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Robust predictions in dynamic policy games
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Dynamic policy games feature a wide range of equilibria. This paper provides a
methodology for obtaining robust predictions. We focus on a model of sovereign
debt, although our methodology applies to other settings, such as models of mon-
etary policy or capital taxation. Our main result is a characterization of distribu-
tions over outcomes that are consistent with a subgame perfect equilibrium con-
ditional on the observed history. We illustrate our main result by computing—
conditional on an observed history—bounds across all equilibria on the maxi-
mum probability of a crisis: means, variances, and covariances over debt prices.
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1. Introduction

Following Kydland and Prescott (1977) and Calvo (1978), the literature on optimal gov-
ernment policy without commitment formalized interactions between a large player
(government) and a fringe of small players (households, lenders), i.e., dynamic pol-
icy games, by building on the tools developed in the work of Abreu (1988) and Abreu,
Pearce, and Stacchetti (1990) in the literature of repeated games. This agenda has stud-
ied interesting applications for capital taxation (e.g., Chari and Kehoe (1990), Phelan and
Stacchetti (2001), and Farhi, Sleet, Werning, and Yeltekin (2012)), monetary policy (e.g.,
Chang (1998), Sleet (2001), and Waki, Dennis, and Fujiwara 2018), and sovereign debt
(e.g., Eaton and Gersovitz (1981) and Dovis (2019)), and has helped us to understand the
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distortions introduced by lack of commitment and the extent to which governments can
rely on reputation to achieve better outcomes.

One of the challenges in studying dynamic policy games is that these settings typ-
ically feature a wide range of equilibria with different predictions over observable out-
comes. For example, there are “good” equilibria where the government may achieve, or
come close to achieving, the optimum with commitment, while there are “bad” equilib-
ria where this is far from the case, and the government may be playing the repeated static
best response. When studying dynamic policy games, which of these should we expect
to be played? Can we make general predictions given this pervasive equilibrium mul-
tiplicity? One approach is imposing refinements, such as various renegotiation-proof
notions, that either select an equilibrium or significantly reduce the set of equilibria.
Unfortunately, no general consensus has emerged on the appropriate refinements.

Our goal is to overcome the challenge multiplicity raises by providing predictions in
dynamic policy games that hold across all equilibria; i.e., following the terminology of
Bergemann and Morris (2013), robust predictions. The approach we offer involves mak-
ing predictions for future play that depend on past, observed play. The key idea is that
even when little can be said about the unconditional path of play, quite a bit can be said
once we condition on past observations. To the best of our knowledge, this simple idea
has not been exploited as a way to derive robust implications from the theory. Formally,
we introduce and study a concept that we term equilibrium consistent outcomes; that is,
outcomes of the game, after an observed history, that are consistent with some subgame
perfect equilibria (SPE) that on its path could have generated the observed history.

Although the notions we propose and the results we derive are general and apply
to a large class of dynamic policy games, for concreteness we first develop them for a
specific application, using a model of sovereign debt along the lines of Eaton and Gerso-
vitz (1981). In the model, a small open economy faces a stochastic stream of income.
To smooth consumption, a benevolent government can borrow from international debt
markets, but lacks commitment to repay. If it defaults on its debt, the only punishment
is permanent exclusion from financial markets; it can never borrow again. There are
two features of this model that make it appealing to our work. First, this model has been
widely adopted and is a workhorse in international economics. Second, this policy game
can feature wide equilibrium multiplicity. On one end of the spectrum, in the worst
equilibrium, the government is in autarky, facing a price of zero for debt issuance and
consuming its income. Meanwhile, in the best equilibrium, the government smooths
consumption and there is no room for self-fulfilling crises.

Our main result, Proposition 1, which follows the classic approach to study corre-
lated equilibrium first proposed by Aumann (1987),1 characterizes probability distribu-
tions over outcomes, which we term equilibrium consistent distributions. Even though
in the model any equilibrium price can be realized after a particular equilibrium history,
we show that there are bounds on the probability distributions over these prices. For ex-
ample, if the country just repaid a high amount of debt or did so under harsh economic

1More recently, this approach has been also adopted by the literature on information design. See Berge-
mann and Morris (2018) for a review.
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conditions (e.g., when output was low), then low price realizations are less likely. The
choice to repay under these conditions reveals an optimistic outlook for bond prices
that narrows down the set of possible equilibria for the continuation game. This opti-
mistic outlook is the expression of a dynamic revealed preference argument. What the
government has left on the table as a consequence of its past decisions reveals its expec-
tations over future play. In equilibrium, these expectations must be correct and, hence,
they impose restrictions over expected future outcomes, which form the basis of our
predictions.

