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The property rights theory of production networks
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This paper investigates the formation of production and trading networks in
economies with general interdependencies and complex property rights. We ar-
gue that the right to exclude, a core tenet of property, grants asset owners local
monopoly power that is amplified by an economy’s endogenous production net-
work. Our analysis generalizes the exclusion core, a cooperative solution concept
based on the right to exclude, to markets with production. We identify sufficient
(and essentially necessary) conditions for the nonemptiness of the exclusion core.
Multisourcing and a bias toward shorter supply chains emerge in exclusion-core
outcomes. As a methodological contribution, we generalize the top trading cycles
algorithm to a production economy and we show that it identifies outcomes in an
economy’s exclusion core.
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1. Introduction

This paper proposes a property rights theory of production networks. We are motivated
by the extensive interdependencies in the organization of economic activity. A firm’s
production process weaves together many inputs. Building an airplane, for example,
combines engineering knowledge, parts from many suppliers, and specialized labor. Ev-
erything must fit for production, and the product, to get off the ground.

We argue that the distribution of property rights—who owns what and with whom—
plays a key role in determining the structure of production and trading networks. Our
reasoning traces the economic consequences of a core tenet of property, the right to
exclude. The United States Supreme Court has called the right to exclude “one of the
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most essential sticks in the bundle of rights that are commonly characterized as prop-
erty”1 and legal scholars have emphasized its significance since at least the eighteenth-
century.2 The right to exclude grants the owner(s) of an asset, including labor and hu-
man capital, monopoly power that influences economic interactions at the granular
level.3 By threatening to exclude others from desired goods or critical inputs, an agent
can skew outcomes in his favor. Production and trading links further amplify this impact
as an agent may upend an entire supply chain if he owns a critical component. Equilib-
rium production and trading networks must navigate both technical constraints, deter-
mining which goods are critical for others’ production, and strategic distortions, where
agents attempt to extract private gains.

Our main contribution is to provide a joint restriction on both the production re-
lationships between firms and the economy’s ownership structure that sustains stable
outcomes. Absent these conditions, vertical integration, horizontal integration, and in-
put multisourcing are expected compensatory responses over the long run. (The ab-
sence of stable outcomes need not be tantamount to economy-wide breakdown; in the
short run, asset owners and firms are likely to rely on contracts to reach an acceptable
outcome as contracts change the constraints agents face.)

To present our argument, we develop a new theoretical framework to study econo-
mies with production interdependencies. Our model is a generalization of the “house
exchange” economy of Shapley and Scarf (1974). In this model, agents have unit demand
and trade discrete, indivisible goods. This simplicity allows for a detailed constructive
characterization of any consumption and (in our model) production interdependencies
arising in equilibrium through the trading links between agents. As explained below,
these links play an especially important role in our theory and would be shrouded in
more complex settings.

We enrich the Shapley and Scarf (1974) baseline in two ways. First, we follow Bal-
buzanov and Kotowski (2019) by assuming both a rich family of property arrangements
and by adopting their reinterpretation of “endowments” in an economy. Balbuzanov
and Kotowski (2019) argue that, at its most basic level, an endowment can be under-
stood as a distribution of exclusion rights, which may be vested in individual agents,
coalitions, or even all members of the economy. This reinterpretation leads Balbuzanov
and Kotowski (2019) to define and study an economy’s exclusion core, which is a coop-
erative solution tailored for discrete exchange economies with complex property rights,
including cases with joint or contested ownership. Roughly, at an exclusion core out-
come no coalition has the incentive and the ability to veto or block the allocation by in-
voking its right to exclude others from the goods that it owns. Crucially, coalitions may
use trading interdependencies to extract further concessions from others. Balbuzanov
and Kotowski (2019) show that exclusion core assignments are closely related to general-
izations of the Top Trading Cycles (TTC) algorithm (attributed to David Gale by Shapley
and Scarf (1974)) and have several other desirable properties.

1Kaiser Aetna v. United States, 444 U.S. 164 (1979).
2William Blackstone described it in his Commentaries on the Laws of England (1765); see Merrill (1998),

Merrill and Smith (2001a), and Klick and Parchomovsky (2017) for recent discussions.
3This monopoly dimension of property is well known; see, for example, Posner and Weyl (2018).
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Our second step beyond the Shapley and Scarf (1974) economy—and also beyond
the model of Balbuzanov and Kotowski (2019)—is to introduce production.4 We assume
a collection of firms that can transform sets of inputs into sets of outputs. These firms
may form a supply chain or, more generally, a production network defined by their mu-
tual input–output relationships. We argue that Balbuzanov and Kotowski’s (2019) ex-
clusion core solution extends naturally to this enriched environment and we formally
develop that generalization. The generalization is based on the observation that pro-
duction interdependencies give the owners of critical inputs de facto exclusion rights
over outputs whose production relies on those inputs. Moreover, this reliance may be
indirect and mediated by supply chain relations to “downstream” goods.

Using our model, we investigate when an economy has an outcome in its exclusion
core and what economic properties such an outcome may have. An outcome consists of
a consumption assignment, which describes consumers’ choices, and an input assign-
ment, which describes the inputs used by each firm. The latter implicitly defines the
active production network in the economy.

After introducing the model and notation in Section 2, we illustrate our main ar-
guments and conclusions through a series of motivating examples in Section 3. These
examples shed new light on several archetypal cases concerning the theory of the firm.
In a vertical upstream–downstream relationship between firms, we show that some in-
tegration of ownership (made precise below) is necessary to ensure a stable outcome
when the firms are linked via critical or indispensable inputs. However, when inputs are
substitutes or input markets are sufficiently competitive, integration is dispensable. In-
stead, multisourcing can feature in a stable outcome. Multisourcing cuts the exclusion
power of suppliers, thereby reducing hold-up threats. Integration, however, reappears
as a beneficial characteristic when production requires complementary inputs. Many
of these conclusions reinforce classic insights from the organizational economics and
industrial organization literatures, a point we elaborate upon in Section 3. Our con-
tribution is to show how these ideas also naturally emerge within a distinct modeling
paradigm founded on a very spare interpretation of property rights.

Our primary technical contributions are presented in Section 4. There, we formalize
the extension of the exclusion core solution to production economies and we state our
main results. Of importance is Theorem 1, which identifies sufficient conditions for the
solution to be nonempty. In the class of private ownership economies, those conditions
are also necessary, given an unrestricted preference domain (Proposition 2). Roughly,
there must be “sufficient integration” in the ownership structure of each good’s supply
chain. Overlap among owners of critical goods in a supply chain dilutes the veto power
of peripheral, but opportunistic, parties.5 This condition is much weaker than vertical
integration and formalizes a minimal criterion neutralizing supplier or hold-up risk in a
production and trading network.

4In a working paper version of Balbuzanov and Kotowski (2019), we explored a prototype production
economy. That model of production differed significantly from the analysis here.

5This conclusion is reminiscent of the tragedy of the anticommons, which occurs when overly diffuse
property rights prevent the production and provision of a good or service (Heller (1998)).
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We prove Theorem 1 constructively with a novel extension of the TTC algorithm to
an economy with production. Our Top Trading Cycles and Supply Chains (TTC-SC)
algorithm, outlined in Section 5, also has agents trade iteratively in cycles. However,
it additionally identifies supply chains to ensure the production of consumed goods,
when necessary. To guarantee feasibility, the algorithm incorporates a cycle trimming
procedure that indirectly favors the formation of shorter supply chains. All else equal,
shorter supply chains have fewer production interdependencies and hold-up opportu-
nities. A subtle challenge in our construction concerns the presence of production cy-
cles, that is, situations where good x is (indirectly) an input for good x′ and good x′ is
(indirectly) an input for good x. We address this complication by applying the TTC-SC
algorithm first to a simplified economy (without cycles) and then recovering the implied
outcome in the original market. That simplification relies on the graph theoretic notion
of a condensation. We suggest several economic interpretations of this construction re-
lated to firms and joint ventures.

We end in Section 6 by relating our study to the literature on production and trad-
ing networks. Of note is the successful literature tackling production networks under
the “matching with contracts” paradigm (Ostrovsky (2008), Fleiner, Jagadeesan, Jankó,
and Teytelboym (2019)). As explained below, we examine similar questions, though we
build our argument on a distinct set of building blocks—property relations rather than
bilateral contracts. Appendix A presents the TTC-SC algorithm in detail. Appendix B
contains all omitted proofs.

2. Model

An economy E = 〈I, F ,X , �,ω〉 consists of agents, firms, goods, a preference profile,
and an endowment system. I := {i1, � � � , in} and F := {f1, � � � , fm} are finite sets of agents
and production technologies (“firms”), respectively. X is a finite set of goods. It may
contain consumption goods (for example, an apple), production inputs (such as a ton
of ore), or labor inputs (like an hour of welding). Each good x has unit capacity: x can
be consumed or used as an input by only one agent or firm.

Production and firms Goods are partitioned into a set of primary goods and sets of
goods produced by each firm, that is, X =X∅ ∪Xf1 ∪ · · · ∪Xfm where Xf ∩Xf ′ = ∅ for
all f 	= f ′. Primary goods, the set X∅, are not production outputs. The goods in set Xf
are available if and only if they are produced by firm f using the eponymous produc-
tion function f : 2X → {∅,Xf }. Thus, a firm transforms sets of inputs into a set of (net)
outputs.6 For simplicity, we assume that production has a 0/1 character. Either firm f

produces nothing or all goods in Xf are created. We assume each production func-
tion is monotone (Z ⊆ Z′ =⇒ f (Z ) ⊆ f (Z′ )) and satisfies the “no free lunch” property
(f (∅) = ∅).

6That is, firm f suppliesXf to the market. These goods are not used by f in its own production. However,
these goods might be used by other firms in their production.
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We say that the input set Z is efficient for firm f if there is no Z′ � Z that assures f
the same output as Z. A firm f with a production function of the form

f (Z ) =
{
Xf if Z ⊇Wf ;

∅ otherwise;
(1)

has a unique efficient input set Wf . Such a production process exhibits strong input
complementarities, which are important in theories of trade (Grossman, Helpman, and
Szeidl (2005)) and economic growth (Kremer (1993), Jones (2011)). Therefore, this class
of production functions is of particular interest and plays a key role in our analysis.

When a firm has many efficient input sets that allow it to produce its output, that
is, when there are nonnested sets Wf ⊆ X and W ′

f ⊆ X such that f (Z ) = Xf whenever
Z ⊇Wf orZ ⊇W ′

f , then its production function admits inputs substitution. Anticipating
the analysis to follow, such production processes allow for multisourcing.

Agents and consumers Each agent i has a complete and transitive preference �i de-
fined over X ∪ {x0}, where x0 /∈X represents no consumption. We assume each agent
has unit demand and his preferences are strict. We write x �i x′ if x �i x′ or x = x′.
In examples, we state an agent’s preference by listing goods in his preferred order, for
example, �i : x, x′, � � � . Unlisted items are inferior to x0.

Endowments Property rights are a focus of our analysis. Therefore, we posit a general
framework subsuming private and public ownership as special cases. The economy’s
endowment system ω : 2I → 2X identifies the goods owned by each coalition of agents.
Throughout the paper, we assume it satisfies four basic properties.

(A1) Agency: ω(∅) = ∅.

(A2) Monotonicity: C ′ ⊆ C =⇒ ω(C ′ ) ⊆ω(C ).

(A3) Exhaustivity: ω(I ) =X .

(A4) Weak noncontestability: for each x ∈ X , the set Cx := ⋂
{C 	=∅:x∈ω(C )}C is not

empty.

Properties A1–A3 are self-explanatory. Property A4 says that each good x has a set of
principals Cx and any group that has a good in its endowment includes the good’s prin-
cipals. Property A4 relaxes the noncontestability condition of Balbuzanov and Kotowski
(2019).

Many situations satisfy A1–A4. If x is privately owned by i, then x ∈ω(C ) if and only if
i ∈ C. If x is collectively owned by everyone, Cx is the grand coalition and x ∈ω(C ) if and
only if C = I. An interesting case compatible with our model occurs when x /∈ ω(Cx ).
In practice, this may arise when property rights are imperfectly enforced and a good’s
principals require others’ cooperation to exercise de facto control. If the principal set
Cx is the same for all x ∈ Xf , we can interpret Cx as being the set of “co-owners” of
firm f . It is also possible that a firm’s outputs have different principals, that is, x, y ∈Xf
but Cx 	= Cy . For example, concert seats might be controlled by the concert promoter
but rights to its recording might belong to a record label.
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Assignments and outcomes A consumption assignment μ : I →X ∪ {x0} identifies each
agent’s consumption. For any C ⊆ I, let μ(C ) := ⋃

i∈C μ(i). An input assignment γ : F →
2X identifies the inputs used by each firm and implicitly defines the economy’s input–
output network. For any G ⊆ F , let γ(G) := ⋃

f∈G γ(f ). Abusing notation, let f (γ) be
the output of firm f at input assignment γ. Analogously, G(γ) := ⋃

f∈G f (γ) is the total
output of firms in setG⊆ F . An outcome (μ, γ) consists of a consumption and an input
assignment. An outcome (μ, γ) is feasible if (a) every good that is consumed or used in
production is a primary good, a good produced at γ, or the outside option, that is,

μ(I ) ∪ γ(F ) ⊆X∅ ∪ F(γ) ∪ {x0}

and (b) no more than a single agent or firm is assigned an item, that is,∣∣{i ∈ I : x= μ(i)
}∣∣ + ∣∣{f ∈ F : x ∈ γ(f )

}∣∣ ≤ 1

for all x ∈X . Similarly, an input assignment γ is feasible if (a) γ(F ) ⊆X∅ ∪ F(γ) and (b)
|{f ∈ F : x ∈ γ(f )}| ≤ 1 for all x ∈ X . If (μ, γ) is a feasible outcome, then γ is a feasible
input assignment.

3. Motivating cases: Integration and competition

The goal of our analysis is to characterize an economy’s plausible outcomes with em-
phasis on the role of the endowment system and the production relationships between
firms. To do so, in Section 4 we formally introduce our solution concept, which extends
the exclusion core proposed by Balbuzanov and Kotowski (2019) to economies with pro-
duction. Working toward that definition, we first consider some examples demonstrat-
ing the model’s key mechanics and properties.

The high level premise governing resource allocation in our model can be summa-
rized by two informal postulates:

(P1) If a coalition of agents C ⊆ I has a good x in its endowment, that is, x ∈ ω(C ),
then the coalition can directly exclude other agents or firms from good x by ve-
toing or blocking its trade or assignment.

(P2) A coalition can exploit trade and production interdependencies to inductively
extend its exclusion power beyond the goods in its endowment. Thus, it may
block the consumption of agents and firms that indirectly rely on the coalition’s
goods at a given outcome.

