surplus of
E[(v− p)Q(p)] = 1/6; taking v = v leads to a surplus of E[(v− p)Q(p)] = 0. Using values
of v in between these two extremes, any surplus in [0, 1/6] can be obtained.9

More complex models can yield additional values of the surplus. Consider two
equally likely types, 1 and 2, with respective demands

Q1(p) =
{

2(1 −p) if p ≥ 1/2

1 otherwise
and Q2(p) =

{
0 if p ≥ 1/2

1 − 2p otherwise.

Since (Q1 + Q2 )/2 = Q, these types’ demands together generate the observed total de-
mand. Given each type’s demand Qi, (3) places restrictions on the values of the form
vi ∈ [vi, vi]. Using the maximal values gives surplus 1

2

∑
i vi E[Qi(p)] − E[pQ(p)] = 2/9

(whereas the minimal values again give a surplus of 0).10 ♦

We see from this example that it is possible to obtain values of the surplus consis-
tent with the data that exceed the standard consumer surplus. This observation may

9That the upper bound of 1/6 is equal to the standard surplus is a coincidence that does not generally
hold outside of this example. On the other hand, 0 is a tight lower bound regardless of the data as there
are always models in which each type of the consumer is indifferent between choosing according to her
demand and never buying the good.

10Type 1 buys with probability 3/4 and has maximal value v1 = 5/6, and type 2 buys with probability 1/4
and has maximal value v2 = 11/18, giving a surplus of 1/2 · 5/6 · 3/4 + 1/2 · 11/18 · 1/4 − 1/6 = 2/9.
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seem surprising since the consumer in the standard model perfectly optimizes, while in
other models she does not. While it is true that introducing imperfections in decision-
making can only lower the surplus given the consumer’s preferences, allowing for these
imperfections expands the range of preferences that can rationalize the data.

In the example, by splitting the aggregate demand across two types, we obtain higher
levels of surplus than can be obtained with only one type. The question remains, how-
ever, as to whether further disaggregation of the two demands—or some other split-
ting—can expand the range of attainable surpluses. As we show in the next sections,
it turns out that a “maximal” disaggregation of the demand can give rise to the highest
value of the surplus (which is 1/4 for Example 1).

3. Bounds on consumer surplus with one data set

We identify tight bounds on the consumer surplus consistent with the observed data. To
formulate the result, we define, for arbitrary demand Q̃ and (possibly unrelated) inverse
demand P̂ , the functional

CS(Q̃, P̂; p) :=
∫ Q̃(p)

0

(
P̂(q) −p

)
dq. (4)

When applied to the observed demand Q and its inverse demand P , CS(Q, P; p) re-
turns the standard consumer surplus. In the standard case, when the consumer always
chooses optimally, the inverse demand is equal to the marginal benefit of consumption
at each q. If the consumer does not always choose optimally, the inverse demand is not
generally equal to the marginal benefit. Nonetheless, if Q̃ is the demand and P̂ is the
marginal benefit of consumption, then CS(Q̃, P̂; p) is the consumer surplus (at price p).

For any data (Q, F ), we provide tight bounds on the consumer surplus using CS(Q,
P̂; p) for appropriate choices of P̂ . Accordingly, define the elevated and lowered inverse
demands to be

P(q) := E
[
p|p ≥ P(q)

]
P(q) := E

[
p|p ≤ P(q)

]
,

respectively. These two functions are non-increasing and satisfy P(q) ≥ P(q) ≥ P(q) for
all q; see Figure 1 for an illustration.

Theorem 1. Consumer surplus s is consistent with data (Q, F ) if and only if

0 = E
[
CS(Q, P; p)

] ≤ s ≤ E
[
CS(Q, P; p)

]
.

As explained above, CS(Q̃, P̂; p) is the surplus obtained by a consumer who de-
mands Q̃(p) at each p and receives marginal benefit P̂(q) at each q. The upper bound
in Theorem 1 corresponds to the “highest possible” marginal benefit function consistent
with the data, in a sense that is made precise in the proof of the theorem in Section 5.
To obtain the marginal benefit function P , we construct a model rationalizing the data
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Figure 1. Elevated and lowered inverse demands for a particular inverse demand P(q) with
uniformly distributed prices. In this case, P(q) is the midpoint between P(q) and p. Likewise,
P(q) is the midpoint between P(q) and p.

in which the analyst associates every marginal increase in demand with a different con-
sumer type and takes each type’s value to be the largest one that is consistent with its
own demand. A similar construction with lower values can generate any surplus be-
tween 0 and the upper bound.11

Example 2. To illustrate the theorem, consider the data from Example 1. The empirical
inverse demand is P(q) = 1 − q, the elevated inverse demand is P(q) = (1 + P(q))/2 =
1 − q/2, and E[CS(Q, P; p)] = 1/4. Theorem 1 therefore indicates that the surplus levels
consistent with the data are precisely those in the interval [0, 1/4].

Theorem 1 also shows how the upper bound depends on both the demand and the
distribution of prices in the data. By fixing the observed demand at Q(p) = 1 − p and
varying the distribution of prices among those with support [0, 1], one can obtain an up-
per bound arbitrarily close to the standard consumer surplus at a price p0 if the prob-
ability that the price is below p0 is small and the density at prices above p0 decreases
quickly, so that for each p ∈ (p0, p), E[p|p >p] is close to p. ♦

4. Stochastic values

The distribution of the consumer’s value for the good plays a central role in our analysis.
In this section, we explain how, in viewing the value as a random variable, comparisons
of counterfactual demand or consumer surplus correspond to comparisons of random
variables with respect to a relevant stochastic order. The proofs of our main results ex-
ploit this connection.