Building on the characterization of equilibrium consistent distributions, we next ex-
plore the predictions on all moments of observables that hold across all equilibria. In
particular, we focus on debt prices. First, in Proposition 2, we obtain bounds on the
maximum probability of low prices; for example, a rollover debt crises (i.e., a price real-
ization of zero). Due to equilibrium multiplicity, rollover debt crises may occur on the
equilibrium path for any realization of the fundamentals. However, the probability of a
rollover crisis, after a certain history, may be constrained. We derive these constraints,
showing that rollover crises are less likely if the borrower has recently made sacrifices to
repay. Second, we use our characterization to obtain bounds on moments of distribu-
tions over outcomes. In particular, in Proposition 3, we characterize bounds over the ex-
pected value of debt prices given a history for any equilibrium. Third, in Proposition 4,
as in Bergemann, Heumann, and Morris (2015), we characterize bounds on variances
that hold across all equilibria. In addition, as a corollary of these three propositions,
we propose a simple linear program that characterizes all non-centered moments over
observables. Finally, in Proposition 5, we extend Proposition 1 for the case in which
government policies are state contingent. The importance of this case is that it allows
us to study the joint behavior of government policies, prices, and the driving forces of
the model. For example, we can obtain bounds on the maximal variance subject to a
constraint on the covariance of capital flows and output.2

In the last section of the paper (Section 4), we show how our characterization of equi-
librium consistent outcomes extends to a more general class of dynamic policy games.
In particular, we provide a general model of credible government policies, which follows
the seminal contribution of Stokey (1991). The key features that the general setup tries to
capture are lack of commitment, a time inconsistency problem, an infinite horizon that
creates reputation concerns in the sense of trigger-strategy equilibria, and short-run
players that form expectations regarding government policies. After laying out the gen-
eral model, we show how the model of sovereign debt as in Eaton and Gersovitz (1981)
and the New Keynesian model as in Galí (2015) fit in this setup and we then discuss how
the main results of the paper (Proposition 1) extends into this general environment. In
addtion, in Section 4 we also study a variation of the model in which not all defaults are
punished with permanent reversion to autarky, in the spirit of Grossman and Van Huyck
(1989) and, more recently, in Dovis (2019). In particular, we discuss the extent that the
predictions of our paper are robust in the case in which not all defaults are punished
with permanent autarky.

2We thank an anonymous referee for suggesting this extension.
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Figure 1. Two period example.

Example and main results

We illustrate our main results in a simple two-period example. Figure 1 depicts a
two-player game in which the government has the choice of defaulting (choosing x =
Default) and receiving a sure payoff of u or repaying debt (choosing x = Repay) and,
hence, choosing to play a simultaneous move game G with the investors. If the govern-
ment chooses x = Repay, a public random variable ζ ∼ Uniform[0, 1] (a sunspot vari-
able) is observed by both parties before the subgame to be played between the govern-
ment and the investors. The choices for the government (debt) and the investors (debt
prices) in the coordination game are (bh, bl ) ∈ R2 and (qh, ql ) ∈ R2, respectively. The
parametric assumptions are that uh, ul, a, b > 0 and u ∈ (ul, uh ).3

Equilibrium The subgame following x = Repay has two equilibria in pure strategies:
(bl, ql ) and (bh, qh ), which we will call the low and high equilibria. We can summa-
rize any equilibrium outcome as a pair (x, Q), where x ∈ {Repay, Default} is the gov-
ernment’s decision whether or not to play the coordination game, and Q = (Ql, Qh ) is
a distribution over the low and high equilibrium; i.e., Qk = Pr(ζ : (bk, qk ) is played) for
k ∈ {l, h} and Ql + Qh = 1. This class is a subset of the correlated equilibrium distribu-
tions of Aumann (1987) for this static subgame.