The inability of any coalition to beneficially leverage P1 and P2 defines the exclusion core
solution. An outcome (μ, γ) belongs to the economy’s exclusion core if no coalition can
gain by blocking trade or production directly (P1) or indirectly (P2).

In this section, we explain this idea with a series of motivating examples. These par-
allel familiar cases from industrial organization and concern a supply chain where a firm
sources inputs from suppliers. Example 1 establishes a baseline where there is no con-
flict of interest among agents. Unsurprisingly, efficient and stable outcomes arise triv-
ially. When agents’ interests are in conflict, as in Example 2, instability ensues. Changes



Theoretical Economics 19 (2024) The property rights theory of production networks 1625

Figure 1. The economy of Example 1.

to the ownership structure (for example, vertical integration) or changes in the upstream
market (such as an increase in supplier competition) become necessary adaptations to
support an equilibrium. The former is the focus of Example 3 while the latter is the case
described in Examples 4 and 5. All of these market adjustments have received consider-
able attention in leading theories of firm or market organization, including “transaction
cost” (Coase (1937), Williamson (1975), Klein, Crawford, and Alchian (1978)) and “prop-
erty rights” (Grossman and Hart (1986), Hart and Moore (1990), Hart (1995)) approaches,
and we relate our model to these theories at the end of this section.7 In the sequel, we
extend our analysis to more general economies where the production network among
firms need not be linear (as in the following examples) and may, in fact, even contain
cycles.

Example 1. Consider the economy presented in panel (a) of Figure 1. This economy has
two agents, i1 and i2, and one firm, f1. There are three goods, X = {x1, x2, x3}. Goods
x2 and x3 are primary goods while good x1 is produced by firm f1, whose production
function is

f1(Z ) =
{
x1 if x2 ∈Z;

∅ otherwise.

In words, f1 uses x2 as an input to produce x1 as an output. This production function
has a unique efficient input set, Wf1 = {x2}, in the notation of (1) above. The implied
supply chain relationship is depicted in panel (a) of Figure 1 by the dashed arrows with
good x1 “pointing” to its producer f1 and firm f1 “pointing” to the input good x2 that it
consumes for production.8

Next, we specify the economy’s endowment system. As a baseline, we posit a private
ownership economy where the endowment system is given by

ω(∅) = ∅, ω(i1 ) = {x1, x3}, ω(i2 ) = {x2}, ω(i1, i2 ) = {x1, x2, x3}.

7See Gibbons (2005) for a comparative survey of these and other theories.
8Throughout the paper, we follow the convention that dashed arrows relate to production, for example,

x2 ��� f1 ��� x1 in Figure 1. These arrows point upstream or opposite to the direction of the goods’ “flow”
in a production process. This convention’s utility will be apparent in Section 5 where a generalized TTC
algorithm will be introduced. Traditionally, such algorithms ask each agent to “point” to the good that he
consumes. In our generalization, firms also “point” to the goods that they consume during production.
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This ownership structure is depicted in panel (a) of Figure 1 by the solid arrows linking
each good with its principal. The structure satisfies A1–A4, Cx1 = Cx3 = {i1}, and Cx2 =
{i2}. Thus, agent i1 owns goods x1 and x3, with the latter being a primary good. Agent i2
starts with good x2, the primary good needed for the production of x1. Of course, agent
i1’s ability to consume or trade x1 is contingent on it being produced.

When the agents’ preferences are not in conflict, mutually beneficial exchange and
production is trivial to arrange. This occurs when, for example, the agents’ preferences
are

�i1 : x1, x3, x0, x2 and �i2 : x3, x1, x0, x2.

Both agents consider good x2 not consumable (it is worse than the outside option x0),
but they disagree which of x1 or x3 is better. Given such preferences, the most plausible
outcome (and the unique outcome in the exclusion core, which will be defined formally
below) is

μ=
(
i1 i2
x1 x3

)
, γ =

(
f1

x2

)
. (2)

At (μ, γ), the firm uses good x2 as an input to produce x1. Each agent receives his most-
preferred good—agent i1 consumes x1 and, in exchange for this arrangement, agent i2
consumes x3. Efficiency is achieved through an intuitively appealing “cyclic” exchange
of goods, as illustrated in panel (b) of Figure 1. It is the same as panel (a) except the
agents are now pointing to their assigned consumption good and links representing the
consumption assignment μ and the input assignment γ are in boldface for emphasis.

♦

When there is no conflict of interest, as in Example 1, the distribution of property
rights is not too important. Agent i1 could exclude i2 from x3, but he has no reason to
do so as he would not benefit. Likewise, i2 could gum up the production of x1 by block-
ing access to its critical input. But he too has no reason to do so. The outcome (μ, γ)
defined in (2) is therefore consistent with both P1 and P2 and in the market’s exclusion
core. Matters are different when agents are in conflict as demonstrated in the following
extension of the preceding example.

Example 2. Consider again Example 1, but suppose that each agent now desires x1 the
most. That is, each agent’s preference is

�i : x1, x3, x0, x2. (3)

Given P1 and P2, the likely outcome is now indeterminate. Any outcome where x1 is
not produced is inefficient—given the agent’s preferences, it is always better to use x2

to make x1 instead of consuming it. Any outcome where i1 receives x1 seems unlikely
as i2 can always withhold the critical input x2 in the hope of securing a more favorable
assignment. And, any outcome where i2 gets x1 seems incredible as i1 may renege on
the promised exchange once production has occurred. Anticipating hold up, i2 would
hesitate to trade in the first place. The exclusion core is empty in this example. ♦
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Figure 2. The outcome (μ, γ) in Example 3. Agents Cx2 = {i1, i2} together constitute the prin-
cipals of critical input good x2.

Trouble arises in Example 2 as postulates P1 and P2 imply that both i1 and i2 hold de
facto exclusion rights over x1. Agent i1 does so directly through his outright ownership
of that good after it is produced. Agent i2 does so indirectly through his ownership of a
critical input. Holding preferences fixed, there are two ways in which to resolve the con-
flict. Each involves altering a fundamental of the economy—the distribution of property
rights or the level of supply competition—to eliminate the ability of one or more agents
to exercise his direct or indirect exclusion rights. It is unlikely that such changes can
occur quickly in practice, but in the long run we may reasonably expect economies to
exhibit fundamentals that reflect this feature.

In the subsequent examples, we describe these changes working toward an out-
come where agent i1 receives good x1. Parallel arguments can support outcomes where
agent i2 receives good x1 and we focus on the former case for brevity.

Example 3. The simplest route to address the deficiency in Example 2 is to change the
goods’ ownership structure through vertical integration. This option is a known method
of combatting opportunistic behavior in buyer–supplier relationships with the 1920s
buy-out of Fisher Body by General Motors being the recurring leading case study (Klein,
Crawford, and Alchian (1978)).

Its implementation in our framework is straightforward. In this case, it is sufficient
for i1 to secure joint control of x2, that is, the set of principals for x2 is Cx2 = {i1, i2}.
In Figure 2, this change is depicted by the dotted links emanating from x2. The new
endowment system is

ω(∅) = ∅, ω(i1 ) = {x1, x3}, ω(i2 ) = ∅, ω(i1, i2 ) = {x1, x2, x3}. (4)

Now i2 cannot block the outcome (μ, γ) defined in (2) above. Whereas i2 prefers x1,
he cannot credibly hold up its production as a bargaining chip. Doing so now requires
the agreement of i1, which will not be forthcoming since he would be made worse off
relative to (μ, γ) at any alternative outcome where i2 gets x1. Outcome (μ, γ) is also the
unique exclusion core outcome. An important feature of this example that reappears
in the general model below is that i1 does not need to have outright or independent
ownership of x2. Some overlap in the ownership throughout a supply chain—and not
unified control—is the important characteristic. ♦

The next example highlights some of the consequences of postulate P2. It extends
Example 2 by adding further layers to the supply chain of good x1.
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Figure 3. Outcomes in Examples 4 and 5.

Example 4. Consider Example 3 with endowment system ω defined in (4). However,
posit that good x2 is now the output of another firm f2 using some new primary input x4.
Thus, its production function is

f2(Z ) =
{
x2 if x4 ∈Z;

∅ otherwise.

Good x4 belongs to a third agent i3, that is, ω(i3 ) = {x4}. All agents have the same pref-
erences as in (3), except x4 is the least-desirable good:

�i : x1, x3, x0, x2, x4.

The naive extension of the outcome (μ, γ), which was defined in (2) above, to this
situation assigns the input x4 to firm f2 to allow for the production of good x2:

μ̃=
(
i1 i2 i3
x1 x3 x0

)
, γ̃ =

(
f1 f2

x2 x4

)
. (5)

This outcome is depicted in panel (a) of Figure 3. Even though (μ̃, γ̃) is feasible, it is
unlikely to prevail in this market. Just like in Example 2, vertical integration successfully
neutralized the ability of agent i2 to block the outcome. He alone cannot block produc-
tion of x1 by withholding x2. However, agent i3 can now withhold x4, making production
of x2 impossible, unless he obtains either x1 or x3. The production arrangement unrav-
els just like in Example 2 prior to the change in the ownership structure. Without x4, x2

is not made; consequently, neither is x1. Again, the exclusion core is empty. ♦

One solution to the quandary of Example 4 extends by induction the ideas in Ex-
ample 3. More vertical integration and a dilution of the ownership structure further up
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the supply chain will curtail the ability of parties to opportunistically block production.
We will not explore this possibility further here; though, it will reappear in the formal
analysis to follow. Instead, we will describe how competition may substitute for vertical
integration.

Example 5. Amending Example 4, suppose that there now exist many essentially iden-
tical copies of good x4, say x3

4, x4
4, � � � , xn4, and each copy is initially owned by a distinct

agent, i3, i4, � � � , in, respectively. Call this market’s endowment system ω′. Each agent’s
preferences are the same as in (3) with all xk4 now being worse than the outside option.
Assume each xk4 is a viable input to make x2. More concretely, suppose good x2 is now
made by firm f ′

2 with production function

f ′
2(Z ) =

{
x2 if xk4 ∈Z for some k= 3, � � � , n;

∅ otherwise.

As before, it is possible for firm f ′
2 to engage exactly one input—say xk4 —and produce

at capacity. However, at any input assignment where γ(f ′
2 ) = xk4 , agent ik would be able

to block production, just like i3 did in Example 4. At that input assignment, input xk4 is
critical.

Matters change when more inputs are engaged and competition takes hold. To take
one case, suppose n≥ 5 and consider the outcome

μ′ =
(
i1 i2 i3 · · · in
x1 x3 x0 · · · x0

)
, γ′ =

(
f1 f ′

2
x2

{
x3

4, � � � , xn4
}
)

. (6)

At γ′, firm f ′
2 multisources inputs x3

4, � � � , xn4. This outcome is illustrated in panel (b)
of Figure 3 with firm f ′

2 linked to each of x3
4, � � � , xn4. The firm has distorted its input

mix by consuming an excess of goods in light of its production technology. However,
now no input supplier can credibly block production in the way the monopolist sup-
plier i3 could in Example 4. At this arrangement, no particular input good is critical for
production—x1 remains in production even if xk4 is withheld by agent ik.9 Complying
with this intuition, outcome (μ′, γ′ ) is indeed in the economy’s exclusion core. ♦

Taking stock of Examples 4 and 5, we can infer the following principle concerning the
extent of vertical integration in a market. In the presence of input specificity (the critical
reliance of a producer on an input manufactured by a single upstream supplier), some
integration helps stabilize an outcome. In the above examples, we only considered one
“layer” of specific intermediate inputs, though the logic extends inductively when goods
have longer supply chains. How far should integration extend? Up to any sufficiently

9In this example, we require at least three suppliers of good xk4 (that is, n ≥ 5) for there to be “sufficient
competition” in the market. If there are only two (that is, n = 4), then the pair i3 and i4 could act as a
coalition demanding x1 and x3 in exchange for x3

4 and x4
4. This would allow both to strictly improve their

assignments relative to μ′.
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competitively supplied goods. These act as a firebreak on the ability of agents to hold-
up downstream production. In Example 5, this occurred in the primary sector, through
some intermediate goods may too be competitively supplied.10

A thread common to the preceding examples is the importance of integration of
complementary assets.11 This is among the main conclusions of “property rights” ap-
proach to firm organization pioneered by Grossman and Hart (1986), Hart and Moore
(1990), and Hart (1995). That theory also emphasized the distribution of asset own-
ership, which it argued was instrumental in structuring ex ante investment incentives
when contracts are incomplete. Such considerations are absent from our analysis and
from property’s role or interpretation in our model.12 Property rights matter for what
is effectively ex post bargaining in our model. In this regard, our argument is closer in
spirit to “rent seeking” or “transaction cost” theories of firm organization where a desire
to avoid surplus-destroying conflicts rationalizes ownership structures (Coase (1937),
Williamson (1975), Klein, Crawford, and Alchian (1978)). A change in the endowment
system (that is, integration) or in the competitive environment ameliorated these con-
flicts in the examples above. The exclusion rights that agents or coalitions hold can be
magnified (or limited) by the entire production or trading network.

4. The exclusion core in production economies

This section formalizes the ideas introduced by the motivating examples above and
presents our main results.

4.1 Definitions

The exclusion core solution has a familiar structure. It consists of all outcomes that can-
not be “blocked” in a particular sense. A coalition will block an outcome if it can benefit
from a feasible (for the coalition) rearrangement of the consumption and input assign-
ments. What is feasible was informally stated by postulates P1 and P2 above. We build
up to our main definition by first formalizing P1 in Definition 1 and then P2 in Defini-
tions 3 and 4.

P1 says that a coalition can exclude others from goods in its endowment. This sug-
gests the following definition.

Definition 1. Coalition C ⊆ I can directly exclusion block the outcome (μ, γ) if there
exists a feasible outcome (σ , ψ) such that (a) σ(i) �i μ(i) for all i ∈ C and (b) μ(j) �j
σ(j) =⇒ μ(j) ∈ω(C ).

10Existing empirical regularities provide suggestive support for these conclusions. For instance, Antràs
(2003) shows that, as labor is a competitively supplied primary input, labor-intensive industries see less
vertical integration relative to capital-intensive ones, where input specificity is more salient.

11Complementarities arose above due to vertical production relationships. Similar examples with hori-
zontal integration are simple to construct.

12Notably, we do not associate ownership with residual control rights, which is the key interpretation
in the property rights approach to the firm. Our model does not preclude this interpretation. Rather, it is
simply not part of the theory examined here.
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Definition 1 has two parts. Part (a) is standard—all coalition members gain at a
blocking outcome when compared to the prior outcome. Part (b) reflects exclusion and
is the main constraint limiting a coalition’s action. If an agent is made worse off by the
blocking coalition, it must be the case that he was excluded from something in the block-
ing coalition’s endowment.

