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We study the existence of efficient auctions in private value settings in which some

bidders form their expectations about the distribution of their competitor’s bids

based on the accessible data from past similar auctions consisting of bids and ex

post values. We consider steady states in such environments with a mix of ratio-

nal and data-driven bidders, and we allow for correlation across bidders in the

signal distributions about the ex post values. After reviewing the working of the

approach in second-price and first-price auctions, we establish our main result

that there is no efficient auction in such environments.
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1. Introduction

Understanding which auction format if any ensures that the goods end up in the hands

of the buyers who value them the most is not only of theoretical but also of practical

interest. As forcefully argued by Maskin (1992), a primary objective of privatizations

is to ensure an efficient allocation of productive assets. More generally, the same effi-

ciency concern applies to most auction settings that are organized by public authorities

(e.g., the U.S. Congress explicitly mandated the Federal Communications Commission

to promote efficiency in its auctions of frequency bands for telecommunications sale of

license auctions).
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The academic view about efficient (one-object) auctions is as follows. In the private
value setting, that is, when the private information held by any given buyer is a suffi-
cient statistic for determining the value of the good to this buyer, the Vickrey or second-
price auction is an efficient auction: Irrespective of whether there is correlation in the
private information held by the various buyers and irrespective of potential asymme-
tries between buyers, the good ends up in the hand of the buyer who values it the most.
This is not so with the first-price auction in which inefficiencies can arise in the private
value setting, in particular in the presence of asymmetries or correlation. By contrast, in
the interdependent value setting or when there are informational externalities between
bidders, inefficiencies are unavoidable when private information is multidimensional
no matter what auction format is used (see Maskin (1992) for an early illustration and
Jehiel and Moldovanu (2001) for a general analysis of this).

In this paper, we revisit the possibility of efficient auctions in one-object private
value settings assuming that some bidders, the less experienced ones, lack the ability to
find out their best strategy, as usually considered in economic models. Specifically, such
bidders referred to as novice observe some private signal (that is informative about their
ex post valuation), and they also rely on the data accessible from past similar auctions
played by other bidders, which are assumed to consist of bids and ex post values. In ad-
dition to the novice bidders, more experienced bidders can participate in the auction,
and these are viewed as rational agents, thereby bidding optimally given the auction
environment and the signals they receive.1

Our main result will be to establish that even in private value settings, there is no
efficient auction when there is a mix of novice and experienced buyers, the private in-
formation is correlated among bidders, and the private information at the time of the
auction is only a noisy signal about the ex post value of the buyer. That is, we suggest
a novel potential source of inefficiency in auctions that is related to the cognitive limi-
tations of (some) bidders and not to the interdependence of the private information, as
highlighted by the previous literature.

Specifically, we consider two-bidder one-object auctions in which at the time of the
auction, a bidder’s private information is a noisy signal about his (own) ex post value for
the good, which is a simple way to capture the ex post uncertainty that prevails in many
auction settings.2 Importantly, we assume that after the auction is completed, what is
publicly disclosed to new bidders is the profile of bids as well as the ex post values of
the various bidders (the latter possibly with some lag), but not the signals observed by
the bidders at the time of the auction. We believe that such disclosure assumptions are
quite natural in a number of applications such as procurement auctions in which bids
are often publicly disclosed afterwards, and upon completion of the contract, the details

1From a more applied perspective, one can think of rational bidders as insiders having familiarity with
the prevailing auction environment and of novice bidders as outsiders who would participate in such auc-
tions for the first time and rely on AI or machine learning techniques applied to the available data set to
guide them on how to bid given their private information.

2While the empirical literature on auctions has considered the possibility of noisy signals in private value
settings, it has done so assuming bidders are risk averse (see Perrigne and Vuong (forthcoming)). In our
setting with nonrational bidders, ex post uncertainty plays a key role, even with risk neutral bidders.
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of the conditions of it become clear (making the assessment of the costs and resulting ex
post valuations easier while, by contrast, accessing what the various contestants knew
at the time of the auction remains very difficult even at that stage).3

It should be highlighted that we allow for correlation between signals, which will
play a key role in the analysis. A practical way to think of correlation is that the distri-
butions of private signals are influenced by unobserved conditions, which are common
to all bidders, thereby leading to correlation. But, despite the correlation and as already
stressed, the setting is one of private values. Yet, novice players are assumed to be un-
aware of how signals and valuations are jointly distributed, and thus of the private value
character of the auction. Instead, like econometricians or analysts would do, they con-
struct a representation of the statistical links between the variables of interest based on
the signal they receive as well as the data set available to them. Specifically, as suggested
above, observations from past auctions take the form (b1, v1, b2, v2 ) where bj is the bid
previously submitted by a subject in the role of bidder j and vj is his ex post value. A
novice bidder i constructs from the data set the empirical distribution describing how
bj is distributed conditional on the various possible ex post values of bidder i. He also
uses his own signal θi whose implication in terms of the distribution of his ex post valu-
ation vi is assumed to be known by him (independently of the auction data). The novice
bidder then combines the two pieces of information assuming that θi and the oppo-
nent’s current bid bj provide independent information on vi, and he accordingly forms
a belief about how (vi, bj ) is jointly distributed given the signal θi. He then best responds
to this belief given the rules of the auction.

We will be considering steady-state environments in which there is a mixed (large)
population of bidders (assigned to the role of i or j) composed of a share of novice bid-
ders (whose expectations are formed as just informally explained and who should be
thought of as being replaced in every generation) and a complementary share of ex-
perienced or rational bidders (who can be thought of as participating in every genera-
tion). In each generation, bidders are matched randomly to play the same auction game,
and in steady state, the distributions of data generated are the same across generations.
Steady states are referred to as data-driven equilibria.

We are concerned with the efficiency properties of data-driven equilibria, and more
precisely, whether by a judicious choice of auction rule, one can implement an efficient
allocation in such an equilibrium. Our insights are as follows. First, unless the distri-
butions of signals of the two bidders are independent, data-driven bidders rely on a
misspecified statistical model, and as a result choose suboptimal bidding strategies. In
Section 3, we start illustrating this with Second-Price Auctions (SPA) in the (symmetric)
binary case in which there are two possible ex post values. We show that unlike ratio-
nal bidders, novice bidders do not bid their expected value when there are correlations.
As in winner’s curse models (see Milgrom and Weber (1982) for the classic analysis of
such models), novice bidders make inferences about their ex post value from how the

3In some applications, it may be argued that accessing losers’ valuations is not as easy as accessing win-
ners’ valuations. In the later part of the paper, we note that our model and its analysis would remain un-
changed if instead of assuming outside observers have access to the ex post valuations of losers we assumed
such observers can generate unbiased (possibly poorly informative) estimates of those.
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other bidder bids. In the case of positive correlation, this leads novice bidders to bid
more than their expected value when they receive good signals (because in the neigh-
borhood of large opponent’s bids, their own ex post value is more likely to be high) and
less than their expected value when they receive bad signals (for a symmetric reason).
We provide an illustration of the equilibrium for parametric classes of distributions, and
we describe how it is affected by the share of rational bidders and/or the correlation of
signal distributions.

Clearly, the fact that novice and rational bidders do not bid in the same way leads
to inefficiencies in the binary case, unless there is perfect correlation of the signals, or
the bidders are all novice or all rational. For our parametric example, we observe that
the normalized welfare loss in the data-driven equilibrium of the SPA is U-shaped in
the share of novice bidders as well as in the degree of correlation. More generally, we
show for the binary mixed population case that as soon as there are correlations, there is
some welfare loss in the SPA. We also consider First-Price Auctions (FPA), for which we
also show that there must be inefficiencies whenever there is correlation.

Our main result concerns general auction-like mechanisms defined as mechanisms
in which each bidder submits a real-valued bid, and an outcome is chosen as a function
of the profile of bids with the restriction that if a bidder submits a higher bid, this bidder
has more chance of winning the object. In Section 4, we provide a general inefficiency
result. More precisely, we show that for generic joint distributions of signals, there is no
auction-like mechanism that allows to obtain (or approximate) the first-best as a data-
driven equilibrium when ex post values can take at least three realizations. The intuition
for this result is as follows. To obtain efficiency among rational bidders, only the SPA or
a strategically equivalent auction format can be used. This is so because with more than
two ex post values there is generically a manifold of signal realizations corresponding
to the same expected value for the object, but different beliefs about the signal realiza-
tion of the other bidder, and if the payment in the auction were to depend on the own
bid, then the belief about the opponent would affect the shape of the optimal bid, as in
FPA. Since in SPA, novice bidders do not bid their expected value as also observed in the
simplified binary case, we conclude that inefficiencies must occur.

Section 5 discusses the robustness of our analysis in the case in which losers’ val-
uations cannot be observed with precision ex post, and when mechanisms other than
auctions can be used. Section 6 concludes.

Related literature

Our paper relates to different strands of literature. After, we present our model, we dis-
cuss in more detail the mode of reasoning of novice bidders, and relate the data-driven
equilibrium to the Berk–Nash equilibrium (Esponda and Pouzo (2016)), the Bayesian
network equilibrium (Spiegler (2016)), and the analogy-based expectation equilibrium
(Jehiel (2005)).

It is also worth mentioning the relation/difference of the data-driven equilibrium
with the cursed equilibrium (Eyster and Rabin (2005)). While Eyster and Rabin (2005)
also consider the auction application, it should be mentioned that the cursed equilib-
rium gives predictions away from the Nash equilibrium, only in interdependent value
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settings (thus not in our private value setting). In some sense, cursed bidders behave
as if they were in a private value setting when in interdependent value environments.
By contrast, our data-driven bidders behave as if they were in an interdependent value
setting when in private value settings with correlation.

One can also mention the strand of literature initiated by Li (2017) who introduced
the idea of obviously dominant strategy. In Li’s approach, bidders fail to identify their
(weakly) dominant strategy in the SPA because they may entertain different expectations
about their competitor’s bidding behavior when considering different bids. By contrast,
the expectation of novice bidders about the opponent’s behavior is the same irrespective
of the bid, but the underlying correlation and the possibility of multiple ex post values
lead novice bidders to miss that they are in a private value setting, thereby leading them
to fail to identify their optimal strategy in SPA.

Regarding the robust mechanism design literature (Bergemann and Morris (2005)),
we note a common motivation with our approach in the sense that in both cases it is
emphasized that it may be hard to know what the beliefs of agents are. While the robust
mechanism design literature uses this observation to motivate the desire to implement
outcomes for a large range of (or even all) beliefs,4 our paper explicitly suggests a method
of expectation formation for bidders who do not have access to such information from
past auctions.

It should also be mentioned that our disclosure assumptions are quite similar to
those made in the empirical literature on auctions as initiated by Hendricks and Porter
(1988). Several important differences between our approach and this literature should
however be mentioned. First, we consider private value environments when Hendricks
and Porter consider common value environments. Second, the empirical literature on
auctions assumes that bidders behave optimally according to a Bayes–Nash equilib-
rium, when in our approach, the behaviors of the less experienced bidders are assumed
to be derived from the available data, leading to suboptimal behaviors (in a data-driven
equilibrium).

Finally, from a technical point of view, our analysis makes use of some results devel-
oped in the literature on mechanism design with correlation. In particular, we borrow
genericity arguments from Gizatulina and Hellwig (2017).

2. Model

Mechanisms We consider the allocation of a single object to two bidders i = 1, 2 via
an auction or more general auction-like mechanism. To simplify notation, when we
consider a generic bidder i ∈ {1, 2}, we denote the opponent by j �= i. A Mechanism
M = [(Bi ), q, p] consists of three elements: (i) feasible bids Bi for bidder i. A profile
of bids is denoted b = (b1, b2 ) ∈ B := B1 × B2. (ii) an allocation rule q : B → [0, 1]2,
q(b) = (q1(b), q2(b)), with q1(b) + q2(b) ≤ 1, where qi(b) is the probability that bid-
der i gets the object if the bid profile b is submitted. (iii) A payment rule p : B → R

2,

4Our result that with only rational bidders, an efficient auction must be strategically equivalent to a SPA
belongs to the robust design literature, and as far as we know it is a new result not formally appearing in
that literature.
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p(b) = (p1(b), p2(b)), where pi(b) denotes the payment bidder i has to make if the bid
profile b is submitted.

