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Innovation adoption by forward-looking social learners
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We build a model studying the effect of an economy’s potential for social learn-
ing on the adoption of innovations of uncertain quality. Assuming consumers are
forward-looking (i.e., recognize the value of waiting for information), we analyze
how qualitative and quantitative features of the learning environment affect equi-
librium adoption dynamics, welfare, and the speed of learning. Based on this, we
show how differences in the learning environment translate into observable dif-
ferences in adoption dynamics, suggesting a purely informational channel for two
commonly documented adoption patterns: S-shaped and concave curves. We
also identify environments that are subject to a saturation effect: Increased op-
portunities for social learning can slow down adoption and learning, and do not
increase consumer welfare, possibly even being harmful.
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1. Introduction

Suppose a new product of uncertain quality, such as a novel elective medical proce-
dure (e.g., Lasik eye surgery or bariatric weight-loss surgery) or a new movie, is released
into the market. In recent years, the rise of online review sites, search engines, video-
sharing platforms, and social networking sites has greatly increased the potential for
social learning in the economy: If other patients suffer a serious complication or many
viewers enjoy the movie, this is more likely than ever to find its way into the public do-
main; and there are more and more people who have access to this common pool of
consumer-generated information.
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This paper builds a model studying the effect of an economy’s potential for social
learning on the adoption of innovations of uncertain quality. A central ingredient of our
model is that consumers are forward-looking social learners: In choosing whether to
adopt an innovation, they recognize the value of delaying their decision to learn from
other adopters’ consumption experiences.1 We analyze how consumers’ delay incen-
tives depend on qualitative and quantitative features of the learning environment, and
how this affects equilibrium adoption, welfare, and the speed of learning. Our analysis
has two main implications. First, qualitatively, we show how differences in the learning
environment translate into observable differences in adoption dynamics. This implies
a new, purely informational channel for two of the most commonly documented adop-
tion patterns: S-shaped and concave curves. Second, quantitatively, we suggest caution
in evaluating the impact of increases in the potential for social learning. We identify
environments that are subject to a saturation effect, whereby beyond a certain level, in-
creased opportunities for social learning can slow down adoption and learning, and do
not improve consumer welfare (possibly even being harmful).

In our model (Section 2), an innovation of fixed, but uncertain quality (better or
worse than the status quo) is introduced to a large population of forward-looking con-
sumers. Consumers are (ex ante) identical, sharing the same prior about the quality of
the innovation, the same discount rate, and the same tastes for good and bad quality.
At each instant t ∈ R+, consumers receive stochastic opportunities to adopt the inno-
vation. A consumer who receives an opportunity must choose whether to irreversibly
adopt the innovation or to delay his decision until the next opportunity. In equilibrium,
consumers optimally trade off the opportunity cost of delays against the benefit of learn-
ing more about the quality of the innovation.

Learning is summarized by a public signal process, representing news that is ob-
tained endogenously—based on the experiences of previous adopters—and possibly
also from exogenous sources (e.g., watchdog agencies, professional critics). To study the
importance of quantitative and qualitative features of the news environment, we build
on the exponential-bandit framework widely used in the literature on strategic exper-
imentation (see Section 1.1): Individual adopters’ experiences generate public signals
at a fixed Poisson rate that we use to quantify the potential for social learning. Quali-
tatively, as we interpret in Section 2.2, there is a natural distinction between bad news
markets, where signal arrivals (breakdowns) indicate bad quality and the absence of sig-
nals makes consumers more optimistic about the innovation, and good news markets,
where signals (breakthroughs) suggest good quality and the absence of signals makes
consumers more pessimistic.

Section 3 analyzes and contrasts equilibrium adoption dynamics in bad and good
news markets. As in many applications of Poisson learning, we focus on the stark but
tractable case of perfect bad (respectively, good) news, where a single signal arrival con-
clusively indicates bad (respectively, good) quality. Thus, incentives are nontrivial only
absent signals. As a preliminary step, Lemma 1 shows that equilibrium incentives over

1Forward-looking social learning is well documented empirically, e.g., in the development economics
literature studying the adoption of agricultural innovations (see Section 4.2).
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time satisfy a single-crossing property: Absent signals, there is at most one transition
from preference for adoption to preference for waiting, or vice versa, with a possible
period of indifference in between. Building on this, Theorems 1 and 2 establish equi-
librium existence and uniqueness under bad and good news.2 Equilibrium adoption
dynamics admit simple closed-form descriptions that are Markovian in current beliefs
and in the mass of consumers who have not yet adopted.

Under bad news, the unique equilibrium is characterized by two cutoff times 0 ≤
t∗1 ≤ t∗2 . Until t∗1 , no adoption takes place and consumers acquire information only from
exogenous sources; from t∗2 on, all consumers adopt immediately when given a chance
(absent breakdowns). If t∗1 < t∗2 , then throughout (t∗1 , t∗2 ) there is partial adoption: Only
some consumers adopt when given a chance, with others free-riding on the information
generated by the adopters, where the flow of adopters on (t∗1 , t∗2 ) ensures indifference
between adopting and delaying throughout this interval. A period of partial adoption
arises in economies with a large enough potential for social learning, and with suffi-
ciently patient and not too optimistic consumers; otherwise, there is no partial adop-
tion. By contrast, the unique good news equilibrium is always all-or-nothing, featur-
ing immediate adoption up to some time t∗ and no adoption from t∗ on (absent break-
throughs). Thus, regardless of the potential for social learning, consumers’ discount
rate, or prior beliefs, there is never any partial adoption. This highlights a new distinc-
tion between the way in which bad and goods news learning affects consumers’ incen-
tives. Specifically, as Section 3.3 explains, sustaining periods of indifference between
immediate adoption and delay requires the prospect of receiving news that makes con-
sumers (instantaneously) go from being willing to adopt to being unwilling to adopt;
breakdowns have this effect, but breakthroughs do not.

We highlight two implications of our analysis. Section 4.1 shows that, depending
on the informational environment, our model generates two commonly documented
adoption curves (e.g., Hoyer, MacInnis, and Pieters (2012), Keillor (2007)). Bad news
equilibria with t∗1 < t∗2 lead to the leading empirical pattern of S-shaped adoption: Ab-
sent breakdowns, the share of adopters increases convexly throughout the partial adop-
tion phase (t∗1 , t∗2 ), as convex growth ensures that, despite becoming increasingly opti-
mistic, consumers remain indifferent between adopting and delaying; during the imme-
diate adoption phase from t∗2 on, adoption is concave, reflecting the gradual depletion
of the population. In contrast, the all-or-nothing structure of good news equilibria (or
bad news equilibria with t∗1 = t∗2 ) leads to purely concave adoption curves.

Section 4.2 considers increases in the potential for social learning. Proposition 1 es-
tablishes a saturation effect: If learning is via bad news and the equilibrium features
partial adoption, then such increases are (ex ante) welfare-neutral. Indeed, they are bal-
anced out by an expansion of the period (t∗1 , t∗2 ) of informational free-riding, which slows
down the adoption of (both good and bad) products and has a non-monotonic effect on
the speed of learning. More strongly, with heterogeneous consumers, increased oppor-
tunities for social learning can be Pareto-harmful (Remark 1). By contrast, in environ-
ments where equilibrium is all-or-nothing, increasing the potential for social learning is
(essentially) always strictly beneficial and speeds up learning at all times.

2Uniqueness is in terms of aggregate adoption behavior.
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1.1 Related literature

We study a model of innovation adoption with endogenous timing and social learning
from public information. Related informational externalities and strategic delay incen-
tives are analyzed in the literature on observational learning with endogenous timing;3

see, e.g., Chamley and Gale (1994) and, more closely related, Murto and Välimäki (2011),
where players privately obtain Poisson signals about the quality of a risky project at a
fixed exogenous rate until they choose to irreversibly exit to a safe outside option. A key
difference is that in this literature, players hold private information about the state and
draw inferences from others’ actions, whereas news in our model is public and derived
from previous adopters’ experiences. Information aggregates in random bursts in these
models rather than smoothly as in our setting, and the aforementioned papers do not
derive adoption curves or study how they are shaped by the informational environment.

Our public learning model builds on the framework of strategic experimentation
with exponential bandits, originating with Keller, Rady, and Cripps (2005) and Keller
and Rady (2010, 2015) (for a survey, see Hörner and Skrzypacz (2017)). We depart in two
main ways. First, we study irreversible adoption (i.e., exit to the risky arm), rather than
allowing for continuous back-and-forth switching. Second, we assume a continuum
of agents, who each have a negligible influence on public information. These depar-
tures entail a qualitative difference between bad and good news learning—the presence
vs. absence of partial adoption regions—that has observable implications for adoption
curves and is absent in the aforementioned papers, where the symmetric Markov equi-
librium features a region of partial adoption/mixing under both bad and good news.4

Another implication of these departures is that, unlike strategic experimentation, our
setting does not feature an “encouragement effect,” i.e., an incentive to increase current
experimentation to drive up beliefs and induce more future experimentation by others.
This yields new comparative statics that isolate the impact of informational free-riding:
For example, in the bad news environment of Keller and Rady (2015), an increase in the
number of players or signal informativeness makes players more willing to experiment
at pessimistic beliefs, whereas the saturation effect in Proposition 1 relies on the oppo-
site effect. More recently, Laiho, Murto, and Salmi (2024) study informational free-riding
incentives in a related model of collective experimentation with irreversible adoption
and a continuum of (heterogeneous) agents, focusing, however, on Brownian news and
learning from the stock rather than the flow of adopters.5

A large literature in economics, marketing, and sociology seeks to explain why in-
novations diffuse gradually and why S-shaped (and to a lesser extent concave) adoption

3A large literature studies observational learning/innovation adoption with exogenous timing (e.g.,
Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), Smith and Sørensen (2000), Herrera and
Hörner (2013), Board and Meyer-ter-Vehn (2021)). Strategic delay incentives without social learning are
at the center of the literature on wars of attrition (e.g., Maynard Smith (1974), Fudenberg and Tirole (1986),
Anderson, Smith, and Park (2017)).

4Bonatti and Hörner (2017) study a different departure—unobservable actions—and find that this also
leads to the symmetric equilibrium under bad vs. good news being in mixed vs. pure strategies.

5Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) study strategic investment timing by a contin-
uum of agents whose investment produces Gaussian public signals about an evolving state. They show that
this generates self-reinforcing episodes of high uncertainty and low investment.
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patterns are prevalent. We relate to other learning-based models of these phenomena.6

Unlike existing work that focuses on social learning by myopic consumers (e.g., Young
(2009)) or forward-looking learning from exogenous signals (e.g., Jensen (1982)), we con-
sider a model of forward-looking social learning. This allows us to provide a purely in-
formational explanation of observed adoption patterns, whereas models with myopic
consumers or exogenous signals require specific forms of consumer heterogeneity to
generate S-shaped adoption.7 Our saturation effect also hinges on the combination of
forward-looking incentives and social learning, as under myopic or exogenous learning,
a greater ease of information transmission is always beneficial.

Our focus on the informational determinants of innovation adoption contrasts with
work that combines informational and payoff externalities. Rob (1991) models entry
into a new market, where the current number of firms in the market influences not only
entrants’ learning about a demand parameter, but also their profits via the market price.
Related to our bad news equilibrium, equilibrium entry is pinned down by a zero profits
condition and is lower than socially optimal. He does not study how the informational
environment affects entry dynamics or provide conditions for S-shaped growth, both of
which would also depend on the inverse demand function. Bergemann and Välimäki
(1997) obtain S-shaped adoption as a result of duopolistic competition between an es-
tablished and a new seller in a model with reversible adoption and learning on both
the buyer and the seller side. Initial adoption of the new product exceeds the social
optimum in their model. Laiho and Salmi (2018) build on our model by incorporating
monopoly pricing and consumer heterogeneity.

2. Model

2.1 The game

Time t ∈ R+ is continuous. At time t = 0, an innovation of unknown quality θ ∈ {G =
1, B = −1} and of unlimited supply is released to a continuum population of potential
consumers of mass N0 ∈ R>0. Consumers are ex ante identical. They have a common
prior p0 ∈ (0, 1) that θ = G, they are forward-looking with common discount rate r > 0,
and they have the same actions and payoffs, as specified below.

At each time t, consumers receive stochastic opportunities to adopt the innovation.
Adoption opportunities are generated independently across consumers and histories
according to a Poisson process with exogenous arrival rate ρ > 0.8 Given an adoption

6Non-informational models (for surveys, see Baptista (1999), Geroski (2000)) include “epidemic” models
(e.g., Mansfield (1961), Bass (1969)), “probit” models of heterogeneously evolving benefits to adoption (e.g.,
Davies (1979)), and models of pure payoff externalities (e.g., Jovanovic and Lach (1989), Farrell and Saloner
(1986)). Wolitzky (2018) contrasts adoption levels of cost-saving vs. outcome-improving innovations in a
model of learning from others’ outcomes. Che and Hörner (2018) take a mechanism design approach to
incentivizing social learning about an innovation.

7In those models, agents adopt if and only if their beliefs exceed a cutoff. This precludes regions of con-
vex adoption with identical agents, instead requiring specific distributions of heterogeneous priors/tastes.