P2 relaxes part (b) of Definition 1 by asserting that a coalition has exclusion power
over some goods that are not in its endowment. This is because of two non-mutually
exclusive channels. The first channel is due to consumption interdependency. If agent i
benefits from a coalition’s endowment by consuming one of its goods, he is reliant on
that coalition. This gives the coalition leverage. It can press agent i to exclude oth-
ers from goods in his endowment by withholding the good that agent i consumes.
The second channel goes through production. If a coalition can exclude a firm from
a critical input, it blocks other agents or firms from that firm’s production (see Exam-
ple 4 above). A coalition’s extended endowment results from the inductive application
of these two channels. It is the set of goods over which the coalition holds de facto
exclusion power at a given outcome. The following definitions operationalize P2 by
defining critical inputs (Definition 2) and a coalition’s extended endowment (Defini-
tion 3).

Definition 2. The set Z ⊆ X is critical for the production of good x at input assign-
ment γ if x can be produced by firm f with inputs γ(f ) and x cannot be produced by f
with inputs γ(f ) \Z, that is, x ∈ f (γ) but x /∈ f (γ(f ) \Z ).

Let

αγ(Z ) := {
x : ∃f such that x ∈ f (γ) & x /∈ f (γ(f ) \Z)}

be the set of goods for which Z is critical at γ.

Definition 3. Given coalitionC ⊆ I and outcome (μ, γ), letZ0 =ω(C ) and for all k≥ 1
recursively define

Zk =Zk−1 ∪ω(
C ∪μ−1(Zk−1 )

) ∪ αγ(Zk−1 ). (7)

The extended endowment of coalition C at (μ, γ) is

�γ(C|ω, μ) :=
∞⋃
k=0

Zk.

The inductive construction of a coalition’s extended endowment is apparent in ex-
pression (7). Each step k identifies additional goods that a coalition may control, start-
ing from its endowment, Z0 = ω(C ). Goods in the set “ω(C ∪ μ−1(Zk−1 ))” enter via
the consumption channel—these are goods owned by the coalition or by others who are
consuming goods indirectly controlled by the coalition.13 Goods in the set “αγ(Zk−1 )”

13Goods that belong only to a coalition of agents are included once all members of that coalition are
deemed (in)directly reliant on goods that the coalition (in)directly controls.



1632 Balbuzanov and Kotowski Theoretical Economics 19 (2024)

enter via the production channel. Production of these goods can be blocked by the coali-
tion as it can withhold critical inputs in Zk−1.

Remark 1. When specialized to an economy without production, Definition 3 differs
from the definition of a coalition’s extended endowment in Balbuzanov and Kotowski
(2019). Lemma 1 in Appendix B demonstrates that Definition 3 is equivalent to the defi-
nition in Balbuzanov and Kotowski (2019) given A1–A4.

The next definition takes Definition 1 but replaces the blocking coalition’s endow-
ment with its extended endowment in part (b).

Definition 4. Coalition C ⊆ I can (indirectly) exclusion block (henceforth, just ex-
clusion block) the outcome (μ, γ) if there exists a feasible outcome (σ , ψ) such that
(a) σ(i) �i μ(i) for all i ∈ C and (b) μ(j) �j σ(j) =⇒ μ(j) ∈�γ(C|ω, μ).

As ω(C ) ⊆�γ(C|ω, μ), it follows that if a coalition can directly exclusion block, then
it can also exclusion block.14

Definition 5. The exclusion core is the set of outcomes that cannot be exclusion
blocked by any nonempty coalition.

In other words, no coalition can improve upon an exclusion core outcome by invok-
ing its direct or indirect exclusion rights.

An important assumption implicit in Definition 4 concerns the extent to which a
blocking coalition can affect the production of firms. Generally, there are many ways
that core-like solutions for production economies approach this issue. Per Definition 4,
a coalition can seemingly rearrange all production in the economy when devising a
blocking outcome (σ , ψ). It is not expressly limited to the firms that it “owns.” The
only constraint on the input assignment in a blocking outcome enters indirectly through
part (b) of Definition 4. Satisfying this constraint can limit the production plans pursued
by a blocking coalition. All else equal, this formulation makes blocking as easy as possi-
ble within our model and makes the exclusion core a stronger solution.15

To reinforce the preceding definitions, we revisit the examples from Section 3.

1. Example 1 has one exclusion core outcome that is defined in (2). The agents’ pref-
erences are “in alignment” and selecting the only efficient outcome seems natural.

14Exclusion blocking has some superficial similarities but is distinct from setwise blocking (Echenique
and Oviedo (2006)). To see that, consider an adaptation of exclusion blocking to many-to-many matching
problems under the assumption that an agent can “exclude” any other agent he is matched with from using
his services (for example, a worker unilaterally quitting a firm or a firm unilaterally firing a worker). In this
setting, exclusion blocking is stronger than setwise blocking. Specifically, unlike setwise blocking, new links
in the blocking matching σ need not be just among members of the blocking coalition C.

15The working paper version of this study, Balbuzanov and Kotowski (2022), presented a weaker counter-
part to Definition 5 that we called the “ex post exclusion core.” It assumed firms’ production plans are fixed,
that is, ψ= γ in Definition 4. The working paper also considers model extensions to the case of nontrivial
goods and the consumption of multiple goods. The latter proceeds through an appropriate redefinition of
goods and production processes.
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2. In Example 2, all outcomes can be exclusion blocked by some coalition. If agent i1
is to receive x1, agent i2 can block its production as it is in his extended endowment
whenever it is produced. If i2 receives x1, agent i1 can exclude him from it directly.
As a result, the exclusion core is empty.

3. Example 3 is the same as Example 2 except the endowment system is nowω defined
in (4). Now, (μ, γ) defined in (2) is the unique exclusion core outcome. The only
agent who stands to gain by blocking this outcome is i2. However, his extended
endowment at γ is�γ(i2|ω, μ) = ∅, so blocking is infeasible. Any outcome where i2
gets x1 is exclusion blocked by i1.

4. The exclusion core is empty in Example 4. The logic parallels Example 2.

5. In Example 5, there are many exclusion core outcomes depending on the num-
ber of primary good suppliers and the specific sourcing pattern by firm f ′

2. How-
ever, in every exclusion core outcome, i1 receives x1. There are exclusion core out-
comes, like (μ′, γ′ ) defined in (6) (see also Figure 3b), where i2 gets x3; however,
there are others where x3 goes to one of the primary good suppliers instead. At
an outcome like (μ′, γ′ ), the extended endowment of a typical primary good sup-
plier ik, k ∈ {3, � � � , n}, is �γ′(ik|ω′, μ′ ) = {xk4 }. Thus, a lone primary good supplier
cannot exclusion block since he cannot prevent the firm f ′

2 from producing x2. In
contrast, at (μ′, γ′ ) a coalition of all primary good suppliers could prevent the pro-
duction of x2 by withholding their (collectively) critical inputs. This lets them block
production of x1 and, via the consumption channel, x3. This coalition’s extended
endowment is

�γ′
(
{i3, i4, � � � , in}|ω′, μ′) = {

x3
4, x4

4, � � � , xn4, x2, x1, x3
}

.

Despite this endowment, when n ≥ 5 it is impossible to assure a gain for all coali-
tion members, thus the coalition cannot exclusion block (μ′, γ′ ).

4.2 Results and main theorem

Our first proposition confirms a basic welfare property of exclusion core outcomes.

Proposition 1. If (μ, γ) is an exclusion core outcome, then it is Pareto efficient.

Proof. If (μ, γ) is not Pareto efficient, then there exists a feasible outcome (σ , ψ) such
that σ(i) �i μ(i) for all i ∈ I and σ(i′ ) �i′ μ(i′ ) for some i′ ∈ I. Thus, (μ, γ) can be
exclusion blocked by the coalition C = {i′} with (σ , ψ). Part (b) of Definition 4 holds
vacuously—there is no agent j for whom μ(j) �j σ(j).

Note that Pareto efficiency is distinct from the notion of efficient input sets, which
was introduced in Section 2. The former concerns the allocation of goods to consumers;
the latter concerns the (technically) efficient use of inputs in production and not using
more than minimally necessary.
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Next, we will work toward identifying a large class of economies that have exclu-
sion core outcomes. Examples 2 and 4 above show that the exclusion core may be
empty. Thus, some restrictions on the interplay between production technologies,
input–output relationships, and the distribution of exclusion rights are necessary. From
Examples 3 and 5, we infer that exclusion rights in the economy must be, in some sense,
appropriately distributed to neutralize hold-up threats throughout the market’s active
supply chains. Below we will make this intuition precise.

To state our main theorem, we require some further notation. For a given input as-
signment γ and any set of goods Z ⊆X , let

λγ(Z ) :=
∞⋃
k=0

Ak

where A0 := Z and Ak :=Ak−1 ∪ αγ(Ak−1 ) for k ≥ 1. We call λγ(Z ) the (downstream)
dependencies of Z at γ. Starting with the set Z, λγ(Z ) includes all goods whose produc-
tion relies on Z, all goods whose production relies on goods that rely on Z, and so on.
Going the other way, for each x let


γ(x) := min⊆
{
Z ∈ 2X : x ∈ λγ(Z )

}
.


γ(x) is the set of critical (upstream) production precursors of good x at γ. If Z ∈
γ(x),
then x is reliant on Z and no proper subset of Z has this property. If a coalition can
exclude others from Z ∈ 
γ(x), it can block the production of x, possibly via indirect
dependencies given the input assignment γ. For ease of notation, when Z = {z} we may
abuse notation by writing z ∈
γ(x) instead (see, for instance, (8′) below).

The set 
γ(x) is never empty. If good x is a primary good, then 
γ(x) = {{x}}.16

To illustrate cases with nonprimary goods, we revisit the production processes in Ex-
amples 1–5. In Examples 1–3, good x1 is produced with x2 as its critical input. Thus,

γ(x1 ) = {{x1}, {x2}} when the input assignment γ is defined in (2). For the remain-
ing goods in these examples, 
γ(xk ) = {{xk}} for k = 2, 3 as (a set consisting of) good
xk is always in 
γ(xk ). In Example 4, production of good x2 requires x4. In this case,

γ̃(x1 ) = {{x1}, {x2}, {x4}} where γ̃ is defined in (5). Finally, once multisourcing is al-
lowed in Example 5, we have 
γ′(x1 ) = {{x1}, {x2}, {x3

4, � � � , xn4 }} instead.
The following theorem provides sufficient conditions for the exclusion core to be

nonempty. Its key assumption, B2, links the economy’s critical production relationships
and the distribution of exclusion rights among coalitions.

Theorem 1. Let E = 〈I, F ,X , �,ω〉 be an economy where ω satisfies A1–A4,

(B1) each firm has a unique efficient input set,

16When x is a primary good, then x ∈ λγ(Z ) ⇐⇒ x ∈ Z. The (⇐) direction is immediate from the def-
inition of λγ(Z ). The (⇒) direction follows from the fact that x /∈ αγ(Z′ ) for all Z′ 	� x. Thus, x /∈ λγ(Z ) if
Z 	� x, that is, x has no critical inputs at and γ. Since x ∈ λγ(Z ) if and only if x ∈Z, the smallest set Z such
that x ∈ λγ(Z ) is Z = {x}.
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(B2) there exists a feasible input assignment γ such thatX =X∅ ∪ F(γ), and

Cxγ :=
⋂

Z∈
γ(x)

(⋃
z∈Z

Cz
)

	= ∅ for all x ∈X . (8)

There exists an exclusion core outcome in E .

Assumption B1 refers to a unique efficient input set; this was introduced at (1) above.
The first part of Assumption B2 ensures that it is feasible to produce all non-primary
goods X \ X∅ under some input assignment γ. This assumption is analogous to As-
sumption V in Arrow and Debreu (1954, p. 280), which posits a production plan guar-
anteeing an excess supply of all goods. It does not imply that all goods are available for
consumption (some goods may be used for producing other goods) or that γ is the input
assignment at an exclusion core outcome.

The second requirement that γ must satisfy in B2 is (8), which is the theorem’s main
economic restriction. It alone constrains the relationship between the property rights
distribution and production. (In contrast, the rationale for B1 and the first part of B2 is
primarily technical.) At a high level, (8) requires there be “sufficient integration” in the
ownership structure of the good’s critical supply chain.

To unpack condition (8), fix x ∈ X . This good has a nonempty collection 
γ(x) of
critical production precursors at γ. Each set of goods Z ∈ 
γ(x) is directly or indirectly
crucial for the production of x and x cannot be produced if all ofZ is unavailable. There-
fore, the combined set of principals ofZ,

⋃
z∈Z Cz , must all agree to credibly withholdZ.

Condition (8) then requires that there is a common set of agents who are pivotal in this
sense across all critical production precursors. This interpretation is more evident in the
special case when condition B1 holds. When B1 holds, Lemma 2(b) in Appendix B shows
that all elements of
γ(x) are in fact singletons. Thus, with a slight abuse of notation, (8)
simplifies to

Cxγ :=
⋂

z∈
γ(x)

Cz 	= ∅ for all x ∈X . (8′)

To further interpret this requirement, we consider a few special cases.17

First, (8)—or (8′)—is always satisfied for primary goods. As explained above,
γ(x) =
{{x}} when x is a primary good. Thus, (8) reduces to Cxγ = Cx, which is not empty by A4.
More generally, in economies without production (that is, exchange economies), B1
and B2 hold trivially. And, since A4 relaxes the corresponding condition in Balbuzanov
and Kotowski (2019), Theorem 1 implies the corresponding existence result for exchange
economies in that paper.

Second, for a good requiring production, condition (8) does not imply unified own-
ership of the good’s supply chain. It is weaker, as can be seen by revisiting Example 3.

17Another alternative to (8) is that the condition “Cxγ 	= ∅ for all x ∈X” holds for all feasible input assign-
ments γ. However, (8) is weaker and suffices to establish Theorem 1. This is because the input assignment
constructed in the theorem’s proof is a subgraph of γ and, therefore, also satisfies (8) in an appropriately
adapted sense (Lemma 5 in Appendix B).
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This example satisfies the conditions of Theorem 1. Condition B1 is met since only one
input is used for production. To verify B2, it is sufficient to compute (8) for good x1 at
the input assignment γ = γ defined in (2) (the other goods are primary goods):

Cx1
γ = {i1}

Cx1
∩ {i1, i2}

Cx2
= {i1}.