Valuations Ex post, the value of the object for bidder i is denoted vi. It can take
values in V = {v1, � � � vK }. Up to normalization, it is without loss to assume that 0 =
v1 < · · · < vK = 1. When participating in a mechanism, each bidder receives a signal
θi = (θ1

i , � � � , θKi ) ∈ � := �V , where θki denotes the probability that vi = vk. A profile of
types is denoted θ= (θ1, θ2 ). We assume that conditional on θi, vi is independent of θj .
As a consequence, the expected valuation of a bidder only depends on her own interim
type: E[vi|θ] = E[vi|θi]. In other words, we are considering a setting with private values.
Signals are jointly distributed with cumulative distribution function F(θ) and density
f (θ) defined over �2, and our main interest is when θ1 and θ2 are not independently
distributed. We assume throughout that the joint distribution is symmetric and has a
continuous and positive density. When there is no confusion, we slightly abuse notation
and denote marginal distributions Fi(θi ) and fi(θi ) by F(θi ) and f (θi ), and conditional
distributions Fi(θi|θj ) and fi(θi|θj ), by F(θi|θj ) and f (θi|θj ).

Comment. To think more concretely of a setting with correlation, let bidder i’s ex post
valuation satisfy vi = v(ϕi, εi ) where bidder iwould observe ϕi = ηi+z at the time of the
auction, ηi would be an efficiency parameter that applies to i only, and z would repre-
sent an efficiency parameter associated to the common difficulty of the project while
εi would be the realization of an idiosyncratic shock occurring ex post after the time of
the auction. Clearly, such a setup can be cast into our θi, θj formulation, and assuming
that the distribution of z is nondegenerate, the distributions of θi and θj would exhibit
correlation, even in the (natural) case in which ηi and ηj are independently distributed.

Rational and novice bidders Each bidder i is characterized by a generalized type ti =
(θi, si ), where θi denotes the signal described before, and si ∈ {r,m} specifies the so-
phistication of the bidder. We denote the set of general types by T = � × {r,m}. For
simplicity, we will call θi just the type. The probability that si = r is denoted λ ∈ (0, 1);
we assume that it is independent of θi and across bidders. Bidder i is rational when
si = r; and bidder i is novice or misspecified when si =m. Informally, the rational type
correctly understands the environment, whereas the novice type holds beliefs that are
endogenously determined by past observations of equilibrium outcomes of the mecha-
nism he currently participates in. As we will see, this way of forming beliefs can lead to
misspecifications, and accordingly we also refer to the novice type as the misspecified
type.

We now make this precise. Fix a mechanism M = [(Bi )i, q, p]. A strategy of bidder i
is a function bi : T → Bi, where as a shorthand we write bi(θi, si ) = b

si
i (θi ), that is, bri (·)

is the strategy of the rational type, and bmi (·) is the strategy of the misspecified type of
bidder i.5 A strategy profile is denoted by b = (b1, b2 ) = (br1, bm1 , br2, bm2 ) and we denote
the space of all strategy profiles by B.

For a rational type of bidder i, the expected utility of type θi when submitting bid
bi ∈ Bi, and assuming that bidder j bids according to bj(·), is given by

Uri
(
bi, θi|bj(·)

) = Ef

[
viqi

(
bi, bj(θj , sj )

) −pi
(
bi, bj(θj , sj )

)
|θi

]
,

5We only consider pure strategies in our setting with continuous interim types.
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where Ef is the expectation with respect to the correct distribution f and the probabil-
ity λ.

Next, consider the novice type. When observing θi = (θ1
i , � � � , θKi ), we assume this

type correctly understands that without extra conditioning it means there is a probabil-
ity θki that vi = vk. This understanding is assumed to be derived by access to data of the
form (θi, vi ) that are unrelated to the auction environment, for example, capturing situ-
ations in which the object is already owned by the agent (or the company for which the
agent works). More precisely, such an agent is assumed to have access to infinitely many
past instances of such cases in which the same signal θi was observed, and the novice
bidder can then find out that the frequency with which vi = vk in the corresponding pool
coincides with θki , as implied by our definition of θi.

To choose how to bid in mechanismM , the novice type must also form a belief about
the behavior of the opponent and how it relates to variables of interest. We assume that
the novice type forms such a belief using past observations from the same mechanism
played by similar bidders. We make the assumption that only bids and ex post valuations
are observable.

Assumption 1. For each mechanism we consider, we assume that bidders have access to
past observations of the form (b1, v1, b2, v2 ) from the same mechanism. The data about
past mechanisms do not include the types (θ1, θ2 ) of past bidders.

The idea behind this assumption is that bids are often disclosed after the auction,
and as time goes by, outside observers get relatively precise signals about the ex post
valuations of the bidders.6 On the other hand, (new) bidders typically do not have access
to the beliefs (or signals) that past bidders in their respective role had at the time of
bidding. In Section 5, we discuss situations in which, after the completion of the auction,
bids and winners (but not losers)’ ex post valuations are accessible, and we discuss the
robustness of our analysis in this case.

Past data allow bidders to identify the joint distribution of observable variables. We
abstract from issues of estimation, and assume that bidders can recover this distribution
without estimation error. The novice bidder then forms a simple model that combines
relevant information from the empirical distribution of (b1, v1, b2, v2 ), and his belief that
his own vi is distributed according to θi. To illustrate, consider an auction with possible
bids B1 = B2 = [0, ∞). To assess the payoff from different bids, a bidder needs to know
the joint distribution of her own valuation vi and the opponent’s bid bj , conditional on
his own type θi. The novice bidder combines the distribution of vi given by his type θi
with the joint distribution of vi and the opponent’s bid bj learned from the data in a
parsimonious way, taking the joint distribution to be

Pm
[
vi = vk, bj ≤ b|θi

] = θki ×Hi
(
b|vk

)
, (1)

6In the context of procurement auctions, this would amount to assuming that ex post one has a pretty
good idea of the conditions of the contract, thereby making the assessment of the ex post valuations rela-
tively easy.
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whereHi(b|vk ) is the c.d.f. of bj conditional on vi = vk that is obtained from the auction
data. In other words, from the past available auction data, the novice bidder i is able to
relate the distribution of opponent’s bid to his own ex post value, and he views θi and bj
as providing independent sources of information about vi.

Assuming that bidder j �= i bids according to bj(·), the perceived expected utility of a
novice bidder i with type θi when submitting bid bi ∈ Bi is given by7

Umi
(
bi, θi|bj(·)

) = Em
[
viqi

(
bi, bj(θj , sj )

) −pi
(
bi, bj(θj , sj )

)
|θi

]
,

=
K∑
k=1

θki

∫
Bj

[
vkqi(bi, bj ) −pi(bi, bj )

]
dHi

(
bj|v

k
)
,

where Em is the expectation formed according to the model described above. The anal-
ysis of the SPA in the next section will be helpful to illustrate more concretely how this
works.

Equilibrium To close the model, we assume that Hi(·|vk ) are equilibrium objects that
are generated by the equilibrium strategy profile, and we assume that the misspecified
type best responds given her beliefs that are captured by Hi(·|vk ). In other words, we
focus on the steady state in which the data generated by new bidders follow the same
distribution as those generated by previous bidders. Formally, we have the following.

Definition 1. The strategy profile b(·) is a “data-driven equilibrium” of the mechanism
M = [(Bi ), q, t] if for all i �= j, and for all θi ∈�,

(a) bri (θi ) ∈ arg maxbi∈Bi Uri (bi, θi|bj(·)),

(b) bmi (θi ) ∈ arg maxbi∈Bi Umi (bi, θi|bj(·)), where the distribution Hi(bj|vk ) used to
compute Umi is derived from b(·), f , and Prob[si = r] = λ.

On the decision rules of novice and rational bidders.
In our proposed approach, the novice bidder i views his signal θi and the opponent’s
bid bj as providing independent sources of information about vi. More formally, bidder
i upon observing θi is concerned with the joint distribution of (vi, bj ) conditional on
θi so as to determine his best response in the auction. This joint distribution can be
factorized as P(vi, bj|θi ) = P(vi|θi )P(bj|vi, θi ) where P(vi|θi ) is assumed to be known to
bidder i (using the above notation θki indicates the probability that vi = vk given θi).
In the correct representation, vi and θj are independently distributed conditional on θi
(since we are in a private value environment). Since bj only depends on θj , it follows
that vi and bj are independently distributed conditional on θi. Thus, the correct joint
distribution satisfiesP(bj|vi, θi ) = P(bj|θi ). By contrast, the novice bidder i assumes that
P(bj|vi, θi ) = P(bj|vi ) as if θi and bj (or θj) were independently distributed conditional
on vi.8

7Clearly, we do not have in mind that bj(·) is known by i. As explained above, the decision rule of the
novice bidder i is based onHi, which she recovers from the data that are accessible from past mechanisms.

8Using the language of Bayesian network (Spiegler (2016)), one can think of the incorrect representation
of the novice bidder i through the lens of a direct acyclic graph (DAG) in which the novice bidder i would
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The incorrect representation of novice bidders is motivated as follows. First, since
novice bidders do not see the type θi of past bidders i in the auction data, they cannot
empirically assess P(bj|vi, θi ). Second, seeing (b1, v1, b2, v2 ) in the auction data makes
it easy to nonparametrically estimate P(bj|vi ), and this is the probability considered by
novice bidders i in a data-driven equilibrium.

One way to think of the incorrect representation of novice bidders is in terms of a
misspecified model in which bidder i would wrongly believe that he lives in a world
with interdependent values in which bidders i and j’s information would be indepen-
dent conditional on vi.9 To state this more concretely, remember that bidder i’s infor-
mation θi is a noisy signal about vi, and let the novice bidder i (mistakenly) believe that
bidder j observes a noisy signal θj about h(vi, ηj ) whereηj is an auxiliary variable whose
distribution is viewed by the novice bidder i as being independent of vi and h(vi, ηj ) can
be thought of representing j’s valuation (neither the function h nor the distribution ofηj
need to be known by the novice bidder i). With our assumption that the novice bidder
i only sees (b1, v1, b2, v2 ) from past auctions, in a Berk–Nash equilibrium of the cor-
responding setting (see Esponda and Pouzo (2016) for a formal definition), the novice
bidder would behave as in our data-driven equilibrium (given that he would think that
θi and b(θj ) are drawn from independent distributions conditional on vi).

Another way to think of the incorrect representation is to view the novice bidders as
using data similarly as nonstructural statisticians would do, thereby not attempting to
construct a structural model involving unobserved variables but instead directly work-
ing with the correlation of observed variables.

Observe that in our environment, the novice bidder i is only assumed to know how
the signal θi he currently observes maps into the odds that the ex post value is vi = vk

(an understanding he derives from data that are unrelated to the auction, see above).
It is then hard/impossible for the novice bidder i to make use of bi or vj in the auction
data (b1, v1, b2, v2 ) he observes, since he has no idea how information may have been
distributed among agents assigned to the role of bidder i in these past auctions (the
novice bidder i needs not know how θi is distributed in the auction). Moreover, in his
use of the data (bj , vi ) and signal θi, the novice bidder makes the additional assumption
that θi and bj are independently distributed conditional on vi, which can, from the non-
structural econometrics perspective, be motivated on the ground that it is the simplest
statistical model consistent with the observations (also inducing maximum entropy, as
sometimes considered in statistical physics; see Jaynes (1957)).10

wrongly believe that vi is a cause of θi and bj with no direct causal links between θi and bj (whereas the true
DAG would be one where there is a common cause to vi and vj but vi (resp., vj ) is the only cause of θi (resp.,
θj ). This can also be formulated using the language of the analogy-based expectation equilibrium, in partic-
ular considering the payoff-relevant analogy partition (see Jehiel and Koessler (2008) and also Jehiel (2022)
for a discussion of the link between the Bayesian network approach and the analogy-based expectation
equilibrium).

9It should be mentioned that the empirical literature on auctions often struggles to decide if a certain
environment falls better into the private value or common value camp (see, e.g., the discussion in Perrigne
and Vuong (forthcoming)). It is then plausible that novice bidders could be misspecified along the lines of
thinking they are in a common value environment when the true environment has private values.