8In the context of our motivating examples, stochastic adoption opportunities may represent, e.g., con-
venient times to take off work to undergo an elective surgery or a free evening to watch a movie. Section 5
discusses the case when ρ → ∞.
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opportunity, a consumer must choose whether to adopt the innovation (at = 1) or to
wait (at = 0). If a consumer adopts, he receives an expected lump sum payoff of Et[θ],
conditioned on information available up to time t, and drops out of the game.9 If the
consumer chooses to wait or does not receive an adoption opportunity at t, he receives
a flow payoff of 0 until his next adoption opportunity, where he faces the same decision
again.

2.2 Learning

Over time, consumers observe public signals that convey information about the qual-
ity of the innovation. We employ a variation of the Poisson learning models used in the
literature on strategic experimentation. Let nt denote the flow of of consumers newly
adopting the innovation at time t, which we define more precisely in Section 2.3. Con-
ditional on the quality of the innovation being θ, public signals arrive according to an
inhomogeneous Poisson process with arrival rate εθ + λθnt , where λθ > 0 and εθ ≥ 0 are
exogenous parameters that depend on θ.

The signal process summarizes news events that are generated from two sources.
First, the social learning term λnt represents news generated endogenously, based on
the experiences of other consumers. It captures a flow nt of new adopters each generat-
ing signals at rate λ.10 Thus, the greater the flow of consumers adopting the innovation
at t, the more likely it is for a signal to arrive at t; hence, the absence of a signal at t is
more informative the larger is nt . Second, we also allow for (but do not require) signals
to arrive at a fixed exogenous rate ε, representing information generated independently
of consumers’ behavior (e.g., by watchdog agencies or professional critics).

As in many applications of Poisson learning, we focus for tractability on perfect news
processes, where a single signal provides conclusive evidence of the quality of the in-
novation. Qualitatively, there is a natural distinction between two types of news envi-
ronments. Learning is via perfect bad news (for short, bad news) if εG = λG = 0 and
εB = ε ≥ 0, λB = λ > 0; that is, the arrival of a signal (a breakdown) is conclusive evi-
dence that the innovation is bad. Learning is via perfect good news (for short, good news)
if εB = λB = 0 and εG = ε ≥ 0, λG = λ > 0; that is, a signal arrival (a breakthrough) is con-
clusive evidence that the innovation is good. The nature of the news environment may
be influenced by whether a bad or good quality innovation is more likely to generate
newsworthy (e.g., extreme) payoff realizations. For example, an unsafe medical proce-
dure may cause serious complications that are widely reported, but a safe procedure
that performs as intended may not lead to newsworthy outcomes.11 Alternatively, the

9Irreversible adoption is natural for innovations such as medical procedures or movies, for which “con-
sumption” is typically a one-time event, or for technologies with large switching costs.

10We obtain qualitatively similar results when the social learning component at time t is taken to depend

on the stock,
∫ t

0 ns ds, rather than the flow of adopters at t. See Section 5.
11More generally, suppose payoffs of the quality θ innovation are drawn (independently across con-

sumers) from cumulative distribution function Fθ, where
∫ ∞
−∞ ξdFθ(ξ) = θ. Suppose payoff realizations

ξ are newsworthy if and only if ξ ≤ ξ or ξ ≥ ξ for some “extreme” low and high payoffs ξ < ξ, and that
newsworthy payoffs generate public signals at some rate. Bad news learning assumes FB(ξ) > 0 = FG(ξ)
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news environment may reflect reporting practices of the available social learning sys-
tems. For example, several movie review aggregator and streaming sites provide “best
of” lists of new releases with the highest user ratings, but do not display “worst of” lists.

Quantitatively, we use �0 := λN0 as a simple measure of the potential for social learn-
ing in the economy, summarizing both the likelihood λ with which individual adopters’
experiences find their way into the public domain and the size N0 of the population that
can contribute to and access the common pool of information.

Under bad news, consumers’ posterior on θ = G permanently jumps to 0 at the first
breakdown, while under good news, consumers’ posterior on θ =G permanently jumps
to 1 at the first breakthrough. Let pt denote consumers’ no-news posterior, i.e., the belief
at t that θ = G conditional on no signals having arrived on [0, t ). Given a flow of adopters
(nt ), Bayesian updating implies12

pt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0

p0 + (1 −p0 )e− ∫ t
0 (ε+λns )ds

under bad news

p0e
− ∫ t

0 (ε+λns )ds

p0e
− ∫ t

0 (ε+λns )ds + (1 −p0 )
under good news.

(1)

In particular, if (nt ) is continuous in t on some open interval, then on this interval (pt )
evolves according to the ordinary differential equation (ODE)

ṗt =
{

(ε+ λnt )pt(1 −pt ) under bad news

−(ε+ λnt )pt(1 −pt ) under good news.

Note that the no-news posterior is continuous. Moreover, it is increasing under bad
news and decreasing under good news.

2.3 Equilibrium

Our interest is in the aggregate adoption dynamics of the population. Thus, our equi-
librium concept takes as its primitive the aggregate flow (nt ) of new adopters and does
not explicitly model individual consumers’ behavior. Given our focus on perfect news
processes, incentives are nontrivial only in the absence of signals: Under bad news, no
consumers adopt after a breakdown, while under good news, all remaining consumers
adopt at their first opportunity after a breakthrough. We henceforth denote by nt the
flow of new adopters at t conditional on no signals up to time t and we define equilib-
rium in terms of this quantity.

Capturing that aggregate adoption is predictable with respect to the public news
process, we require (nt ) to be a deterministic function of time. We consider all such
functions that are feasible; that is, (nt ) is right-continuous in t and nt ∈ [0, ρNt ] for all
t ∈R+, where Nt := N0 − ∫ t

0 ns ds denotes the mass of consumers remaining in the game

and FB(ξ) = FG(ξ) = 1, i.e., bad innovations sometimes generate extreme low payoffs, but neither good
nor bad innovations generate extreme high payoffs. Good news learning assumes FB(ξ) = FG(ξ) = 0 and

FB(ξ) = 1 >FG(ξ).
12Section 2.3 imposes measurability on (nt ), so the expressions in (1) are well defined.
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at time t. Imposing nt ≤ ρNt ensures that at each t, nt is consistent with all remaining
Nt consumers independently receiving adoption opportunities at rate ρ. Any feasible
adoption flow (nt ) induces a no-news posterior (pt ) via (1).

In equilibrium, we require that at each t, nt is consistent with optimal behavior
by the remaining Nt forward-looking consumers: Consumers who receive an adop-
tion opportunity at t consider the expected payoff to adopting immediately, which is
ut := 2pt − 1 absent news, and optimally trade this off against the value to waiting, tak-
ing into account that future adoption evolves according to process (nt ).

Formally, define the value to waiting (Wt ) associated with process (nt ) to be the so-
lution to the following Bellman equation at each t.13 Under bad news,

Wt =
∫ ∞

t
ρe−(r+ρ)(s−t ) (pt + (1 −pt )e− ∫ s

t (ε+λnk )dk)︸ ︷︷ ︸
prob. of no breakdown

in [t, s)

max{us , Ws}ds;

that is, Wt is the expected discounted payoff to waiting until the next stochastic adoption
opportunity s, and then adopting at this opportunity if and only if (i) there has been no
breakdown and (ii) at the updated belief ps, the expected payoff to adopting us exceeds
the new value to waiting Ws.

Under good news,

Wt =
∫ ∞

t
ρe−(r+ρ)(s−t )((1 −pt +pte

− ∫ s
t (ε+λnk )dk)︸ ︷︷ ︸

prob. of no breakthrough
in [t, s)

max{us , Ws}

+pt
(
1 − e− ∫ s

t (ε+λnk )dk)︸ ︷︷ ︸
prob. of breakthrough

in [t, s)

)
ds;

that is, Wt is the expected discounted payoff to waiting until the next adoption oppor-
tunity s, and adopting at this opportunity if either (i) there has been no breakthrough
and, at the updated belief ps, the expected payoff to adopting us exceeds the new value
to waiting Ws, or (ii) there has been a breakthrough.

Definition 1. An equilibrium is a feasible adoption flow (nt ) such that

(i) Wt ≥ ut for all t such that nt < ρNt

(ii) Wt ≤ ut for all t such that 0 < nt .

Condition (i) says that if some consumers who receive an adoption opportunity at
t decide not to adopt, then the value to waiting Wt must weakly exceed the expected
payoff to immediate adoption ut . Similarly, (ii) requires that if some consumers adopt
at time t, then the value to waiting must be weakly less than the payoff to immediate

13A unique solution exists by standard arguments (e.g., Theorem 3.3 in Stokey, Lucas, and Prescott
(1989)).
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adoption. Thus, at all times, nt is consistent with consumers optimally trading off the
expected payoff to immediate adoption against the value to waiting.14

3. Equilibrium analysis

3.1 Single-crossing property for equilibrium incentives

We now proceed to the equilibrium analysis. As a preliminary step, we establish a useful
structural property of equilibrium incentives under both bad and good news. Suppose
that (nt ) is an arbitrary feasible flow of adopters, with associated no-news posterior (pt )
and value to waiting (Wt ). In general, the dynamics of the trade-off between immediate
adoption at time t and delaying and behaving optimally in the future can be difficult to
characterize, with ut −Wt changing sign many times. However, when (nt ) is an equilib-
rium flow, then for any t,

[Wt > ut =⇒ nt = 0] and [Wt < ut =⇒ nt = ρNt ],

which imposes considerable discipline on the dynamics of the trade-off. Indeed, the
following result shows that (ut ) and (Wt ) satisfy a single-crossing property: There can be
at most one transition from strict preference for adoption to strict preference for waiting,
or vice versa, with a possible period of indifference in between.

Lemma 1. Let (nt ) be an equilibrium with associated no-news payoffs to immediate
adoption (ut ) and value to waiting (Wt ). Under bad news learning, we have

[Wt < ut ⇒Wτ < uτ ∀τ > t] and [Wt ≤ ut ⇒ Wτ ≤ uτ ∀τ > t].

Under good news learning, we have

[Wt > ut ⇒Wτ > uτ ∀τ > t] and [Wt ≥ ut ⇒ Wτ ≥ uτ ∀τ > t].

The proof is provided in Appendix A.2. We briefly illustrate the intuition for the first
implication when learning is via bad news. Suppose that immediate adoption is strictly
better than waiting today and, hence (by continuity of ut and Wt ), also in the near future
provided there are no breakdowns. Then, in equilibrium, in the near future, all con-
sumers adopt upon their first opportunity, so the no-news posterior strictly increases
while the mass of remaining consumers (and, hence, the flow of new adopters) strictly
decreases. Thus, in the near future, the flow of information decreases over time, as the
signal arrival rate is proportional to the flow of new adopters. As a result, immediate
adoption becomes even more attractive relative to waiting and, hence, remains strictly
preferable at all times in the future.

14Definition 1 is essentially Nash equilibrium, i.e., does not impose subgame perfection. The motivation
is that in a continuum population, individual consumers’ behavior has a negligible impact on aggregate
adoption, so any off-path history where the flow of adopters differs from the equilibrium flow is more than a
unilateral deviation from the equilibrium path. Thus, off-path histories do not affect individual consumers’
incentives on path and are unimportant for equilibrium analysis.
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3.2 Bad news equilibrium

In this section, we consider learning via bad news. Building on Lemma 1, the following
theorem establishes the existence and uniqueness of equilibrium.

Theorem 1 (Bad News Equilibrium). Fix r, ρ, λ, N0 > 0, ε ≥ 0, and p0 ∈ (0, 1). There
exists a unique equilibrium (nt ). The equilibrium is described by two unique cutoff times
0 ≤ t∗1 ≤ t∗2 ≤ ∞ such that, absent breakdowns,

nt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ≤ t∗1
r(2pt − 1)
λ(1 −pt )

− ε

λ
∈ (0, ρNt ) if t ∈ (

t∗1 , t∗2
)

ρNt if t ≥ t∗2 .

(2)

For any bad news equilibrium (nt ), Lemma 1 yields cutoff times 0 ≤ t∗1 ≤ t∗2 ≤ ∞ such
that, absent breakdowns, nt = 0 at all t < t∗1 , nt = ρNt at all t > t∗2 , and consumers are in-
different between immediate adoption and waiting at all t ∈ (t∗1 , t∗2 ).15 The proof of The-
orem 1 (Appendix A.3) shows that the cutoff times t∗1 and t∗2 are uniquely pinned down
by the parameters. Moreover, if t∗1 < t∗2 (as we will see is the case for suitable parameter
values), the flow of adopters throughout (t∗1 , t∗2 ) is uniquely pinned down as in (2). Below
we sketch the argument.