Thus, the supply chain leading to x1 is sufficiently integrated to guarantee the existence
of an exclusion core outcome. Agent i1 has sufficient power to neutralize conflict despite
not being the sole owner of all the relevant goods.

An economy where (8) does not hold for some good is that of Example 4. In this case,
all goods are available at the input assignment γ = γ̃. However, (8) is not satisfied for x1.
For this good 
γ̃(x1 ) = {{x1}, {x2}, {x4}}, which means

Cx1
γ̃ = {i1}

Cx1
∩ {i1, i2}

Cx2
∩ {i3}
Cx4

= ∅.

Third, as a sufficient condition, (8) is predicated on the most challenging case.
Weaker conditions suffice in most situations. However, in the class of private owner-
ship economies, condition (8) is necessary. Recall that in a private ownership economy
for each x ∈X there is an i ∈ I such that x ∈ω(C ) if and only if i ∈ C. It is straightforward
to verify that a private ownership economy satisfies A1–A4.

Proposition 2. Consider a tuple 〈I, F ,X ,ω〉, such that each f ∈ F has a unique efficient
input set and for each x ∈X there is an agent i ∈ I such that x ∈ω(C ) if and only if i ∈ C.
Suppose there exists a feasible input assignment γ such thatX =X∅ ∪ F(γ) and

Cxγ =
⋂

Z∈
γ(x)

(⋃
z∈Z

Cz
)

= ∅ for some x ∈X .

Then there exists a preference profile � such that the exclusion core of the economy
〈I, F ,X , �,ω〉 is empty.

Proof. The unique efficient input set assumption implies that the family 
γ(x) is com-
prised only of singleton sets. (It contains x, all goods that are in the efficient input set for
manufacturing x, all goods that are in the efficient input sets of those goods, and so on.)
The emptiness of Cxγ implies that there exist goods y, z ∈ 
γ(x) such that y ∈ ω(i1 ) and
z ∈ω(i2 ) for some i1 	= i2. Choose a preference profile � such that x0 �i x′ for all x′ ∈X
and all i ∈ I \ {i1, i2}, and x�i x0 �i x′ for all x′ ∈X \ {x} and all i ∈ {i1, i2}.

No outcome (μ, γ) in which [μ(i1 ) 	= x & μ(i2 ) 	= x] is Pareto efficient and so it is not
in the exclusion core. Instead, consider an outcome (μ, γ) such that μ(i1 ) = x. We claim
that this outcome can be blocked by i2 with the outcome (σ , γ) where σ is the con-
sumption assignment for which σ(i2 ) = x and σ(i) = x0 for all i ∈ I \ {i2}. It is clear that
σ(i2 ) �i2 μ(i2 ). To verify condition (b) of Definition 4, note that {i ∈ I : μ(i) �i σ(i)} =
{i1}. However, as z ∈ ω(i2 ) and z is critical for the production of x at all input assign-
ments, it follows that x= μ(i1 ) ∈�γ(i2|ω, μ). The argument that i1 can exclusion block
any outcome (μ, γ), in which μ(i2 ) = x, is identical.
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Finally, we can relax some of the assumptions concerning production in Theorem 1
if we strengthen the assumptions we place on the endowment system.

Proposition 3. Consider an economy, in which all goods are part of the social endow-
ment, that is, Cx = I for all x ∈X . This economy’s exclusion core equals the set of Pareto
efficient outcomes and is, a fortiori, nonempty.

Proof. By Proposition 1, the exclusion core is contained in the Pareto efficient set. To
show the opposite inclusion, assume that (μ, γ) is not in the exclusion core. There exists
a coalition C that can exclusion block (μ, γ) with (σ , ψ) such that σ(i) �i μ(i) for all
i ∈ C. If C = I, it follows that {i ∈ I : μ(i) �i σ(i)} = ∅. If C 	= I, then �γ(C|ω, μ) = ∅
because every good in the economy is part of the social endowment. In order for C to be
able to block, this implies {i ∈ I : μ(i) �i σ(i)} = ∅. Either way, we see that {i ∈ I : μ(i) �i
σ(i)} = ∅. This means that (σ , ψ) is a Pareto improvement over (μ, γ), and the latter is
not Pareto efficient. This completes our proof.

Note that Proposition 3 does not require that each firm has a unique efficient input
set (Assumption B1 in Theorem 1) or the existence of an input assignment that allows
the production of all goods (Assumption B2). Although not invoked in the proposition,
condition (8) is nevertheless satisfied at all possible input assignments γ sinceCxγ = I for
all x ∈X and all γ. An immediate corollary to Proposition 3 is that the Assumptions B1
and B2 pertaining to production in Theorem 1 are dispensable in the “Robinson Crusoe”
version of our economy where there is a single agent.

4.3 Comparative statics

We conclude this section by examining two comparative statics on the set of exclusion
core outcomes. Both are implied by the monotonicity of �γ(·|ω, μ) (in the sense of set
inclusion) in ω and γ. First, suppose (μ, γ) is an exclusion core outcome when the en-
dowment system is ω. If the endowment system changes to ω′ and ω′(C ) ⊆ω(C ) for all
C ⊆ I, then (μ, γ) remains in the exclusion core. If instead ω(C ) � ω′(C ), this may no
longer be the case. Thus, an expansion of exclusion rights tends to contract the exclusion
core. This is due to the increased opportunities for rent-seeking behavior.

Second, consider an exclusion core outcome (μ, γ) and suppose the input assign-
ment changes to γ′. If each firm’s output is constant but more production links are
formed (that is, γ(f ) ⊆ γ′(f ) for all f ∈ F), then (μ, γ′ ) is also in the exclusion core. If
instead γ′(f ) � γ(f ), this may no longer be the case. We can interpret the latter situation
as one where forming or maintaining production relationships becomes more difficult,
possibly due to not-modeled transaction costs. Even if the remaining production links
keep potential output constant, each input’s importance is amplified since firms pursue
fewer substitute inputs. This change in strategic balance increases suppliers’ (indirect)
exclusion power, thereby shrinking the exclusion core.
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5. Proof of Theorem 1

There are several challenges in establishing Theorem 1. Foremost, Definition 4 assumes
that coalitions are unusually powerful. A coalition’s blocking ability is determined by its
extended endowment, which is large due to trading or production interdependencies.
Moreover, the mutability of all production plans allows a coalition to craft a preferred
assignment easily. An input assignment in an exclusion core outcome must be both
constrained (to curtail coalitions’ power) and expansive (to supply desired goods). This
is a delicate balance.

The proof of Theorem 1 has two parts due to a technical subtlety caused by produc-
tion cycles. These occur if a good is (indirectly) needed for the production of another
good and vice versa. In Part I, we construct an exclusion core outcome in an acyclic
economy (defined below), which precludes such cases. This construction proceeds via
a generalized TTC algorithm. In Part II, we extend the analysis to a general economy
with production cycles.

5.1 Top Trading Cycles and Supply Chains in acyclic economies

Consider an economy E = 〈I, F ,X , �,ω〉 satisfying the hypotheses of Theorem 1. The
economy’s input network is a directed graph where the set of nodes is F and there is a
directed edge from f ∈ F to f ′ ∈ F if and only if f uses an output of f ′ as an input, that
is, ifWf ∩Xf ′ 	= ∅.18 The input network is acyclic if whenever there is a path in the input
network from f to f ′, there is no path from f ′ back to f . An economy is acyclic if its
input network is acyclic. Acyclicity is a common assumption in studies of production or
trading networks (Ostrovsky (2008), Manea (2018)). A linear supply chain is an example
of an acyclic input network.

A generalized TTC algorithm constructs an exclusion core outcome in an acyclic
economy (Lemmas 8 and 9 in Appendix B). We call this generalization the Top Trad-
ing Cycles and Supply Chains (TTC-SC) algorithm and present it as Algorithm 1 in Ap-
pendix A.19 Here, we explain its intuition and main features.

The TTC algorithm was introduced in Shapley and Scarf’s (1974) “house exchange”
economy where each good has one owner and each agent owns one item. The TTC al-
gorithm proceeds as follows. Each good “points” to its owner and each agent “points”
to his favorite item, thus forming a directed graph with at least one cycle of alternating
goods and agents. Each agent in the cycle leaves the market with the good to which he
is pointing. The process then repeats with each remaining agent pointing to his favorite
remaining item, until all goods are assigned. Our algorithm proceeds similarly; however,
we must also ensure that production, if needed, is feasible by simultaneously defining
necessary supply chains. This addition sets TTC-SC apart from other TTC generaliza-
tions.

18Recall from (1) that Xf ′ is the set of outputs of firm f ′ while Wf is the unique efficient input set for
firm f .

19Despite similar nomenclature, TTC-SC differs from the Trading Cycles and Chains algorithm of Roth,
Sönmez, and Ünver (2004), which concerns transplant organ allocation and has no provision for produc-
tion.
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Figure 4. Representative cases encountered by the TTC-SC algorithm.

The TTC-SC algorithm initializes with each agent pointing to his most-preferred
good and each good x ∈X pointing to its principal ik ∈ Cx with the lowest index num-
ber.20 Each nonprimary good also points to its producer (if x ∈ Xf , then x ��� f ) and
each firm points to each of its required inputs (if x ∈Wf , then f ��� x). Necessarily, the
graph has at least one cycle of alternating agents and goods.21 This cycle may be one
of three nontrivial types, of increasing complexity.22 These types are (a) a cycle with-
out production, (b) a cycle with production, and (c) a cycle with an intersecting supply
chain. Next, we explain how assignments are defined in each case using Figure 4, which
presents independent instances of each case.

(a) A cycle without production (Figure 4a) involves only goods that do not require si-
multaneous production. TTC-SC assigns to each agent in the cycle the good that
he is pointing to, like in the classic TTC algorithm. In Figure 4a, i1 gets x2 and i2
gets x1.

(b) In a cycle with production (Figure 4b), at least one of the assigned goods is pro-
duced by a firm. Accordingly, its producer must simultaneously get its required in-
puts to ensure the consumer-demanded good is available. The TTC-SC algorithm
clears the cycle by assigning each agent in the cycle the good that he is pointing
to and it assigns any producing firms their inputs. In Figure 4b, x2 is made by f1

using x4 as an input. This input is a primary good and is not consumed by an
agent. Thus, i1 and i2 get their desired goods and f1 is assigned its required input.
If, additionally, x4 was produced by another firm, that firm would be assigned its
inputs, and so on.

20The lowest index principal is chosen for expositional ease. Other selection rules are possible, but are
unnecessary for the purpose at hand.

21Cycles involving only agents and goods are disjoint. If there are many, we can select any of them.
22A trivial fourth case occurs when an agent prefers the outside option. In this case, the agent can be

assigned x0 and removed from the market. The algorithm then moves to its next step.
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It is interesting to observe that i3 cannot exclusion block the resulting outcome
even though Figure 4b seems to imply that he wants x2 and he “gave up” x4 with-
out receiving anything in return. He is unable to block because, by the assumption
of “sufficient integration” in the ownership structure of each good’s critical supply
chain (B2 in Theorem 1), there must be a principal of x4 (not in the figure) who is
distinct from i3 and who is also a principal of x2. The proof of Theorem 1 shows
that this coprincipal receives a better good than anything a blocking action with
i3 could secure.

(c) The most complex case is that of a cycle with an intersecting supply chain (Fig-
ure 4c). Such a cycle involves a produced good, however, its production is infea-
sible because an input is itself assigned as a consumption good in the cycle. In
Figure 4c, good x1 is part of supply chain for x2 (since x2 ��� f2 ��� x1 ��� · · · ) and
it is assigned to i3 (since i3 → x1). This “double assignment” is infeasible. The
TTC-SC introduces a novel “cycle trimming procedure” to resolve this case. This
procedure works by asking the (overdemanded) upstream good to point to the
same agent as the downstream good. In this case, this process amounts to good
x1 pointing to agent i2 instead of i1, thus leading to a shorter cycle Kd as shown
in Figure 4d. The result is a cycle with production like in case (b) and the assign-
ment proceeds as described above. Condition (8) ensures that the change does
not create blocking opportunities.

After an assignment is made, agents and firms receiving goods are removed from the
market along with their assignment. Goods whose production is no longer feasible are
also removed. The process then iterates: Each remaining agent points to his most-
preferred still-available good and each good points to its principal with the lowest index
number who remains in the market. (If all of the good’s principals have left the market,
it points to the remaining agent with the lowest index.) Each remaining produced good
points to its producer and each remaining firm points to its inputs. The process stops
when no agents remain. Termination occurs as there are finitely many agents and at
least one is removed each iteration.

5.2 Acyclic condensations of cyclic economies

To go beyond the acyclic case, we rely on the graph-theoretic concept of a condensation
(Bondy and Murty (2008, pp. 91–92)). Firms f and f ′ are strongly connected in an input
network if there is a path from f to f ′ and from f ′ back to f . A strongly connected compo-
nent is a set of firms Fk such that each pair f , f ′ ∈ Fk are strongly connected and Fk is not
a proper subset of any other set of strongly connected firms. A firm that is not strongly
connected to any other firm forms a strongly connected component by itself. Figure 5a
illustrates an input network with six strongly connected components. Within each com-
ponent, there is either a single firm or an input–output cycle. Figure 5b presents the
network’s condensation, which is formed by contracting the nodes in each strongly con-
nected component into a single node while preserving any external links. A directed
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Figure 5. An input network with 11 firms and 6 strongly connected components.

graph’s condensation is a directed acyclic graph. An acyclic graph’s condensation is the
graph itself.

We adapt the idea of a condensation of a directed graph to define the condensa-
tion of an economy E , denoted as Ê = 〈Î, F̂ , X̂ , �̂, ω̂〉 (formally presented as Definition 6
in Appendix B). Intuitively, the concept involves “merging” the firms in each strongly
connected component of the economy’s input network.23 For example, in Figure 5
f3, f4, f5 ∈ F become f̂3 ∈ F̂ . The economy Ê is acyclic and has an exclusion core out-
come identifiable by the TTC-SC algorithm. The proof of Theorem 1 shows that this
implies existence of an exclusion core outcome in the original economy E .

Depending on the modeling context, the concept of a condensation may have an
economic interpretation beyond its narrow technical role in our model. One possibil-
ity views each “firm” f ∈ F as a production task, plant, or division within some larger
entity, which is the “condensed firm” f̂k ∈ F̂ . More general interpretations in the same
spirit include patent pools, joint ventures, or other situations with dense production
interdependencies.

6. Related literature and concluding remarks

In this study, we have analyzed the interplay between property relations and the econ-
omy’s network structure. By identifying agents’ endowments with a distribution of ex-
clusion rights, our framework has let us determine key contributors to a production and
trading network’s durability. Ownership—in the narrow sense of exclusion rights—must
be sufficiently integrated to ensure that opportunistic peripheral parties do not block
production. Our model’s generality and its grounding in a basic characterization of
property sets it apart from prior studies of these questions.