10From a different but related perspective, such an independence assumption can also possibly be moti-
vated on the ground that the novice bidder would see no reason to impose some extra correlation as such a
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Regarding rational types, one way to think of them is that they have a full under-
standing of the auction environment including the distribution of types and of the de-
cision rules. However, our preferred way to think of rational types is to view them as
experienced bidders who would have learned the best bidding strategy given the envi-
ronment, and thus behave as if they had such a complete understanding (with no need
to assume that each aspect of the environment is understood or known in isolation).

3. Standard auctions

Before considering general auction-like mechanisms and presenting the main result of
the paper, we apply the model to standard auctions. This helps us illustrate the working
of data-driven equilibria.

To start with a simple case, we assume here that |V | = 2, so that the type of each
bidder is one-dimensional. More specifically, we assume that V = {0, 1}, so that the type
can be written as one number θi ∈ [0, 1], that specifies the probability that bidder i’s ex
post valuation is vi = 1. Note that this implies that θi is also the interim expected value
of bidder i. In the following, we explain the equilibrium logic of our model for two stan-
dard auctions formats, the SPA and the FPA. To compute concrete bidding equilibria, we
will consider two specific families of distributions that allow us to vary the correlation
between θ1 and θ2.

Example 1. θ1 and θ2 are uniformly distributed on [0, 1]. They are perfectly correlated
(i.e., θ1 = θ2) with probability α, or else they are independently distributed with proba-
bility 1 − α where α ∈ [0, 1]. ♦

Example 2. The joint density is given by

f (θ1, θ2 ) = 2 + α
2

(
1 − |θ1 − θ2|

)α
,

where α ∈ [0, ∞). ♦

In each of these specifications, the parameter α determines the correlation between
the two types where α= 0 corresponds to the independent case and the supremum of α
(α= 1 in Example 1 and α= ∞ in Example 2) corresponds to perfect correlation. Exam-
ple 1 involves distributions that are admittedly less smooth than in Example 2, but it will
allow us to derive some analytic solutions in some limiting cases whereas for Example 2
only simulations will be provided.

correlation would not be motivated by any empirical measure and it would typically be considered ad hoc
(this preference for independence unless proven wrong by the data can be viewed as a formalization of the
principle of insufficient reason or Occam’s razor; see also Jehiel (2022) for further discussion of a similar
assumption in the context of the analogy-based expectation equilibrium).
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3.1 Second-price auction

In a SPA, the rational type has a weakly dominant strategy since values are private.
Hence she bids her interim expected value. We have

br(θi ) = θi,
where br refers to the rational type’s strategy. We denote the inverse by θr(bi ), which is
of course equal to bi in this case.

Now consider the misspecified type and consider a symmetric equilibrium, that is,
bmi (·) = bmj (·) = bm(·). Suppose the equilibrium strategy bm(·) is strictly increasing with
inverse θm(bi ). In equilibrium, the distribution of bj conditional on vi = 1 is

HSPA(b|vi = 1) = Pf [bj ≤ b, vi = 1]

Pf [vi = 1]
, (2)

where HSPA(·) refers to this distribution for the SPA. Note that the misspecified type
learns the correct joint distribution of vi and bj from the data. Hence we have used the
correct probabilities Pf on the right-hand side. In the denominator, we have the uncon-
ditional probability of vi = 1, which is given by the (ex ante) expectation of the random
variable θ̃i. In the numerator, the probability Pf [bj ≤ b, vi = 1] is obtained by averaging
Pf [bj ≤ b, vi = 1|θ̃i] over the (ex ante) random variable θ̃i. Since bj is a function of θj and
sj , and the generalized type (θj , sj ) and vi are independent conditional on θ̃i, we have

HSPA(b|vi = 1) = Eθ̃i

[
Pf [bj ≤ b|θ̃i] × Pf [vi = 1|θ̃i]

]
E[θ̃i]

= Eθ̃i

[(
λPf

[
br(θj ) ≤ b|θ̃i

] + (1 − λ)Pf
[
bm(θj ) ≤ b|θ̃i

]) × Pf [vi = 1|θ̃i]
]

E[θ̃i]

= 1

E[θ̃i]

∫ 1

0

[
λF(b|θ̃i ) + (1 − λ)F

(
θm(b)|θ̃i

)]
θ̃if (θ̃i )dθ̃i.

In the second line, we decomposed the probability Pf [bj ≤ b|θ̃i] into the probability that
a rational and a misspecified type bid below b, conditional on θ̃i. If the opponent is ra-
tional, the probability of bj ≤ b is given by Pf [br(θj ) ≤ b|θ̃i] = F(θr(b)|θ̃i ) = F(b|θ̃i ), and
if the opponent is misspecified it is given by Pf [bm(θj ) ≤ b|θ̃i] = F(θm(b)|θ̃i ). The term
θ̃i in the third line is just Pf [vi = 1|θ̃i]. We obtain a similar expression for the distribution
of bj conditional on vi = 0:

HSPA(b|vi = 0) = 1

E[1 − θ̃i]
∫ 1

0

[
λF(b|θ̃i ) + (1 − λ)F

(
θm(b)|θ̃i

)]
(1 − θ̃i )f (θ̃i )dθ̃i,

where the expectation in the integral differs from that in HSPA(b|vi = 1) since Pf [vi =
0|θ̃i] = (1− θ̃i ), and outside the integral E[1− θ̃i] is the unconditional probability Pf [vi =
0].11

11Note thatHSPA(b|vi = 0) = Pf [bj ≤ b, vi = 0]/Pf [vi = 0].
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In a symmetric equilibrium of the SPA, the misspecified type’s bid for θi solves

max
b

{
θiH

SPA(b|vi = 1) − θi
∫ b

0
xdHSPA(x|vi = 1) − (1 − θi )

∫ b

0
xdHSPA(x|vi = 0)

}
.

To obtain an equilibrium, we have to determine a bidding strategy bm and the implied
HSPA such that bm is optimal for the misspecified type give belief HSPA. Taking the first-
order condition for b, we obtain that at b= bm(θi ):

θi
∂HSPA

∂b
(b|vi = 1) − θib∂H

SPA

∂b
(b|vi = 1) − (1 − θi )∂H

SPA

∂b
(b|vi = 0) = 0

or

bm(θi ) = θih
SPA(

bm(θi )|vi = 1
)

θih
SPA(

bm(θi )|vi = 1
) + (1 − θi )hSPA(

bm(θi )|vi = 0
) ,

where hSPA(·|vi ) denotes the pdf associated withHSPA(·|vi ).
When HSPA(·|vi = 1) = HSPA(·|vi = 0) (which arises in the independent case), the

above expression simplifies into the familiar expression bm(θi ) = θi, which corresponds
to the bid of the rational bidder. When HSPA(·|vi = 1) and HSPA(·|vi = 0) are different
(which arises when there is correlation), bm(θi ) is typically different from θi. The novice
bidder i uses the bid of j to refine his perceived assessment of the odds of vi. When
hSPA(bm(θi )|vi = 1) > hSPA(bm(θi )|vi = 0), he bids more than θi because bidder i per-
ceives that when j bids bj = bm(θi ) it conveys an extra information that vi = 1. And he
bids less than θi when hSPA(bm(θi )|vi = 1)< hSPA(bm(θi )|vi = 0). This is a reasoning sim-
ilar to the one we are familiar with in auction settings with interdependent valuations.
It arises here in a private value setting due to the erroneous representation of the novice
bidder i.

To illustrate how it works, consider first Example 1, assuming either that λ = 1 (all
bidders are rational) or λ= 0 (all bidders are novice).

In Example 1 with λ= 1, everyone bids according to br(θi ) = θi, and thus

HSPA(b|vi = 1) =
(1 − α)

∫ 1

0
bθdθ+ α

∫ b

0
θdθ∫ 1

0
θdθ

= (1 − α)b+ αb2.

Similarly,

HSPA(b|vi = 0) =
(1 − α)

∫ 1

0
b(1 − θ)dθ+ α

∫ b

0
(1 − θ)dθ∫ 1

0
(1 − θ)dθ

= (1 − α)b+ αb(2 − b).
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Figure 1. SPA bid-function bm(θi ), α ∈ {1, 10} (left to right).

This in turn implies that bm(θ) should be a solution to

b= θ(1 − α+ 2αb)

θ(1 − α+ 2αb) + (1 − θ)
(
1 − α+ 2α(1 − b)

)
yielding

bm(θ) = −(1 − α) − 2α(1 − 2θ) + [(
1 − α+ 2α(1 − 2θ)

)2 + 8θ(1 − α)α(2θ− 1)
]1/2

4α(2θ− 1)
.

It is readily verified that bm(0) = 0, bm(1) = 1, bm(1/2) = 1/2, and bm(θ) < θ (resp.,
bm(θ)> θ) whenever θ ∈ (0, 1

2 ) (resp., θ ∈ ( 1
2 , 1)). Moreover, as the correlation parameter

increases to α= 1, bm(θ) approaches the step function in which bm(θ) = 0 for θ ∈ (0, 1
2 )

and bm(θ) = 1 for θ ∈ ( 1
2 , 1).

Consider now the same example with λ= 0. We have that bm(θ) should satisfy

bm(θ) = θ
(
αθ+ (1 − α)/2

)
θ
(
αθ+ (1 − α)/2

) + (1 − θ)
(
α(1 − θ) + (1 − α)/2

)
since bidder j bids bm(θ) when θj = θ, which implies that bidder i has θi = θ with prob-
ability α, and otherwise θi has mean 1/2, which translates in a probability αθ+ (1 −α)/2
(resp., (1 − θ)(α(1 − θ) + (1 − α)/2)) that vi = 1 (resp., vi = 0).

It is readily verified in this case, too, that bm(0) = 0, bm(1) = 1, bm(1/2) = 1/2, and
bm(θ) < θ (resp., bm(θ) > θ) whenever θ ∈ (0, 1

2 ) (resp., θ ∈ ( 1
2 , 1)). However, the differ-

ence between bm(θ) and br(θ) can be seen to be smaller than when λ = 0. To see an
illustration of this, consider the case in which the correlation parameter increases to
α= 1. While we had a step function moving from 0 to 1 around θ= 1/2 when λ= 1, we
have that bm(θ) now corresponds to θ2

θ2+(1−θ)2 when λ= 0.
Moving away from Example 1, we obtain in general a differential equation for bm that

depends both on λ and the distribution f (θ1, θ2 ). Solving the differential equation nu-
merically for the joint distribution from Example 2, we get the bid-functions illustrated
in Figure 1.

We obtain insights in line with those obtained in Example 1. We see that increasing
the correlation leads to stronger deviations from the rational bid. Moreover, the sensi-
tivity of bm with respect to λ becomes stronger if the correlation is stronger. Generally,
for fixed correlation, increasing the share of misspecified types (1 − λ) leads to smaller
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deviations from rationality. Bidding against mainly rational types, a misspecified type’s
behavior exhibits strong deviations from rationality,12 and we observe that the presence
of other misspecified types has a dampening effect. It may also be mentioned that the
rational bidder is always better off conditional on being matched with a novice bidder
than with a rational bidder. This can perhaps best be seen when we approach perfect
correlation in which case the payoff is 0 when facing a rational bidder but is positive
when facing a novice bidder and θ < 1/2. But, the insight that rational bidders are better
off when matched with novice bidders applies more generally, noting that the bid dis-
tribution of the novice bidder is a mean-preserving spread of the bid distribution of the
rational bidder.

Intuition The reasoning leading to the derivation of bm follows a logic similar to that
in classic analysis of winner’s curse models (see Milgrom and Weber (1982)). We ob-
serve from Figure 1 that the misspecified type overbids for θi > 1/2 and underbids for
θi < 1/2. What explains this behavior? To understand this, it is useful to shut down the
(dampening) equilibrium effect of misspecified types and assume that λ ≈ 1. The cru-
cial observation is that them-type believes that conditional on vi = 1, the opponent’s bid
distribution is strong. This is because in the data, vi and bj are positively correlated: Ob-
servations with vi = 1 are more likely to be generated when θ̃i is high. Due to the positive
correlation between θi and θj , this implies that bj is also likely to be high. Conversely,
them-type believes that conditional on vi = 0, the opponent’s bid distribution is weak.