Partial adoption during (t∗1 , t∗2 ). Lemma A.6 shows that the flow of adopters at all

times t ∈ (t∗1 , t∗2 ) must satisfy nt = r(2pt−1)
λ(1−pt ) − ε

λ ∈ (0, ρNt ). Thus, throughout (t∗1 , t∗2 ) there
is partial adoption: Some consumers adopt when given a chance, while others free-ride
on the information generated by the adopters. To illustrate, note that indifference re-
quires the expected payoff from waiting vs. adopting today to be equal, i.e., Wt − ut = 0
for all t ∈ (t∗1 , t∗2 ). Heuristically, by conditioning on the two events that can occur be-
tween t and t + dt, we can decompose the difference Wt − ut as

(1 −pt )(ε+ λnt )dt︸ ︷︷ ︸
probability of

breakdown

× 1︸︷︷︸
benefit of waiting:
avoid bad product

− (
1 − (1 −pt )(ε+ λnt )dt

)︸ ︷︷ ︸
probability of
no breakdown

ut+dtr dt︸ ︷︷ ︸
cost of waiting:

discounting

= 0. (3)

The first term considers the event that a breakdown occurs between t and t + dt, which
has instantaneous probability (1 −pt )(ε+ λnt )dt. Conditional on this event, the prod-
uct is bad, so adopting at t yields a payoff of −1, whereas waiting allows consumers to
avoid adopting the product, yielding a benefit of 0 − (−1) = 1. The second term con-
siders the complementary event that no breakdown occurs between t and t + dt. Con-
ditional on this event, the probability of good quality is pt+dt , so the expected quality is
2pt+dt −1 = ut+dt . Adopting at t yields this payoff immediately. In contrast, the expected

15Specifically, let t∗1 := inf{t ≥ 0 : nt > 0} and t∗2 := sup{t ≥ 0 : nt < ρNt }, with the conventions inf∅ := ∞
and sup∅ := 0. To see indifference on (t∗1 , t∗2 ), note that for any t ∈ (t∗1 , t∗2 ), there exist k ∈ [t∗1 , t ) and 	 ∈ (t, t∗2 ]
with nk > 0 and n	 < ρN	. Since (ns ) is an equilibrium, this implies Wk ≤ uk and W	 ≥ u	, so ut = Wt by
Lemma 1.
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value to waiting is ut+dt(1 − r dt ): If there is no breakdown between t and t + dt, con-
sumers remain indifferent at t + dt; hence, regardless of whether or not a consumer re-
ceives an adoption opportunity at t+dt, his continuation value at t+dt is Wt+dt = ut+dt ,
which from the point of view of time t yields ut+dt(1 − r dt ). Thus, due to discounting,
waiting incurs a cost of ut+dtr dt. Note that ignoring terms of order dt2, the second term
in (3) simplifies to r(2pt − 1)dt.16 Hence, the left-hand side of (3) is increasing in nt (re-
flecting that agents’ decisions to wait are strategic substitutes), and the cost and benefit
of waiting are equalized at the interior adoption flow nt = r(2pt−1)

λ(1−pt ) − ε
λ .17

Unique equilibrium. Next, we show how the cutoff times t∗1 and t∗2 , and, hence, the
equilibrium flow of adopters (nt ), are uniquely pinned down from the parameters. To
illustrate, the following condition rules out values of p0, ε, and ρ under which (as the
Appendix shows) equilibrium adoption is either identically zero (i.e., t∗1 = t∗2 = ∞) or
there is never partial adoption (i.e., t∗1 = t∗2 regardless of other parameters).

Condition 1. Suppose (i) either ε > 0 or p0 ∈ ( 1
2 , 1) and (ii) ε < ρ.

Let ps denote the cutoff posterior above which adoption occurs in the single-agent
benchmark, that is, when adoption opportunities arrive at rate ρ and information
arrives solely through the exogenous news source at rate ε. This is given by ps =

(ε+r )(r+ρ)
2(ε+r )(r+ρ)−ερ (see Appendix A.3). At any belief p ≤ ps, every consumer prefers to wait re-
gardless of the flow (nt ) of adopters, as waiting is optimal even when news arrives at the
minimal rate ε at all future times. Conversely, at any belief p ≥ p
 := ρ+r

ρ+2r = limε→∞ ps,
every consumer prefers to adopt immediately regardless of (nt ), as immediate adop-
tion is optimal even when news arrives at the maximal rate ε → ∞. For all intermediate
beliefs p ∈ (ps , p
 ), we show there is a unique critical mass N∗(p) ∈ R+ of remaining
consumers with the property that if all these remaining consumers adopt at their first
future opportunity, then a consumer with posterior p is indifferent between immediate
adoption and adopting at his next opportunity absent breakdowns. See Figure 1, where
we let N∗(p) = 0 if p ≤ ps and N∗(p) = ∞ if p ≥ p
.

Given this, Lemma A.7 characterizes the cutoff times t∗1 and t∗2 . Time t∗2 is the first
time at which the remaining mass of consumers Nt drops below the critical mass N∗(pt )
needed to ensure willingness to delay at posterior pt . Time t∗1 is the first time at which
the no-news posterior pt exceeds p := ε+r

ε+2r if this occurs before t∗2 ; otherwise, t∗1 = t∗2 .
Indeed, p = limρ→∞ps is the belief at which a single agent is indifferent between imme-
diate adoption and delay if adoption opportunities arrive continuously; this is precisely
what is needed at the start of the indifference region, as here the value to waiting is
independent of ρ (recall footnote 17) and at t∗1 , information arrives solely through the
exogenous news source.

As Figure 1 illustrates, this means that equilibrium adoption nt is Markovian in the
no-news posterior pt and the remaining mass of consumers Nt . Region I, where Nt ≤

16More precisely, this term is given by (1 − (1 −pt )(ε+ λnt )dt )(ut + u̇t dt )r dt = rut dt = r(2pt − 1)dt.
17Observe that ρ does not enter this expression. This is because, as noted, indifference throughout

(t∗1 , t∗2 ) implies that consumers’ value to waiting at any t ∈ (t∗1 , t∗2 ) does not depend on the arrival rate of
their next adoption opportunity.
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Figure 1. Equilibrium dynamics of (pt , Nt ) when ε < ρ.

N∗(pt ), corresponds to immediate adoption (i.e., nt = ρNt ). Regions II and III, where
pt < p and Nt >N∗(pt ), correspond to no adoption (i.e., nt = 0). Region IV, where pt ≥ p

and Nt >N∗(pt ), corresponds to partial adoption (i.e., nt = r(2pt−1)
λ(1−pt ) − ε

λ ).
From this, it is easy to see how the initial parameters (p0, N0 ) pin down (nt ) (the

Appendix verifies feasibility). If (p0, N0 ) starts off in region I, then t∗1 = t∗2 = 0, so all
consumers adopt at their first opportunity. If (p0, N0 ) is in region IV, then 0 = t∗1 < t∗2 , so
there is an initial period of partial adoption according to the second line of (2), and t∗2
is the first time at which (pt , Nt ) enters region I. Finally, if (p0, N0 ) is in region II (resp.
III), then initially everyone delays and pt drifts up according to ṗt = pt(1 − pt )ε while
Nt remains at N0; this yields a unique time t∗1 at which (pt , N0 ) enters region I (resp. IV),
whence nt evolves as in the two previous cases.

Conditions for partial adoption. Whether partial adoption arises in equilibrium
(i.e., t∗1 < t∗2 ) depends on the fundamentals. Provided consumers are not too optimistic
or impatient (i.e., p0 <p
),18 there is a partial adoption phase if and only if the potential
for social learning �0 = λN0 is large enough.

Lemma 2. Fix ρ, ε and p0 satisfying Condition 1, and r > 0. Assume p0 <p
. Then there
exists �̄0 > 0 such that t∗1 (�0 ) < t∗2 (�0 ) if and only if �0 > �̄0.19

The role of a large enough population N0 can be seen in Figure 1. If (p0, N0 ) is in
region I (i.e., N0 < N∗(p0 )), everyone adopts immediately, as even the maximal rate
λρN0 dt at which other consumers might generate information is too small to justify de-
lay at belief p0. Likewise, in region II (i.e., N0 ∈ (N∗(p0 ), N∗(p))), all consumers initially
delay and learn from exogenous news, but as soon as they become willing to adopt,
(pt , N0 ) enters region I, so the information generated by other adopters is again too
small to make anyone willing to delay.20 A too low signal arrival rate λ has the same

18Note that p
 is decreasing in the discount rate r.
19By the Markovian description above, �0 pins down t∗1 and t∗2 fixing other parameters, because it is

sufficient to determine the evolution of pt and λNt , which in turn determines t∗1 and t∗2 .
20As Section 5 discusses, regions I and II vanish as ρ → ∞, in which case the equilibrium features partial

adoption for any �0 > 0.
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effect, as the rate of social learning depends only on λnt . In particular, if learning is
purely exogenous (λ = 0 < ε), there is never partial adoption, regardless of other pa-
rameters. The same is true if consumers are myopic (r = ∞); there, ps = p
 = p = 1

2 , so
t∗1 = t∗2 = inf{t : pt >

1
2 }. Thus, the possibility of partial adoption hinges on the combina-

tion of social learning and forward-looking incentives.

3.3 Good news equilibrium

Next, consider learning via good news. As under bad news, there is a unique equilib-
rium. However, regardless of the potential for social learning in the economy, the equi-
librium is all-or-nothing : There is a time t∗ before which all consumers adopt if given
an opportunity and after which no consumers adopt absent breakthroughs.

Theorem 2 (Good News Equilibrium). Fix r, ρ, λ, N0 > 0, ε ≥ 0, and p0 ∈ (0, 1). There
exists a unique equilibrium (nt ). The equilibrium is described by a unique cutoff time
0 ≤ t∗ ≤ ∞ such that, absent breakthroughs,

nt =
{
ρNt if t < t∗

0 if t ≥ t∗.
(4)

We prove Theorem 2 in Appendix A.5. Similar to the bad news case, in any good
news equilibrium (nt ), Lemma 1 yields cutoff times 0 ≤ t∗1 ≤ t∗2 ≤ ∞, which now have
the property that absent breakthroughs, nt = ρNt at all t < t∗1 , nt = 0 at all t > t∗2 , and
consumers are indifferent between immediate adoption and waiting on (t∗1 , t∗2 ).21

The key difference with bad news is that we must always have t∗1 = t∗2 =: t∗, i.e., there
cannot be a partial adoption region (Lemma A.9). Note that at any t < t∗2 , consumers
weakly prefer immediate adoption to waiting, i.e., Wt ≤ ut . We show that in fact Wt <

ut , so consumers strictly prefer immediate adoption. Heuristically, we can obtain the
following upper bound on Wt −ut by conditioning, similar to (3) under bad news, on the
two events that can occur between t and t + dt:

Wt − ut ≤ pt(ε+ λnt )dt︸ ︷︷ ︸
probability of
breakthrough

(
ρ

r + ρ
− 1

)
︸ ︷︷ ︸
cost of waiting:

delayed adoption

− (
1 −pt(ε+ λnt )dt

)︸ ︷︷ ︸
probability of

no breakthrough

ut+dtr dt︸ ︷︷ ︸
cost of waiting:

discounting

< 0. (5)

The first term considers the event that a breakthrough occurs between t and t+dt, which
has instantaneous probability pt(ε + λnt )dt. Conditional on this event, the product is
good, so unlike the case of a breakdown, there is now a cost of ρ

r+ρ − 1 to waiting vs.
adopting at t, as waiting delays receiving the payoff of 1 until the next adoption op-
portunity. The second term considers the complementary event that no breakthrough
occurs between t and t + dt. In this case, there is again a cost to waiting vs. adopting

21Specifically, let t∗1 := inf{t ≥ 0 : nt < ρNt } and t∗2 := sup{t ≥ 0 : nt > 0}. Then indifference on (t∗1 , t∗2 )
follows from Lemma 1 by the same logic as under bad news (footnote 15).
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at t, which is at least ut+dtr dt. Indeed, conditional on this event, the expected qual-
ity is 2pt+dt − 1 = ut+dt , which is received immediately if the consumer adopts at t. In
contrast, the payoff to waiting is at most ut+dt(1 − r dt ): At t + dt < t∗2 , consumers still
weakly prefer to adopt, so (regardless of whether or not an adoption opportunity arrives
at t + dt) the continuation payoff at t + dt is at most ut+dt .22 which yields ut+dt(1 − r dt )
from the point of view of time t. Thus, in either event, adopting immediately at t is
strictly better than waiting.23

The impossibility of a partial adoption region under good news reflects the following
fundamental difference with bad news learning. Suppose a consumer is willing to adopt
at both t and t + dt absent news. Then he can be willing to delay at t only if the arrival
of news between t and t +dt is decision-relevant, i.e., would make him strictly prefer not
to adopt. Indeed, if he anticipates remaining willing to adopt no matter what happens
between t and t + dt, then (by discounting) he is better off adopting immediately at t.24

Under bad news, a breakdown between t and t + dt indeed makes the consumer strictly
prefer not to adopt. In contrast, under good news, the effect of a breakthrough is to make
the consumer strictly prefer to adopt, which is not decision-relevant when he is already
willing to adopt.

Finally, to complete the proof of Theorem 2, Lemma A.10 shows that t∗ is the unique
time at which the no-news posterior pt reaches the cutoff belief ps = (ε+r )(r+ρ)

2(ε+r )(r+ρ)−ερ . Ob-
serve that ps is the same cutoff as in the single-agent benchmark where information is
generated solely at the exogenous rate ε (reflecting the absence of an encouragement
effect in our setting, as noted in Section 1.1). Thus, consumers’ behavior as a function
of their current belief does not depend on λ or N0. Social learning only affects the time
t∗ at which adoption ceases conditional on no breakthroughs.

4. Implications

We now study the implications of the preceding analysis for observed adoption patterns
and for the effect of increased social learning opportunities on welfare, learning, and
adoption dynamics.