The economy’s network structure has been examined from many complementary
perspectives. Related macroeconomic studies date to at least the input–output mod-
els of Leontief (1941). Our model’s specifics distinguish it from the macro- and trade-
oriented literature, which is surveyed by Carvalho and Tahbaz-Salehi (2019). We share
its premise that input–output relationships propagate shocks between firms. Elliott,
Golub, and Leduc (2022) study a model of production network formation where ran-
dom shocks compromise production links. In their model, firms multisource and invest
in link strength as a hedge. By abstracting from risk, our model isolates multisourcing’s
twin role as a limit on suppliers’ relationship-specific monopoly power. That is, it also
helps absorb “shocks” arising from firms’ strategic actions.

23There are some further technicalities. Endowments and primary goods must also be defined in Ê .
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Related to our analysis are studies of trading networks and intermediation (Kranton
and Minehart (2001), Gale and Kariv (2007), Elliott (2015), Condorelli, Galeotti, and Re-
nou (2017), Manea (2018)). A common finding in this literature is that an agent’s market
power is tied to his position in the network. Our model reinforces this intuition. If a
good is a critical input for many firms, possibly indirectly via supply chains, its owners
can block many unfavorable outcomes.

Finally, our analysis complements research by Ostrovsky (2008), Hatfield, Komin-
ers, Nichifor, Ostrovsky, and Westkamp (2013), and Fleiner et al. (2019). These authors
extend Hatfield and Milgrom’s (2005) “matching with contracts” model to the case of
supply chains and trading networks. Our study shares this literature’s motivation, but
differs on technical and conceptual grounds. The technical distinction concerns the
solution concept. Generalizations of “stability” are the preferred solutions in contract-
based matching models. Roughly, a set of contracts is stable if no coalition can profitably
recontract. In contrast, the exclusion core allows agents to veto others’ assignments by
invoking their exclusion rights. An exclusion core outcome cannot be upset by any agent
profitably exercising such claims.

A conceptual contrast is also noteworthy. At a high level, the matching with con-
tracts framework builds upon Gale and Shapley’s (1962) “marriage market” model. Our
model’s roots are in Shapley and Scarf’s (1974) “house exchange” economy. This differ-
ence is intriguing given the former’s emphasis on (bilateral) contracts and the latter’s
connection to property (as argued above). The contracts-property dichotomy is a rec-
ognized, though fluid, distinction in legal analysis.24 It is interesting, therefore, that two
seminal models of markets have distinct legal institutions in their foundations. Two re-
lated observations follow from this. First, the matching with contracts literature focuses
almost exclusively on private ownership, while our approach captures a wide variety
of property-rights arrangements. These include joint, disputed, and conditional own-
ership as well as extensions accommodating government interventions, such as trade
sanctions. For discussion and further examples, see Balbuzanov and Kotowski (2019,
2021), and Section 6.2 in Balbuzanov and Kotowski (2022).

Second, our model dispenses with the assumption of bilateral transactions that is
central in the literature on matching with contracts. Within that framework, multi-
lateral transactions, such as a firm receiving a good owned by multiple agents, would re-
quire separate contracts among each pair of participating agents. Our approach is more
parsimonious (though, see Hatfield and Kominers (2014), Bando and Hirai (2021), and
references therein). The further requirement that contracts satisfy some form of substi-
tutability may preclude such outcomes from being stable at all as, for example, a firm’s
contracts with the two joint owners of a critical input are necessarily complements.

Appendix A: Top Trading Cycles and Supply Chains

The Top Trading Cycles and Supply Chains (TTC-SC) algorithm requires several pre-
liminary definitions. Fix an economy and let � be the set of all feasible input as-
signments. The input assignment γ ∈ �′ ⊆ � is maximal in �′ if �γ′ ∈ �′ such that

24Merrill and Smith (2001b, p. 774) write that “[p]roperty and contracts are bedrock institutions of the
legal system, but it is often difficult to say where the one starts and the other leaves off.”.
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γ′ 	= γ and γ′(f ) ⊇ γ(f ) for every f . For any X ′ ⊆X and F ′ ⊆ F , the input assignment
γ : F ′ → 2X is (X ′, F ′ )-feasible if (a) γ(F ′ ) ⊆ X ′ ∪ F ′(γ) and (b) |{f ∈ F ′ : x ∈ γ(f )}| ≤ 1
for all x ∈X ′ ∪ F ′(γ). If γ(f ) is efficient for each firm, then γ ∈ � is efficient. When γ is
efficient, every element of 
γ(x) is a singleton (the proof is analogous to that of parts (a)
and (b) of Lemma 2 in Appendix B). A maximal efficient input assignment is maximal
among efficient input assignments.

Algorithm 1 (TTC-SC). Given E = 〈I, F ,X , �,ω〉, construct the outcome (μ, γ) in a
series of steps. In step t ≥ 1, the algorithm proceeds as follows with inputs (It , Ft ,Xt

∅ ).
It is the set of unassigned agents, Ft is the set of unassigned firms, and Xt

∅ is the set of
primary and already produced goods that are unassigned. Initialize I1 := I, F1 := F , and
X1

∅ :=X∅.
Step t Let γt : Ft → 2X be the maximal efficient (Xt

∅, Ft )-feasible input assign-
ment.25 Let Xt :=Xt

∅ ∪ Ft(γt ). Construct a directed graph as follows. Let It ∪Xt ∪ {x0}
be the set of nodes. Draw an arc from each i ∈ It to the �i-maximal element inXt ∪ {x0}.
If x ∈Xt and C(x) := Cx

γt
∩ It 	= ∅, draw an arc from x to the lowest-index agent in C(x).

Else if C(x) = ∅, draw an arc from x to the lowest-index agent in It .
If there is a link from agent i to x0, then define μ(i) = x0, Ĩt = {i}, and X̃t = ∅. Update

the state variables—It+1 := It \ Ĩt , Ft+1 := Ft ,Xt+1
∅ :=Xt

∅—and go to step t + 1.
Otherwise, from each agent i there is a link to some x ∈Xt . Since each agent is point-

ing to a good and each good is pointing to an agent, there exists a cycle of alternating
agents and goods. (A cycle may involve one agent and one good.) If there are multiple
cycles, they are disjoint and we may focus on any of them.

Select a cycle K and pick two distinct goods x, y ∈ K ∩ Xt such that x ∈ 
γt (y ). If
there are no such goods, continue to Step-t assignment below. Otherwise, iterate the
following operation to define a new cycle until it has no distinct goods x and y such that
x ∈
γt (y ).

Cycle trimming. Since x and y belong to the same cycle, these goods are pointing to
different agents. Say, x→ i and y → j. Delete the arc from x to i and draw a new arc
from x to j, thus defining the new cycle K′ ⊆K. The new cycle K′ does not contain
good y or agent i.

Step-t assignment. Given the identified cycleK, perform the following assignments:

(a) If i → x in the cycle, set μ(i) = x. Let Ĩt be the set of agents whose assignment
has just been defined. Let It+1 := It \ Ĩt be the set of agents for whom μ(·) is yet
undefined.

(b) Each x ∈ (
⋃
z∈K∩Xt 
γt (z)) \Xt

∅ is either a produced good that is assigned to an
agent in (a) or a produced good that is an (indirect) input for a good that is as-
signed to an agent in (a). This good’s producer, say f , belongs to Ft . For each such
firm, define γ(f ) = γt(f ). Let F̃ t be the set of firms whose input assignment has
just been defined.

25Lemma 4 in Appendix B shows that γt exists and is uniquely defined.
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(c) Let X̃t ⊆ μ(Ĩt ) ∪ γ(F̃ t ) be the set of goods assigned to agents or firms in parts
(a) and (b). Let Xt+1

∅ := (Xt
∅ ∪ F̃ t(γt )) \ X̃t be the set of primary goods or goods

produced up to step t that are unassigned.

(d) If Ft \ F̃ t = ∅, set Ft+1 = ∅. Otherwise, define γ̌t as the maximal efficient (Xt+1
∅ , Ft \

F̃ t )-feasible input assignment. Let F̌ t := {f ∈ Ft \ F̃ t : γ̌t(f ) = ∅} be the set of re-
maining firms that are assigned no inputs at γ̌t . For each f ∈ F̌ t , assign γ(f ) = ∅
and denote the set of these firms’ (henceforth, not produced) outputs by X̌t . Let
Ft+1 := Ft \ (F̃ t ∪ F̌ t ) be the set of firms for which γ(·) is still undefined.

Given the newly defined parameters, (It+1, Ft+1,Xt+1
∅ ), proceed to step t + 1.

Stop when It = ∅. At this point, μ(·) has been defined for all i ∈ I and γ(·) has been
defined for all f ∈ F \ Ft . Set γ(f ) = ∅ for any remaining f ∈ Ft . �

The number of agents is finite and at least one is assigned in each step. Thus, Algo-
rithm 1 terminates in finitely many steps.

Appendix B: Proofs

This section adopts the convention that Z−1 = ∅. We start by showing the equivalence
of the definition of an exchange economy’s extended endowment with the definition in
Balbuzanov and Kotowski (2019), as claimed in Remark 1.

Lemma 1. In an exchange economy where the endowment system satisfies A1–A4,
�(C|ω, μ) =ω(

⋃∞
k=0Ck ), where C0 = C and Ck = Ck−1 ∪ (μ−1 ◦ω)(Ck−1 ) for each k≥ 1.

Proof of Lemma 1. Fix C and define C0 = C and Ck = Ck−1 ∪ (μ−1 ◦ω)(Ck−1 ) for each
k≥ 1. We make two preliminary observations. First, since Ck ⊆ Ck+1 and ω(·) is mono-
tone, it follows that ω(

⋃∞
k=0Ck ) = ⋃∞

k=0ω(Ck ). And second, Ck = C ∪ (μ−1 ◦ω)(Ck−1 )
for each k ≥ 1. We can prove this fact by induction. The base case is true since
C1 = C0 ∪ (μ−1 ◦ω)(C0 ) and C0 = C. Let k≥ 2 and suppose Ck−1 = C ∪ (μ−1 ◦ω)(Ck−2 ).
By definition, Ck = Ck−1 ∪ (μ−1 ◦ ω)(Ck−1 ) = C ∪ (μ−1 ◦ ω)(Ck−2 ) ∪ (μ−1 ◦ ω)(Ck−1 ).
Since Ck−2 ⊆ Ck−1, μ−1(ω(Ck−2 )) ⊆ μ−1(ω(Ck−1 )). Hence, Ck = C ∪ (μ−1 ◦ω)(Ck−1 ).

To prove the lemma, it suffices to show Zk = ω(Ck ) for all k. If k = 0, then Z0 =
ω(C ) =ω(C0 ). Proceeding by induction, let k≥ 1. If Zk−1 =ω(Ck−1 ), then Zk =Zk−1 ∪
ω(C ∪μ−1(Zk−1 )) =ω(Ck−1 ) ∪ω(C ∪μ−1(ω(Ck−1 ))) =ω(Ck−1 ) ∪ω(Ck ) =ω(Ck ).

The proof of Theorem 1 relies on Lemmas 2–10. Lemmas 2–7 are technical prelimi-
naries. Given an acyclic economy, Lemma 8 shows that the TTC-SC algorithm identifies
a feasible outcome and Lemma 9 shows that it belongs to the exclusion core. Defini-
tion 6 introduces the condensation of an economy. Lemma 10 shows that a condensed
economy has an exclusion core outcome. Theorem 1’s proof invokes Lemma 10 to show
that any economy satisfying the theorem’s hypotheses has an exclusion core outcome.

Lemma 2. Let E = 〈I,X , F , �,ω〉 be an economy satisfying A1–A4 and B1. Fix a feasible
input assignment γ and for any Z ⊆ X let λγ(Z ) = ⋃∞

k=0Ak where A0 = Z and Ak =
Ak−1 ∪ αγ(Ak−1 ) for each k≥ 1.
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(a) If aK ∈AK and aK /∈AK−1, then there exists a sequence (aK , aK−1, � � � , a0 ) such that
ak ∈Ak for each k≥ 0 and ak ∈ αγ(ak−1 ) for each k≥ 1.

(b) For all x ∈X , every Z ∈
γ(x) consists of a single element.

(c) If z ∈
γ(y ) and y ∈
γ(x), then z ∈
γ(x).

(d) If y ∈
γ(x), then
⋂
z∈
γ(x)C

z ⊆ ⋂
z∈
γ(y )C

z .

(e) If the economy’s input network is acyclic, [x 	= y & y ∈
γ(x)] =⇒ x /∈
γ(y ).

(f ) Suppose Fk is a strongly connected component of the economy’s input network and
f , f ′ ∈ Fk are distinct firms. If x ∈Xf is produced at γ and y ∈Wf ′ ,26 then y ∈
γ(x).

Proof of Lemma 2. (a) Suppose aK ∈ AK and aK /∈ AK−1. Thus, aK ∈ αγ(AK−1 ) and
AK−1 is critical for aK at γ. Since each firm has a unique efficient production plan,
aK ∈ αγ(aK−1 ) for some aK−1 ∈AK−1. Moreover, aK−1 /∈AK−2 (else, aK ∈AK−1, which
is assumed not true). Repeating this same construction, we can define a sequence
(aK , aK−1, � � � , a1, a0 ) such that ak ∈Ak for each k and ak ∈ αγ(ak−1 ).

(b) Suppose Z ∈ 
γ(x). Thus, x ∈ λγ(Z ). It suffices to show that x ∈ λγ(z) for
some z ∈ Z. This is trivial if x ∈ Z. Thus, suppose x /∈ Z. Since x ∈ λγ(Z ) = ⋃∞

k=0Ak,
x ∈ AK , and x /∈ AK−1 for some some K ≥ 1. By part (a), there is a sequence x =
aK , aK−1, � � � , a1, a0 = z such that ak ∈ αγ(ak−1 ) for each k≥ 1 and z ∈ Z. Given z, con-
sider the sequence Az0 = {z} and Azk =Azk−1 ∪ αγ(Azk−1 ) for each k≥ 1. Clearly, ak ∈Azk
for each k= 0, � � � ,K, and so x ∈ ⋃∞

k=0A
z
k = λγ(z).

(c) If z ∈
γ(y ), then y ∈ λγ(z) = ⋃∞
k=0A

z
k whereAz0 = {z} andAzk =Azk−1 ∪αγ(Azk−1 ).