Given a model, let v := vi be the consumer’s stochastic value of the good. Thus v
is a random variable partially describing the model, disregarding types’ demands. Let
Qs(p; v) := Pr(v > p). For any price p, Qs(p; v) is the probability with which the con-
sumer would buy the good in the standard model (except possibly at atoms of v).12

11In Section 6.2, to we show how positive lower bounds can be obtained using richer data.
12If v has an atom at p, then the demand in the standard model lies in the closed interval between the

left and right limits of Qs(·; v) at p.
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Therefore, we refer to Qs(p; v) as the standard demand function for v. We use the su-
perscript s throughout to indicate elements relating to the standard model.

Note that the standard demand function is the complementary distribution function
of v. Likewise, the standard inverse demand function Ps(q; v), which is the inverse to the
demand Qs(p; v), is the complementary quantile function of v.

In light of the connection between the distribution of the stochastic value and the
demand, first-order stochastic dominance comparisons of v correspond to rankings
of the associated standard demands. Indeed, the following statements are equivalent:
(i) v′ first-order stochastically dominates v; (ii) Qs(p; v′ ) ≥ Qs(p; v) for all p; (iii) Ps(q;
v′ ) ≥ Ps(q; v) for all q.13

Our bounds on consumer surplus make use of the so-called convex order. Following
Rothschild and Stiglitz (1970), mapping random variables to convex functions is useful
for making comparisons with respect to this order. Define the function CSs(·; v) : R −→
R by

CSs(p; v) :=
∫ ∞

p
Qs(p′; v

)
dp′. (5)

This mapping has a natural interpretation in our context: it is the standard consumer
surplus at price p for a consumer with stochastic value v.14 Observe that CSs(p; v) is
convex in p because Qs is downward-sloping.

In addition to its economic interpretation, the function CSs(·; v) characterizes the
convex order on v. Given two real-valued random variables x and y, y dominates x in the
increasing convex order, denoted by y 	icx x, if there exists a random variable z such that
z first-order stochastically dominates x and y is a mean-preserving spread of z.

Lemma 1. For any v′ and v, v′ 	icx v if and only if CSs(p; v′ ) ≥ CSs(p; v) for every price p.

The result follows from Theorem 4.A.2 of Shaked and Shanthikumar (2007) together
with the fact that Qs(p; v) is the complementary distribution function of v.

The increasing convex order is closely related to second-order stochastic dominan-
ce, denoted here by 	sosd.15 (Indeed, y 	icx x if and only if −x 	sosd −y.) Roughly speak-
ing, both orders favor higher values, but the increasing convex order favors spreads
while second-order stochastic dominance disfavors them. Lemma 1 is essentially the
analogue for the increasing convex order of the usual characterization of SOSD in terms
of integrals of the lower tails of distribution functions.

Given a stochastic value v and demand Q̃(p), a special role in our analysis is played
by CS(Q̃, Ps(·; v); p). This quantity is the highest possible surplus a consumer with value

13We use the first-order stochastic dominance order in Section 7 where we study bounds on counterfac-
tual demand that would arise in the absence of imperfections in choice.

14Gentzkow and Kamenica (2016) and Kolotilin et al. (2017) map each random variable to the integral of
the lower tail of its distribution function. For our purposes, the relevant integral is over the upper tail of the
complementary distribution function.

15Recall that y second-order stochastically dominates x if there exists z such that x is a mean-preserving
spread of z and y first-order stochastically dominates z.
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v and demand Q̃(p) can achieve, which is attained when the measure Q̃(p) of the high-
est types are the ones who buy the good. We abuse notation and write CS(Q̃, v; p) for
CS(Q̃, Ps(·; v); p) throughout.

The next result suggests how the increasing convex order can be useful outside of
the standard model for a consumer who makes imperfect choices.

Lemma 2. For every demand function Q̃ and any price p, CS(Q̃, v; p) is non-decreasing
in v with respect to the increasing convex order.

Clearly, a first-order stochastic dominance increase of values increases the consum-
er surplus CS(Q̃, v; p). A mean-preserving spread of the values also increases this sur-
plus because it is computed under the assumption that, for each p, it is the measure
Q̃(p) of types with the highest values who buy. The gross surplus at a given price is there-
fore proportional to the mean value conditional on being among these buying types,
which increases with a mean-preserving spread. The proof of this lemma and of other
results not provided in the main text can be found in the Appendix.

5. Proof of Theorem 1

We begin by identifying the set of values consistent with the demand of a given type. We
say that a value vi is consistent with demand Qi if vi together with Qi satisfy inequalities
(1) and (2). Given Qi, let

vi := E
[
p|Qi(p) ≥ q

] = E
[
p|p ≤ Pi(q)

]
vi := E

[
p|Qi(p) ≤ q

] = E
[
p|p ≥ Pi(q)

]
,

where q ∼ U[0, 1] is independent of p and Pi is the inverse demand associated with Qi.
Since type i buys with probability Qi(p) at each price p, vi and vi are, respectively, the
expected price conditional on the event that consumer of type i does or does not make
a purchase. Accordingly, we refer to vi as the buying price expectation and refer to vi as
the non-buying price expectation. Note that since Qi is downward-sloping, vi ≤ vi.

Lemma 3. A value vi is consistent with Qi if and only if vi ≤ vi ≤ vi.

This result follows directly from (3) since

E
[
p|Qi(p) ≤ q

] = E
[
p
(
1 −Qi(p)

)]
E

[
1 −Qi(p)

]
and

E
[
p|Qi(p) ≥ q

] = E
[
pQi(p)

]
E

[
Qi(p)

] .

We divide Theorem 1 into its sufficiency and necessity claims. To prove sufficiency,
we first show by construction that each surplus between 0 and E[CS(Q, P; p)] is con-
sistent with the data. For the necessity claim, we prove that no other levels of surplus
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are consistent with the data. For the latter, we show that the stochastic value associated
with the construction yielding the upper bound on surplus provides an upper bound
with respect to the increasing convex order. (For necessity, it suffices to consider only
the upper bound: since the lower bound on surplus is 0, it follows trivially from (1) that
no lower surplus can be obtained.)