For an m-type with low θi, consider the incentives to decrease the bid below b= θi.
In this range, reducing the bid has a large effect on the winning probability conditional
on vi = 0 (the m-type believes that conditional on vi = 0, the opponents bid’s are con-
centrated on a low range) and little effect on the winning probability conditional on
vi = 1 (where them-type believes the opponents bid’s are concentrated on a high range).
Therefore, the m-type believes that by shading the bid, he can cut the losses from win-
ning with vi = 0, without a strong reduction of the gains from winning when vi = 1.

For a high θi, this logic is reversed. Consider the incentives to increase the bid above
b= θi when θi is high. The bid is now in a range where them-type believes that increas-
ing the bid mainly affects the winning probability conditional on vi = 1 and has less
effect on the winning probability conditional on vi = 0. Hence, he thinks overbidding
increases the profits from winning with vi = 1, while only modestly increasing the losses
from winning with vi = 0. This leads to bids above θi for high types of the misspecified
bidder.13

12Numerical computations indicate that even if λ → 1, the slope of bm remains bounded, where the
bound depends on α. In other words, bm does not converge to a step function according to the numerical
results.

13The dampening effect of lower values of λ can be understood as follows. Take a value of θi larger (resp.,
smaller) than 0.5. Rational bidders bid less (resp., more) than misspecified bidders. Thus, bidder j ties with
the equilibrium bid of a misspecified agent, for a larger (resp., smaller) value of θj when bidder j is rational
than when he is misspecified. Given the correlation between θi and θj , this in turn gives rise to a bigger
winner’s curse-like correction when λ is bigger, thereby explaining the dampening effect of decreasing the
share of rational types.
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Figure 2. Revenue from the SPA as a function of λ; for α ∈ {1, 10, 20}.

Inefficiency of the second-price auction While the distortions observed in the example
are specific to the parametric classes of distributions, we can show generally that the
SPA is not efficient whenever both rational and misspecified types arise with positive
probability, and the types of the two bidders are correlated.14, 15

Proposition 1. Consider any joint distribution f (θ1, θ2 ) such that Corr[θ1, θ2] �= 0. If
λ ∈ (0, 1), then any equilibrium of the SPA in which the rational types of both bidder play
their dominant strategies is inefficient.

Proof. All omitted proofs can be found in Appendix 6.

Revenue and efficiency Continuing our illustration for the parametric class in Exam-
ple 2, we show how revenue and (relative) efficiency of the allocation varies with (a) the
share of rational types λ and (b) the correlation between θ1 and θ2, that is, the parame-
ter α.

Figure 2 plots the revenue as a function of λ for different values of α. Note that the
comparison between different values of αwith λ held fixed is not very informative since
the joint distribution changes in a complicated way as α changes.

We see that for the case of weak correlation (α = 1), revenue is increasing in the
share of rational bidders. This suggests that the distortions in the misspecified type’s

14Correlation is a sufficient condition for an inefficiency. The careful reader will see from the proof that
weaker forms of dependency also lead to inefficiencies. In Section 4, we generalize this proposition to any
finite number of valuations (see Lemma 6).

15As suggested by Bob Wilson, inefficiencies require the presence of both rational and misspecified types
due to our assumed symmetry on the distribution of types. In the absence of symmetry, one would expect
inefficiencies to arise in SPA, even if there are no rational types, as long as signals are correlated.
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Figure 3. Efficiency of SPA as a function of λ; for α ∈ {1, 5, 10, 20}.

bidding function adversely affect revenue. For highly correlated interim types, the pat-

tern changes and revenue is U-shaped in the share of rational types. The initial decline

is intuitive since the distortions in them-types bid become larger if the share of rational

types increases. Profits rise again if the share of rational types becomes so large that the

presence ofm-types becomes unlikely.

Figure 3 shows how efficiency changes depending on λ and α in Example 2. To make

this comparable across different parameter sets, we normalize efficiency by the expected

ex post value achieved if the object is always allocated to the bidder with the highest

interim type. Clearly, when λ= 0 or 1, there is no inefficiency given that bidders of the

same sophistication bid in the same way. Moreover, both when α= 0 (the independent

case) or α = ∞ (perfect correlation), there is no inefficiency either. In the parametric

example, we observe that the relative efficiency is U-shaped as a function of λ and α, as

shown in Figure 4.

3.2 First-price auction

In a FPA, we obtain the misspecified type’s belief in a similar way as for the SPA:

HFPA(b|vi = 1) =
∫ 1

0

[
λF

(
θr(b)|θ̃i

) + (1 − λ)F
(
θm(b)|θ̃i

)]
θ̃i
f (θ̃i )

E[θ̃i]
dθ̃i,

HFPA(b|vi = 0) =
∫ 1

0

[
λF

(
θr(b)|θ̃i

) + (1 − λ)F
(
θm(b)|θ̃i

)]
(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i.
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Figure 4. Efficiency of SPA as a function of α= 1/5 + 5k where k= 1, � � � , 9 is on the horizontal
axis. λ ∈ {0.05, 0.5, 0.95}.

br(·) and bm(·) now denote the bidding strategies of the rational and misspecified types
in the symmetric equilibrium of the FPA, and the respective inverse functions are de-
noted by θr(·) and θm(·). The misspecified bidder’s bid for type θi maximizes

max
b

(1 − b)θiH
FPA(b|vi = 1) − b(1 − θi )HFPA(b|vi = 0). (3)

Again, we obtain a differential equation for bm(θi ). In contrast to the SPA, however, we
cannot assume that rational bidders bid their expected valuations. Instead, they maxi-
mize

max
b

(θi − b)
(
λF

(
θr(b)|θi

) + (1 − λ)F
(
θm(b)|θi

))
.

In this optimization, rational bidders behave as if using the correct distribution f , the
correct share of rational types in the population, and the equilibrium bidding strate-
gies of both the rational and the misspecified types when determining their optimal
bids. The first-order condition for the rational type’s problem yields a second differ-
ential equation. To compute an equilibrium, we need to solve the system of two ODEs
with the boundary condition (bm(0), br(0)) = (0, 0). This proves challenging even for
the distributions in our parametric example, since the system has a singular point at the
boundary condition. However, we obtain a similar inefficiency result as we had for the
SPA.

Proposition 2. Consider any joint distribution f (θ1, θ2 ) such that Corr[θ1, θ2] �= 0. If
λ ∈ (0, 1), then the symmetric equilibrium of the FPA is inefficient.
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Figure 5. SPA bid-function bm(θi ), α ∈ {1, 10} (left to right).

3.3 Comparison

We can compute the bidding equilibrium for both auction formats for the case of only
rational bidders (λ = 1) and only misspecified bidders λ = 0. Figure 5 shows in Exam-
ple 2 the bid functions bsk where k = 1, 2 denotes FPA or SPA and s =m, r denotes the
misspecified or rational type.

To illustrate the role of correlation, the functions are shown for α ∈ {1, 10}. Com-
paring FPA and SPA in the rational case, we see the familiar revenue ranking that the
SPA yields higher revenue than the FPA with correlated types. This revenue ranking is
preserved in the case of misspecified bidders. Interestingly, with misspecified bidders,
the gap between SPA and FPA becomes more pronounced if values are more correlated.
This conforms well with the intuition for the distortions in the bid function: In the SPA,
low types underbid and high types overbid. In the FPA, the same forces lead the low
types to underbid. But this allows the higher types to shade their bids more and the in-
centive to overbid does not compensate for this force. This leads to much lower bids for
misspecified types compared to the rational equilibrium if the correlation is high.

Finally, we want to compare the efficiency of the SPA and FPA. This comparison is
not interesting in the purely rational or purely misspecified cases since the symmet-
ric equilibrium implies that both auction formats are fully efficient. A comparison in
the mixed case is challenging because we are not able to compute the equilibrium in
the FPA. To suggest some possible results, we can consider the best response of a mis-
specified type to the purely rational equilibrium. This allows us to show how efficiency
changes if we inject a small share of misspecified types in a rational population. To illus-
trate such an approach, we have numerically computed how much efficiency is lost in
expectation if bidder 1 uses the purely rational strategy and bidder 2 uses the misspeci-
fied response assuming α= 1.5. This number gives the rate at which efficiency decreases
if we decrease λ slightly from λ = 1. We find a marginal loss of 0.0035 for the FPA and
0.0088 for the SPA. This means that the SPA is less efficient than the FPA in this limiting
case.

4. Auction-like mechanisms

In this part, we consider a general class of auction-like mechanisms, in which bidders
can place a one-dimensional bid b ∈ B⊂ R, and which allocates the object to the bidder
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with highest bid (possibly adjusted by a bonus or malus). We assume that bidders may
choose not to participate in the auction in which case their utility is zero.16

Definition 2. An auction-like mechanism is given by M = [B, (Wi )i=1,2, (Li )i=1,2, φ1].
B= [b, b] is the set of feasible bids. The allocation rule φ1 : B→ B is a strictly increasing
function. The object is allocated to bidder 1 if b1 >φ1(b2 ), to bidder two if b1 <φ1(b2 ),
and with probability 1/2 if b1 = φ1(b2 ). We denote the inverse by φ2 = φ−1

1 . The pay-
ment rules areWi : B×B→ R

+
0 , and Li : B×B→R

+
0 , which specify the payment bidder

i has to make as a function of the bids, if she wins or loses, respectively. We assume that
for each i ∈ {1, 2}, both functionsWi, Li are weakly increasing in bidder i’s own bid.
An auction-like mechanism is smooth if for i ∈ {1, 2}, φi, Wi, and Li are continuously
differentiable with derivatives that can be continuously extended to the boundary of B.

The smoothness assumption is made for tractability. Almost all common auction
formats are smooth auction-like mechanisms. Our main result is that if there are at
least three possible ex post valuations, then for generic type distributions, no smooth
auction-like mechanism exists that has an efficient equilibrium.

To make this precise, we reformulate the types of agents. We denote the interim
valuation of bidder i with type θi by

wi(θi ) := E[vi|θi].

Given the normalization 0 = v1 < · · · < vK = 1, we have wi(θi ) ∈ [0, 1]. For each wi ∈
[0, 1], we denote the set of types θi that have interim valuation wi by

�i(wi ) := {
θi ∈�i|E[vi|θi] =wi

}
.

Forwi ∈ {0, 1}, this set is a singleton; and for allwi ∈ (0, 1), there exists a diffeomorphism
xi(·; wi ) :�i(wi ) → [0, 1]K−2, where K = |V | is the number of ex post valuations. We can
therefore write the type of bidder i as (wi, xi ) ∈ [0, 1]K−1. While wi is the payoff-relevant
part of the type, forwi ∈ (0, 1), xi can be used to recover the belief f (θj|x

−1
i (xi; wi )) about

bidder j’s type. Abusing notation, we use f (w1, x1, w2, x2 ) to denote the joint density of
the buyers’ types and assume that this density is smooth and strictly positive.17

Our main result is that for generic distributions, smooth auction-like mechanisms
do not have efficient equilibria. To state this formally, we let Md+([0, 1]2K−2 ) be the set of
probability measures on [0, 1]2K−2 that admit continuous and strictly positive densities
f (w1, x1, w2, x2 ). We endow Md+([0, 1]2K−2 ) with the uniform topology for densities. For
given V and λ, let I(V , λ) ⊂ Md+([0, 1]2K−2 ) be the set of prior distributions for which
all equilibria of any smooth auction-like mechanism are inefficient.

16Our definition of auction-like mechanisms is similar to that in Deb and Pai (2017) who restrict attention
to symmetric auctions (in which only the winner makes a payment) to analyze the extent to which such
anonymous auctions can allow for discrimination in asymmetric settings.

17Such a change of variable can be done while preserving the smoothness of f (w1, x1, w2, x2 ) because

θi → ∑
k θ

k
i v
k is a smooth function of θi (e.g., one can think of xi as consisting of (θki , k≥ 2)).
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Theorem 1. Suppose K = |V | ≥ 3 and λ ∈ (0, 1). Then for generic type distributions,
there exists no smooth auction-like mechanism with an efficient equilibrium. Formally,
I(V , λ) is a residual subset of Md+([0, 1]2K−2 ), that is, it contains a countable intersection
of open and dense subsets of Md+([0, 1]2K−2 ).