Likewise, if y ∈ 
γ(x), then x ∈ λγ(y ) = ⋃∞
k=0A

y
k where Ay0 = {y} and A

y
k = A

y
k−1 ∪

αγ(A
y
k−1 ). Let K be the smallest value for which y ∈ ⋃K

k=0A
z
k. Thus, for all k ≥ K,

A
y
k−K ⊆Azk. Hence,

⋃∞
k=0A

y
k ⊆ ⋃∞

k=0A
z
k. Therefore, x ∈ λγ(z) and z ∈
γ(x).

(d) By part (c), [z ∈ 
γ(y ) & y ∈ 
γ(x)] =⇒ z ∈ 
γ(x). Thus, 
γ(y ) ⊆ 
γ(x). Hence,⋂
z∈
γ(x)C

z ⊆ ⋂
z∈
γ(y )C

z .
(e) Suppose x 	= y and y ∈ 
γ(x). Thus, x ∈ λγ(y ). Given part (a), there exists a se-

quence of goods (aK , � � � , a0 ) such that x = aK , y = a0 and ak ∈ αγ(ak−1 ) for all k ≥ 1.
Since each firm has a unique efficient production plan, there is a link from the firm pro-
ducing ak to the firm producing ak−1 in the input network. Thus, there is a path from the
producer of x to the producer of y. If x ∈
γ(y ), the same reasoning implies a path from
the producer of y to the producer of x. As the input network is acyclic, this is impossible.
Thus, x /∈
γ(y ).

(f) Because f , f ′ ∈ Fk, there is a path in the input network such that f = f 1 → ·· · →
fL = f ′. If y ∈Wf ′ , then it is critical for the production of all x′ ∈XfL . Since fL−1 → fL,
there exist yL ∈XfL ∩WfL−1 , which is critical for the production of all x′ ∈XfL−1 . Con-
tinuing in this way, we can construct a sequence y� ∈Xf� ∩Wf�−1 where y� is a critical in-
put for firm f �−1’s production. Thus, x= y1 ∈ αγ(y2 ), y2 ∈ αγ(y3 ), � � � , yL ∈ αγ(y ). Thus,
x ∈ λγ(y ) and, therefore, y ∈
γ(x).

26Recall thatWf ′ is the minimal set of inputs f ′ requires for production; see (1).
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Lemma 3. Suppose E = 〈I,X , F , �,ω〉 satisfies A1–A4 and B1. Let (μ, γ) be a feasible
outcome and C ⊆ I. Let Zk = Zk−1 ∪ ω(C ∪ μ−1(Zk−1 )) ∪ αγ(Zk−1 ) for each k ≥ 0. If
x ∈Zk, then there exists y ∈ω(C ∪μ−1(Zk−1 )) such that y ∈
γ(x).

Proof of Lemma 3. If x ∈ Z0, then x ∈ ω(C ) and x ∈ 
γ(x). Proceeding by induction,
let k≥ 1 and suppose x ∈ Zk′ =⇒ [∃ y ∈ω(C ∪ μ−1(Zk′−1 )) such that y ∈ 
γ(x)] is true
for all k′ ≤ k− 1. Let x ∈Zk. There are two cases.

(a) If x ∈ω(C ∪μ−1(Zk′ )) for some k′ <k, then monotonicity ofω andμ−1 imply that
ω(C ∪μ−1(Zk′ )) ⊆ω(C ∪μ−1(Zk−1 )). The conclusion follows.

(b) If x ∈ αγ(Zk′ ) for some k′ < k, then Zk′ is a critical set of inputs for x. By B1,
there exists some x′ ∈ Zk′ that is a critical input for x, that is, x′ ∈ 
γ(x). By the
induction hypothesis, there exists y ∈ω(C∪μ−1(Zk′−1 )) ⊆ω(C∪μ−1(Zk−1 )) such
that y ∈
γ(x′ ). Since x′ ∈
γ(x), y ∈
γ(x) by Lemma 2(c).

Lemma 4. Suppose E = 〈I,X , F , �,ω〉 satisfies B1 and B2. LetX ′ ⊆X and F ′ ⊆ F . A max-
imal efficient (X ′, F ′ )-feasible input assignment exists and is unique.

Proof of Lemma 4. The input assignment γ where γ(f ) = ∅ for all f ∈ F ′ is efficient
and (X ′, F ′ )-feasible. Thus, a maximal efficient (X ′, F ′ )-feasible input assignment ex-
ists. To show uniqueness, let γ 	= γ′ be maximal efficient (X ′, F ′ )-feasible input assign-
ments. Let γ̃(f ) := γ(f ) ∪ γ′(f ) for all f ∈ F ′. As γ and γ′ are efficient, so is γ̃. (A produc-
ing firm must be assigned a unique set of inputs; a nonproducing firm must be assigned
no inputs.) Due to their maximality, γ and γ′ are both nonempty. Therefore, γ̃ ⊇ γ

and γ̃ 	= γ. Then γ̃ must not be (X ′, F ′ )-feasible. Since γ and γ′ are (X ′, F ′ )-feasible,
γ̃(F ′ ) ⊆ X ′ ∪ F ′(γ̃). Therefore, there exists a good x such that |{f ∈ F ′ : x ∈ γ̃(f )}| > 1.
Since each firm has a unique efficient production plan, there is more than one firm in
F ′ requiring x as an input. At least one of these firms cannot produce at γ, contradict-
ing B2.

Lemma 5. Suppose A1–A4 and B1–B2 hold in economy E = 〈I,X , F , �,ω〉. Let X ′ ⊆ X

and F ′ ⊆ F . If γ is (X ′, F ′ )-feasible, then Cxγ = ⋂
z∈
γ(x)C

z 	= ∅∀ x ∈X ′ ∪ F ′(γ).

Proof of Lemma 5. By Lemma 2(b), Cxγ = ⋂
z∈
γ(x)C

z for all γ. By (8), Cxγ =⋂
z∈
γ(x)C

z 	= ∅. Thus, to prove the lemma it suffices to show that 
γ(x) ⊆ 
γ(x) for
all x ∈X ′ ∪ F ′(γ). Suppose γ is (X ′, F ′ )-feasible and let x ∈X ′ ∪ F ′(γ). By Lemma 2(b),

γ(x) contains only singletons. Let z ∈ 
γ(x). Therefore, x ∈ λγ(z) = ⋃∞

k=0A
γ
k where

A
γ
0 = {z} and Aγk = A

γ
k−1 ∪ αγ(Aγk−1 ). (We include the γ superscript on A

γ
k for clar-

ity.) By Lemma 2(a), there is a sequence (aK , aK−1, � � � , a0 ) such that x = aK , a0 = z,
and ak = αγ(ak−1 ) for each k ≥ 1. Since each firm has a unique efficient production
plan, if ak−1 is critical for ak at γ, it is critical for ak at γ. Thus, ak = αγ(ak−1 ) for

each k ≥ 1. Hence, a0 ∈ Aγ0 and ak ∈ Aγk = A
γ
k−1 ∪ αγ(Aγk−1 ) for each k ≥ 1. And so,

x ∈ ⋃∞
k=0A

γ
k = λγ(z), which implies z ∈
γ(x). Thus, 
γ(x) ⊆
γ(x).
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Lemma 6. Let E = 〈I,X , F , �,ω〉 be an economy satisfying A1–A4 and B1–B2. Consider
step t of Algorithm 1 where γt is the maximal efficient (Xt

∅, Ft )-feasible input assignment
and C(x) = Cx

γt
∩ It . Let K1 ⊇ · · · ⊇KL be a sequence of cycles identified by iterating the

“cycle trimming” procedure within this step of the algorithm. Let x, y ∈K�∩X , x ∈
γt (y ),
and suppose x→ i and y → j within cycle K�. Suppose the procedure reassigns x to point
to j at iteration �.

(a) If j ∈ C(y ), then j ∈ C(x).

(b) If j /∈ C(y ), then some i′ ∈ ⋂
z∈
γt (y )C

z was assigned by Algorithm 1 in step t ′ < t.

Proof of Lemma 6. Recall thatC(x) = Cx
γt

∩It = (
⋂
z∈
γt (x)C

z )∩It . The term in paren-

theses is not empty by Lemma 5. The proof is by induction. Consider cycle K1. Let
x, y ∈ K1 ∩X , x ∈ 
γt (y ), and suppose x→ i and y → j within cycle K1. Suppose the
procedure reassigns x to point to j. Since x ∈ 
γt (y ),

⋂
z∈
γt (y )C

z ⊆ ⋂
z∈
γt (x)C

z by

Lemma 2(d). Thus, if j ∈ C(y ), then j ∈ C(x). Otherwise, if j /∈ C(y ), then C(y ) = ∅.
Thus, all i′ ∈ ⋂

z∈
γt (y )C
z must have been assigned prior to step t.

Proceeding by induction, suppose statements (a) and (b) of the lemma are true for
all cyclesK1, � � � ,K�−1. Let x, y ∈K�∩X , x ∈
γt (y ), and suppose x→ i and y → j within
cycle K�. Suppose the procedure reassigns x to point to j. If j ∈ C(y ), then j ∈ C(x) as
above. Otherwise, j /∈ C(y ) and there are two cases:

(i) C(y ) = ∅. Thus, all i′ ∈ ⋂
z∈
γt (y )C

z have been assigned prior to step t.

(ii) C(y ) 	= ∅. Since y is not pointing to an element of C(y ), it must have been reas-
signed to point to j in some prior iteration �′ < � of the cycle trimming procedure.
Suppose at iteration �′, x′ → j and y ∈ 
γt (x′ ). Invoking the induction hypothe-
sis, if j ∈ C(x′ ), then j ∈ C(y ), a contradiction. Thus, j /∈ C(x′ ) and there exists an
i′ ∈ ⋂

z∈
γt (x′ )C
z ⊆ ⋂

z∈
γt (y )C
z who was assigned by Algorithm 1 in step t ′ < t.

Lemma 7. Let E = 〈I,X , F , �,ω〉 be an economy satisfying A1–A4 and B1–B2. Let (μ, γ)
be a feasible outcome identified by Algorithm 1. Suppose agent j was assigned good y
at step t of Algorithm 1. For every x ∈ 
γ(y ), there exists i ∈ Cx who was assigned his
consumption in step t or earlier.

Proof of Lemma 7. Let x ∈ 
γ(y ). As good y was assigned in step t, good x must be
produced in step s ≤ t. (If x is a primary good, s = 1.) Let K be the final cycle identified
by Algorithm 1 in step s that determines the agents’ consumption assignments. There
exists a good x′ ∈ K ∩X such that x ∈ 
γs (x′ ). (If x ∈ K, then x = x′.) Let i′ ∈ K ∩ Is be
the agent in the cycle such that x′ → i′. Agent i′ was assigned μ(i′ ) in this step of the
algorithm. Recalling that C(x) = Cx

γt
∩ It = (

⋂
z∈
γt (x)C

z ) ∩ It , there are three cases.

(a) i′ ∈ C(x′ ). Because x ∈ 
γs (x′ ), i′ ∈ C(x′ ) = (
⋂
z∈
γs (x′ )C

z ) ∩ Is ⊆ Cx. Thus, agent

i′ ∈ Cx was assigned μ(i′ ) in step s ≤ t.
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(b) i′ /∈ C(x′ ) and C(x′ ) = ∅. This implies that (
⋂
z∈
γs (x′ )C

z ) ∩ Is = ∅. By Lemma 5,⋂
z∈
γs (x′ )C

z 	= ∅. Thus, every j′ ∈ ⋂
z∈
γs (x′ )C

z ⊆ Cx must have been assigned

μ(j′ ) before step s ≤ t.
(c) i′ /∈ C(x′ ) and C(x′ ) 	= ∅. If x′ was pointing to an agent not in C(x′ ), it is because

during the trimming procedure in step s it was reassigned to point to agent i′. By
Lemma 6(b), ∃ j′ ∈ ⋂

z∈
γs (x′ )C
z ⊆ Cx who was assigned μ(j′ ) in step s′ < s ≤ t of

Algorithm 1.

In each case, there is a member of Cx assigned in or before step t.

Lemma 8. Let E = 〈I,X , F , �,ω〉 be an acyclic economy satisfying A1–A4 and B1–B2. The
outcome (μ, γ) identified by Algorithm 1 is feasible.

Proof of Lemma 8. It suffices to show that if a good is assigned to agent i in step t of
Algorithm 1, then it is not also assigned to any firm. (The other possibilities are ruled
out by the algorithm’s definition and the feasibly of γt .) Assume the contrary. Suppose y
is assigned to an agent and to a firm in step t. If y is a produced good, then it cannot be
assigned to the firm that produces y (γt is efficient and y is not an input for itself). Thus,
there exists x 	= y such that y ∈ 
γt (x). If x is assigned to an agent at step t, then both
x and y belong to the cycle determining the consumption assignment at step t. But,
this violates the trimming procedure’s stopping criterion. Therefore, x is not assigned
to another agent at step t. But this implies x ∈ 
γt (x′ ) for some x′ that is assigned to an
agent at step t. By parts (b) and (c) of Lemma 2, y ∈ 
γt (x′ ). Thus, if x′ 	= y, we arrive
at a contradiction, as above. If x′ = y, then we contradict Lemma 2(e) because x 	= y,
y ∈
γt (x), and x ∈
γt (y ). Each case leads to a contradiction. Thus, no good is assigned
to an agent and to a firm.

Lemma 9. Let E = 〈I,X , F , �,ω〉 be an acyclic economy satisfying A1–A4 and B1–B2. The
outcome constructed by Algorithm 1 is in the economy’s exclusion core.

Proof of Lemma 9. Let (μ, γ) be an outcome identified by Algorithm 1 in E . Be-
fore presenting the proof, we define some useful terminology and notation. Algo-
rithm 1 constructed (μ, γ) sequentially by removing sets of agents (Ĩ1, Ĩ2, � � �) and goods
(X̃1 ∪ X̌1, X̃2 ∪ X̌2, � � �). Each i ∈ Ĩt was assigned (his consumption) in step t and each
x ∈ X̃t ∪ X̌t was removed from the market in step t. The latter can occur for two reasons:
(a) each x ∈ X̃t was assigned to an agent or to a firm in step t; or, (b) the production of
each x ∈ X̌t became impossible given the assignments in step t. Colloquially, the firm
(potentially) producing x was “shut down.”

To derive a contradiction, assume (μ, γ) is not in the exclusion core. Thus, there
exists a feasible outcome (σ , ψ) and coalition C ⊆ I such that σ(i) �i μ(i) for all i ∈ C
and

μ(j) �j σ(j) =⇒ μ(j) ∈�γ(C|ω, μ). (9)

Without loss of generality, we may assume that C = {i ∈ I : σ(i) �i μ(i)}. Algorithm 1
ensures that σ(i) �i μ(i) �i x0 for all i ∈ C. For every i ∈ C assigned in step t, σ(i) must
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have been removed from the market in step t ′ < t. Otherwise, i would not have been
pointing to his most preferred still available good at the start of step t.