To prove the sufficiency claim, we construct for each s ∈ [0, E[CS(Q, P; p)]] a model
that generates surplus s. Let the type i be uniformly distributed on [0, 1] and let each
realization i generate the demand function Qi(p) = 1p≤P(i). Thus type i always buys
when the price is below P(i) and never buys at prices above P(i). Note that the average
demand across all types is equal to the observed demand Q, as needed for the model to
rationalize the data:

E
[
Qi(p)

] = Pr
(
P(i) ≥ p

) = Pr
(
i ≤Q(p)

) = Q(p).

By Lemma 3, a value vi is consistent with demand Qi if vi ≤ vi ≤ vi. Due to the choice
of Qi, we have vi = P(i) and vi = P(i). Since type i buys if and only if i ≤ Q(p), taking
vi = vi for all i gives ex ante surplus E[CS(Q, P; p)]; we refer to this model as the upper
threshold model. At the other extreme, taking vi = vi for all i gives E[CS(Q, P; p)] = 0
since the value P(i) of each type i is equal to its expected expenditure. For any s ∈
(0, E[CS(Q, P; p)]), taking vi = λP(i) + (1 − λ)P(i) with λ = s/E[CS(Q, P; p)] yields sur-
plus s. This completes the proof that lying in the interval [0, E[CS(Q, P; p)]] is sufficient
for s to be consistent with the data.

We now shift our attention to the other direction, namely, that lying in the interval
[0, E[CS(Q, P; p)]] is a necessary condition for consistency of surplus with the data. We
say that a stochastic value v is consistent with data (Q, F ) if there exists a model satis-

fying v d=vi that rationalizes (Q, F ). We provide an upper bound on stochastic values
consistent with the data with respect to the increasing convex order. Let v := P(i) and
v := P(i) for i ∼ U[0, 1]. Thus v and v are, respectively, the stochastic values associ-
ated with the upper threshold model and the corresponding model for the lower bound
constructed above. For the proof of Theorem 1, we make use only of v; v is needed in
Section 6.2.

The following lemma is the core technical insight underlying the necessity part of
Theorem 1.

Lemma 4. If a stochastic value v is consistent with data (Q, F ), then v 	icx v.

The proof of this lemma, which is provided in the Appendix, starts by considering an
arbitrary model rationalizing the data with values vi and demands Qi(p) for each type i.
We then amend the model in two steps such that (i) each step leads to an increase in the
stochastic value with respect to the increasing convex order and (ii) in combination, the
two steps transform the original stochastic value v = vi to v.

In the first step, we replace the value vi of each type i with i’s non-buying price ex-
pectation vi (given the demand Qi). Since, by Lemma 3, vi ≥ vi, this replacement leads
to a first-order stochastic dominance increase in the stochastic value and, hence, also to
an increase with respect to the increasing convex order.



1428 Kocourek, Steiner, and Stewart Theoretical Economics 19 (2024)

Figure 2. Example illustrating the effect of splitting the demand Q(p) = 1 − p into thresh-
old demands for p ∼ U[0, 1]. The shaded triangle represents the region of non-buying prices.
If the demand is that of a single type, the maximal value is the non-buying price expectation
E[p|p ≥ Pi(q)], which is located at the height of the centroid of the shaded triangle. When the
demand is split into threshold demands, each value of q is identified with a distinct type j = q

that has a threshold demand with threshold 1 − j (and thus has non-buying price expectation
E[p|p ≥ Pi(j)]). The expected maximal value then becomes E[vj] = ∫ 1

0 E[p|p ≥ Pi(j)]dj.

In the second step, we decompose the demand of each type into demands of the
form Qj(p) = 1p≤ρj for some ρj ; we refer to such functions as threshold demands. More
specifically, we replace each type i with a stochastic type j such that each realization j

has a threshold demand and the average demand across j is Qi. (If Qi is itself a threshold
demand, then such a decomposition is trivial.) We assign to each j the value vj equal
to its non-buying price expectation. Replacing each i with the corresponding j clearly
increases the spread in the values. For this change to be an increase with respect to the
increasing convex order, it suffices to show that it also increases the means, i.e., that
E[vj] ≥ vi for each i. To see why the last inequality holds, notice that, by the law of iter-
ated expectations, the expected non-buying price expectation conditional on not buying
is unaffected by the decomposition of the demand Qi(p); that is, since p ≥ Pj(q) is the
condition under which type j does not buy,

vi = E
[
vj|p ≥ Pj(q)

]
.

Since higher values of vj are associated with lower probabilities of not buying, when
compared to the conditional expectation on the right-hand side of the last equation, the
relative weight assigned to higher values vj in the unconditional expectation is larger
and, therefore, E[vj] ≥ E[vj|p ≥ Pj(q)] = vi. See Figure 2 for an illustration.

Taken together, the two steps transform the original model into another one that
rationalizes the data and in which all types have threshold demands and values equal to
their non-buying price expectations. The associated stochastic value is v, as needed for
the proof of Lemma 4.

We now establish an interim upper bound on consumer surplus that holds for each
realization p of the random price p. We say that a function s(p) is an interim con-
sumer surplus consistent with the data if there exists a model that rationalizes the data
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for which

s(p) = E
[
(vi −p)Qi(p)

]
.

Lemma 5. If s(p) is an interim consumer surplus consistent with the data, then s(p) ≤
CS(Q, P; p).

Proof. First note that, for a given stochastic value v, the consumer can suffer from two
types of losses relative to optimal behavior: (i) the probability of purchase at a given
price may not be optimal, i.e., Q(p) may differ from Qs(p; v), and (ii) the set of types
purchasing the good at a given price may not be those with the highest values. Starting
from any model that rationalizes the data, reallocating demands across types to elimi-
nate this latter loss (ignoring incentive compatibility) gives an upper bound CS(Q, v; p)
on the interim surplus at each p for models with stochastic value v. Therefore, the sur-
plus s(p) generated by any such model satisfies

s(p) ≤ CS(Q, v; p) ≤ CS(Q, v; p) = CS(Q, P; p),

where the middle inequality follows from Lemmas 2 and 4.