4.1 Adoption curves: S-shaped versus concave

Consider the adoption curve of the innovation, which plots the share of adopters in the
population against time. Conditional on no news up to time t, this is given by At :=∫ t

0 ns/N0 ds. Theorems 1 and 2 yield the following predictions for the shape of At .

22If an adoption opportunity arrives, the continuation payoff is ut+dt ; if not, it is Wt+dt ≤ ut+dt .
23It is straightforward to verify that nt > 0 and pt >

1
2 for all t < t∗2 (see the formal argument in

Lemma A.9), so both terms in (5) are strictly negative.
24If the consumer weakly prefers to adopt at t + dt no matter what, then his continuation payoff to wait-

ing at t is bounded above by the time-t expected discounted payoff to adopting at t + dt (in case of an
adoption opportunity at t + dt, the continuation value is exactly this; otherwise, it is weakly lower), which
by the martingale property of beliefs is (1 − r dt )ut < ut . (The only exception is if ut = 0, but this cannot
happen in the interior of a region of positive adoption.).
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Figure 2. Left: The S-shaped adoption curve under bad news conditional on no breakdowns
(t∗1 = 0). Right: Concave adoption curves under good news (blue = breakthrough before t∗; yel-
low = breakthrough after t∗; pink = bad quality).

Corollary 1. Bad News. In the unique equilibrium of Theorem 1, At = 0 for 0 ≤ t < t∗1 ,
At is strictly increasing and convex in t for t∗1 ≤ t < t∗2 , and At is strictly increasing and
concave in t for t ≥ t∗2 . If the first breakdown occurs at time t, adoption ceases from then
on.

Good News. In the unique equilibrium of Theorem 2, At = 1 − e−ρt is strictly increas-
ing and concave for all t < t∗. If there is a breakthrough prior to t∗, then At = 1 − e−ρt for
all t. If the first breakthrough occurs at s > t∗ (which requires ε > 0), then adoption comes
to a temporary standstill between t∗ and s, and for all t ≥ s, At is strictly increasing and
concave, and is given by 1 − e−ρ(t∗+t−s).

Thus, in bad news markets (Figure 2, left), the adoption curve exhibits an S-shaped
(i.e., convex–concave) growth pattern whenever t∗1 < t∗2 , where convex growth coincides
with the partial adoption region (t∗1 , t∗2 ). By contrast, in good news markets (Figure 2,
right), adoption proceeds in (up to two) concave bursts. Concave adoption curves also
arise in bad news markets with very optimistic and impatient consumers or little poten-
tial for social learning (so that t∗1 = t∗2 by Lemma 2).

The fact that the convex growth period of At under bad news coincides with the
partial adoption region (t∗1 , t∗2 ) is tied to consumer indifference in this region. Absent
breakdowns, consumers grow increasingly optimistic about the quality of the innova-
tion, which increases their opportunity cost of delaying adoption. To maintain indif-
ference, the benefit to delaying adoption must then also increase over time. This is
achieved by increasing the arrival rate of future breakdowns, which improves the odds
that waiting will allow consumers to avoid the bad product. Since the arrival rate of in-
formation is increasing in the flow nt of new adopters, this means that nt must strictly
increase throughout (t∗1 , t∗2 ), i.e., that At is convex.25 By contrast, the concave growth
regions under both bad and good news simply reflect the gradual depletion of the pop-
ulation when all consumers adopt immediately upon an opportunity.26

25This argument for convex growth does not rely on the linearity of λnt ; it remains valid as long as the
rate at which the bad product generates breakdowns at t is increasing in nt .

26If there is an inflow of new consumers of it = γNt at all t (i.e., the population size grows exponentially at
rate γ absent adoption), then it can be shown that adoption is eventually concave if and only if the growth
rate γ is less than the rate ρ of stochastic adoption opportunities.
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As discussed in the Introduction, S-shaped adoption is documented for many in-
novations. Our model complements existing explanations (see Section 1.1) by iden-
tifying a purely informational channel for this regularity: If there is a high enough
chance that previous adopters’ experiences may reveal negative information about
the innovation and consumers are forward-looking, then S-shaped adoption can arise
due to some consumers strategically delaying adoption. This channel may be es-
pecially natural for innovations whose introduction is accompanied by substantial
safety concerns, as may plausibly be the case for our motivating example of new
medical procedures, where S-shaped adoption patterns are indeed commonly docu-
mented.27

Though less prevalent than S-shaped curves, concave adoption is another leading
pattern documented in the marketing literature (e.g., Keillor (2007), pp. 51–61), with
leisure-enhancing innovations such as movies, books, and games as examples. While
our model abstracts away from many important product-specific forces, Corollary 1 sug-
gests some factors that could contribute to concave adoption. In particular, high levels
of consumer impatience or optimism, or if social learning in these markets is predomi-
nantly via good news signals or their absence (as Section 2.2 suggested could be driven
by features of the relevant review platforms).

4.2 The effect of increased opportunities for social learning

Next, we consider an increase in the potential for social learning �0 := λN0, capturing
either a greater ease of information transmission (e.g., due to the introduction of new
social networking platforms) or a larger community of consumers. We ask how this af-
fects welfare, learning, and adoption dynamics. Again, informational free-riding in the
form of partial adoption has important implications. Indeed, under bad news, an econ-
omy’s ability to harness its potential for social learning is subject to a saturation effect : If
the equilibrium features partial adoption, then further increases in the potential for so-
cial learning are welfare-neutral, cause learning to slow down over certain periods, and
decrease adoption levels at all times.

Formally, we fix all other parameters and study the effect of increasing �0 on ex ante
equilibrium welfare W0(�0 ), no-news posteriors p�0

t , and ex ante expected adoption lev-
els At(�0, G) and At(�0, B) conditional on good and bad quality, respectively. We as-
sume that the original potential for social learning �0 is such that there is partial adop-
tion, i.e., t∗1 (�0 ) < t∗2 (�0 ); under the conditions in Lemma 2, this is the case whenever �0

is large enough.

Proposition 1. Consider learning via bad news. Fix r, ρ, ε, and p0. If �0 is such that
t∗1 (�0 ) < t∗2 (�0 ), then an increase in the potential for social learning to �̂0 > �0 has the
following effect:

27See, e.g., the adoption data for bariatric surgery in Buchwald and Oien (2009, 2013).
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(i) Welfare Neutrality. We have W0(�̂0 ) =W0(�0 ).

(ii) Non-Monotonicity of Learning. There exists t > t∗2 (�0 ) such that⎧⎪⎪⎨
⎪⎪⎩
p�0
t = p�̂0

t if t ≤ t∗2 (�0 ) (learning is equally fast under �0 and �̂0)

p�0
t > p�̂0

t if t∗2 (�0 ) < t < t (learning is slower under �̂0)

p�0
t < p�̂0

t if t > t (learning is faster under �̂0).

(iii) Slowdown of Adoption. For all t and θ = B, G, we have At(�0, θ) ≥ At(�̂0, θ),
with strict inequality for all t > t∗1 (�0 ).

We prove Proposition 1 in Appendix A.6. The idea behind (i) is as follows. Since
the equilibrium features partial adoption at �0, the same is true when the potential for
social learning increases to �̂0. Moreover, both the time t∗1 at which adoption begins and

the posterior pt∗1 at t∗1 are the same under �0 and �̂0.28 Since consumers strictly prefer
to delay at all t < t∗1 , and are indifferent between delaying and adopting at t∗1 , ex ante

welfare under both �0 and �̂0 then corresponds to the expected payoff to waiting until
t∗1 and adopting at t∗1 absent breakdowns. Thus, W0(�̂0 ) =W0(�0 ).29

This welfare neutrality result contrasts with the cooperative benchmark where con-
sumers coordinate on socially optimal adoption levels. In the latter case, increased op-
portunities for social learning are strictly beneficial and for any p0 > 1

2 , the first-best
(complete information) payoff of ρ

r+ρp0 can be approximated in the limit as �0 → ∞.30

The result also contrasts with myopic social learning or forward-looking exogenous
learning, where welfare necessarily increases in response to more informative signals
(even if consumers are heterogeneous).31

Points (ii) and (iii) further illuminate the forces behind welfare neutrality. By (ii), an
increase in �0 affects learning dynamics in a non-monotonic manner. Thus, the im-
pact on a consumer’s expected payoff varies with the time t at which he obtains his first
adoption opportunity. If t ≤ t∗2 (�0 ), his expected payoff is the same under �0 and �̂0. If

t ∈ (t∗2 (�0 ), t ), he is worse off under �̂0, because in case the innovation is bad, he is less
likely to have found out by then than under �0.32 Finally, if t > t, he is better off under
�̂0. Depending on �̂0, t adjusts endogenously to balance out the benefits, which arrive
at times after t, with the costs incurred at times (t∗2 (�0 ), t ).

28Indeed, as we saw in Section 3.2, t∗1 is the first time at which the posterior exceeds the threshold p =
ε+r
ε+2r and learning up to t∗1 is purely via the exogenous news source.

29Related welfare neutrality results can arise in mixed equilibria in other games; e.g., in certain static
public goods provision games, the equilibrium welfare/provision probability of the public good can be
independent of the number of players.

30Frick and Ishii (2023) (Supplement C) show the cooperative benchmark is all-or-nothing, with no (resp.
immediate) adoption below (resp. above) a cutoff belief pSO. Equilibrium adoption displays two inefficien-
cies: (i) it starts too late (pSO <pt∗1 ); (ii) once it starts it is initially too low (if t∗1 < t∗2 ).

31To define ex ante welfare with myopic consumers, assume that consumers’ payoffs are discounted at
some arbitrary rate r > 0, but consumers behave myopically.

32The fact that learning on (t∗2 (�0 ), t ) is slower under �̂0 than �0 reflects that the flow of adopters under
�0 jumps up at t∗2 (�0 ) (due to the transition from the partial adoption to immediate adoption regions),

whereas under �̂0, partial adoption continues until t∗2 (�̂0 ) > t∗2 (�0 ).
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Figure 3. The effect of increased opportunities for social learning on the adoption of a good
product under bad news (�̂0 >�0).

Similarly, by (iii), an increase in �0 strictly decreases the adoption At(�0, G) of good
products (which is harmful), but also decreases the ex ante expected adoption At(�0, B)
of bad products (which is beneficial), and welfare neutrality obtains because these forces
balance out in equilibrium. Figure 3 illustrates that the strict slowdown in the adop-
tion of good products is due to two effects: On the extensive margin, the increase in
�0 pushes out t∗2 , i.e., prolongs free-riding; on the intensive margin, the increase drives
down the growth rate of At at all t < t∗2 (�0 ).

Point (iii) yields new testable implications relative to existing models of innovation
adoption, suggesting, for example, that the fraction of adopters may grow more slowly
in larger communities. Broadly consistent with this, Bandiera and Rasul (2006) study
the adoption of a new crop by farmers in Mozambique and find that farmers whose
network includes many adopters may be less likely to adopt initially themselves; thus, in
equilibrium, larger networks of farmers should feature lower percentages of adoption.33

Finally, the logic behind the saturation effect relies crucially on partial adop-
tion/informational free-riding. If under bad news, �0 is so low that there is no partial
adoption in equilibrium, then increasing �0 is strictly beneficial (see Frick and Ishii
(2023), Supplement B.1). Likewise, there is no saturation effect under good news (see
Frick and Ishii (2023), Supplement B.2): Since equilibrium adoption is all-or-nothing,
increasing the potential for social learning speeds up learning at all times, which strictly
improves welfare (provided ε > 0).34

Remark 1. Proposition 1 shows that increasing �0 is welfare-neutral under bad news.
More strongly, if consumers have heterogeneous discount rates, then increasing the po-
tential for social learning can lead to Pareto decreases in ex ante welfare. To illustrate,

33In related work, Munshi (2004) finds that in rice-growing regions in India, where (due to more het-
erogeneous plot conditions) social learning is less feasible than in wheat-growing areas, farmers are more
likely to experiment with a new crop than their counterparts in wheat-growing areas.

34Even under good news, increasing �0 increases welfare only if this affects agents’ preference for adop-
tion vs. delay at some histories. If ε = 0, agents weakly prefer to adopt at all histories (note ut = Wt for all
t ≥ t∗ as pt = ps = 1

2 for all t ≥ t∗); hence, W0(�0 ) = ρ
r+ρ (2p0 − 1) is independent of �0. If ε > 0, increasing

�0 improves welfare by leading more agents to adopt only after a breakthrough (ut <Wt for all t > t∗ and t∗
is decreasing in �0).
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suppose ε = 0 and introduce a single (mass 0) impatient agent with discount rate ri > r

into the population.35 Then, under the assumptions in Proposition 1, increasing λ to
λ̂ is welfare-neutral for the original population, but makes this impatient agent strictly
worse off. Indeed, since the patient agents are initially indifferent between adopting and
delaying, the impatient agent adopts upon his first opportunity absent breakdowns in
both environments. By the non-monotonicity of learning in Proposition 1, there exists
some time t > t∗ := t∗2 (λ) such that learning is strictly slower under λ̂ between t∗ and t,
but faster from time t on (and learning is equally fast under λ, λ̂ up to t∗). For patient
agents, the costs of the early deceleration in learning and the benefits of the later accel-
eration exactly balance out. However, the impatient agent is hurt, because relative to a
patient agent, he weights the early costs more heavily than the later benefits. �

5. Concluding remarks

This paper develops a model of innovation adoption when consumers are forward-
looking and learning is social. Our analysis isolates the effect of purely informational
incentives on aggregate adoption dynamics, learning, and welfare. We highlight how
qualitative and quantitative features of the learning environment shape these incen-
tives, most importantly by determining whether or not there is informational free-riding
in the form of partial adoption. The presence or absence of partial adoption has observ-
able implications, suggesting a novel channel for two widespread adoption patterns:
S-shaped and concave curves. Moreover, partial adoption has important welfare impli-
cations, entailing that increased opportunities for social learning need not benefit con-
sumers and can be strictly harmful. Below, we briefly comment on some modifications
and extensions of our model.