The notion of genericity used here is the same as in Gizatulina and Hellwig (2017),
who show the genericity of full surplus extraction. The key step in the proof is to show
that in the presence of rational bidders, efficiency requires that the mechanism is a SPA.
The reason is that to achieve efficiency, the bid in an auction-like mechanism must be
a function of wi only. If there are more than two ex post valuations, for each wi ∈ (0, 1),
the set�(wi ) is a manifold of dimensionK− 2 ≥ 1, and all types in�(wi ) have identical
interim expected valuations but different beliefs. We show that for generic distributions,
the requirement that the bid is independent of the rational type’s belief, implies that
the mechanism must be a SPA.18 We then complete the proof by extending the result
of Proposition 1 to more than two ex post valuations (see Lemma 6 below), showing
that in a SPA the misspecified type does not bid truthfully, which rules out an efficient
equilibrium.19, 20

Remark 1 (Precise signal). The inefficiencies identified in Theorem 1 would vanish in
SPA if for every bidder i the signal θi was always very informative of the ex post value vi,
as in such a case bidders (whether rational or novice) would approximately bid their ex
post value. Thus, the noisy character of θi is essential for the derivation of inefficiencies
(as is the correlation between θi and θj).

Remark 2 (Two ex post valuations). With only two ex post valuations (K = 2), our proof
does not apply. While the analysis of standard auctions in Section 3 suggests that bid
functions of rational and misspecified types in auction-like mechanisms differ, it is an
open question whether auction-like mechanism offer enough flexibility in choosing the
payment rules so that types of each sophistication can be incentivized to use an identical
bid function whenK = 2.

Remark 3 (More than two bidders). The restriction to two bidders has been made for
simplicity. With more than two bidders, we can consider misspecified types who have
access to data from past auctions with observations of the form (b1, v1, � � � , bN , vN ),

18The intuition for this is that in any auction in which the payment of the winner would depend non-
trivially on the winner’s own bid, the optimal equilibrium bid would require some shading that depends
nontrivially on the belief, as in the FPA. To ensure that the shading is the same for all beliefs as generated
by variations of xi , a SPA must be used.

19It is readily verified that one cannot be arbitrarily close to an efficient allocation as this would require
that the payment rule is close to that of the SPA (to ensure nearby efficiency for the allocation among ratio-
nal bidders) and such an auction rule would not lead novice bidders to bid close to their expected valuation
(thereby leading to welfare significant losses in the allocation between rational and novice bidders).

20In a SPA, inefficiencies would typically arise even without rational bidders when there are three or
more ex post values (since a novice bidder i would not in general bid in the same way for different signals
θi corresponding to the same interim expected value wi). But, our argument for using a SPA makes use of
the presence of rational bidders.
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where N is the number of bidders. Such bidders will now rely on h(b−i|vi ), the density
of b−i = (bj )j �=i conditional on vi, to form their beliefs about how variables of interest
are distributed. We can define auction-like mechanisms that award the object to the
highest bidder and specify payments as a function of all bids. We conjecture that the key
argument in our proof; namely that efficiency requires the use of a SPA also works with
more than two bidders, as long as there are at least three ex post valuations. Moreover,
an analogous result to Proposition 1 and Lemma 6 implies that misspecified types do
not use the rational bid function in any equilibrium of the SPA.

Remark 4 (Heterogeneous signal precision). So far, we have assumed that whether the
bidder is novice or rational, he receives a signal θ about his ex post value of equal pre-
cision. In some applications, it may be argued that a novice bidder may receive a less
precise signal about his ex post value. It should be clear that the same inefficiency result
as in Theorem 1 would arise in this more general scenario, as the novice bidder would
still not bid his expected value in a SPA, and a SPA would be required to ensure efficiency
among the rational bidders.

4.1 Proof of Theorem 1

Regular equilibria of simple mechanisms First, we show that it suffices to consider reg-
ular equilibria of simple mechanisms. We call a smooth auction-like mechanism simple
if it is of the form M = [[0, 1], (Wi ), (Li ), Id], where φ = Id denotes the identity so that
the allocation rule is symmetric. We call an equilibrium regular if it is symmetric and
the bid of each generalized type (wi, xi, si ) is given by a continuous and strictly increas-
ing function b(wi ) with range b([0, 1]) = [0, 1]. In other words, the bid only depends on
the interim valuations, but not on the identity, sophistication, or belief xi, of the bid-
der. Note that a regular equilibrium of a simple mechanism is efficient. We denote the
strictly increasing and continuous inverse of b(·) by ψ : [0, 1] → [0, 1].

Lemma 1. Let M̃ = [B̃, (W̃i ), (L̃i ), φ̃1] be a smooth auction-like mechanism with an ef-
ficient equilibrium (b̃1(w1, x1, s1 ), b̃2(w2, x2, s2 )). Then there exists a simple mechanism
M = [[0, 1], (Wi ), (Li ), Id], with a regular (and hence efficient) equilibrium.

Proof. The proofs of all lemmas can be found in the Appendix.

In light of Lemma 1, it suffices to consider regular equilibria of simple mechanisms.
The intuition behind this result is that in an efficient mechanism with a symmetric allo-
cation rule,21 all bidders must use the same bids as function of their interim valuation.
The proof shows that mechanisms for which the bidding function has discontinuities,
these jumps can be removed in a way that preserves the smoothness of the payment
rules. Lemma 1 falls short of the revelation principle because the full revelation argu-
ment may not preserve the smoothness of the payment rules if the equilibrium of the
original mechanism is nonsmooth.

21Clearly, a mechanism with an asymmetric allocation rule can be made symmetric by a simple mono-
tonic transformation.
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Second-price auctions Next, we derive a condition on the payment rules and equilib-
rium bid function that characterizes regular equilibria of the SPA. We denote the equi-
librium difference in utility between winning and losing of a bidder with bid b= b(wi ),
whose bid is tied with the opponent by

δi(b) =ψ(b) − (
Wi(b, b) −Li(b, b)

)
.

In a regular equilibrium of the SPA, the rational type bids truthfully (b(w) =w), and
the payment rules satisfy Wi(b, b) = b and Li ≡ 0, so that δi(b) = 0 for all b ∈ [0, 1]. The
following lemma shows the converse result.

Lemma 2. Consider a simple mechanism M = [[0, 1], (Wi ), (Li ), Id] with a regular equi-
librium. If δi(b) = 0, for i ∈ {1, 2} and all b ∈ [0, 1], thenM is a SPA, that is, for all i ∈ {1, 2},
Li(bi, bj ) = 0 for all bi ≤ bj andWi(bi, bj(wj )) =wj whenever bi ≥ bj(wj ).

Differentiability of the bidding strategy To show that δi(b) = 0 for all bids, we derive an
implication of δi(b) > 0 and show that it is violated generically. In the derivations, we
will use first-order conditions. The following lemma shows that the inverse of the bid
function, ψ(b) is differentiable if δi(b)> 0. The lemma is based on the proof of Lemma
7 in Lizzeri and Persico (2000).

Lemma 3. If δi(b0 )> 0 for some b0 ∈ [0, 1], then there exists a nonempty interval (α, β) ⊂
[0, 1], with b0 ∈ (α, β), such that ψ is continuously differentiable on (α, β), and ψ′(b)> 0
and δi(b)> 0 for all b ∈ (α, β).

For generic distributions, efficiency requiresM = SPA Next, we show that δi(b)> 0 im-
plies that a condition similar to the full-surplus extraction condition (McAfee and Reny
(1992)) must be violated, and prove results analogous to Gizatulina and Hellwig (2017),
to show that for generic prior densities f (w1, x1, w2, x2 ), we must have δi(b) = 0 for all
b ∈ [0, 1], i ∈ {1, 2}, and any regular equilibrium of a simple mechanism.

We begin by deriving an implication of δi(b)> 0. Fix b ∈ (0, 1) such that δi(b)> 0 and
consider a rational bidder iwith type (wi, xi ), wherewi =ψ(b) and xi ∈X is arbitrary. In
a regular equilibrium, this type maximizes (where we use j �= i to denote the opponent):

max
b′∈[0,1]

∫ ψ(b′ )

0

(
ψ(b) −Wi

(
b′, b(wj )

))
f
(
wj|ψ(b), xi

)
dwj

−
∫ 1

ψ(b′ )
Li

(
b′, b(wj )

)
f
(
wj|ψ(b), xi

)
dwj .

Given Lemma 3, we can differentiate the objective function with respect to b′, and obtain
the first-order condition, which must hold for b′ = b:

f
(
w̃j =ψ(b)|w̃i =ψ(b), xi

) =
∫ 1

0

∂Pi
(
b, b(wj )

)
/∂bi

δi(b)ψ′(b)
f
(
wj|w̃i =ψ(b), xi

)
dwj , (4)
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where we simplify notation by denoting the payment of bidder i as follows:

Pi(bi, bj ) := 1{bi>bj }Wi(bi, bj ) + 1{bi<bj }Li(bi, bj ).

Multiplying (4) by f (w̃i =ψ(b), xi )/f (w̃i = w̃j =ψ(b)), and using

f
(
xi|w̃i = w̃j =ψ(b)

)
f
(
w̃i = w̃j =ψ(b)

) = f (xi, w̃i = w̃j =ψ(b)
)
,

we obtain for all xi ∈Xi:

f
(
xi|w̃i = w̃j =ψ(b)

) =
∫ 1

0
m

(
b, ψ(b), wj

)
f
(
xi|w̃i =ψ(b), wj

)
dwj , (5)

where

m
(
b, ψ(b), wj

) = ∂Pi
(
b, b(wj )

)
/∂bif

(
w̃i =ψ(b), wj

)
δi(b)ψ′(b)f

(
w̃i = w̃j =ψ(b)

) .

Since we consider a simple mechanism and prior densities f ∈ Md+([0, 1]2K−2 ), and
ψ′(b) > 0, the term m(b, ψ(b), wj ) is finite and nonnegative. For fixed b, m(b, ψ(b), ·)
is in fact a probability density on [0, 1].22

Condition (5) states that the density f (·|w̃i = w̃j = ψ(b)) can be expressed as a pos-
itive linear combination of the densities f (·|w̃i = ψ(b), wj ) for wj ∈ [0, 1], with positive
weights on wj �= ψ(b). By virtually the same proof as for Theorem 2.4 in GH17, we can
show that for generic distributions (5) is violated.

To state the result, we need several definitions that mimic GH17. Let Md+(X ) be
the set of absolutely continuous probabilities measures on X with strictly positive and
continuous densities, endowed with the topology induced by the sup-norm for den-
sity functions on X ; let C([0, 1], Md+(X )) be the set of continuous mappings from [0, 1]
to Md+(X ), endowed with the topology of uniform convergence; and let M([0, 1]) be
the set of probability measures on [0, 1], endowed with a topology that is metrizable
by a metric that is a convex function on M([0, 1]) × M([0, 1]). Finally, let E(wi ) ⊂
C([0, 1], Md+(X )) be the set of continuous mappings that map w ∈ [0, 1] to densities
g(·|w) ∈ Md+(X ) that satisfy the following condition: For all μ ∈ M([0, 1]),

g(xi|wi ) =
∫ 1

0
g
(
xi|w

′)μ(
dw′), ∀xi ∈X =⇒ μ= δwi , (6)

where δwi ∈ M([0, 1]) is the Dirac measure with a mass-point on wi.

Lemma 4 (see Theorem 2.4 in Gizatulina and Hellwig (2017)). For any wi ∈ (0, 1), the set
E(wi ) is a residual subset of C([0, 1], Md+(X )), that is, it is a countable intersection of open
and dense subsets of C([0, 1], Md+(X )).

The implication of this lemma is that for fixedwi ∈ (0, 1), and generic functionswj �→
f (·|wi, wj ) that map wj to conditional densities f (·|wi, wj ), any simple mechanism with
a regular equilibrium must satisfy δi(b(wi )) = 0.

22Integrating both sides of (5) overX , we see that
∫ 1

0 m(b, ψ(b), wj )dwj = 1.
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This lemma is insufficient for our purposes for two reasons. First, we need to show
that for generic priors, the function that maps wj to the conditional density f (xi|wi, wj )
is an element of E(wi ), and second we need to show this for all wi. To this end, for
i ∈ {1, 2} let Wi be a countable and dense subset of (0, 1). We show that for generic prior
densities f (w1, x1, w2, x2 ), the mapping that maps wj ∈ [0, 1] to the conditional density
fi(·|wi, wj ) is an element of Ei(wi ) for all wi ∈ Wi and all i ∈ {1, 2}. For the following
lemma, recall that Md+([0, 1]2K−2 ) denotes the set of priors with strictly positive and
continuous densities.