Since the interim surplus is bounded from above by CS(Q, P; p) for each price p,
the ex ante surplus is bounded by E[CS(Q, P; p)], as needed. This concludes the proof
of Theorem 1.

6. Multiple data sets

The bounds on consumer surplus can be narrowed if the analyst observes the con-
sumer’s choices under varying market conditions, which we refer to as regimes. We as-
sume that the consumer’s types’ values are fixed across regimes, but the regimes may
differ in the distribution of prices or in the purchasing behavior of each type at any
given price (or both). For example, one such regime may correspond to a publicly an-
nounced “sale” associated with a low distribution of prices, while another corresponds
to the same market in the absence of a sale; the sale announcement may affect the con-
sumer’s stochastic choice at each price through changes in attention or salience. Alter-
natively, the regimes may differ only in how prices are presented to consumers, as in the
empirical studies of Chetty, Looney, and Kroft (2009) and Finkelstein (2009).

The analyst observes a profile of data sets (Qk, Fk ), k = 1, � � � , K, where Qk(p) and
Fk(p) are, respectively, the probability that the consumer makes a purchase at each
price p and the distribution of prices in regime k, and each (Qk, Fk ) satisfies the as-
sumptions on data made in Section 2. The consumer has a stochastic type i, with each
realization i specifying her value vi for the good and her (non-increasing) demand func-
tion Qk

i (p) in each regime. The distribution of types and the value of each type are
the same across all regimes. A model for the analyst consists of a distribution of types
together with a specification of (vi, Q1

i , � � � , QK
i ) for each type i.

We say that a model rationalizes the profile of data sets (Qk, Fk )k if, for each regime
k, it rationalizes data set (Qk, Fk ) when each type i has demand Qk

i . In particular, within
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each regime, we impose the basic rationality assumptions described by (1) and (2).
A stochastic value v is consistent with the profile of data sets (Qk, Fk )k if there exists a

model that rationalizes this profile and satisfies v d= vi.

Example 3. Consider two regimes. The data in regime 1 consist of the linear demand
Q1(p) = 1 − p and uniform price distribution p ∼ U[0, 1], as in Example 1. The data in
regime 2 consist of the step-function demand Q2(p) = 1p≤2/3 and uniform price distri-
bution p ∼U[2/3−ε, 2/3+ε], where 0 < ε ≤ 1/3. These two regimes are jointly rational-
izable, for example, by a single type with value 2/3 and demand Qk(p) for k = 1, 2. ♦

Given a model, the interim consumer surplus in regime k at price p is

sk(p) = E
[
Qk

i (p)(vi −p)
]
.

We write sk = E[sk(p)] for the ex ante surplus in regime k (with p ∼ Fk). Interim con-
sumer surplus sk(p) in regime k is consistent with the profile of data sets (Qk, Fk )k if
there exists a model that rationalizes this profile and generates surplus sk(p) in regime k

(and analogously for the ex ante surplus).

6.1 Upper bound

The next result provides an upper bound on the surplus within each regime that gen-
erally improves upon the bounds that can be obtained for each regime separately. The
basic idea is to derive the upper bounds on the stochastic value with respect to the in-
creasing convex order when considering each regime separately and to combine them
in such a way as to generate a tighter bound. The approach therefore requires combin-
ing bounds on random variables with respect to that stochastic order. To do so, building
on ideas of Gentzkow and Kamenica (2016) and Kolotilin et al. (2017), we exploit the rep-
resentation of a random variable in terms of a convex function described in Section 4, in
this case, the stochastic value in terms of the standard consumer surplus. According to
Lemma 1, comparisons of stochastic values in the increasing convex order correspond
to comparisons of the standard consumer surplus. Using this connection, we find the
largest random variable that satisfies the bounds on the stochastic value across all of the
regimes by finding the largest convex function lying below the corresponding bounds
on the standard consumer surplus.

Let vk be the upper bound on stochastic values consistent with the data for regime k

with respect to the increasing convex order, as in Lemma 4.16 For each k, the bound
vk corresponds to the convex function CSs(p; vk ). The upper bound using data across
all regimes therefore corresponds to the largest convex function that lies below each
CSs(p; vk ). Accordingly, let CSs∗(p) denote the convex closure of the function
mink CSs(p; vk ).17 We refer to CSs∗ as the convexification of mink CSs(p; vk ).

16That is, vk = P
k

(i) with i ∼ U[0, 1], where the elevated demand for regime k is P
k

(i) = E[p|p ≥ Pk(i)]
with p ∼ Fk and Pk is the inverse demand to Qk.

17Recall that the convex closure of a function g(p) is the function that maps each p to inf{s : (p, s) ∈
co(g)}, where co(g) denotes the convex hull of the graph of the function g. In the terminology of convex
analysis, CSs∗ is the biconjugate function to mink CSs(p; vk ).



Theoretical Economics 19 (2024) Boundedly rational demand 1431

Figure 3. Convexification for the two regimes described in Example 3 with ε = 1/3. Note that
the graphs depict only prices p ∈ [1/2, 1] since the convexification is trivial for p < 1/2. (a)
Standard consumer-surplus functions CSs(p; v1 ) (dashed) and CSs(p; v2 ) (dotted), and the con-
vexification CSs∗(p) (thick). (b) Standard demands associated with stochastic values Qs(p; v1 )
(dashed), Qs(p; v2 ) (dotted), and Qs∗(p) (thick).

To map CSs∗ back to a stochastic value, recall from Section 4 that CSs(p; v) is the
integral of the upper tail of the standard demand Qs(p; v), which is the complementary
distribution function of v. Define the demand function Qs∗(p) = −∂− CSs∗(p), where ∂−
denotes the left derivative. Note that 1 − Qs∗ is a distribution function and let v∗ be a
stochastic value associated with this distribution.18 See Figure 3 for an illustration.