Adoption opportunities. We assumed that consumers receive adoption opportu-
nities at an arbitrarily large but finite Poisson rate ρ. This avoided technical issues re-
lated to defining strategies and continuation payoffs when agents can move continu-
ously and adoption processes can feature mass points. The key qualitative implication
of a finite ρ in both the bad and good news equilibrium is to generate concave adop-
tion regions. To illustrate what happens as ρ → ∞, suppose ε = 0 and p0 > 1

2 . Under
bad news, the immediate (i.e., concave) adoption phase disappears as ρ → ∞. In Fig-
ure 1, limρ→∞N∗(p) = 0 for all p < 1, so region I vanishes.36 Thus, by Theorem 1, there

is an initial partial adoption phase with flow of adopters nt = r(2pt−1)
λ(1−pt ) and, in the limit as

ρ → ∞, this phase continues all the way until the finite time t∗2 at which the population
is fully depleted.37 Under good news, Theorem 2 implies that for any finite ρ, equilib-
rium is all-or-nothing with cutoff posterior ps = 1

2 , but as ρ → ∞, the time t∗ it takes to

35Section 4.3 of Frick and Ishii (2015) instead considered a small mass of impatient consumers.
36Intuitively, if there is any positive mass Mt of immediate adopters, then it is strictly beneficial to wait an

instant, as the cost of delaying the decision by an instant is negligible (of order dt) relative to the probability
(1 −pt )(1 − e−λMt ) of observing a breakdown and avoiding the bad product.

37To see why t∗2 is finite, note that the ODE for partial adoption implies nt = r
λ

2p0−1
e−rtp0−(2p0−1) , which tends

to ∞ by the finite time t = 1
r ln p0

2p0−1 . We also note that parts (i) and (iii) of Proposition 1 remain valid as
ρ → ∞, but the non-monotonicity of learning in part (ii) no longer arises in the limit, because the acceler-
ation/deceleration in learning occurs during the immediate adoption phase.
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reach ps absent news tends to 0. Thus, the initial concave adoption region approximates
a single mass point of M0 = 1

λ ln p0
1−p0

adopters, where M0 is such that absent news, the
belief jumps down to ps . Hence, as ρ→ ∞, the good news equilibrium approximates an
initial burst of partial adoption (followed by a second burst if there is a breakthrough),
but a drawn-out region of partial adoption can still only arise under bad news.38

Learning from the stock of adopters. In our model, the social learning component
of the signal arrival rate at time t, λnt , depends only on the flow nt of new adopters. This
effectively assumes that adopters can generate signals only once, at the time of adop-
tion, approximating settings where the probability of receiving signals about the qual-
ity of the innovation (e.g., complications from a new medical procedure) depreciates
rapidly from the time of adoption. In contrast, for some durable goods, it may be more
natural to let signals at t arrive at rate λSt , where St := ∫ t

0 ns ds represents the stock of
adopters, capturing that adopters can generate signals repeatedly over time. This would
produce similar results. Specifically, similar arguments yield the existence and unique-
ness of equilibrium under both bad and good news. The good news equilibrium is again
all-or-nothing, while, for appropriate parameters, the bad news equilibrium again fea-
tures a partial adoption region with behavior pinned down by the indifference condition
St = r(2pt−1)

λ(1−pt ) − ε
λ . Finally, the partial adoption region again exhibits convex growth in

adoption levels.39

More general signal processes. As in many applications of Poisson learning, we have
focused for tractability on conclusive bad or good news signals. While a careful investi-
gation of more general signal processes is beyond the scope of this paper, the analysis
extends readily to hybrid environments with two types of conclusive Poisson signals:
bad news and good news signals with respective arrival rates λBnt and λGnt . In partic-
ular, if λB > λG, the equilibrium is analogous to Theorem 1. Some of our insights also
extend beyond environments with conclusive signals. For example, we note that partial
adoption relies crucially on the possibility of news events that trigger discrete down-
ward jumps in beliefs (although such events need not conclusively signal bad quality).
Without such events (e.g., when learning is based on inconclusive good news Poisson

38If, instead, each consumer’s first adoption opportunity arrives at rate ρ <∞, but subsequent adoption
opportunities arrive continuously, the good news equilibrium is still all-or-nothing as in Theorem 2, except
that the cutoff belief limρ→∞ ps = ε+r

ε+2r is greater than ps (if ε > 0). The bad news equilibrium is qualitatively
unchanged: Under suitable parameters, there is an initial partial adoption region with convex adoption
growth (which continues until the stock of consumers who have received a first adoption opportunity is
depleted); from then on, the remaining consumers adopt immediately at their first opportunity (leading to
concave growth). However, the non-monotonicity of learning in Proposition 1(ii) no longer arises, as the
flow of adopters now features a downward jump at the transition from partial to immediate adoption.

39Indeed, as in Section 3.2, indifference requires the benefit of avoiding a bad product when a breakdown
occurs ((1 −pt )(λSt + ε)) to equal the cost of delaying adoption absent news (r(2pt − 1)). Since consumers
grow more optimistic absent news, this has two implications throughout the indifference region: (i) beliefs
pt increase convexly, as the growth rate of pt equals the instantaneous probability of a breakdown ( ṗt

pt
=

(1 − pt )(λSt + ε)), which must increase over time to balance out the increasing cost of delay; (ii) the stock
of adopters St = S(pt ) increases convexly as a function of pt , to ensure that breakdowns arrive at a rate
that counterbalances the convex growth (with respect to pt ) of the ratio r(2pt−1)

(1−pt ) between the cost of delay
and the probability of facing a bad product. Combining (i) and (ii), it follows that St—and, hence, adoption
levels—increases convexly over time.
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or Brownian signals), a similar logic as in Section 3.3 implies that there cannot be con-
tinuous regions of partial adoption, because a consumer who is willing to adopt cannot
instantaneously acquire decision-relevant information (see Frick and Ishii (2023), Sup-
plement D).40

Appendix: Proofs

A.1 Preliminary lemmas

The following five lemmas will be used throughout the Appendix. For any feasible adop-
tion flow (nt ), we denote by (Wt ) the corresponding no-news value to waiting and denote
by (pt ) the no-news posterior, without making explicit the dependency on (nt ).

Lemma A.1. For any feasible adoption flow (nt ), the corresponding (Wt ) and (pt ) are con-
tinuous in t.

The proof is immediate from the definitions of pt and Wt in Sections 2.2 and 2.3.

Lemma A.2. Suppose that (ns ) is an equilibrium and that Wt < 2pt − 1 for some t > 0.
Then there exists ν > 0 such that (Wτ ) is continuously differentiable in τ on the interval
(t − ν, t + ν) and for all τ ∈ (t − ν, t + ν),

Ẇτ = (
r + ρ+ (εG + λGρNτ )pτ + (εB + λBρNτ )(1 −pτ )

)
Wτ

− ρ(2pτ − 1) −pτ(εG + λGρNτ )
ρ

ρ+ r
.

Proof. Suppose Wt < 2pt − 1 for some t > 0. Since (Wτ ) and (pτ ) are continuous in τ

(Lemma A.1), there exists ν > 0 such that Wτ < 2pτ − 1 for all τ ∈ (t − ν, t + ν). Because
(ns ) is an equilibrium, this implies that nτ = ρNτ for all τ ∈ (t − ν, t + ν). Thus, nτ is
continuous at all τ ∈ (t − ν, t + ν). Then Wτ is continuously differentiable in τ for all
τ ∈ (t − ν, t + ν), as

Wτ =
t+ν∫
τ

ρe−(ρ+r )(s−τ)(pτe
− ∫ s

τ (εG+λGnx )dx − (1 −pτ )e− ∫ s
τ (εB+λBnx )dx)ds

+ e−(r+ρ)(t+ν−τ)(pτe
− ∫ t+ν

τ (εG+λGnx )dx + (1 −pτ )e− ∫ t+ν
τ (εB+λBnx )dx)Wt+ν

+
t+ν∫
τ

ρe−(ρ+r )(s−τ)pτ
(
1 − e− ∫ s

τ (εG+λGnx )dx)ds
+ e−(r+ρ)(t+ν−τ)pτ

(
1 − e− ∫ t+ν

τ (εG+λGnx )dx) ρ

ρ+ r
.

40In contrast, Laiho, Murto, and Salmi (2024) obtain partial adoption/gradualism in a model with Brow-
nian learning from the stock of adopters and continuous adoption opportunities.
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The derivative of Wτ can be computed using Ito’s lemma for processes with jumps. Given
perfect Poisson learning, the derivation is simple and we provide it for completeness. As
above, for any 
 ∈ (0, t + ν − τ), we can rewrite Wτ as

Wτ =
τ+
∫
τ

ρe−(ρ+r )(s−τ)(pτe
− ∫ s

τ (εG+λGnx )dx − (1 −pτ )e− ∫ s
τ (εB+λBnx )dx)ds

+ e−(r+ρ)
(
pτe

− ∫ τ+

τ (εG+λGnx )dx + (1 −pτ )e− ∫ τ+


τ (εB+λBnx )dx)Wτ+


+
τ+
∫
τ

ρe−(r+ρ)(s−τ)pτ
(
1 − e− ∫ s

τ (εG+λGnx )dx)ds
+ e−(r+ρ)
pτ

(
1 − e− ∫ τ+


τ (εG+λGnx )dx) ρ

ρ+ r
.

Since this is true for all 
 ∈ (0, t + ν − τ), the right-hand side of this identity, which we
denote R
, is continuously differentiable with respect to 
 and satisfies d

d
R
 ≡ 0. Tak-
ing the limit as 
 → 0 and since Ẇτ = lim
→0

d
dτWτ+
 by continuous differentiability, we

then obtain

Ẇτ = (
r + ρ+ (εG + λGnτ )pτ + (εB + λBnτ )(1 −pτ )

)
Wτ

− ρ(2pτ − 1) −pτ(εG + λGnτ )
ρ

ρ+ r
.

Plugging in nτ = ρNτ yields the desired expression.

Lemma A.3. Suppose that (nτ ) is an equilibrium and that Wt > 2pt − 1 for some t > 0.
Then there exists ν > 0 such that (Wτ ) is continuously differentiable in τ on the interval

(t − ν, t + ν) and for all τ ∈ (t − ν, t + ν),

Ẇτ = (
r +pτεG + (1 −pτ )εB

)
Wτ −pτεG

ρ

ρ+ r
.

Proof. The proof follows the same lines as that of Lemma A.2. Lemma A.1 again
implies that if Wt > 2pt − 1, then there exists ν > 0 such that Wτ > 2pτ − 1 for all
τ ∈ (t − ν, t + ν). By the definition of equilibrium, nτ = 0 for all τ ∈ (t − ν, t + ν).

Hence, Wτ satisfies

Wτ = e−r(t+ν−τ)(pτe
−εG(t+ν−τ) + (1 −pτ )e−εB(t+ν−τ))Wt+ν

+pτ

t+ν∫
τ

εGe
−(εG+r )s ρ

ρ+ r
ds

and, thus, is continuously differentiable in τ.
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To compute the derivative, note again that for any 
 ∈ (0, t + ν − τ),

Wτ = e−r

(
pτe

−εG
 + (1 −pτ )e−εB

)
Wt+
 +pτ

τ+
∫
τ

εGe
−(εG+r )s ρ

ρ+ r
ds.

Differentiating both sides with respect to 
 and taking the limit as 
 → 0,

Ẇτ = (
r +pτεG + (1 −pτ )εB

)
Wτ −pτεG

ρ

ρ+ r
,

as claimed.

Lemma A.4. Suppose (nt ) is an equilibrium under bad news. Suppose ε > 0 or p0 > 1
2 .

Then limt→∞pt = μ(ε, �0, p0 ) and limt→∞Wt = ρ
ρ+r (2μ(ε, �0, p0 ) − 1), where

μ(ε, �0, p0 ) :=
⎧⎨
⎩

1 if ε > 0
p0

p0 + (1 −p0 )e−�0
if ε = 0.