Claim 1. There exists an agent j such thatμ(j) �j σ(j). Moreover, this agent was assigned
his consumption before any member of coalition C.

Proof of Claim 1. Consider the good x ∈ σ(C ) removed from the market earliest by
Algorithm 1. (If there are multiple such goods, pick any of them.) Suppose this occurs
in step t. Since x was removed from the market, x /∈ μ(C ). (Otherwise, there would be
some x′ ∈ σ(C ) removed from the market strictly earlier than x.) Thus, C ∩ Ĩt ′ = ∅ for all
t ′ ≤ t.

As the assignment of x is different at (μ, γ) than at (σ , ψ), three cases are possible.

(a) There exists j ∈ I such that μ(j) = x. Thus, j is assigned x in step t of Algorithm 1.
As preferences are strict, j /∈ C and σ(j) 	= μ(j) imply that μ(j) �j σ(j).

(b) There exists f ∈ F such that x ∈ γ(f ). Thus, there is some produced good x′ such
that (i) x′ is assigned to some agent j in step t, and (ii) x ∈
γt (x′ ). If x ∈ σ(C ), then
it is unavailable as an input at (σ , ψ). Because each firm has a unique efficient
production plan, if x is unavailable as an input for f , then f cannot produce. (The
input assignment at γ was efficient.) Therefore, good x′ also cannot be produced
at (σ , ψ). Thus, agent j’s consumption must be different at (σ , ψ), that is, x′ =
μ(j) 	= σ(j). Since j /∈ C, it follows that μ(j) �j σ(j).

(c) The firm producing good x is “shut down” at step t of Algorithm 1. This occurs only
if an (indirect) input x′ for the production of x becomes unavailable at step t. An
(indirect) input becomes unavailable only if it is assigned as a consumption good
to some agent j (that is, μ(j) = x′) in step t. (This is because x is available at the
beginning of step t and the input assignment γt is feasible.) But, if x is consumed
at (σ , ψ), then x′ cannot be consumed by j at σ . Hence, σ(j) 	= μ(j). Since no
member of C is assigned in step t or earlier, j /∈ C and μ(j) �j σ(j).

In each case, some agent j is assigned in step t of Algorithm 1 and μ(j) �j σ(j).

Given Claim 1, let j be the agent assigned earliest by Algorithm 1 and for whom
μ(j) �j σ(j). (If there are multiple such agents, choose any of them.) Suppose j’s as-
signment was set in step t∗. By Claim 1, each i ∈ C was assigned strictly after step t∗.

Next, we show that μ(j) /∈�γ(C|ω, μ), which will contradict (9), and thus prove the
theorem. Define Z� = ∅ for all �≤ −1 and Z� =Z�−1 ∪ω(C ∪μ−1(Z�−1 )) ∪ αγ(Z�−1 ) for
each � ≥ 0. Suppose μ(j) ∈ Z0 =ω(C ). By Lemma 7, there exists i ∈ Cμ(j) ⊆ C who was
assigned at step t∗ or earlier. However, from above we know that no member of C was
assigned in step t∗, or earlier, of Algorithm 1—a contradiction.

Proceeding by induction, let k ≥ 1 and assume that for k′ = k − 1, (a) no agent in
C ∪ μ−1(Zk′−1 ) was assigned at any step t ≤ t∗ by Algorithm 1, and (b) μ(j) /∈ ⋃k′

�=0Z�.
We will verify that (a) and (b) are true for k′ = k.
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Verification of (a). Suppose i ∈ C ∪ μ−1(Zk−1 ) was assigned at step t ≤ t∗ by Algo-

rithm 1. Since Z0 ⊆ · · · ⊆ Zk−1 and no member of C ∪ μ−1(Zk−2 ) was assigned at any

step t ≤ t∗, i ∈ μ−1(Zk−1 \Zk−2 ). Because Zk−1 =Zk−2 ∪ω(C ∪μ−1(Zk−2 )) ∪ αγ(Zk−2 ),

it must be the case that μ(i) ∈ω(C ∪μ−1(Zk−2 )) ∪ αγ(Zk−2 ). There are two cases.

(i) μ(i) ∈ω(C ∪μ−1(Zk−2 )). By Lemma 7, there exists i′ ∈ Cμ(i) ⊆ C ∪μ−1(Zk−2 ) who

was assigned at step t ≤ t∗ of Algorithm 1—a contradiction with (a) above.

(ii) μ(i) ∈ αγ(Zk−2 ). Since Zk−2 is a critical input set for μ(i), there exists x ∈ Zk−2

such that x ∈ 
γ(μ(i)). By Lemma 7, there exists i′ ∈ Cx who was assigned his

consumption in step t ≤ t∗ of Algorithm 1. Since i′ is assigned before step t∗, by

the induction hypothesis i′ /∈ C ∪μ−1(Zk−2 ). Therefore, x /∈ω(C ∪μ−1(Zk−2 )). By

Lemma 3, there exists y ∈ω(C ∪ μ−1(Zk−3 )) such that y ∈ 
γ(x). By Lemma 2(c),

y ∈ 
γ(μ(i)). By Lemma 7, ∃i′′ ∈ Cy ⊆ C ∪ μ−1(Zk−3 ) who was assigned his con-

sumption in step t ≤ t∗ of Algorithm 1. However, this is a contradiction as no

member of C ∪μ−1(Zk−3 ) can be assigned in step t∗ or earlier.

As each case leads to a contradiction, no agent in i ∈ C ∪ μ−1(Zk−1 ) is assigned at step

t ≤ t∗ by Algorithm 1.

Verification of (b). Toward a contradiction, suppose μ(j) ∈ ⋃k
�=0Z�. Necessarily, this

implies μ(j) ∈ Zk \ Zk−1 and, in particular, μ(j) ∈ ω(C ∪ μ−1(Zk−1 )) ∪ αγ(Zk−1 ). Ap-

plying the same arguments (with all indices shifted up by one) from the verification of

(a) above, together with the induction conclusion of (a), we reach a contradiction and

establish that μ(j) /∈ ⋃k
�=0Z�.

As the number of goods is finite,
⋃∞
�=0Z� = ⋃L

�=0Z� for some L ∈ N. Thus, the pre-

ceding induction argument confirms that μ(j) /∈ ⋃∞
�=0Z�.

Definition 6. Let E = 〈I,X , F , �,ω〉 be an economy satisfying A1–A4 and B1–B2. Let

{F1, � � � , FL} denote the strongly connected components of E ’s input network. For each

k = 1, � � � , L, let W
f̂k

:= (
⋃
f∈Fk Wf ) \ (

⋃
f∈Fk Xf ) and X

f̂k
:= (

⋃
f∈Fk Xf ) ∩ {x ∈ X : �f ∈

Fk such that x ∈Wf }. The condensation of E is the economy Ê = 〈Î, F̂ , X̂ , �̂, ω̂〉 where:

• The set of agents is Î := I.

• The set of firms is F̂ := {f̂1, � � � , f̂K } where, relabeling if necessary, F̂ includes all f̂k
such that W

f̂k
	= ∅. Each firm’s production function is f̂k(Z ) = X

f̂k
if Z ⊇ W

f̂k
and

f̂k(Z ) = ∅ otherwise. Let F̃ := {f̂K+1, � � � , f̂L} be the other f̂k for whomW
f̂k

= ∅.

• The set of goods is X̂ := X̂∅ ∪ (
⋃
f̂∈F̂ Xf̂ ) where X̂∅ :=X∅ ∪ (

⋃
f̂∈F̃ Xf̂ ) are primary.

• The preference of each i ∈ Î equals �i restricted to X̂ , that is, �̂i =�i |X̂ .

• The endowment of each C ⊆ Î is defined as x ∈ ω̂(C ) ⇐⇒ [x ∈ X̂ & Ĉx ⊆ C] and

each Ĉx is defined as follows. If x ∈ X∅, then Ĉx := Cx. Otherwise, if x ∈ X
f̂k

for
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some f̂k ∈ F̂ ∪ F̃ , then

Ĉx := Cx ∩
( ⋂
y∈Y

f̂k

Cy
)

(10)

where Y
f̂k

= (
⋃
f∈Fk Wf ) ∩ (

⋃
f∈Fk Xf ).

Lemma 10. Let E = 〈I,X , F , �,ω〉 be an economy satisfying A1–A4, B1, and B2. There
exists an exclusion core outcome in the condensation of E .

Proof of Lemma 10. It suffices to show that the condensed economy Ê = 〈Î, F̂ , X̂ , �̂,
ω̂〉 satisfies the hypotheses of Lemma 9. First, Ê is acyclic. This is because the input net-
work of Ê is a subgraph of the condensation of the input network of E . A directed graph’s
condensation is acyclic (Bondy and Murty (2008, pp. 91–92)). Second, by definition,
each f̂k ∈ F̂ has unique efficient production plan, is monotone, and satisfies the no free
lunch property. We verify the remaining three requirements as separate claims.

Claim 1. The endowment system ω̂ satisfies A1–A4.

Proof of Claim 1. It suffices to show that Ĉx 	= ∅ for all x ∈ X̂ . When this is true, prop-
erties A1–A4 follow from the definition of ω̂. If x ∈X∅, then Ĉx = Cx 	= ∅. If x ∈X

f̂k
for

some f̂k ∈ F̂ ∪ F̃ , then Ĉx = Cx ∩ (
⋂
y∈Y

f̂k

Cy ) where Y
f̂k

= (
⋃
f∈Fk Wf ) ∩ (

⋃
f∈Fk Xf ). If

y ∈ Y
f̂k

, then y ∈ 
γ(x) by Lemma 2(f). By Lemma 2(b),
⋂
Z∈
γ(x)

(
⋃
z∈Z Cz ) 	= ∅ reduces

to
⋂
z∈
γ(x)

Cz 	= ∅. Thus,

Ĉx = Cx ∩
( ⋂
y∈Y

f̂k

Cy
)

⊇ Cx ∩
( ⋂
y∈
γ(x)

Cy
)

=
⋂

z∈
γ(x)

Cz 	= ∅ (11)

where the second equality follows from the fact that x ∈
γ(x).

Claim 2. There exists a feasible input assignment γ′ : F̂ → 2X̂ such that X̂ = X̂∅ ∪ f̂F̂ (γ′ ).

Proof of Claim 2. Define γ′ : F̂ → 2X̂ as follows. Let γ′(f̂k ) = (
⋃
f∈Fk Wf ) \ (

⋃
f∈Fk Xf )

for each f̂k ∈ F̂ . At γ′, the output of f̂ ∈ F̂ isX
f̂

. Thus, X̂∅ ∪ f̂F̂ (γ′ ) = X̂∅ ∪ (
⋃
f̂∈F̂ Xf̂ ) = X̂ .

Next, we verify that γ′ is feasible. Suppose x ∈ γ′(F̂ ). Thus, x ∈ γ′(f̂k ) = (
⋃
f∈Fk Wf ) \

(
⋃
f∈Fk Xf ) for some f̂k ∈ F̂ . In particular, x ∈Wf for some f ∈ Fk. There are two possibil-

ities. If x is a primary good, then x ∈X∅ ⊆ X̂∅. Otherwise, x ∈Xf ′ for some f ′ ∈ F� 	= Fk.
We know that X

f̂�
= (

⋃
f∈F� Xf ) ∩ {x ∈ X : �f ∈ F� such that x ∈ Wf }. Clearly, x ∈ X

f̂�
if

and only if no other firms in F� employ x as an input. If f ′′ ∈ F� uses x as an input, then
f and f ′′ cannot both produce in E at γ, contradicting B2. Thus, γ′(F̂ ) ⊆ X̂∅ ∪ f̂F̂ (γ′ ).

Finally, suppose 1 < |{f̂ ∈ F̂ : x ∈ γ′(f̂ )}| for some x ∈ X̂ . This implies there exist
f , f ′ ∈ F such that Wf ∩Wf ′ 	= ∅. Thus, both f and f ′ cannot produce at γ, contradict-
ing B2.
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Claim 3. Ĉxγ′ := ⋂
Z∈
γ′ (x)(

⋃
z∈Z Ĉz ) 	= ∅ for all x ∈ X̂ .

Proof of Claim 3. By Lemma 2(b), Ĉxγ′ = ⋂
Z∈
γ′ (x)(

⋃
z∈Z Ĉz ) = ⋂

z∈
γ′ (x) Ĉ
z . If x is a

primary good or is not produced at γ′, then 
γ′(x) = {x} and Ĉxγ′ = Ĉx 	= ∅. Otherwise,

x ∈X
f̂k

for some f̂k ∈ F̂ . If z is an (indirect) critical input for x at γ′, it must also be an (in-
direct) critical input for x at γ in E . This is because each firm has a unique efficient pro-
duction plan. Therefore, 
γ′(x) ⊆ 
γ(x). Thus,

⋂
z∈
γ′ (x) Ĉ

z ⊇ ⋂
z∈
γ′ (x)(

⋂
y∈
γ(z)C

y ) ⊇⋂
y∈
γ(x)C

y 	= ∅. The first set inclusion is by (11). The second is because if z is an indirect
critical input for x at γ′ and y is an indirect critical input for z at γ, then y is an indirect
critical input for x at γ. The inequality is because (8) holds in E and Lemma 2(b).

Proof of Theorem 1. Consider the economy E = 〈I, F ,X , �,ω〉. Let {F1, � � � , FL} be
the strongly connected components of its input network. By Lemma 10, its condensa-
tion Ê = 〈Î, F̂ , X̂ , �̂, ω̂〉 has an exclusion core outcome (μ̂, γ̂). As in Definition 6, each
f̂k ∈ F̂ ∪ F̃ is defined with respect to the corresponding strongly connected component
Fk. If f̂k ∈ F̂ , thenW

f̂k
	= ∅. If f̂k ∈ F̃ , thenW

f̂k
= ∅ andX

f̂k
⊆ X̂∅ in Ê . Define the outcome

(μ, γ) in E as follows. For each i ∈ I, let μ(i) = μ̂(i). For each f ∈ Fk ⊆ F , let

γ(f ) =

⎧⎪⎪⎨
⎪⎪⎩
Wf if f̂k ∈ F̂ produces its outputX

f̂k
at (μ̂, γ̂) in Ê

(
that is, γ̂(f̂k ) 	= ∅)

;

Wf if f̂k ∈ F̃ ;

∅ otherwise.

We will verify that (μ, γ) is an exclusion core outcome in E .

Claim 1. The outcome (μ, γ) is feasible in E .