The following result is the main step underlying the upper bound for multiple re-
gimes.

Lemma 6. If a stochastic value v is consistent with the profile of data sets, then v∗ 	icx v.

The lemma follows from Theorem 3.2 of Müller and Scarsini (2006).
A direct argument is as follows. If v is consistent with the profile of data sets, then it is

consistent with each data set separately; thus, vk 	icx v for each regime k. By Lemma 1,
mink CSs(p; vk ) ≥ CSs(p; v). Since CSs(p; v) is convex in p, CSs(p; v) is no greater than
the convexification of mink CSs(p; vk ). Finally, again by Lemma 1, v∗ 	icx v.

Combining Lemmas 2 and 6 leads to the following upper bound on the consumer
surplus within each regime.

Theorem 2. If the interim consumer surplus sk(p) in regime k is consistent with the
profile of data sets, then sk(p) ≤ CS(Qk, v∗; p).

As an immediate consequence, the ex ante consumer surplus in regime k consis-
tent with the profile of data sets is bounded from above by E[CS(Qk, v∗; p)], where the
expectation is with respect to the distribution of prices in regime k.

18Since CSs∗ is convex, its left derivative exists, and Qs∗ is non-increasing and left-continuous. Ad-
ditionally, CSs∗(p) = 0 for p > p and CSs∗(p) has slope −1 for p < p; hence, limp→−∞ Qs∗(p) = 1 and
limp→+∞ Qs∗(p) = 0. Thus, 1 −Qs∗ is a distribution function.
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Proof of Theorem 2. Given a stochastic value v, the interim consumer surplus sk(p)
in regime k is at most CS(Qk, v; p) because this is the surplus associated with having the
measure Qk(p) of types with the highest values buy at p. By Lemma 2, CS(Qk, v; p) is
non-decreasing in v with respect to the increasing convex order. Finally, by Lemma 6,
any stochastic value v consistent with the profile of data sets is bounded by v∗ in the
increasing convex order.

Lemma 6, when combined with Lemma 1, also provides an upper bound on the
counterfactual consumer surplus that would arise if the consumer perfectly optimized.

Corollary 1. Given a profile of data sets (Qk, Fk )k, the consumer surplus that would
arise at price p if the consumer chose optimally is no greater than CSs∗(p).

6.2 Lower bound

An analogous construction to that for the upper bound can be used to obtain a nontrivial
lower bound on surplus using data from multiple regimes. Given a stochastic value v and
demand Q(p), we can compute a lower bound on surplus by supposing that the measure
Q(p) of the lowest types purchase the good at each p (as opposed to the highest types
we used for the upper bound). Under this assignment, roughly speaking, lower means
and greater spreads of the stochastic value both reduce the lower bound on surplus.
Consequently, the relevant ordering of stochastic values is 	sosd (as opposed to 	icx for
the upper bound).

Just as v is the highest and the most spread out stochastic value consistent with the
data in a single regime, v (as defined in Section 5) is the lowest and the most spread out
such stochastic value. More precisely, v is a lower bound with respect to 	sosd on all v
consistent with the data. While the central step of the proof of Lemma 4 was to show that
a decomposition into threshold demands induces a mean-increasing spread of the non-
buying price expectations, a symmetric argument implies that the same decomposition
induces a mean-decreasing spread of the buying price expectations.

To represent the second-order stochastic dominance order, we define the comple-
mentary standard consumer surplus

ĈS
s
(p; v) :=

∫ p

−∞
(
1 −Qs(p′; v

))
dp′

and note that it is non-decreasing and convex in p. By the well known characterization
of Hadar and Russell (1969) and Rothschild and Stiglitz (1970), the ranking of stochastic
values v with respect to 	sosd implies the opposite ranking of ĈS

s
(p; v), and the converse

also obtains provided the latter ranking holds uniformly across all p.
With multiple regimes, following the analogous construction to that for the upper

bound, mink ĈS
s
(p; vk ) is an upper bound on ĈS

s
(p; v), where v is a stochastic value

consistent with the data in each regime and, for each k, vk is the lower bound on stochas-
tic values with respect to 	sosd consistent with the data set (Qk, Fk ). Since mink ĈS

s
(p;

vk ) is not generally convex, it may not correspond to any stochastic value; accordingly,
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let ĈS
s
∗(p) denote its convexification. Let v∗ be the stochastic value associated with

ĈS
s
∗.19 Along the same lines as in Lemma 6, v∗ is a lower bound with respect to 	sosd

on stochastic values v consistent with the profile of data sets.
Let P̂(q; v) := Ps(1 − q; v) denote the qth lowest quantile of v.

Theorem 3. If the interim consumer surplus sk(p) in regime k is consistent with the
profile of data sets, then sk(p) ≥ CS(Qk, P̂(·, v∗ ); p).

Once again, taking expectations with respect to the price in each regime gives a lower
bound on the ex ante surplus in that regime.

To understand this result, consider a consumer with stochastic value v. According to
the data for regime k, a measure Qk(p) of types buy at each price p. Selecting the types
with the lowest values generates surplus CS(Qk, P̂(; v); p) in regime k; this lower bound
is non-decreasing in v with respect to second-order stochastic dominance. Finally, be-
cause stochastic values consistent with the profile of data sets are bounded from below
with respect to 	sosd by v∗, the bound on sk(p) from the theorem applies.

Example 4. To illustrate the lower bound, consider the regimes from Example 3 with
ε = 1/3. In this case, v1 is uniformly distributed on [0, 1/2] and v2 is almost surely equal
to 1/2. Thus v2 second-order stochastically dominates v1, making the convexification
trivial with v∗ = v2. The lower bound from Theorem 3 on the ex ante consumer surplus
in regime 1 is therefore 1/2 · 1/2 − 1/6 = 1/12 and the lower bound in regime 2 is 0. ♦

6.3 Tightness of the bounds

Theorem 1 provides tight bounds on consumer surplus for data from a single market
regime; for each value within the bounds, we have constructed a model for which the
surplus is equal to that value. While the bounds on surplus in Theorems 2 and 3 are
generally tighter within each regime than the bounds obtained from the data in that
regime alone, they are not themselves tight bounds.