Proof. Suppose first that ε > 0. Then trivially pt → 1 as t → ∞. Since for any t,
ρ

ρ+r (2pt − 1) ≤ Wt ≤ ρ
ρ+r , this implies that limt→∞Wt = ρ

ρ+r , as claimed.
Now suppose ε = 0 and p0 > 1/2. Note that Wt ≤ 2pt − 1 for all t. Indeed, suppose

Wt > 2pt −1 for some t. If Ws > 2ps −1 for all s ≥ t, then Wt = 0, contradicting Wt > 2pt −
1 ≥ 2p0 − 1 > 0. Thus, we can find s > t such that Ws = 2ps − 1 and Ws′ > 2ps′ − 1 for all
s′ ∈ (t, s). This implies ns′ = 0 for all s′, and, hence, Wt = e−r(s−t )Ws = e−r(s−t )(2ps − 1) =
e−r(s−t )(2pt − 1), again contradicting Wt > 2pt − 1 > 0.

Let N∗ := limt→∞
∫ t

0 ns ds = supt

∫ t
0 ns ds ≤ N0. Let p∗ := limt→∞ pt = supt pt . For any

ν > 0, we can find t∗ such that whenever t > t∗, then e−λ
∫ t
t∗ ns ds > 1−ν. Because 2pt −1 ≥

Wt for all t, we can then write the value to waiting at all t > t∗ as

Wt =
∞∫
t

ρe−(r+ρ)τ(pt − (1 −pt )e−λ
∫ τ
t ns ds

)
dτ

≤ ρ

r + ρ

(
pt − (1 −pt )(1 − ν)

)
.

By optimality, Wt ≥ ρ
ρ+r (2pt − 1) for all t, so by combining, we have

ρ

ρ+ r

(
2p∗ − 1

) ≤ lim
t→∞ infWt ≤ lim

t→∞ supWt ≤ ρ

r + ρ

(
p∗ − (

1 −p∗)(1 − ν)
)
.

Since this is true for all ν > 0, it follows that

lim
t→∞Wt = ρ

r + ρ

(
2p∗ − 1

)
,

which is strictly less than 2p∗ − 1, so for all t sufficiently large we must have 2pt − 1 >

Wt . Then for all t sufficiently large, we have nt = ρNt . Thus, N∗ = N0 and, therefore,
p∗ = μ(ε, �0, p0 ).
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Lemma A.5. Suppose that learning is via bad news. Suppose that ε = 0 and p0 ≤ 1
2 . Then

the unique equilibrium satisfies nt = 0 for all t.

Proof. Suppose that (ns ) is an equilibrium and suppose, for a contradiction, that t∗1 :=
inf{t : nt > 0} <∞. Pick t ≥ t∗1 such that nt > 0. By right-continuity of (ns ), we have nτ > 0
for all τ > t sufficiently close to t. This implies∫ ∞

t∗1
ρe−(r+ρ)(s−t )(pt∗1 − (1 −pt∗1 )e

− ∫ s
t∗1
λnk dk)

ds >
ρ

r + ρ
(2pt∗1 − 1) ≥ 2pt∗1 − 1, (6)

where the second inequality holds because pt∗1 = p0 ≤ 1
2 . The integral on the left-hand

side is the expected payoff at time t∗1 to adopting at the first opportunity in the future,
conditional on no breakdown having occurred prior to this opportunity. By optimality
of the value to waiting, this is weakly less than Wt∗1 . Hence, (6) implies Wt∗1 > 2pt∗1 − 1.
By continuity of (Ws ) and (ps ), it follows that for all s ≥ t∗1 sufficiently close to t∗1 , Ws >

2ps − 1 and, hence, ns = 0, contradicting the definition of t∗1 .
This leaves nt = 0 for all t as the only candidate equilibrium. In this case, Wt = 0 ≥

2p0 − 1 = 2pt − 1 for all t, so this is indeed an equilibrium.

A.2 Proof of Lemma 1

Good News. Suppose first that learning is via good news.
Step 1: Wt = 2pt − 1 =⇒ Wτ ≥ 2pτ − 1 for all τ ≥ t. Suppose Wt = 2pt − 1 at some

time t and suppose, for a contradiction, that at some time s′ > t, we have Ws′ < 2ps′ − 1.
Let s∗ := sup{s < s′ : Ws = 2ps − 1}.

By continuity, s∗ < s′, Ws∗ = 2ps∗ − 1, and Ws < 2ps − 1 for all s ∈ (s∗, s′ ). Then by
Lemma A.2, the right-hand derivative of Ws − (2ps − 1) at s∗ exists and satisfies

lim
s↓s∗ Ẇs − 2ṗs = r(2ps∗ − 1) +ps∗(ε+ λρNs∗ )

r

ρ+ r
> 0.

This implies that for some s ∈ (s∗, s′ ) sufficiently close to s∗, we have Ws > 2ps − 1, which
is a contradiction.

Step 2: Wt > 2pt − 1 =⇒ Wτ > 2pτ − 1 for all τ > t. Suppose, for a contradiction, that
there exists s′ > t such that Ws′ = 2ps′ −1. Let s∗ := inf{s > t : Ws = 2ps −1}. By continuity,
s∗ > t, Ws∗ = 2ps∗ − 1, and Ws > 2ps − 1 for all s ∈ (t, s∗ ). Note that ps∗ ≥ 1

2 , because Ws∗ is
bounded below by 0. Moreover, by Lemma A.3, the left-hand derivative of Ws − (2ps − 1)
at s∗ exists and is given by

lim
s↑s∗ Ẇs − 2ṗs = r(2ps∗ − 1) +ps∗

r

ρ+ r
ε.

If ε > 0, this is strictly positive, implying that for some s ∈ (t, s∗ ) sufficiently close to s∗,
we have Ws < 2ps − 1, which is a contradiction. If ε = 0, then for all s ∈ (t, s∗ ), we have
ps∗ = ps and Ws = e−r(s∗−s)Ws∗ = e−r(s∗−s)(2ps∗ − 1) ≤ 2ps∗ − 1. Thus, Ws ≤ 2ps − 1, again
contradicting Ws > 2ps − 1.
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Bad News. Now, suppose learning is via bad news. If ε = 0 and p0 ≤ 1
2 , then, by

Lemma A.5, nt = 0 for all t, so the proof is trivial. Thus, suppose that either ε > 0 or
p0 >

1
2 .

Step 1: Wt = 2pt − 1 =⇒ Wτ ≤ 2pτ − 1 for all τ ≥ t. Suppose that Wt = 2pt − 1 and
suppose, for a contradiction, that Ws′ > 2ps′ − 1 for some s′ > t. Let s := inf{s > s′ : Wt ≤
2ps − 1} < ∞, since, by Lemma A.4, limt→∞ 2pt − 1 > limt→∞Wt . Let s := sup{s < s′ :
Ws ≤ 2ps − 1}. Then s < s, Ws = 2ps − 1, Ws = 2ps − 1, and Ws > 2ps − 1 for all s ∈ (s, s).
Lemma A.3 together with the fact that ns = 0 for all s ∈ (s, s) implies the two limits

Ls := lim
s↓s

(
Ẇs − d

ds
(2ps − 1)

)
= (

r + (1 −ps )ε
)
(2ps − 1) − 2ps(1 −ps )ε

Ls := lim
s↑s

(
Ẇs − d

ds
(2ps − 1)

)
= (

r + (1 −ps )ε
)
(2ps − 1) − 2ps(1 −ps )ε.

Because Ws > 2ps − 1 for all s ∈ (s, s), we need Ls ≥ 0 and Ls ≤ 0. Rearranging yields

r(2ps − 1) ≥ (1 −ps )ε and r(2ps − 1) ≤ (1 −ps )ε.

If ε > 0, then ps > ps, so this is impossible. On the other hand, if ε = 0 and p0 >
1
2 , then

for all s ∈ (s, s), we have that ps = ps >
1
2 and Ws = e−r(s−s)Ws . Since Ws = 2ps − 1, this

implies Ws = e−r(s−s)(2ps − 1) < 2ps − 1, contradicting Ws > 2ps − 1. This completes the
proof of Step 1.

Step 2: Wt < 2pt − 1 =⇒ Wτ < 2pτ − 1 for all τ > t. Suppose Wt < 2pt − 1, let s :=
inf{s′ > t : Ws′ ≥ 2ps′ − 1}, and suppose, for a contradiction, that s < ∞. By continuity,
Wτ < 2pτ − 1 for all τ ∈ [t, s) and Ws = 2ps − 1. Furthermore, by Lemma A.4, there exists
some s ≥ s such that 2ps − 1 = Ws and 2ps − 1 >Ws for all s > s. Lemma A.2 implies the
two limits

Hs := lim
s↑s

(
Ẇs − d

ds
(2ps − 1)

)
= r(2ps − 1) − (ε+ λρNs )(1 −ps )

Hs := lim
s↓s

(
Ẇs − d

ds
(2ps − 1)

)
= r(2ps − 1) − (ε+ λρNs )(1 −ps ).

As usual, because Ws < 2ps − 1 for all s ∈ (t, s) and for all s > s, we must have Hs ≥ 0 and
Hs ≤ 0, but since ps ≥ ps , this is only possible if s = s =: s∗ and Hs∗ = Hs =Hs = 0. Thus,

r(2ps∗ − 1) = (ε+ λρNs∗ )(1 −ps∗ ).

Now consider any s ∈ [t, s∗ ). Because ps ≤ ps∗ and Ns ≥Ns∗ , we must have

r(2ps − 1) ≤ (ε+ λρNs )(1 −ps ).

Combining this with the fact that Ws < 2ps − 1 yields

rWs < (ε+ λρNs )(1 −ps ) < (2ps −Ws )(ε+ λρNs )(1 −ps ) + ρ(2ps − 1 −Ws ).

Rearranging, we obtain

0 <−rWs + ρ(2ps − 1 −Ws ) + (2ps −Ws )(ε+ λρNs )(1 −ps ).
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By Lemma A.2, the right-hand side is the derivative d
ds (2ps − 1) − Ẇs. Thus, for all s ∈

[t, s∗ ), 2ps − 1 >Ws and 2ps − 1 −Ws is strictly increasing, contradicting continuity and
the fact that 2ps∗ − 1 =Ws∗ .

A.3 Proof of Theorem 1

Suppose learning is via bad news. Recall the following beliefs defined in Section 3.2:

ps := (ε+ r )(r + ρ)
2(ε+ r )(r + ρ) − ερ

, p := ε+ r

ε+ 2r
, p
 := ρ+ r

ρ+ 2r
.

Let p∗ := min{p, p
}. Define the function G : [0, 1] ×R+ →R by

G(p, �) :=
∞∫

0

ρe−(r+ρ)τ(p− (1 −p)e−(ετ+�(1−e−ρτ )))dτ, for all (p, �) ∈ [0, 1] ×R+.

We extend G to the domain [0, 1] × (R+ ∪ {∞}) by setting G(p, ∞) := ρ
ρ+r p.

Finally, define the nondecreasing function �∗ : [0, 1] →R+ ∪ {∞} by⎧⎪⎪⎨
⎪⎪⎩
�∗(p) = 0 if p ≤ ps

2p− 1 = G
(
p, �∗(p)

)
if p ∈ (

ps , p

)

�∗(p) = ∞ p≥ p
.

As discussed in the text, for p ∈ (ps , p
 ), N∗(p) := 1
λ�

∗(p) has the following property: If
N∗(p) consumers remain and if all these remaining consumers adopt at their first future
opportunity, then a consumer with current posterior p is indifferent between immediate
adoption and adoption at his next opportunity (absent breakdowns). Note that 2ps −
1 = G(ps , 0) and G(ps , 0) is the continuation value to adopting at the next opportunity
(absent breakdowns) when information arrives purely exogenously, so ps is the cutoff
posterior above which adoption occurs in the single-agent benchmark.

The proof of Theorem 1 proceeds in three steps. Suppose that (nt ) is an equilibrium
with associated cutoff times 0 ≤ t∗1 ≤ t∗2 ≤ ∞ defined by

t∗1 := inf{t ≥ 0 : nt > 0}, t∗2 := sup{t ≥ 0 : nt < ρNt }. (7)

First, Lemma A.6 shows that if t∗1 < t∗2 , then at all t ∈ (t∗1 , t∗2 ), nt is pinned down by the ODE
in (2). Second, Lemma A.7 characterizes t∗1 and t∗2 in terms of the evolution of (pt , λNt ).
Given these steps, it is easy to see that if an equilibrium exists, it is unique and takes the
form in (2). Finally, to verify equilibrium existence, Lemma A.8 shows that the adoption
flow implied by (2) is feasible.

A.3.1 Characterization of adoption between t∗1 and t∗2

Lemma A.6. Suppose (nt ) is an equilibrium with associated no-news posterior (pt ), and
cutoff times t∗1 and t∗2 given by (7). Suppose t∗1 < t∗2 . Then at all times t ∈ (t∗1 , t∗2 ),

nt = r(2pt − 1)
λ(1 −pt )

− ε

λ
.
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Proof. By definition of t∗1 and t∗2 , and Lemma 1, we have 2pt − 1 = Wt at all t ∈ (t∗1 , t∗2 )
(see footnote 15). Because pt is weakly increasing, this implies that pt and Wt are differ-
entiable at almost all t ∈ (t∗1 , t∗2 ) (with respect to Lebesgue measure).

For all t ∈ (t∗1 , t∗2 ), we can write

Wt = e−r(t∗2−t )(pt + (1 −pt )e− ∫ t∗2
t (ε+λns )ds)(2pt∗2 − 1)

= e−r(t∗2−t )(pt − (1 −pt )e− ∫ t∗2
t (ε+λns )ds). (8)

Here, the first equality holds because indifference throughout (t, t∗2 ) ensures that con-
sumers are willing to delay until t∗2 , where the continuation value absent breakdowns is
Wt∗2 = 2pt∗2 − 1. The second equality holds by (1).