Lemma 5 (see Theorem 2.7 in Gizatulina and Hellwig (2017)). For i ∈ {1, 2}, let Wi be a
countable and dense subset of (0, 1). Let F be the set of prior densities in Md+([0, 1]2K−2 )
such that for all i ∈ {1, 2} and wi ∈ Wi, the mapping wj �→ f (·|wi, wj ) is an element of
E(wi ). Then F is a residual subset of Md+([0, 1]2K ), that is, it contains a countable inter-
section of open and dense subsets of Md+([0, 1]2K ).

This lemma implies that for generic prior densities f (w1, x1, w2, x2 ), any regular
equilibrium of a simple mechanism must satisfy δi(b(wi )) = 0 for all wi ∈ Wi. Since the
functions b(·) and δi(·) are continuous and Wi is dense, this implies δi(b) = 0 for all
b ∈ [0, 1]. By Lemma 2, this implies that for generic distributions, if a simple mechanism
has a regular equilibrium, then it must be the SPA.

Bidding strategy of the misspecified type in the second-price auction So far, we have
made use of the rational type’s first-order condition to show that efficiency cannot be
achieved with an auction-like mechanism other than the SPA. To conclude the proof
of Theorem 1, we show that for generic distributions, misspecified types do not use
b(w) =w in a SPA.

Lemma 6. Let λ ∈ (0, 1) and suppose that Ef [θKi |wj ≤ b] �= Ef [θKi ]

Ef [θ1
i ]
Ef [θ1

i |wj ≤ b] for some

i ∈ {1, 2} and b ∈ [0, 1]. In any equilibrium of the SPA, where the rational types bid truth-
fully, some types (θi,mi ) place a bid that is different from their interim valuation.

It is easy to see that the subset of prior densities for which there exists i ∈ {1, 2} and

b ∈ [0, 1] such that Ef [θKi |wj ≤ b] �= Ef [θKi ]

Ef [θ1
i ]
Ef [θ1

i |wj ≤ b] is open and dense Md+([0, 1]2K )

so that its intersection with F is residual by Lemma 5. This concludes the proof of The-
orem 1.

5. Discussion

In this section, we discuss how our main result is affected when losers’ ex post valuations
are not precisely accessible in the data or when more general mechanisms can be used.

5.1 Nonobservability of losers’ valuations

While we believe it is natural to assume that a relatively precise assessment of winners’
ex post valuations is accessible after the auction, it may be argued that in some appli-
cations, forming estimates about losers’ valuations is harder to the extent that it would
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require engaging in counterfactual exercises trying to assess what would have been the
net benefit of losers had they won the auction. We now suggest that the same modeling
of the decision rule of novice bidders would apply under plausible specifications of such
a more general scenario.

Specifically, instead of assuming that (bi, bj , vi, vj ) is accessible after the auction,
we now assume that when bidder i is the winner only (bi, bj , vi, φj ) is accessible where
φj = (φ1

j , � � � , φKj ) ∈ �V is a noisy signal held (after the auction) about the ex post val-

uation bidder j would have obtained had he won the auction and φkj represents the

probability assigned to vj = vk according to φj . In the face of such data, it seems then
natural to complete the missing value of vj with the distribution over V induced by φj .
That is, substitute the observed data (bi, vi, bj , φj ) with each of (bi, vi, bj , vj = vk ) with
probability φkj . From the obtained data set, one can construct the empirical cumulative

distributions Hi(b|vk ) and Hj(b|vk ), and proceed as in Section 2 for the derivation of a
steady state.

It should be mentioned that as long as the noisy signal φj about vj in the above con-
struction is unbiased in the sense that conditional on (bi, bj , vi ) its distribution gener-
ates the same distribution over the ex post valuation vj of the loser as the correct one,23

then the procedure just mentioned would lead to exactly the same decision rule for
novice bidders as the one considered in the main model (this is so because, under the
assumption that signals φj are unbiased, it is readily verified it would give rise to the
same cumulative distributionsHi(b|vk ) andHj(b|vk )).

Thus, we conclude that our modeling of novice bidders does not hinge on the as-
sumption that losers’ valuations are precisely observed after the auction but rather on
the assumption that ex post, outside observers get unbiased estimates of those.

We might in some applications be willing to go further and consider the case in
which outside observers would get biased estimates of losers’ ex post valuations. The
heuristic just proposed would allow us to consider such an extension and now the de-
cision rule of novice bidders would also depend on the exact distributional shape of the
bias of the estimate. We note that the same conclusion as in Theorem 1 would still hold
in such a case, since efficiency among rational bidders would require using a SPA, and
novice bidders under this alternative scenario would not bid their expected valuation
in this auction (except possibly for highly nongeneric specifications of the bias in the
estimate).

5.2 More general mechanisms

We have focused on a class of auction-like mechanisms in which bids are one-
dimensional and a higher bid increases the chance of winning the auction. This is a
natural class that covers virtually all practically relevant auction formats. In the work-
ing paper version, we explore whether more elaborate mechanisms could help improve

23This would arise, for example, if the estimate took the form of observing vj + εj where εj would be
drawn from some distribution, say normal centered around 0, and the distribution of εj would be indepen-
dent from the distribution of any other variable as introduced in the model.
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efficiency. We note in our basic setup that since no two different types would have the
same belief about the distribution of the opponent’s interim type (for generic distri-
butions), scoring rule mechanisms of the type considered in Johnson, Pratt, and Zeck-
hauser (1990) would allow the designer to elicit the interim type and approximate any
allocation goal of her choice such as efficiency. However, we note that such a conclu-
sion would not be robust to the inclusion of richer specifications of cognitive limitations
which would, under plausible formulations, lead different interim types to have the
same beliefs about the distribution of their opponent’s interim type. Independently of
this, such mechanisms are fragile, as stressed in the robust mechanism design literature.

6. Conclusion

This paper has revisited the possibility of efficient auctions when some bidders form
their beliefs about others’ bidding strategies based on accessible data from similar auc-
tions, which consist only of ex post values and bids. Our main impossibility result ob-
tained in a private value setting demonstrates a novel source of potential inefficiency re-
lated to the cognitive limitation that is induced by missing data on the signals observed
at the time of the auction.

The insight is obtained after noting that data-driven bidders reason as if they were
in an interdependent value environment. But, note that in the proposed approach, the
resulting misspecification disappears when the signals are independently distributed
across bidders or when they are very precise, giving indication as to when we should
expect to see inefficiencies in data-driven equilibria of SPA with private values.

Beyond the general impossibility result, our proposed model could be used to ana-
lyze the degree of inefficiency induced by novice bidders as a function of the underlying
correlation between valuations and the precision of the signals at the time of the auc-
tion. It could also be used to revisit empirical approaches to auctions with the premise
that bidding behaviors are governed by data-driven equilibria instead of the Bayes–Nash
equilibrium (as assumed in most of the empirical literature, see Perrigne and Vuong
(forthcoming)).

Appendix: Omitted proofs

A.1 Proof of Proposition 1

Proof of Proposition 1. If λ ∈ (0, 1), efficiency would require that bm(θi ) = θi, which
implies

HSPA(b|vi = 1) =
∫ 1

0
F(b|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i,

HSPA(b|vi = 0) =
∫ 1

0
F(b|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i.

Moreover, we must have

θi ∈ arg max
b

{
θiH

SPA(b|vi = 1) −θi
∫ b

0
xdHSPA(x|vi = 1) − (1 −θi )

∫ b

0
xdHSPA(x|vi = 0)

}
.
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Differentiating the objective function and setting b= θi yields

(1 − θi )θi
[
HSPA′(θi|vi = 1) −HSPA′(θi|vi = 0)

]
.

We have

HSPA′(θi|vi = 1) −HSPA′(θi|vi = 0)

=
∫ 1

0
f (θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i −

∫ 1

0
f (θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

=
∫ 1

0

[
θ̃i

E[θ̃i]
− 1 − θ̃i

1 −E[θ̃i]

]
f (θi|θ̃i )f (θ̃i )dθ̃i

= f (θi )
∫ 1

0

[
θ̃i

E[θ̃i]
− 1 − θ̃i

1 −E[θ̃i]

]
f (θ̃i|θi )dθ̃i

= f (θi )

[
E[θ̃i|θj = θi]

E[θ̃i]
− 1 −E[θ̃i|θj = θi]

1 −E[θ̃i]

]
.

Hence, for bidding θi to be optimal for the misspecified type we must have for all θi:

E[θ̃i|θj = θi]
E[θ̃i]

− 1 −E[θ̃i|θj = θi]
1 −E[θ̃i]

= 0

⇐⇒ E[θ̃i|θj = θi] = E[θ̃i].

If the last line holds for all θi, we must have

∫ 1

0
θ̃if (θ̃i|θj )dθ̃i = E[θ̃i], ∀θj ,

⇐⇒
∫ 1

0
θ̃iθjf (θ̃i, θj )dθ̃i = E[θ̃1]θjf (θj ), ∀θj ,

=⇒ E[θ̃iθj ] = (
E[θ̃i]

)2
.

The last line implies that we must have Corr[θ1, θ2] = 0 if the misspecified types first-
order condition is satisfied for b = θi for all θi. Therefore, if Corr[θ1, θ2] �= 0, there are
types for which a misspecified bidder will not bid θi and since br(θj ) = θj for all types
and λ ∈ (0, 1), the allocation will be inefficiency for some type profiles.

A.2 Proof of Proposition 2

Proof of Proposition 2. An efficient allocation requires that br(θi ) = bm(θi ) = b(θi )
for all θi ∈ [0, 1]. We denote the inverse of b(·) by θ.

The rational type’s bid solves

max
b

(θi − b)F
(
θ(b)|θi

)
.
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The FOC yields

−F(θi|θi ) + (
θi − b(θi )

)
f (θi|θi )θ

′
i

(
b(θi )

) = 0

⇐⇒ b′(θi ) = (
θi − b(θi )

) f (θi|θi )
F(θi|θi )

. (7)

The solution with boundary condition b(0) = 0 is

b(θi ) =
∫ θi

0
xe

− ∫ θi
x

f (y|y )
F(y|y ) dy

f (x|x)
F(x|x)

dx.

The misspecified type maximizes (3)

max
b

(1 − b)θiH
FPA(b|vi = 1) − b(1 − θi )HFPA(b|vi = 0)

with

HFPA(b|vi = 1) =
∫ 1

0
F

(
θ(b)|θ̃i

)
θ̃i
f (θ̃i )

E[θ̃i]
dθ̃i,

HFPA(b|vi = 0) =
∫ 1

0
F

(
θ(b)|θ̃i

)
(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i.

This yields

θiH
FPA(

b(θi )|vi = 1
) + (1 − θi )HFPA(

b(θi )|vi = 0
)

= (
1 − b(θi )

)
θiH

FPA′(b(θi )|vi = 1
) − b(θi )(1 − θi )HFPA′(b(θi )|vi = 0

)
.

Using

HFPA′(b|vi = 1) = θ′(b)
∫ 1

0
f
(
θ(b)|θ̃i

)
θ̃i
f (θ̃i )

E[θ̃i]
dθ̃i = θ′(b)

E
[
θ̃i|θ(b)

]
E[θ̃i]

f
(
θ(b)

)
,

HFPA′(b|vi = 0) = θ′(b)
∫ 1

0
f
(
θ(b)|θ̃i

)
(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i = θ′(b)

1 −E[
θ̃i|θ(b)

]
1 −E[θ̃i]

f
(
θ(b)

)
we have

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

= (
1 − b(θi )

)
θiθ

′(b(θi )
)E[θ̃i|θi]

E[θ̃i]
f (θi ) − b(θi )(1 − θi )θ′(b(θi )

)1 −E[θ̃i|θi]

1 −E[θ̃i]
f (θi )

⇐⇒

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

= 1 − b(θi )
b′(θi )

θi
E[θ̃i|θi]

E[θ̃i]
f (θi ) − b(θi )

b′(θi )
(1 − θi ) 1 −E[θ̃i|θi]

1 −E[θ̃i]
f (θi )
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⇐⇒

b′(θi ) =
(
1 − b(θi )

)
θi
E[θ̃i|θi]

E[θ̃i]
f (θi ) − b(θi )(1 − θi ) 1 −E[θ̃i|θi]

1 −E[θ̃i]
f (θi )

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

= θi
E[θ̃i|θi]

E[θ̃i]
f (θi )

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

− b(θi )

θi
E[θ̃i|θi]

E[θ̃i]
f (θi ) − (1 − θi ) 1 −E[θ̃i|θi]

1 −E[θ̃i]
f (θi )

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

= (
θi − b(θi )

) f (θi|θi )
F(θi|θi )

.