Example 5. To illustrate, consider the upper bound for the two regimes from Example 3
with ε ≤ 1/6. In this case, one can show that CSs(p; v2 ) ≤ CSs(p; v1 ) for all p, making

the convexification trivial: CSs∗(p) ≡ CSs(p; v2 ). Therefore, v∗
d= v2 almost surely takes

on the value 2/3 + ε/2, which is the non-buying price expectation for regime 2. How-
ever, this value is not consistent with the data for regime 1 since the non-buying price
expectation of at least some types must be no more than 2/3 (the non-buying price ex-
pectation for demand Q1(p)). Thus, the upper bound on consumer surplus in regime 1
constructed in Theorem 2 is not attainable in this case. ♦

If the analyst observes only one market regime, then to determine the range of val-
ues of consumer surplus, it suffices to consider types with simple threshold demands.

19That is, let 1 −Qs(·; v∗ ) be the right derivative of ĈS
s
, observe that it is a distribution function, and let

v∗ be a random variable with this distribution.
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With multiple regimes, decompositions into threshold demands are not generally suf-
ficient; it can happen that the regimes are not jointly rationalizable by any model with
threshold demands (but can be rationalized by other models).20 The constructions in
Theorems 2 and 3 circumvent this complication by using a bound on surplus in each
regime based on threshold demands. The upside of this approach is that the combined
bound is simple. The downside is that the combined bound need not correspond to a
model that rationalizes the profile of data sets and. hence, the bound is not generally
tight.

7. Bounds on counterfactual demand

Returning to the original model in which the analyst observes a single data set (Q, F )
that may result from imperfect optimization, we now consider the counterfactual de-
mand that would arise if instead the consumer were to perfectly optimize and purchase
precisely when her value vi exceeds the price p. These bounds apply equally to a coun-
terfactual market with a fixed, deterministic price where our minimal rationality condi-
tions imply that the consumer would choose optimally.

As for consumer surplus, bounds on counterfactual demand correspond to bounds
on the consumer’s stochastic value, albeit with respect to a different stochastic order:
while the increasing convex order and second-order stochastic dominance provide the
relevant bounds for consumer surplus, the bounds for counterfactual demand corre-
spond to first-order stochastic dominance.

To state these bounds, define the doubly elevated and doubly lowered inverse de-
mands, respectively, by

P(q) := E
[
p|p ≥ P(q), q ≤ q

]
P(q) := E

[
p|p ≤ P(q), q ≥ q

]
,

where q ∼ U[0, 1] and p ∼ F . Both functions are non-increasing. Relative to the elevated
and lowered inverse demands P and P , these inverse demands are further elevated and

lowered, i.e., P(q) ≥ P(q) and P(q) ≤ P(q) for all q. To see this, observe that P(q) is

a convex combination of P(q′ ) across q′ ∈ [0, q] and P is non-increasing; a symmetric
argument shows that P(q) ≤ P(q). See Figure 4 for an illustration.

Unlike P and P , the doubly elevated and lowered inverse demands P and P could
not arise under the counterfactual of perfect optimization: the corresponding stochastic
values are inconsistent with the observed data. However, for each q, there exist models

rationalizing the data for which the counterfactual inverse demands are P(q) and P(q),
respectively.

20Example 3 provides one such example when ε < 1/6. If the demand from regime 1 is decomposed into
threshold demands, then a nonzero mass of types must have thresholds below 1/3 − 2ε. The non-buying
price expectation of such types is less than 2/3 − ε. Therefore, these types would not buy at any price that
occurs in regime 2, contradicting that Q2(p) = 1 for p≤ 2/3.



Theoretical Economics 19 (2024) Boundedly rational demand 1435

Figure 4. Doubly elevated and doubly lowered inverse demands P (thick grey) and P (thick

dashed) for given inverse demand P (black). For each q, P(q) is the expected price conditional
on p and q lying in the upper-left grey area. Similarly, P(q) is the expected price conditional on

the lower-right grey area. For comparison, the thin grey and thin dashed curves depict P and P ,
respectively.

Theorem 4. For every stochastic value v consistent with data (Q, F ), the standard in-
verse demand function satisfies

P(q) ≤ Ps(q; v) ≤ P(q)

for all q. These bounds are tight in the sense that for each q, there exists a stochastic value v

consistent with the data such that Ps(q; v) = P(q), and similarly for P(q).

We sketch the argument for the upper bound; the argument for the lower bound
is analogous. For each q, given any stochastic value v, the standard inverse demand
Ps(q; v) is a particular quantile of v (namely, the (1 − q)th quantile). The model that
maximizes the counterfactual inverse demand at q among those rationalizing the data
is therefore the one that maximizes this quantile. Accordingly, bounds on counterfactual
demand correspond to bounds on stochastic values with respect to first-order stochastic
dominance.

How can we maximize a given quantile of v (among stochastic values consistent with
the data)? Recall that the highest value compatible with a type’s demand is its non-
buying price expectation. It turns out that this non-buying price expectation is maxi-
mized when no other type has a higher value and the demand of this type is as large as
possible. Accordingly, to maximize the value at the (1 − q)th quantile, we use a model
in which the type with the highest value has measure q and demand min{Q(p)/q, 1}. By

construction, the non-buying price expectation of this type is exactly P(q). To see that
the bound is tight, note that such a type can be part of a model that rationalizes the data
(in which the remaining measure 1 − q of types generate the residual demand).