Equilibrium consistent distributions Our main result, Proposition 1, characterizes dis-
tributions over observables after observing a equilibrium history of play. Let us delve
into the intuition of this result. Suppose that we (as outsiders) observe that the gov-
ernment has repaid debt. Both the high and low equilibrium are Nash equilibria of the
static game. However, not all distributions over the high and low equilibrium could have
been generated by a SPE. Thus, the fact that some subgame perfect equilibria generated
the history will place bounds over outcomes. For example, there is no equilibrium that
on its path generates x = Repay, and the government and the investors coordinate in
the low equilibrium with probability 1. The reason is that x = Repay is not optimal for
the government if they expect the low equilibrium with probability 1.

3The game that we study in this example is slightly different from the one that we study in Section 2.
The coordination game in the second step of the game depicted in Figure 1 tries to illustrate the inherent
coordination over continuation play at the heart of repeated games, which is also the cause for the typical
equilibrium multiplicity present in these games.
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Following the same logic, we can dig deeper. In particular, the only equilibrium dis-
tributions consistent with x = Repay are those that would have made it optimal for the
government to plan x = Repay in the first node. Those distributions Ql ∈ [0, 1] are char-
acterized by the condition

uh(1 −Ql ) + ulQl ≥ u. (1.1)

Equation (1.1) in fact defines the set of all possible distributions over outcomes that are
equilibrium consistent with x= Repay. This sequential optimality of choices is the main
insight of Proposition 1, which is the main result of the paper.

Aided by (1.1), we can obtain bounds over moments of distributions. Obtaining
these bounds is not computationally costly because they solve a linear program.

Bounding moments: Probability of crisis What is the maximum probability of the low
equilibrium after observing x = Repay? It is equal to the maximum Ql, such that (1.1)
holds. This value is equal to Q

l
:= (uh − u)/(uh − ul ) ∈ (0, 1). This bound is intuitive. As

the utility of the good equilibrium uh increases, Q
l

increases. As the utility of default u
increases, this probability decreases. We characterize this bound for the general model
in Proposition 2.

Expectations We also can obtain price expectations. We denote by EQ(q) the expected
value of the price q for any equilibrium consistent outcome (x = In, Q). The upper
bound, i.e., the maximum expectation, corresponds to the largest probability of the high
equilibrium. This probability distribution sets Ql equal to zero and has an associated
expectation equal to qh. The lowest expectation solves the program

EQ(q) = min
Ql

Qlql + (1 −Ql )qh

subject to (1.1). The solution of this program and the fact that the largest expectation is
qh define a set of expected prices equal to [EQ(q), qh], with EQ(q) = (1 −Q

l
)qh +Q

l
ql >

ql. We use the same argument in Proposition 3, where we obtain precise bounds over
expectations for the model of sovereign borrowing.

Variances Once we know the set of all possible expected values of q across equilib-
ria, we also can bound second moments. In particular, we can map distributions over
prices q to pairs of expectations and variances (E(q), V(q)), where V(q) is the variance
of q under some equilibrium distribution Q. In particular, given an expected price
μ = E(q) ∈ [q, qh], the maximum possible variance is (1 − Q

μ
l )q2

h + Q
μ
l q

2
l − μ2, where

Q
μ
l := (μ − ql )/(qh − ql ). Again, this is the solution to a linear program in which the

objective is the variance, and the constraint is (1.1) and the fact that the mean of the
distribution is equal to μ. In Proposition 4, we show that for the model of sovereign bor-
rowing, the upper bound on variance always solves a linear programming problem as
well, and actually can always be implemented by a distribution with only two prices in
its support (even if q is a continuum).
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Equilibrium consistency vs. Forward induction It is important to distinguish equilib-
rium consistency from forward induction. The game depicted in Figure 1 is also use-
ful for that. For concreteness, suppose that there is no sunspot (i.e., ζ is constant). In
this game, the set of subgame perfect equilibria with forward induction has only one
equilibrium in pure strategies (x = Repay, (bh, qh )). The subgame perfect equilibrium
(x = Default, (bl, ql )) does not survive forward induction, but because it is a subgame
perfect equilibrium, it is equilibrium consistent. This example illustrates the main dif-
ference between the two solution concepts. Forward induction is a refinement on the
set of equilibria; i.e., it shrinks the set of subgame perfect equilibria. Equilibrium con-
sistency, on the other hand, does not shrink the set of equilibria, but rather introduces
restrictions on observables.