Where the last line follows from (7). Matching coefficients, we get

E[θ̃i|θi]

E[θ̃i]
f (θi )

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

= f (θi|θi )
F(θi|θi )

and

θi
E[θ̃i|θi]

E[θ̃i]
f (θi ) − (1 − θi ) 1 −E[θ̃i|θi]

1 −E[θ̃i]
f (θi )

θi

∫ 1

0
F(θi|θ̃i )θ̃i

f (θ̃i )

E[θ̃i]
dθ̃i + (1 − θi )

∫ 1

0
F(θi|θ̃i )(1 − θ̃i ) f (θ̃i )

E[1 − θ̃i]
dθ̃i

= f (θi|θi )
F(θi|θi )

.

Combining these, we have

E[θ̃i|θi]

E[θ̃i]
= θi E[θ̃i|θi]

E[θ̃i]
− (1 − θi ) 1 −E[θ̃i|θi]

1 −E[θ̃i]
,

E[θ̃i|θi]

E[θ̃i]
= 1 −E[θ̃i|θi]

1 −E[θ̃i]
.

This is the same condition as for the SPA, which requires that Corr[θ1, θ2] = 0.

A.3 Proof of Lemma 1

Proof of Lemma 1. Consider the equilibrium of the original mechanism M̃ . For each
bidder i and each si ∈ {r,m}, we define a (nonempty) correspondence that contains all
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bids that types with expected valuation wi use:

b
si
i (wi ) = b̃i(wi,X , si ),

whereX = [0, 1]K−2. We prove the lemma in three steps: (1) we obtain an efficient equi-
librium of the original mechanism with single-valued correspondences (or functions)
b̂
si
i . (2) We show that these functions satisfy b̂ri (w) = b̂si (w) = φ̃i(b̂rj(w)) = φ̃i(b̂rj(w)), and

a change of variable allows us to construct a mechanism M̌ = (B, (W̌i ), (Ľi ), Id) that
has an efficient equilibrium in which b̌ri (w) = b̌i(w) = b̌rj(w) = b̌rj(w) = b̌(w). (3) We re-

move jump continuities in b̌(w) and normalize the range of b̌(w) to obtain a mecha-
nism M = ([0, 1], (Wi ), (Li ), Id), so that the (normalized) continuous part of b̌(w) is an
efficient equilibrium. We show that removing the discontinuities does not destroy the
smoothness of the simple mechanismM .

Step 1: First, note that efficiency requires that the correspondences bsii for i ∈
{1, 2} must be strictly increasing, meaning any selection must be strictly increasing.
We denote the pointwise infimum and supremum of the correspondence by bsii (w) =
infbsii (wi ) and b

si
i (w) = supbsii (wi ). Note that the infimum b

si
i (w) is strictly increasing if

any selection from b
si
i (w) is strictly increasing.

Suppose for some wi, bri (wi ) is not single-valued. Efficiency and the fact that for

every bi ∈ [bsii (w), b
si
i (w)], (b

sj
j )−1(φj(bi )) ⊂ {wi}, that is, any bid in the closed interval

between the between the infimal and supremal bid that bidder i with interim value
wi places in equilibrium is either not placed by bidder j or it is placed by a bidder
with the same interim value. We can include the infimum (and supremum) since
wj ∈ (b

sj
j )−1(φ2(bsii (w))) for some wj < wi would imply that there exists w′

i ∈ (wj , wi )

such that b′
i < b

si
i (w) for some b′

i ∈ bsii (w′
i ), which violates efficiency.

Since the probability that wj = wi conditional on (wi, xi ) is zero for all xi ∈ Xi, the

rational type is indifferent between all bids in [bsii (w), b
si
i (w)]. We set b̂i(wi, xi, r ) :=

b̂ri (wi ) := bri (w). Similar steps show that we can set b̂i(wi, xi,m) := b̂mi (wi ) := bmi (w).
Since the probability that E[vi|θi] =wi is zero, and there are at most countably many

discontinuities, this modification of b̃i to b̂i does not change the incentives of bidder j
so that we have constructed a new equilibrium in which the correspondences of bidder i
are single valued. We can apply the same modification to the strategy of bidder j. Clearly,
these modification preserve efficiency since b

sj
j (wj )<φ2(inf b̃ri (wi )) whenever wj <wi.

Step 2: We have shown in Step 1 that there exists an efficient equilibrium of M̃
that is given by the function b̂si (w), i ∈ {1, 2}, s ∈ {r,m}. Clearly, efficiency requires that

b̂ri (w) = b̂mi (w) = φi(b̂rj(w)) = φi(b̂mj (w)) =: b̂i(w) for almost every w. The only excep-
tions are a countable set of interim values where all functions have a jump-discontinuity.
Here, we can redefine b̂ri (w) = b̂mi (w) = b̂i(w) := limw′↑wmin{b̂ri (w

′ ), b̂mi (w′ ), φi(b̂rj(w
′ )),

φi(b̂mj (w′ ))} for i �= j, so that b̂ri (w) = b̂mi (w) = φi(b̂rj(w)) = φi(b̂mj (w)) = b̂i(w) for every

w, and b̂i(w) is left-continuous.
The bids of bidder i are contained in R̂i = [b̂i(0), b̂i(1)]. We now define a new mech-

anism with B̌= [0, 1], φ̌(w) =w and W̌i, Ľi : [0, 1]2 → R given by

W̌i(b̌i, b̌j ) = W̃i
(
b̂i(0) + b̌i|R̂i|, φ̃j

(
b̂i(0) + b̌j|R̂i|

))
,
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Ľi(bi, bj ) = L̃i
(
b̂i(0) + b̌i|R̂i|, φ̃j

(
b̂i(0) + b̌j|R̂i|

))
.

The new mechanism has an equilibrium given by the functions b̌si (w) = (b̂i(w) −
b̂i(0))/|R̂i| and b̌sj(w) = (b̂i(w) − bi(p))/|R̂i|. This equilibrium allocates to the bidder

with the highest valuation since b̌si (w) > b̌sj(w) if and only if b̂i(w) > φi(b̂i(w)) and the
original mechanism was efficient. This implies that all bidding functions are the same:
b̌si (w) = b̌sj(w) =: b̌(w) for s ∈ {r,m}. Moreover, W̌i and Ľi are C1 since φ̃j is continuously
differentiable.

Step 3: The bidding function b̌(w) is strictly increasing and can therefore be decom-
posed as b̌(w) = b̌C(w)+ b̌J(w), where b̌C(w) is continuous and b̌J(w) is constant except
for a countable number of jump-discontinuities. We can modify the definition of M̌ and
obtain a new smooth auction-like mechanismM with a symmetric equilibrium in which
b(w) = b̌C(w)/(b̌C(1) − b̌C(0)).

The function b(wi ) specifies an equilibrium in the mechanism given by

Wi(b1, b2 ) = W̌i
(
b̌
((
b̌C

)−1(
b1

(
bC(1) − bC(0)

)))
, b̌

((
b̌C

)−1(
b2

(
bC(1) − bC(0)

))))
,

Li(b1, b2 ) = Ľi
(
b̌
((
b̌C

)−1(
b1

(
bC(1) − bC(0)

)))
, b̌

((
b̌C

)−1(
b2

(
bC(1) − bC(0)

))))
.

Next, we show that W and L are continuously differentiable. In the mechanism de-
fined in step 2, a rational bidder chooses bi to maximize

∫ b̌−1(bi )

0

(
wi − W̌i

(
bi, b̌(wj )

))
dF(wj|wi, xi ) −

∫ 1

b̌−1(bi )
Ľi

(
bi, b̌(wj )

)
dF(wj|wi, xi ),

where F(w′
j|w, xi ) is the probability that wj ≤w′

j , conditional on bidder i’s type (wi, xi ).
Consider a rational bidder with type wi = ŵ + ε, where ŵ is a discontinuity in the

equilibrium bidding function b̌ of original mechanism. Placing a bid b′ ∈ [b̌(ŵ), b̌(ŵ+ ))
instead of b̌(wi ) must not be profitable:

∫ b̌−1(b̌(wi ))

0

(
wi − W̌i

(
b̌(wi ), b̌(wj )

))
dF(wj|wi, xi )

−
∫ 1

b̌−1(b̌(wi ))
Ľi

(
b̌(wi ), b̌(wj )

)
dF(wj|wi, xi )

≥
∫ b̌−1(b′ )

0

(
wi − W̌i

(
b′, b̌(wj )

))
dF(wj|wi, xi ) −

∫ 1

b̌−1(b′ )
Ľi

(
b′, b̌(wj )

)
dF(wj|wi, xi ).

This can be rewritten as∫ ŵ

0

(
wi − W̌i

(
b̌(wi ), b̌(wj )

))
dF(wj|wi, xi ) −

∫ 1

ŵ
Ľi

(
b̌(wi ), b̌(wj )

)
dF(wj|wi, xi )

+
∫ ŵ+ε

ŵ

(
wi − W̌i

(
b̌(wi ), b̌(wj )

))
dF(wj|wi, xi ) +

∫ ŵ+ε

ŵ
Ľi

(
b̌(wi ), b̌(wj )

)
dF(wj|wi, xi )

≥
∫ ŵ

0

(
wi − W̌i

(
b′, b̌(wj )

))
dF(wj|wi, xi ) −

∫ 1

ŵ
Ľi

(
b′, b̌(wj )

)
dF(wj|wi, xi ).
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The second term in on the left-hand side vanishes as ε→ 0 since W̌i and Ľi are bounded.
Hence we must have∫ ŵ

0

(
W̌i

(
b′, b̌(wj )

) − W̌i
(
b̌(ŵ+ ), b̌(wj )

))
dF(wj|ŵ, xi )

+
∫ 1

ŵ

(
Ľi

(
b′, b̌(wj )

) − Ľi
(
b̌(ŵ+ ), b̌(wj )

))
dF(wj|ŵ, xi ) ≥ 0.

Since b′ < b̌(wi ), and W̌i and Ľi are nondecreasing in the first argument, this implies
that W̌i(b′, b̌(wj )) = W̌i(bi, b̌(wj )) and Ľi(b′, b̌(wj )) = Ľi(bi, b̌(wj )) all b′ ∈ [b̌(ŵ), b̌(ŵ+ )]
and almost every wj . By continuity of W̌i and Ľi, the equalities must hold for all

wj . Hence since W̌i and Ľi are continuously differentiable, ∂W̌i(b′, b̌(wj ))/∂bi = 0 and

∂Ľi(b′, b̌(wj ))/∂bi = 0 for all wj and all b′ ∈ [b̌(ŵ), b̌(ŵ+ )] and also ∂W̌i(b′, b̌(wj ))/∂bj =
∂W̌i(b̌(ŵ), b̌(wj ))/∂bj = ∂W̌i(b̌+(ŵ), b̌(wj ))/∂bj and ∂Ľi(b′, b̌(wj ))/∂bj = ∂Ľi(b̌(ŵ),

b̌(wj ))/∂bj = ∂Ľi(b̌(ŵ+ ), b̌(wj ))/∂bj for all b′ ∈ [b̌(ŵ), b̌(ŵ+ )], and all wj . Hence con-
tinuous differentiability is preserved by the elimination of the gaps.

A.4 Proof of Lemma 2

Proof of Lemma 2. We first show that for all i and bi, bj ∈ [0, 1]: ∂Wi(bi, bj )/∂bi = 0 if
bj < bi, and ∂Li(bi, bj )/∂bi = 0 if bj > bi.