As with consumer surplus, data from multiple market regimes can be used to tighten
the bounds on counterfactual demand. Assuming, as in Section 6, that preferences are
stable across regimes, a tighter bound can be obtained by simply taking the minimum
and maximum, respectively, of the upper and the lower bounds from Theorem 4 across
all of the regimes.
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8. Discussion

If the analyst does not know whether the consumer engages in optimal choice behavior,
the consumer surplus cannot be point-identified from price and demand data. None-
theless, weak rationality assumptions impose significant restrictions on the levels of sur-
plus consistent with the data. Identification of the consumer surplus can be further
sharpened by combining data from market regimes with varying priors or consumer
demands.

Two relevant questions related to this project remain open. First, the bounds we pro-
vide under multiple regimes are not tight; our bounds rely on separate rationalizations
for each regime, whereas, in principle, identification of the surplus can be tightened by
simultaneously rationalizing the profile of data sets. Second, in the interest of gener-
ality, we have imposed minimal structure on the relationship between the consumer’s
value and her demand. Depending on the context, there may be additional structure
that could be used to narrow the bounds on surplus or counterfactual demand.

Appendix: Proofs

Proof of Lemma 2. Note that

CS(Q̃, v; p) = CS
(
Q̃, Ps(·; v); p

) =
∫ Q̃(p)

0
Ps(q; v)dq − Q̃(p)p.

Consider any v and v′ such that v′ 	icx v. Since the expenditure Q̃(p)p does not depend

on the stochastic value, it suffices to prove that
∫ q∗

0 Ps(q; v′ )dq ≥ ∫ q∗
0 Ps(q; v)dq for each

q∗ ∈ [0, 1]. Fix q∗. For p = Ps(q∗; v′ ),∫ q∗

0
Ps(q; v′)dq = CSs(p; v′) +pq∗

≥ CSs(p; v) +pq∗

≥
∫ q∗

0

(
Ps(q; v) −p

)
dq+pq∗

=
∫ q∗

0
Ps(q; v)dq.

The first inequality follows from Lemma 1, while the second follows from the observa-

tion that CSs(p; v) = maxq′
∫ q′

0 (Ps(q; v) −p)dq.

Proof of Lemma 4. Step 1. Consider a model such that each type i has value vi and de-
mand Qi(p). Let v = vi be the associated stochastic value. Let v′ = vi, where vi = E[p|q ≥
Qi(p)] for q ∼ U[0, 1] denotes the non-buying price expectation associated with de-
mand Qi. By Lemma 3, vi ≥ vi for each i. Thus, v′ 	icx v (because v′ first-order stochasti-
cally dominates v).

Step 2. For each type i, define a random variable vi as follows. Let Pi(q) be the inverse
demand to demand Qi, let Pi(q) = E[p|p ≥ Pi(q)] be the elevated demand of type i, and
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define the stochastic value vi = Pi(q) for q ∼ U[0, 1]. Finally, let v′′ = vi; thus v′′ is a
spread of v′ that replaces v′

i = vi with vi for each i.
We will show that v′′ 	icx v′ (and, hence, v′′ 	icx v). It suffices to show that vi ≤ E[vi]

for each i. Indeed, for q ∼U[0, 1], by the law of iterated expectations,

vi = E
[
p|q ≥Qi(p)

]
= E

[
p|p ≥ Pi(q)

]
= E

[
E

[
p|p ≥ Pi(q), q

]∣∣p ≥ Pi(q)
]

= E
[
Pi(q)|p ≥ Pi(q)

]
= E

[
Pi(q)|q ≥Qi(p)

]
.

Since q conditional on q ≥ Qi(p) first-order stochastically dominates q itself and Pi(q)
is non-increasing, it follows that

vi ≤ E
[
Pi(q)

] = E[vi],

as needed.
Step 3. We conclude by proving that v′′ d= v. Consider any p at which Q is continuous

and let ṽ = E[p|p ≥ p]. For any j ∈ [0, 1],

j = Pr(v ≥ ṽ) =⇒ P(j) = ṽ =⇒ P(j) = p =⇒ j =Q(p).

Hence, Pr(v ≥ ṽ) =Q(p). Likewise, Pr(vi ≥ ṽ) =Qi(p) for almost all i (i.e., for all i except
those for which Qi is discontinuous at p), and, thus,

Pr
(
v′′ ≥ ṽ

) = Pr(vi ≥ ṽ) = E
[
Qi(p)

] =Q(p) = Pr(v ≥ ṽ)

for all ṽ from a dense subset of the support of v and v′′, as needed.

Proof of Theorem 3. Consider a model consistent with the profile of data sets and let
v be its associated stochastic value. Recall that P̂(q; v) = Ps(1 − q; v) is the qth lowest
quantile of v. Note that

sk(p) ≥ CS
(
Qk, P̂(·; v); p

)
for each k since the right-hand side is the expected consumer surplus if the measure
Qk(p) of types with the lowest values buy at price p.

For any price p and any two stochastic values v and v′ such that v 	sosd v′, and any
demand function Q̃, we claim that

CS
(
Q̃, P̂(·; v); p

) ≥ CS
(
Q̃, P̂

(·; v′); p
)
.

The proof of this claim is analogous to that of Lemma 2. In particular, we may disregard
expenditures since they depend only on the first and the last arguments of CS . It suffices
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to prove that if v 	sosd v′, then
∫ q∗

0 P̂(q; v)dq ≥ ∫ q∗
0 P̂(q; v′ )dq for every q∗. Fixing q∗ and

letting p = P̂(q∗; v′ ), we have∫ q∗

0
P̂

(
q; v′)dq = q∗p− ĈS

s(
p; v′)

≤ q∗p− ĈS
s
(p; v)

≤ q∗p−
∫ q∗

0

(
p− P̂(q; v)

)
dq

=
∫ q∗

0
P̂(q; v)dq.

The first inequality follows from the integral condition for v 	sosd v′ and the second from

the fact that ĈS
s
(p; v) = maxq̂

∫ q̂
0 (p− P̂(q; v))dq.

Therefore, if a stochastic value v is consistent with the profile of data sets, then

sk(p) ≥ CS
(
Qk, P̂(·; v); p

) ≥ CS
(
Qk, P̂(·; v∗ ); p

)
since v 	sosd v∗.