Consider any t ∈ (t∗1 , t∗2 ) at which Wt and pt are differentiable. Combining ṗt = pt(1−
pt )(ε+ λnt ) with (8), we obtain

Ẇt = (
r + (ε+ λnt )(1 −pt )

)
Wt . (9)

Furthermore, because Wt = 2pt − 1 for all t ∈ (t∗1 , t∗2 ), we must have

Ẇt = 2ṗt = 2pt(1 −pt )(ε+ λnt ). (10)

Combining (9), (10), and the fact that Wt = 2pt − 1 then yields

nt = r(2pt − 1)
λ(1 −pt )

− ε

λ

for almost all t ∈ (t∗1 , t∗2 ). By continuity of pt and right-continuity of nt , the identity must
then hold for all t ∈ (t∗1 , t∗2 ).

The following result is an immediate corollary of Lemma A.6.

Corollary A.1. The posterior at all t ∈ (t∗1 , t∗2 ) evolves according to the ODE ṗt =
rpt(2pt − 1). Given an initial condition p = pt∗1 , this ODE admits the unique solution

pt = pt∗1
2pt∗1 − er(t−t∗1 )(2pt∗1 − 1)

.

A.3.2 Characterization of cutoff times

Lemma A.7. Let (nt ) be an equilibrium with corresponding no-news posterior (pt ) and
cutoff times t∗1 and t∗2 as defined by (7), and let (�t ) := (λNt ) describe the evolution of the
economy’s potential for social learning. Then

(i) t∗2 = inf{t ≥ 0 : �t < �∗(pt )}

(ii) t∗1 = min{t∗2 , sup{t ≥ 0 : pt < p∗}}.41

41By convention, if {t ≥ 0 : pt < p∗ = 1
2 } = ∅, then sup{t ≥ 0 : pt < p∗ = 1

2 } := 0.
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Proof. We first prove (i) and (ii) under the assumption that either ε > 0 or p0 >
1
2 . Note

that, in this case, Lemma A.4 implies that limt→∞ 2pt − 1 > limt→∞Wt , whence t∗2 < ∞.
Moreover, pt is strictly increasing for all t > 0.

For (i), note that by definition of t∗2 := sup{t ≥ 0 : nt < ρNt }, we have that 2pt − 1 ≥
Wt = G(pt , �t ) for all t ≥ t∗2 . This implies that �t∗2 ≤ �∗(pt∗2 ). Moreover, for all t > t∗2 ,
�t < �t∗2 and pt > pt∗2 , so since �∗ is nondecreasing, we have �t < �∗(pt ). Suppose
that 0 < t∗2 . Then by continuity we must have 2pt∗2 − 1 = Wt∗2 = G(pt∗2 , �t∗2 ) and so �t∗2 =
�∗(pt∗2 ). Since for all s < t∗2 , we have �s ≥�t∗2 and ps < pt∗2 , this implies �s ≥�∗(ps ). This
establishes (i).

For (ii), it suffices to prove the following three claims:

(a) If t∗2 > 0, then pt∗2 <p
.

(b) If t∗1 > 0, then pt∗1 ≤ p.

(c) If t∗1 < t∗2 , then pt∗1 ≥ p.

Indeed, given (a) and (b), if 0 < t∗1 = t∗2 , then pt∗1 ≤ p∗. Given (a)–(c), if 0 < t∗1 < t∗2 , then
pt∗1 = p = p∗. If 0 = t∗1 < t∗2 , then (c) implies that p0 ≥ p = p∗. In all three cases (ii) readily
follows. Finally, if 0 = t∗1 = t∗2 , then there is nothing to prove.

For claim (a), recall from the above that if t∗2 > 0, then �t∗2 =�∗(pt∗2 ), whence pt∗2 <p


because �∗(p
 ) = ∞.
For claim (b), note that if t∗1 > 0, then nt = 0 for all t < t∗1 . Then for all t < t∗1 , Wt ≥

2pt − 1 and by the proof of Lemma A.3, Ẇt = (r + (1 −pt )ε)Wt . Since Wt∗1 = 2pt∗1 − 1, we
must then have

0 ≥ lim
τ↑t∗1

Ẇτ − 2ṗτ

= (
r + (1 −pt∗1 )ε

)
(2pt∗1 − 1) − 2pt∗1 (1 −pt∗1 )ε = r(2pt∗1 − 1) − ε(1 −pt∗1 ),

which implies that

pt∗1 ≤ ε+ r

ε+ 2r
=: p.

Finally, for claim (c), suppose t∗1 < t∗2 . Lemma A.6 implies that for all τ ∈ (t∗1 , t∗2 ),

0 ≤ nτ = r(2pτ − 1)
λ(1 −pτ )

− ε

λ
.

This implies that for all τ ∈ (t∗1 , t∗2 ),

pτ ≥ ε+ r

ε+ 2r
=: p

and, hence, by continuity, pt∗1 ≥ p as claimed. This proves the lemma if ε > 0 or p0 >
1
2 .

Finally, if ε = 0 and p0 ≤ 1
2 , then by Lemma A.5, nt = 0 for all t. Thus, by definition,

t∗1 = t∗2 = ∞. Moreover, pt = p0 ≤ 1
2 and �t = �0 > 0 for all t, so inf{t : �t < �∗(pt ) = 0} =

sup{t : pt < p∗ = 1
2 } = ∞, as required.
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From Lemma A.6, it is immediate that if an equilibrium exists, it must take the form
of the adoption flow given by (2) in Theorem 1. Moreover, it is easy to see that, given
initial parameters, Lemma A.7 and (2) uniquely pin down the times t∗1 and t∗2 as well as
the evolution of (pt ) and (nt ) at all times,42 and that whenever t∗1 < t∗2 < ∞, then 2pt −
1 = Wt for all t ∈ [t∗1 , t∗2 ]. Provided the adoption flow (nt ) pinned down in this manner is
feasible, it is then easy to check that it constitutes an equilibrium.

A.3.3 Feasibility It remains to check feasibility, which is nontrivial only at times t ∈
(t∗1 , t∗2 ).

Lemma A.8. Suppose (nt ) is an adoption flow satisfying (2) in Theorem 1 such that t∗1 < t∗2 .
Then for all t ∈ (t∗1 , t∗2 ), nt ≤ ρNt .

Proof. It suffices to show that

lim
t↑t∗2

nt ≤ ρNt∗2 .

This implies the lemma, as ρNt − nt is strictly decreasing in t at all times in (t∗1 , t∗2 ).
To see this, suppose by way of contradiction that ρNt∗2 < limt↑t∗2 nt . By continuity this

means that there exists some ν > 0 such that ρNt < nt for all t ∈ (t∗2 − ν, t∗2 ). Note that
from the indifference condition at t∗2 , we have that 2pt∗2 − 1 =G(pt∗2 , λNt∗2 ). Furthermore
because �∗(pt ) is increasing in t, 2pt − 1 <G(pt , �t ) for all t < t∗2 .

Since at all t ∈ (t∗2 − ν, t∗2 ), nt > ρNt , this implies that Wt >G(pt , �t ) > 2pt − 1. This is
a contradiction since we already checked that the described adoption flow satisfies the
condition that Wt = 2pt − 1 for all t ∈ (t∗1 , t∗2 ).

A.4 Proof of Lemma 2

Assume that p0 ∈ (0, p
 ) and impose Condition 1. Define �0 := max{�∗(p0 ), �∗(p)}.
Consider any �0 and let t∗i := t∗i (�0 ) for i = 1, 2 (by the proof of Theorem 1, t∗i depend on
λ, N0 only through �0 = λN0). We show that t∗1 < t∗2 if and only if �0 >�0.

Suppose first that �0 > �0. By the proof of the first part of Lemma A.7, we must
have t∗2 > 0 and �t∗2 = �∗(pt∗2 ). If t∗1 = t∗2 =: t∗, then by claims (a) and (b) in the proof of
Lemma A.7, we must have pt∗ ≤ p. Combining these statements, we get

�t∗ = �0 >�∗(p) ≥�∗(pt∗ ) =�t∗ ,

which is a contradiction.
Suppose conversely that t∗1 < t∗2 . Then by the proof of Lemma A.7, we have that

�∗(pt∗1 ) < �t∗1 = �0. That proof also implies that if 0 < t∗1 < t∗2 , then pt∗1 = p ≥ p0, and

if 0 = t∗1 < t∗2 , then pt∗1 = p0 ≥ p. Thus, either way, �0 >�0, as claimed.

42The main text elaborated on the latter step assuming Condition 1. Without Condition 1, there are two
cases: Either (i) ε = 0 and p0 ≤ 1

2 , in which case nt ≡ 0 and t∗1 = t∗2 = ∞ (by Lemma A.5), or (ii) ε ≥ ρ, in
which case, p∗ := min{p, p
} = p
, so Lemma A.7 implies that nt = 0 if �t > �∗(pt ) and nt = ρNt if �t ≤
�∗(pt ). Thus, t∗1 = t∗2 is the unique first time at which pt , evolving according to ṗt = pt (1 − pt )ε, satisfies
�∗(pt ) ≥�0.
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A.5 Proof of Theorem 2

Suppose learning is via good news. Theorem 2 follows from the following two lemmas.

Lemma A.9. Let (nt ) be an equilibrium with associated cutoff times t∗1 := inf{t ≥ 0 : nt <
ρNt } and t∗2 := sup{t ≥ 0 : nt > 0}. Then t∗1 = t∗2 =: t∗.

Proof. Suppose for a contradiction that t∗1 < t∗2 . As discussed in the text, from the def-
inition of these cutoff times and Lemma 1, we have 2pt − 1 = Wt for all t ∈ (t∗1 , t∗2 ). Then
for all t ∈ (t∗1 , t∗2 ) and 
 ∈ (0, t∗2 − t ), we have

Wt = pt

t+
∫
t

(ε+ λnτ )e− ∫ τ
t (ε+λns )dse−r(τ−t ) ρ

ρ+ r
dτ

+ (
(1 −pt ) +pte

− ∫ t+

t (ε+λns )ds)e−r
(2pt+
 − 1).

Here, the first term represents a breakthrough arriving at some τ ∈ (t, t + 
) in which
case consumers adopt from then on, yielding a payoff of e−r(τ−t ) ρ

ρ+r . The second term
represents no breakthrough arriving prior to t+
; in this case, consumers’ continuation
value can be written as e−r
(2pt+
 − 1), as indifference throughout (t, t + 
] ensures
that consumers are willing to delay until t + 
 and the continuation value at t + 
 is
Wt+
 = 2pt+
 − 1.

Note that we must have pt ≥ 1
2 on (t∗1 , t∗2 ), since 2pt − 1 = Wt and Wt ≥ 0. Moreover,

by the definition of t∗2 , there exists t ∈ (t∗1 , t∗2 ) such that nt > 0. By right-continuity of (ns ),
we can pick 
 ∈ (0, t∗2 − t ) sufficiently small such that nτ > 0 for all τ ∈ (t, t +
). Then

pt

t+
∫
t

(ε+ λnτ )e− ∫ τ
t (ε+λns )dse−r(τ−t ) ρ

ρ+ r
dτ

< pt

t+
∫
t

(ε+ λnτ )e− ∫ τ
t (ε+λns )ds ρ

ρ+ r
dτ = pt

(
1 − e− ∫ t+


t (ε+λns )ds) ρ

ρ+ r
.

This implies that

Wt < pt
(
1 − e− ∫ t+


t (ε+λns )ds) ρ

ρ+ r
+ (

(1 −pt ) +pte
− ∫ t+


t (ε+λns )ds)(2pt+
 − 1)

≤ pt
(
1 − e− ∫ t+


t (ε+λns )ds) + (
(1 −pt ) +pte

− ∫ t+

t (ε+λns )ds)(2pt+
 − 1)

= 2pt − 1,

where the final equality uses Bayesian updating. This contradicts Wt = 2pt − 1.

Lemma A.10. Let (nt ) be an equilibrium with corresponding cutoff time t∗ := t∗1 = t∗2 and
no-news posterior (pt ). Then pt ≤ ps if and only if t ≥ t∗, where

ps = (ε+ r )(r + ρ)
2(ε+ r )(r + ρ) − ερ

.
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Proof. Define

Ht := pt

∫ ∞

0
(ε+ λnt+τ )e−(ετ+∫ t+τ

t λns ds) ρ

r + ρ
e−rτ dτ.

Thus, Ht represents a consumer’s expected payoff to waiting at time t given that from t

on he adopts only if there has been a breakthrough and given that the population’s flow
of adoption follows (ns ). By optimality of Wt , we must have Ht ≤ Wt for all t. For any
posterior p ∈ (0, 1), let

H(p, 0) := p

∫ ∞

0
εe−ετ ρ

r + ρ
e−rτ dτ = p

ερ

(ε+ r )(r + ρ)
.

That is, H(p, 0) represents a consumer’s expected payoff to waiting at posterior p, given
that he adopts only once there has been a breakthrough and given that breakthroughs
are only generated exogenously.