Literature review Our paper relates to several strands of the literature. First, to the lit-
erature on credible government policies. The seminal papers on optimal policy without
commitment are Kydland and Prescott (1977) and Calvo (1978).4 We believe that our
paper is closely related to Chari and Kehoe (1990), Stokey (1991), and Atkeson (1991).
The first two papers adapt the techniques developed in Abreu (1988) to characterize
completely the set of equilibria in dynamic policy games. Atkeson (1991) extends the
techniques in Abreu, Pearce, and Stacchetti (1990) by allowing for a stochastic public
state variable in the context of sovereign lending, finding properties of the best equilib-
rium. We study a related, yet different question. Instead of characterizing equilibria at
the ex ante stage of the game in terms of sequences of observables, we provide a recur-
sive characterization of the set of continuation equilibria given an equilibrium history of
play. This characterization of continuation equilibria is the basis for obtaining predic-
tions that are robust across all equilibria. Our central assumption is that an equilibrium
generates the history of play, without appealing to any equilibrium refinement.

Second, to the literature on robust predictions. The papers that are more closely re-
lated to our work are Angeletos and Pavan (2013), Bergemann and Morris (2013), and
Bergemann, Heumann, and Morris (2015). The first paper, Angeletos and Pavan (2013),
obtains predictions that hold across every equilibrium in a global game with an endoge-
nous information structure. The second paper, Bergemann and Morris (2013), in a class
of coordination games with normal public and private signals about a payoff-relevant
state variable, obtains restrictions over moments of observable endogenous variables
that hold across every possible information structure. In a related paper, Bergemann,
Heumann, and Morris (2015) characterize bounds on output volatility across all poten-
tial information structures in a static model where agents face both idiosyncratic and
aggregate shocks to productivity.

Our paper contributes to this literature by obtaining predictions that hold across all
equilibria in a dynamic game. Differently from Bergemann and Morris (2013), in our en-
vironment, there is no payoff-relevant private information. However, this simplification
allows us to focus on a class of dynamic policy games with exogenous and endogenous

4Applications range from capital taxation as in Phelan and Stacchetti (2001), monetary policy as in Chang
(1998) and Waki, Dennis, and Fujiwara (2018), and sovereign debt as in Atkeson (1991), Arellano (2008),
Aguiar and Gopinath (2006), and, more recently, Dovis (2019).
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state variables. In the application we focus on in this paper, we obtain restrictions over
the distribution of equilibrium debt prices for any possible process of sunspots (poten-
tially nonstationary) by exploiting the dynamic implications that sequential rationality
has on the distribution of observables. These implications are the basis for obtaining
bounds on first and second order conditional moments across all possible sunspot pro-
cesses or, following the terminology in Bergemann and Morris (2018), across all possible
information structures.

The literature of information design in dynamic games, where agents may have ac-
cess to private information about other players’ actions, was first formalized by Myer-
son (1986) and Forges (1986), extending the concept of correlated equilibrium of Au-
mann (1987) to extensive form games. As reviewed in Bergemann and Morris (2018),
one can view the problem of information design from two alternative points of view.
In the first one, the “literal interpretation,” an information designer sends signals to
other parties to influence their behavior so as to achieve some objective. A large lit-
erature has grown after the contribution of Kamenica and Gentzkow (2011); see, for
example, on static environments, Gentzkow and Kamenica (2014), among others. In
the second one, the “metaphorical interpretation,” the designer is an abstraction that
chooses among different information structures to achieve some objective. For exam-
ple, in Bergemann, Heumann, and Morris (2015), the objective of the designer is to max-
imize output volatility. The literature on robust predictions falls in this category; see, for
example, Bergemann and Morris (2013). Our paper belongs to the second interpreta-
tion.

Chahrour and Ulbricht (2020) use this approach while extending their results to dy-
namic linear macroeconomic environments, where agents have access to arbitrary dy-
namic information structures about fundamental shocks and prices. The authors also
obtain moment conditions on “wedges” that are akin to the results in Bergemann and
Morris (2013) and ours as well, which allow them to obtain testable implications. In our
paper, we instead focus on pure strategic uncertainty rather than payoff uncertainty.
Also related is Oliveira and Lamba (2019), where the authors obtain testable implica-
tions of Bayesian rationality over a single agent choosing sequentially, but where agents
may have access to an arbitrary dynamic information structure that could rationalize
their behavior. These bounds provide testable implications of the model, even in the
presence of both equilibrium multiplicity and uncertainty of the information structure
agents have when making their decisions.