Proof of Theorem 4. We prove only the upper bound; the argument for the lower
bound is analogous.

For any q ∈ (0, 1], consider a demand function Q̃ that attains values in [0, q], i.e., a
non-increasing function from [p, p] onto [0, q]. Let

ṽ(Q̃; q) := E
[
p|q ≥ Q̃(p)

]
w(Q̃; q) := qPr

(
q ≥ Q̃(p)

)
for q ∼ U[0, q] and p ∼ F . To interpret these two functions, consider a model with
type distribution M and a subset I ′ ⊆ I of types such that Pr(i ∈ I ′ ) = q and Q̃(p) =∫
i∈I′ Qi(p)dM(i). Then ṽ(Q̃; q) is the expected price conditional on a type randomly

drawn from I′ not making a purchase, and w(Q̃; q) is the probability that a randomly
drawn type lies in I ′ and does not buy.

Note the following identity. For any qa, qb ∈ (0, q] such that qa + qb = q, and any
two demands Qa and Qb that attain values in [0, qa] and [0, qb], respectively, such that
Qa +Qb = Q̃,

ṽ(Q̃; q) = w(Qa; qa )ṽ(Qa; qa ) +w(Qb; qb )ṽ(Qb; qb )
w(Qa; qa ) +w(Qb; qb )

. (6)

Given any model and a subset I ′ of types such that Pr(i ∈ I ′ ) = q, let v∗ := infi∈I′ vi. To
establish the upper bound, it suffices to show for each q that the supremum of v∗ across

all models that rationalize the data and subsets I′ such that Pr(i ∈ I ′ ) = q is at most P(q).
Fix a model with type distribution M on I and types (vi, Qi ) that rationalizes the

data. Fix a set I ′ of types such that Pr(i ∈ I′ ) = q. Let Q̃(p) = ∫
i∈I′ Qi(p)dM(i) be the
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Figure 5. Illustration of the definitions of Q∗, Q̃, and Q0.

demand generated by the types in I ′. Note that

inf
i∈I′ vi ≤ ṽ(Q̃; q)

since, by Lemma 3, vi ≤ vi for each type i, where vi is the non-buying price expectation
associated with the demand Qi of type i and ṽ(Q̃; q) is a convex combination of vi across
i ∈ I ′.

Let Q∗(p) := min{Q(p), q} and observe that P(q) = ṽ(Q∗; q). It suffices to show that

ṽ(Q̃; q) ≤ ṽ
(
Q∗; q

)
(7)

for all q and all demands Q̃ that can be generated by a subset I′ of types from a model
that rationalizes the data and satisfies Pr(i ∈ I′ ) = q. For all such demands Q̃, both Q̃

and Q(p) − Q̃(p) are nonnegative and non-increasing because they are the demands
induced by types in I′ and I \ I ′, respectively.

Let Q̃(p) be any demand function attaining values in [0, q] such that Q(p) − Q̃(p) is
nonnegative and non-increasing. Let p∗ := P(q) and q∗ := Q̃(p∗ ). Since Q̃(p) ≤Q∗(p) ≤
q for all p, we have that q∗ ≤ q. Define the demand function Q0(p) := min{Q̃(p), q∗} that
attains values in [0, q∗], and let Q1(p) := Q∗(p)−Q0(p) and Q2(p) := Q̃(p)−Q0(p). See
Figure 5 for an illustration.

Note that Q1(p) is non-increasing: it is equal to q−q∗ for p ≤ p∗ and to Q(p) − Q̃(p)
for p ≥ p∗. The function Q2(p) is also non-increasing since it is equal to Q̃(p) − q∗ ≥ 0
for p ≤ p∗ and to 0 for p > p∗. Let P0, P1, and P2 be the inverse demand functions
associated with Q0, Q1, and Q2, respectively. Note that on their respective domains, P0

and P1 only attain values above p∗, while P2 only attains values below p∗.
Recall that ṽ(Q̃; q) can be written as E[p|p ≥ P̃(q)] for q ∼ U[0, q], where P̃ is the

inverse demand to Q̃; similarly, w(Q̃; q) can be written as qPr(p ≥ P̃(q)). It follows that
ṽ(Q1; q−q∗ ) ≥ ṽ(Q2; q−q∗ ), ṽ(Q0; q∗ ) ≥ ṽ(Q2; q−q∗ ), and w(Q2; q−q∗ ) ≥w(Q1; q−q∗ ).
Finally, since Q∗ =Q0 +Q1 and Q̃ =Q0 +Q2, we have from (6) that

ṽ
(
Q∗; q

) = w
(
Q0; q∗)ṽ(Q0; q∗) +w

(
Q1; q− q∗)ṽ(Q1; q− q∗)

w
(
Q0; q∗) +w

(
Q1; q− q∗)
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and ṽ(Q̃; q) = w
(
Q0; q∗)ṽ(Q0; q∗) +w

(
Q2; q− q∗)ṽ(Q2; q− q∗)

w
(
Q0; q∗) +w

(
Q2; q− q∗) .

Therefore,

ṽ
(
Q∗; q

) = ṽ
(
Q0; q∗) + w

(
Q1; q− q∗)

w
(
Q0; q∗) +w

(
Q1; q− q∗)(

ṽ
(
Q1; q− q∗) − ṽ

(
Q0; q∗))

≥ ṽ
(
Q0; q∗) + w

(
Q1; q− q∗)

w
(
Q0; q∗) +w

(
Q1; q− q∗)(

ṽ
(
Q2; q− q∗) − ṽ

(
Q0; q∗))

≥ ṽ
(
Q0; q∗) + w

(
Q2; q− q∗)

w
(
Q0; q∗) +w

(
Q2; q− q∗)(

ṽ
(
Q2; q− q∗) − ṽ

(
Q0; q∗))

= ṽ(Q̃; q),

which establishes inequality (7), as needed.
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