Since δi(b) = 0 for all b ∈ [0, 1], we have that ψ,

ψ′(b) = ∂Wi(b, b)
∂bi

+ ∂Wi(b, b)
∂bj

− ∂Li(b, b)
∂bi

− ∂Li(b, b)
∂bj

<∞,

where finiteness follows from the assumption that Wi and Li are continuously differen-
tiable.

Now suppose that for some wi ∈ (0, 1),
∫ 1

0
∂Pi(b(wi ),b(wj ))

∂bi
f (wj|wi, xi )dwj > 0. The

same derivation leading to (8) in the proof of Lemma 3, together with δi(b(wi )) = 0 im-
plies that

lim inf
b↗b(wi )

ψ
(
b(wi )

) −ψ(b)

b(wi ) − b = ∞.

This contradicts ψ′(b(wi )) <∞. Hence
∫ 1

0
∂Pi(b(wi ),b(wj ))

∂bi
f (wj|wi, xi )dwj = 0 for all wi ∈

[0, 1]. Since ∂P(bi, bj )/∂bi ≥ 0 by assumption, we therefore have ∂Pi(b0, b(wj ))/∂bi = 0
for almost every wj and by continuity of ∂Wi/∂bi, ∂Li/∂bi, and b, this holds for all wj .
Therefore, ∂biWi(b0, b) = 0 if b < b0, and ∂biLi(b0, b) = 0 if b > b0.

To conclude the proof, note that individual rationality together with Li(bi, bj ) ≥ 0
requires that Li(0, bj ) = 0 for all bj .24 Since ∂Li(bi, bj )/∂bi = 0 if bj > bi, this im-
plies that Li(bi, bj ) = 0 for all bi ≤ bj . Next, δi(b(wi )) = 0 implies Wi(bi(w), bi(w)) =
wi + Li(bi(w), bi(w)) = wi, and since ∂Wi(bi, bj )/∂bi = 0, Wi(bi, bj(wj )) = wj whenever
bi ≥ bj(wj ).

24Notice that this holds independent of our normalization that v1 = 0, since the lowest type never wins
the object in a regular equilibrium.
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A.5 Proof of Lemma 3

Proof of Lemma 3. Consider a rational bidder i with types (w0, xi ) ∈ [0, 1]K−1 and any

sequence of valuations wni ↗ w0. wni prefers to bid bn = b(wni ) over bidding b0 = b(w0 ).

Therefore,

∫ ψ(bn )

0

(
wni −Wi

(
bn, b(wj )

))
f
(
wj|w

n
i , xi

)
dwj −

∫ 1

ψ(bn )
Li

(
bn, b(wj )

)
f
(
wj|w

n
i , xi

)
dwj

≥
∫ ψ(b0 )

0

(
wni −Wi

(
b0, b(wj )

))
f
(
wj|w

n
i , xi

)
dwj −

∫ 1

ψ(b0 )
Li

(
b0, b(wj )

)
f
(
wj|w

n
i , xi

)
dwj

⇐⇒
1

b− bn
∫ ψ(bn )

0

(
Wi

(
b0, b(wj )

) −Wi
(
bn, b(wj )

))
f
(
wj|w

n
i , xi

)
dwj

+ 1
b− bn

∫ 1

ψ(bn )

(
Li

(
b0, b(wj )

) −Li
(
bn, b(wj )

))
f
(
wj|w

n
i , xi

)
dwj

≥ 1
b− bn

∫ ψ(b0 )

ψ(bn )

(
wni −Wi

(
b0, b(wj )

) +Li
(
b0, b(wj )

))
f
(
wj|w

n
i , xi

)
dwj .

Taking the lim sup on both sides, we get

∫ 1

0

∂Pi
(
b0, b(wj )

)
∂bi

f (wj|w0, xi )dwj ≥ δi(b0 )f (w0|w0, xi ) lim sup
n→∞

ψ(b0 ) −ψ(
bn

)
b0 − bn ,

where Pi(bi, bj ) = Wi(bi, bj ) + Li(bi, bj ). Similarly, w0 prefers to bid b0 over bn for all

n ∈N:

∫ ψ(b0 )

0

(
w0 −Wi

(
b0, b(wj )

))
f (wj|w0, xi )dwj −

∫ 1

ψ(b0 )
Li

(
b0, b(wj )

)
f (wj|w0, xi )dwj

≥
∫ ψ(bn )

0

(
w0 −Wi

(
bn, b(wj )

))
f (wj|w0, xi )dwj

−
∫ ψ(bn )

1

(
Li

(
bn, b(wj )

))
f (wj|w0, xi )dwj

⇐⇒
1

b0 − bn
∫ ψ(b0 )

ψ(bn )

(
w0 −Wi

(
b0, b(wj )

) +Li
(
b0, b(wj )

))
f (wj|w0, xi )dwj

≥ 1
b0 − bn

∫ ψ(bn )

0

(
Wi

(
b0, b(wj )

) −Wi
(
bn, b(wj )

))
f (wj|w0, xi )dwj

+ 1
b− bn

∫ 1

ψ(bn )

(
Li

(
b0, b(wj )

) −Li
(
bn, b(wj )

))
f
(
wj|w

n
i , xi

)
dwj .
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Taking the lim inf on both sides, we get

δi(b0 )f (w0|w0, xi ) lim inf
n→∞

ψ(b0 ) −ψ(
bn

)
b0 − bn ≥

∫ 1

0

∂Pi
(
b0, b(wj )

)
∂bi

f (wj|w0, xi )dwj .

Hence, for δi(b0 )> 0, we have

lim inf
n→∞

ψ(b0 ) −ψ(
bn

)
b0 − bn ≥

∫ 1

0

∂Pi
(
b0, b(wj )

)
∂bi

f (wj|w0, xi )dwj

δi(b0 )f (w0|w0, xi )

≥ lim sup
n→∞

ψ(b0 ) −ψ(
bn

)
b0 − bn . (8)

Notice that so far we have considered the case that wn < w0. The same steps apply for
the case that the sequence satisfies wn >w0. Hence condition (8) applies for both cases.
We have

ψ′(b0 ) =ψ′−(b0 ) =ψ′+(b0 ) =

∫ 1

0

∂Pi
(
b0, b(wj )

)
∂bi

f
(
wj|ψ(b0 ), xi

)
dwj

δi(b0 )f
(
ψ(b0 )|ψ(b0 ), xi

) . (9)

Hence ψ(b0 ) is differentiable at b0. Since δi(b) is continuous, there exists ε such that
δi(b) > 0 for all b ∈ Bε(b0 ). Since the right-hand side of (9) is continuous in b0, ψ is
continuously differentiable on Bε(b0 ). Since ψ is strictly increasing, there must be b′ ∈
Bε(b0 ) such that ψ′(b′ ) > 0 and since ψ′ is continuous, there exist α < b′ < β such that

(α, β) ⊂ Bε(b0 ) and ψ is continuously differentiable with ψ′(b)> 0 for b ∈ (α, β).

A.6 Proof of Lemma 4

The proof follows the same steps as the proof of Theorem 2.4 in GH17, except that in-
stead of considering continuous mappings from Ti to the space of all measures on T−i,
M(T−i ), we consider continuous mappings from [0, 1] to the space of all absolutely con-
tinuous measures on X = [0, 1]K−2 with strictly positive and continuous density, which
we denoted by Md+(X ).

Restricting attention to Md+(X ) instead of the space of all measures M(X ), requires
a straightforward modification of the constructions of the functions g and the mea-
sures β1, � � � , βK in footnote 20 of GH17. First, we take the functions gk to be functions
gk :X → [0, 2] with gk(xk ) = 2 and gk(x) = 0 for x /∈ Bk. This allows us to construct per-
turbations of the measures β0

k, which need to be elements Md+(X ) for our purposes, by

setting βk = (1 − ε)β0
k + εβ̃k where the measure β̃k has a density f̃k that satisfies f̃k(x)

for x /∈ Bk and
∫
X g

k(x)f̃k(x)dx = 1. Then, with ε �= −z/(1 − z) for all negative eigen-
values of the matrix (

∫
X g

k(x)β0
�(dx))k,�, the vectors

∫
X g(x)βk(dx) for k= 1, � � � ,K are

linearly independent. The remaining steps in the proof are virtually unchanged.
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A.7 Proof of Lemma 5

The proof follows Theorem 2.7 in GH17 and uses results from Section 5.4 in Gizatulina
and Hellwig (2014).

First, note that for elements of Md+([0, 1]2K ), marginal and conditional densities are
defined in the usual way. Moreover, for each wi, the function that maps wj to the condi-
tional probability measure on X that is given by the density f (xi|wi, wj ), is an element
of C([0, 1], Md+(X )) (see GH14).

Analog to the proof of Theorem 2.7 in GH17, we let F iwi ⊂ Md+([0, 1]2K ) be the
set of priors such that the function wj �→ f (·|wi, wj ) is an element of E(wi ). The key
step is to show that the residualness of E(wi ) in C([0, 1], Md+(X )) implies the residu-
alness of F = ⋂

i∈{1,2},wi∈Wi
F iwi in Md+([0, 1]2K ). For each i ∈ {1, 2} and wi ∈ (0, 1), let

ψi,wi : Md+([0, 1]2K ) → Md+([0, 1]) × C([0, 1], Md+(X )) be the mapping that maps the
prior to the conditional distribution f (wj|wi ) and the function wj �→ f (xi|wi, wj ). As
shown in the proof of Lemma 5.9 in GH14, the maps ψi,wi are continuous and open
if Md+([0, 1]2K ) is endowed with the uniform topology for density functions. As in the
proof of Theorem 2.7 in GH17, this implies that F iwi is as residual subset of Md+([0, 1]2K ),
that is, it contains a countable intersection

⋂
n∈NHn(i, wi ) of open and dense sets

Hn(i, wi ) ⊂ Md+([0, 1]2K ). Clearly, H = ⋂
i∈{1,2}

⋂
wi∈Wi

⋂
n(i,wi )∈NHn(i,wi )(i, wi ) is a sub-

set of F . By a diagonal argument, H is a countable intersection of open and dense sub-
sets of Md+([0, 1]2K ) and hence F is residual.

A.8 Proof of Lemma 6

Proof of Lemma 6. We have shown this for |V | = 2 in Proposition 1. For |V | ≥ 3, we
need to modify the proof. Ifm-types bid b(wi ) =wi, we must have for all θi that

wi = E[vi|θi] ∈ arg max
b

{
K∑
k=1

θki

(
vki H

SPA(
b|vki

) −
∫ b

0
zdHSPA(

z|vki
))}

.

The first-order condition is

|V |∑
k=1

θki
(
vki −wi

)
HSPA′(wi|vki ) = 0.

Considering the type θi = (1 − b, 0, � � � , 0, b) for any b ∈ (0, 1), we have wi = b, and the
first-order condition simplifies to

HSPA′(b|vi = 1) −HSPA′(b|vi = 0) = 0.

We have

HSPA(
b|vki

) = Pf

[
bj ≤ b, vi = vki

]
Pf

[
vi = vki

] =

∫
�i

Pf [wj ≤ b|θ̃i]Pf
[
vi = vki |θ̃i

]
f (θ̃i )dθ̃i

Ef

[
θki

]
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=

∫
�i

Fwj (b|θ̃i )θ̃
k
i f (θ̃i )dθ̃i

Ef

[
θki

] ,

HSPA′(b|vki
) =

∫
�i

fwj (b|θ̃i )θ̃
k
i f (θ̃i )dθ̃i

Ef

[
θki

] .

Substituting this in the first-order condition, we get for all b ∈ B:∫
�i

fwj (b|θ̃i )θ̃
K
i f (θ̃i )dθ̃i

Ef

[
θKi

] −

∫
�i

fwj (b|θ̃i )θ̃
1
i f (θ̃i )dθ̃i

Ef

[
θ1
i

] = 0

⇐⇒
∫
�i

[
θ̃Ki

Ef

[
θKi

] − θ̃1
i

Ef

[
θ1
i

]]
fwi (θ̃i|wj = b)fwj (b)dθ̃i = 0

⇐⇒ Ef

[
θKi |wj = b]
Ef

[
θKi

] = Ef

[
θ1
i |wj = b]

Ef

[
θ1
i

]
⇐⇒ Ef

[
θKi |wj ≤ b] = Ef

[
θKi

]
Ef

[
θ1
i

] Ef [θ1
i |wj ≤ b].

For generic distributions, the last line is violated.
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