Note that by definition of t∗, nt > 0 if and only if t < t∗. This implies that H(pt , 0) <
Ht if t < t∗ and H(pt , 0) = Ht =Wt if t ≥ t∗; moreover, 2pt − 1 ≥Wt if t < t∗ and 2pt − 1 ≤
Wt if t ≥ t∗. Finally, note that ps := (ε+r )(r+ρ)

2(ε+r )(r+ρ)−ερ has the property that 2p− 1 ≤ H(p, 0)
if and only if p ≤ ps.

Combining these observations, if t < t∗, then 2pt − 1 ≥ Wt ≥ Ht > H(pt , 0), so pt >

ps. If t ≥ t∗, then 2pt − 1 ≤Wt = H(pt , 0), so pt ≤ ps, as claimed.

A.6 Proof of Proposition 1

Fix r, ρ, ε, p0. Suppose �0 is such that t∗1 (�0 ) < t∗2 (�0 ). By the proofs of Theorem 1
and Lemma 2, this means that Condition 1 is satisfied, p0 < p
, and �0 > �0, where
�0 := max{�∗(p0 ), �∗(p)} as in the proof of Lemma 2. Consider any �̂0 >�0.

A.6.1 Proof of part (i) (welfare neutrality) Write �1
0 := �0 and �2

0 := �̂0, with corre-
sponding cutoff times ti1 and ti2, value to waiting W i

t , and no-news posteriors pi
t for

i = 1, 2 (by the proof of Theorem 1, these quantities depend on λi, Ni
0 only through �i

0).
Since t1

1 < t1
2 and �2

0 > �1
0 > �0, Lemma 2 implies t2

1 < t2
2 . Moreover, by the proof of

Lemma A.7, we have max{p0, p} = p1
t1
1

= p2
t2
1

. Because nit = 0 for all t < ti1 for both i = 1, 2,

this implies that t1
1 = t2

1 = t1. Then W 2
t1

= 2p2
t1

−1 = 2p1
t1

−1 =W 1
t1

. Since there is no adop-

tion until t1, we have W i
0 = e−rt1 pt1

p0
W i

t1 for i = 1, 2, whence W 1
0 = W 2

0 , as claimed.

A.6.2 Proof of part (ii) (non-monotonicity of learning) We first prove the following
lemma.

Lemma A.11. Suppose that �̂0 = λ̂N̂0 >�0 = λN0 >�0, with corresponding equilibrium
flows of adoption (n̂t ) and (nt ). Then

(i) t∗1 (�0 ) = t∗1 (�̂0 )

(ii) 0 < t∗2 (�0 ) < t∗2 (�̂0 )

(iii) for all t < t∗2 (�0 ), λnt = λ̂n̂t .
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Proof. For (i), note that by the proof of Lemma A.7, time t∗1 under both �0 and �̂0 is

pinned down by the condition max{p0, p} = p�0
t∗1 (�0 ) = p�̂0

t∗1 (�̂0 )
. Because up to time t∗1 ,

learning is purely exogenous under both �0 and �̂0, this implies t∗1 (�0 ) = t∗1 (�̂0 ).

For (ii) and (iii), note first that by Lemma 2, we have t∗2 (�̂0 ), t∗2 (�0 ) > 0. Let t∗2 =
min{t∗2 (�̂0 ), t∗2 (�0 )}. Then because t∗1 (�0 ) = t∗1 (�̂0 ), the ODE in Corollary A.1 implies that

at all times t < t∗2 , we have p�0
t = p�̂0

t = pt . By Lemma A.6, this implies that for all t < t∗2 ,

λnt = λ̂n̂t . (11)

Note that (11) implies that

�t∗2 = �0 −
∫ t∗2

0
λnt dt < �̂0 −

∫ t∗2

0
λ̂n̂t dt = �̂t∗2 .

Because p�0
t∗2

= p�̂0
t∗2

, Lemma A.7 implies that t∗2 = t∗2 (�0 ) < t∗2 (�̂0 ). From this and (11), it

is then immediate that λnt = λ̂n̂t for all t < t∗2 (�0 ).

Now we prove part (ii) of Proposition 1. By Lemma A.11, t∗ := t∗2 (�0 ) < t∗2 (�̂0 ), λnt =
λ̂n̂t , and p�0

t = p�̂0
t for all t ≤ t∗, which proves the first claim of part (ii).

For the second claim of part (ii), we note that there exists some ν > 0 such that at all

times t ∈ (t∗, t∗ + ν), we have p�0
t > p�̂0

t . To see this, we prove the following inequality
for the equilibrium corresponding to �0:

lim
t↑t∗ λnt < lim

t↓t∗ λnt . (12)

That is, there is a discontinuity in the equilibrium flow of adoption at time t∗. Indeed,
because nt = ρNt for all t ≥ t∗ and by continuity ofNt , feasibility implies that limt↑t∗ λnt ≤
limt↓t∗ λnt . Suppose for a contradiction that limt↑t∗ λnt = limt↓t∗ λnt := λnt∗ . Then λnt∗ =
λ̂n̂t∗ . Moreover, for all t > t∗, we have λnt = ρ�t∗e−ρ(t−t∗ ), which is strictly decreasing in
t. On the other hand, λ̂n̂t satisfies

λ̂n̂t =

⎧⎪⎨
⎪⎩
r(2p̂t − 1)

(1 − p̂t )
− ε if t ∈ [t∗, t∗2 (�̂0 ))

ρ�
t∗2 (�̂0 )e

−ρ(t−t∗2 (�̂0 )) if t ≥ t∗2 (�̂0 ).

Thus, for t ∈ [t∗, t∗2 (�̂0 )), λ̂n̂t is strictly increasing in t. This implies that λ̂n̂t > λnt for all

t ∈ [t∗, t∗2 (�̂0 )). Hence, by (1), p�̂0

t∗2 (�̂0 )
>p�0

t∗2 (�̂0 )
, which by Lemma A.7 implies

�̂
t∗2 (�̂0 ) =�∗(p�̂0

t∗2 (�̂0 )

)
>�∗(p�0

t∗2 (�̂0 )

)
>�

t∗2 (�̂0 ).

This yields that for all t ≥ t∗2 (�̂0 ),

λ̂n̂t = ρe−ρ(t−t∗2 (�̂0 )�̂
t∗2 (�̂0 ) > ρe−ρ(t−t∗2 (�̂0 )�

t∗2 (�̂0 ) = λnt .
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Thus, λ̂n̂t > λnt for all t > t∗ and, hence, p�̂0
t > p�0

t for all t > t∗. This implies W �̂0
t∗ >W �0

t∗ ,
which is a contradiction, because we have

W �̂0
t∗ = 2p�̂0

t∗ − 1 = 2p�0
t∗ − 1 = W �0

t∗ .

This proves that limt↑t∗ λnt < limt↓t∗ λnt . Hence,

lim
t↓t∗ λ̂n̂t = lim

t↑t∗ λ̂n̂t = lim
t↑t∗ λnt < lim

t↓t∗ λnt .

Thus, there exists some ν > 0 such that λ̂n̂t < λnt for all t ∈ [t∗, t∗ + ν). Together with the

fact that p�0
t∗ = p�̂0

t∗ , this implies that p�0
t > p�̂0

t for all t ∈ (t∗, t∗ + ν), proving the second
claim.

Finally, for the third claim of part (ii), observe first that there exists some t > t∗ such

that p�0
t = p�̂0

t . If not, then by continuity of beliefs, p�0
t > p�̂0

t for all t > t∗ and we have

W �̂0
t∗ <W �0

t∗ , again contradicting W �̂0
t∗ = W �0

t∗ = 2pt∗ − 1. Then t := sup{s ∈ (t∗, t ) : p�0
s >

p�̂0
s } exists, with t > t∗ by the second claim. Further, by continuity, p�0

t
= p�̂0

t
, which

implies
∫ t

0 λns ds = ∫ t
0 λ̂n̂s ds. This yields �t < �̂t , which implies that λ̂n̂t > λnt for all

t > t. Indeed, if t ≥ t∗2 (�̂0 ), this is obvious. If t ∈ (t∗, t∗2 (�̂0 )), then we must have λns < λ̂n̂s

for some s < t, which implies that λns′ < λ̂n̂s′ for all s′ ∈ (s, t∗2 (�̂0 )), because N is strictly
decreasing and n̂ is strictly increasing on this domain. To see that we also have λns′ <

λ̂n̂s′ for all s′ ≥ t∗2 (�̂0 ), note that from the above, p�̂0

t∗2 (�̂0 )
>p�0

t∗2 (�̂0 )
, which as above implies

that

�̂
t∗2 (�̂0 ) = �∗(p�̂0

t∗2 (�̂0 )

)
>�∗(p�0

t∗2 (�̂0 )

)
>�

t∗2 (�̂0 ).

Hence, λ̂n̂t > λnt for all t > t. Thus, in either case, p�̂0
t > p�0

t for all t > t.

A.6.3 Proof of part (iii) (slowdown of adoption) Adoption of Good Products. By
Lemma A.11, t∗1 (�0 ) = t∗1 (�̂0 ) =: t∗1 and λnt = λ̂n̂t for all t ∈ (t∗1 , t∗ ), where t∗ := t∗2 (�0 ).
Then for all t < t∗,

nt

N0
= λnt

�0
= λ̂n̂t

�0
≥ λ̂n̂t

�̂0
= n̂t

N̂0
,

with strict inequality for all t ∈ (t∗1 , t∗ ). Therefore, At(�0, G) ≥ At(�̂0, G) for all t < t∗,
with strict inequality for all t ∈ (t∗1 , t∗ ).

Finally note that for all t ≥ t∗, nt = ρNt and so

At(�0, G) = At∗(�0, G) + (
1 − e−ρ(t−t∗ ))(1 −At∗(�0, G)

)
At(�̂0, G) ≤At∗(�̂0, G) + (

1 − e−ρ(t−t∗ ))(1 −At∗(�̂0, G)
)
,

where the second inequality follows from feasibility. Because At∗(�0, G) >At∗(�̂0, G),
it follows that At(�0, G) >At(�̂0, G) for all t > t∗1 , as claimed.
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Adoption of Bad Products. Recall that At(λ, N0, B) denotes the expected proportion
of adopters at time t conditional on θ = B. That is, letting (nt ) denote the associated
equilibrium, we have

At(λ, N0, B) :=
t∫

0

(ε+ λnτ )e− ∫ τ
0 (ε+λns )ds

( τ∫
0

ns

N0
ds

)
dτ + e− ∫ t

0 (ε+λns )ds

t∫
0

ns

N0
ds

=
t∫

0

nτ

N0
e− ∫ τ

0 (ε+λns )ds dτ,

where the final equality follows from integration by parts. Moreover, from the Marko-
vian description of equilibrium in the proof of Theorem 1, it is easy to see that this
expression depends on λ and N0 only through �0 = λN0, so we can denote it by
At(�0, B). Then we can assume without loss of generality that �0 and �̂0 are of the
form �0 = λN0 and �̂0 = λ̂N0, i.e., that the two environments have the same population
size N0.

Let (nt ) and (n̂t ) be the equilibrium under λ and λ̂, respectively. Given an arbitrary
strictly positive adoption flow (ms ) and t > 0, note that the map

λ �→
t∫

0

mτe
− ∫ τ

0 (ε+λms )ds dτ

is strictly decreasing in λ. Since �̂0 > �0 > �0, we have t∗1 (�0 ) = t∗1 (�̂0 ) =: t∗1 , and so we
get that for all t > 0,

t∫
0

nτe
− ∫ τ

0 (ε+λns )ds dτ ≥
t∫

0

nτe
− ∫ τ

0 (ε+λ̂ns )ds dτ, (13)

with strict inequality for all t > t∗1 . We now show that

t∫
0

nτe
− ∫ τ

0 (ε+λ̂ns )ds dτ ≥
t∫

0

n̂τe
− ∫ τ

0 (ε+λ̂n̂s )ds dτ.

Together with (13), this implies the desired conclusion that At(λ̂N0, B) ≤At(λN0, B) for
all t > 0, with strict inequality for all t > t∗1 .

To prove this, suppose for a contradiction that there exists some t > 0 such that

t∫
0

nτe
− ∫ τ

0 (ε+λ̂ns )ds dτ <

t∫
0

n̂τe
− ∫ τ

0 (ε+λ̂n̂s )ds dτ. (14)
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Note that by the above result for good products, N0Aτ(λ, G) = ∫ τ
0 ns ds ≥ ∫ τ

0 n̂s ds =
N0Aτ(λ̂, G) for all τ ≥ 0 and so, for all t ≥ 0,

t∫
0

εe− ∫ τ
0 (ε+λ̂ns )ds dτ ≤

t∫
0

εe− ∫ τ
0 (ε+λ̂n̂s )ds dτ. (15)

Inequalities (14) and (15) together imply

t∫
0

(ε+ λ̂nτ )e− ∫ τ
0 (ε+λ̂ns )ds dτ <

t∫
0

(ε+ λ̂n̂τ )e− ∫ τ
0 (ε+λ̂n̂s )ds dτ.

This is equivalent to

(
1 − e− ∫ t

0 (ε+λ̂ns )ds)< (
1 − e− ∫ t

0 (ε+λ̂n̂s )ds),

which contradicts
∫ t

0 ns ds ≥ ∫ t
0 n̂s ds.
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