Proof of Claim 1. We first show thatμ(I )∪γ(F ) ⊆X∅ ∪ {x0}∪F(γ). It suffices to show
that [x ∈ μ(I ) ∪ γ(F ) & x /∈X∅ ∪ {x0}] =⇒ x ∈ F(γ). There are two cases.

(a) If x ∈ μ(I ), then x is available at (μ̂, γ̂) in Ê . Since x /∈X∅ ∪ {x0}, there exists some
f̂k ∈ F̂ ∪ F̃ such that x ∈X

f̂k
and some f ∈ Fk such that x ∈Xf . By definition of γ,

γ(f ) =Wf . Thus, x is produced at (μ, γ) in E , that is, x ∈ F(γ).

(b) Suppose x ∈ γ(F ). Thus, there exists f ∈ Fk ⊆ F such that x ∈ Wf = γ(f ). Since
γ(f ) 	= ∅,X

f̂k
is available at (μ̂, γ̂) in Ê . There are two subcases:

(i) If x ∈ W
f̂k

, then x ∈ X
f̂�

for some f̂� ∈ F̂ ∪ F̃ and f̂� 	= f̂k. This implies there

exists some f ′ ∈ F� ⊆ F such that x ∈Xf ′ and, by definition of γ, γ(f ′ ) =Wf ′ .
Therefore, x is produced at (μ, γ) in E , that is, x ∈ F(γ).

(ii) If x /∈W
f̂k

, then f̂k ∈ F̃ and the producer of x, say f ′, must belong to the same
strongly connected component Fk. In this case, the definition of γ implies
that γ(f ′ ) =Wf ′ . Thus, good x is produced by f ′ at (μ, γ) in E , that is, x ∈ F(γ).



Theoretical Economics 19 (2024) The property rights theory of production networks 1653

The following three points together imply that |{i ∈ I : μ(i) = x}| + |{f ∈ F : x ∈
γ(f )}| ≤ 1 for all x ∈X and prove the claim:

(a) At most one agent can be assigned x at (μ, γ) in E . This is because μ(i) = μ̂(i) for
each i and (μ̂, γ̂) is feasible in Ê .

(b) At most one firm can be assigned x at (μ, γ) in E . To see this, suppose f 	= f ′ are
both assigned x as an input. Because x has unit capacity, firms f and f ′ cannot
both produce at γ, a contradiction since all goods are produced at γ.

(c) It is impossible for an agent and a firm to be both assigned x at (μ, γ) in E .
Suppose this was not true, that is, μ(i) = x and x ∈ γ(f ) = Wf . By definition,
μ̂(i) = x in Ê . Since firm f ∈ Fk ⊆ F is assigned an input at (μ, γ), the set of
goods X

f̂k
must be available at (μ̂, γ̂) in Ê . If x ∈W

f̂k
= (

⋃
f∈Fk Wf ) \ (

⋃
f∈Fk Xf ),

then we have a contradiction as x would be assigned to i and f̂k in the (feasible)
outcome (μ̂, γ̂) in Ê . Thus, x ∈ ⋃

f∈Fk Xf and, because x is assigned to agent i
at (μ̂, γ̂), x ∈ X

f̂k
= (

⋃
f∈Fk Xf ) ∩ {x ∈ X : �f ∈ Fk such that x ∈ Wf }. But then

�f ∈ Fk such that x ∈ Wf , which is a contradiction since the set Fk contains at
least one firm that uses x as an input.

Next, we show that (μ, γ) cannot be exclusion blocked in E . Suppose the contrary.
Thus, for some C ⊆ I and a feasible outcome (σ , ψ) in E , σ(i) �i μ(i) for all i ∈ C and
μ(j) �j σ(j) =⇒ μ(j) ∈�γ(C|ω, μ). Without loss of generality, assume that C contains
all agents i for whom σ(i) �i μ(i) and that ψ is efficient.

Consider the outcome (σ̂ , ψ̂) in Ê defined as follows. For each i ∈ Î, σ̂(i) = σ(i).
For each f̂k ∈ F̂ , ψ̂(f̂k ) = (

⋃
f∈Fk ψ(f )) \ (

⋃
f∈Fk Xf ). We will show that coalition C can

exclusion block (μ̂, γ̂) in Ê with (σ̂ , ψ̂). This will contradict (μ̂, γ̂) being in the exclusion
core of Ê . Together, Claims 2–4 imply this conclusion and complete the proof.

Claim 2. The outcome (σ̂ , ψ̂) is feasible in Ê .

Proof of Claim 2. Let x ∈ σ̂(Î ) ∪ ψ̂(F̂ ). Suppose x /∈X∅ ∪ {x0}. There are two cases.

(a) If x ∈ σ̂(Î ), then σ̂(i) = x for some i ∈ Î. Since σ̂(i) = σ(i), good x must be avail-
able at (σ , ψ) in E . As x /∈X∅ ∪ {x0}, x ∈Xf for some f ∈ Fk ⊆ F and ψ(f ) = Wf .
(Since ψ is efficient, f (ψ) 	= ∅ =⇒ ψ(f ) =Wf .) There are two subcases:

(i) If f̂k ∈ F̃ , then x ∈ X
f̂k

⊆ X̂∅. This is because x was assigned to an agent.

Hence, it must not be assigned to any other f ′ ∈ Fk.

(ii) Otherwise, f̂k ∈ F̂ . We know that ψ(f ′ ) =Wf ′ for all f ′ ∈ Fk; else, f ∈ Fk would

not be able to produce its output. Therefore, ψ̂(f̂k ) = (
⋃
f∈Fk Wf ) \ (

⋃
f∈Fk Xf )

andX
f̂k

is available at (σ̂ , ψ̂). If x /∈X
f̂k

, then x ∈Wf ′ for some f ′ ∈ Fk. But, this

implies that at (σ , ψ), σ(i) = x and x ∈ψ(f ′ )—a contradiction. Thus, x ∈X
f̂k

.
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(b) If x ∈ ψ̂(F̂ ), then x ∈ ψ̂(f̂k ) for some f̂k ∈ F̂ . Hence, x ∈ψ(f ) for some f ∈ Fk. Since
ψ is efficient, x ∈Wf . Because (σ , ψ) is feasible, the firm producing x, say f ′, must
produce at (σ , ψ). There are two subcases:

(i) Suppose f ′ ∈ F ′
k and f̂ ′

k ∈ F̃ . Since x was assigned to firm f at ψ, x was not
assigned as an input to any other firm in F ′

k. But then we know that x ∈X
f̂ ′
k

⊆
X̂∅.

(ii) Otherwise, suppose f ′ ∈ F ′
k and f̂ ′

k ∈ F̂ . All firms in the strongly connected

component F ′
k must also produce at (σ , ψ). If F ′

k = Fk, then x ∈ ψ̂(f̂k ), which
is not possible. Therefore, F ′

k 	= Fk. If all f ∈ F ′
k produce at (σ , ψ), then

ψ(f ) =Wf for all f ∈ F ′
k. Thus, ψ̂(f̂ ′

k ) = (
⋃
f∈F ′

k
Wf ) \ (

⋃
f∈F ′

k
Xf ) and f̂ ′

k pro-

duces X
f̂ ′
k

= (
⋃
f∈F ′

k
Xf ) ∩ {x ∈ X : �f ∈ F ′

k such that x ∈ Wf }, at (σ̂ , ψ̂). If

x /∈X
f̂ ′
k

, then there exists some firm f ′′ ∈ F ′
k such that x ∈Wf ′′ . However, above

we saw that x ∈ Wf and f /∈ F ′
k. Thus, there exist firms f 	= f ′ that require

the same input good for production. However, this contradicts condition B2,
which holds in E .

Cases (a) and (b) above imply that if x /∈X∅ ∪ {x0}, then x ∈ F̂(ψ̂). Hence, σ̂(Î ) ∪ ψ̂(F̂ ) ⊆
X̂∅ ∪ F̂(ψ̂) ∪ {x0}. The following three points together imply that |{i ∈ Î : σ̂(i) = x}|+ |{f̂ ∈
F̂ : x ∈ ψ̂(f̂ )}| ≤ 1 for all x ∈ X̂∅ ∪ F̂(ψ̂) ∪ {x0} and prove the claim:

(a) At most, one agent can be assigned x at (σ̂ , ψ̂) since (σ , ψ) is feasible and σ = σ̂ .

(b) At most one firm can be assigned x at (σ̂ , ψ̂). To see this, suppose f̂k and f̂� are
both assigned x at (σ̂ , ψ̂). This implies there exist two distinct firms fk ∈ Fk and
f� ∈ F� such that x ∈ ψ(fk ) and x ∈ ψ(f� ). But this means that both firms would
not be able to produce at γ, contradicting B2.

(c) It is impossible for an agent and a firm to both be assigned x at (σ̂ , ψ̂) in Ê . Sup-
pose the contrary. If σ̂(i) = x and x ∈ ψ̂(f̂k ), then there exists a firm f ∈ Fk ⊆ F

such that x ∈ ψ(f ). Thus, agent i and firm f are both assigned x at (σ , ψ), a con-
tradiction.

Claim 3. σ̂(i) �i μ̂(i) for all i ∈ C.

Proof of Claim 3. Since σ̂ = σ and μ̂= μ, it follows that σ̂(i) �i μ̂(i) for all i ∈ C.

Claim 4. μ̂(j) �j σ̂(j) =⇒ μ̂(j) ∈�γ̂(C|ω̂, μ̂).

Proof of Claim 4. Recall that �γ(C|ω, μ) = ⋃∞
k=0Zk where Z0 = ω(C ) and Zk =

Zk−1 ∪ ω(C ∪ μ−1(Zk−1 )) ∪ αγ(Zk−1 ) for all k ≥ 1. Likewise, �γ̂(C|ω̂, μ̂) = ⋃∞
k=0 Ẑk

where Ẑ0 = ω̂(C ) and Ẑk = Ẑk−1 ∪ ω̂(C ∪ μ̂−1(Ẑk−1 )) ∪ αγ̂(Ẑk−1 ) for all k ≥ 1. Since

μ(j) �j σ(j) =⇒ μ(j) ∈ �γ(C|ω, μ), σ(i) = σ̂(i) ∈ X̂ ∪ {x0} for all i, and μ(j) = μ̂(j) ∈
X̂∪ {x0} for all j, to prove the claim it suffices to show that�γ(C|ω, μ)∩ X̂ ⊆�γ̂(C|ω̂, μ̂).

Thus, it suffices to show that Zk ∩ X̂ ⊆ Ẑk for all k≥ 0.
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Let k= 0. If x ∈Z0 ∩ X̂ =ω(C ) ∩ X̂ , then Cx ⊆ C. Thus, Ĉx ⊆ Cx ⊆ C, which implies
x ∈ ω̂(C ) = Ẑ0. Proceeding by induction, suppose Zk′ ∩ X̂ ⊆ Ẑk′ for all k′ ≤ k − 1. Let
x ∈ Zk ∩ X̂ . If x ∈ Zk−1 ∩ X̂ , then the induction hypothesis implies that x ∈ Ẑk−1 ⊆ Ẑk.
Instead, suppose x /∈ Zk−1 and x ∈ (ω(C ∪ μ−1(Zk−1 )) ∪ αγ(Zk−1 )) ∩ X̂ . There are two
cases.

(a) Suppose x ∈ ω(C ∪ μ−1(Zk−1 )). Since μ = μ̂, the range of μ(·) is contained
in X̂ ∪ {x0}. Thus, μ−1(Zk−1 ) = μ−1(Zk−1 ∩ X̂ ) = μ̂−1(Zk−1 ∩ X̂ ) ⊆ μ̂−1(Ẑk−1 ).
Therefore, ω(C ∪ μ−1(Zk−1 )) ⊆ ω(C ∪ μ̂−1(Ẑk−1 )). And so, Cx ⊆ C ∪ μ̂−1(Ẑk−1 ),
which implies Ĉx ⊆ C ∪ μ̂−1(Ẑk−1 ). Therefore, x ∈ ω̂(C ∪ μ̂−1(Ẑk−1 )) and x ∈ Ẑk.

(b) Suppose x ∈ αγ(Zk−1 ). Because each firm has a unique efficient production plan
there exists y1 ∈Zk−1 such that x ∈ αγ(y1 ). There are two subcases:

(i) y1 ∈ X̂ . Thus, y1 ∈ Zk−1 ∩ X̂ ⊆ Ẑk−1. As y1 is critical for x at γ, it remains so
at γ̂ since each firm has a unique efficient production plan. Thus, x ∈ αγ̂(Ẑk−1 ),

which implies x ∈ Ẑk.
(ii) y1 /∈ X̂ . Thus, there exists some firm f 1 ∈ Fk ⊆ F such that y1 ∈Xf 1 and there

must exist some other firm f 0 ∈ Fk that uses y1 as an input. Since y1 is a critical
input for x, it follows that the firm producing x must be f 0, that is, x ∈ Xf 0 and
y1 ∈Wf 0.

We know that y1 ∈ Zk−1 = Zk−2 ∪ ω(C ∪ μ−1(Zk−2 )) ∪ αγ(Zk−2 ). If y1 ∈ Zk−2,
then x ∈Zk−1, which is a contradiction. Three cases remain.

Case 1. y1 ∈ ω(C ∪ μ−1(Zk−2 )). In this case, Cy ⊆ C ∪ μ−1(Zk−2 ). However,
f 0, f 1 ∈ Fk. Thus, y1 ∈ Y

f̂k
. Noting (10), this implies that Ĉx ⊆ Cy . Hence,

Ĉx ⊆ C ∪μ−1(Zk−2 ) which (by reasoning analogous to case (a) above) im-
plies that Ĉx ⊆ C ∪ μ̂−1(Ẑk−2 ). Therefore, x ∈ ω̂(C ∪ μ̂−1(Ẑk−2 )). Thus,
we can conclude that x ∈ Ẑk−1 ⊆ Ẑk.

Case 2. y1 ∈ αγ(y2 ) where y2 ∈ Zk−2 ∩ X̂ . This implies that x ∈ αγ̂(y2 ). This is

because y2 is an input for f̂k and x ∈X
f̂k

. However, y2 ∈Zk−2 ∩ X̂ implies

y2 ∈ Ẑk−2. Thus, x ∈ αγ̂(Ẑk−2 ), which implies x ∈ Ẑk−1 ⊆ Ẑk.

Case 3. y1 ∈ αγ(y2 ) where y2 ∈ Zk−2 and y2 /∈ X̂ . In this case, we can repeat the
preceding argument starting at (ii) either establishing that x ∈ Ẑk, as in
cases 1 and 2, or identifying a new good y3 such that y3 /∈ X̂ , as in this
case. As there is a finite number of goods, this argument must eventually
stop and it can only stop after showing x ∈ Ẑk.
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