Third, Sections 2 and 3 of this paper study robust predictions in a dynamic policy
game that builds on Eaton and Gersovitz (1981). This framework and variations of it
have been extensively used to study sovereign borrowing following the initial contri-
butions of Aguiar and Gopinath (2006) and Arellano (2008). The focus is usually on
Markov equilibria on payof-relevant state variables and, hence, defaults can only be
a consequence of bad fundamentals. Our paper shares with this strand of the liter-
ature the focus on a model along the lines of Eaton and Gersovitz (1981), but rather
than characterizing a particular equilibrium, we study predictions across all equilib-
ria.
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Outline This paper is structured as follows. We introduce the model in Section 2. In
Section 3, we discuss the characterization of equilibrium consistent outcomes. In Sec-
tion 4, we present a general dynamic policy game and state the main results of the pa-
per in this more general setup. We conclude in Section 5. Proofs are provided in the
Appendix.

2. A dynamic policy game

Our model of sovereign debt follows Eaton and Gersovitz (1981). Time is discrete and de-
noted by t ∈ {0, 1, 2, � � � .}. A small open economy receives a stochastic stream of income
denoted by yt . Income follows a Markov process with cumulative distribution function
(c.d.f.) denoted by F(yt+1|yt ), with finite moments. The c.d.f. F(yt+1|yt ) is non-atomic.
There is a public randomization device, ζt ∼ U[0, 1], independent and identically dis-
tributed (i.id.) over time. The government is benevolent and seeks to maximize the
utility of the households. It does so by selling bonds, denoted by bt , in the international
bond market. The household evaluates consumption streams according to

E

[ ∞∑
t=0

βtu(ct )

]
,

where β < 1 and u is increasing, strictly concave, and bounded below.5 The sovereign
government issues short-term debt at a price qt . The budget constraint is

ct = yt − bt + qtbt+1.

There is limited enforcement of debt. Therefore, the government will repay only if it is
more convenient to do so. We assume that after a default, the government remains in
autarky forever after, but there are no direct output costs of default. Furthermore, we
also assume that the government cannot save:

bt+1 ≥ 0.

There is a competitive fringe of risk neutral investors who discount the future at a rate of
r > 0. This discount rate and the possibility of default imply that the price of the bond is
given by

qt = 1 − δt

1 + r
, (2.1)

where δt is the default probability on bonds bt+1 issued at date t.6

5We introduce the assumption that the utility function is bounded to guarantee that the value function
is finite.

6This can be micro-founded by a fringe of strategic agents who decide to lend bt+1 dollars to maximize
expected profits V = −qtbt+1 + (1 − δt ) 1

1+r bt+1. If agents compete perfectly in the lending market, (2.1) is
derived as a non-arbitrage equilibrium condition. See, for example, Arellano (2008).
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Figure 2. Summary of the timing and the construction of histories in the case in which there is
a sunspot. Now we introduce a sunspot ζt after the government has issued debt bt+1 and before
the price qt has been realized.

Timing

The timing structure is summarized in Figure 2. In period t, the government enters with
bt bonds that it needs to repay. Then income yt is realized. The government then has the
option to default, dt ∈ {0, 1}. If the government does not default, the government runs an
auction of face value bt+1. A sunspot variable ζt , which is common knowledge and inde-
pendent of yt , is realized. Then the price of the bond qt is realized. Finally, consumption
takes place and is given by ct = yt − bt + qtbt+1.7 If the government decides to default,
then consumption is equal to income, ct = yt . The same is true if the government has
ever defaulted in the past.

Histories, strategies, and outcomes

A history is a vector ht = (h0, h1, � � � , ht−1 ), where ht = (yt , dt , bt+1, ζt , qt ) is the outcome
of observable variables of the stage game at time t. A partial history is an initial history ht

concatenated with a history of the stage game at period t. For example, ht
g = (ht , yt ) is a

history after which the government must choose policies (dt , bt+1 ). The set of all partial
histories is denoted by H. We label the partial histories as Hg ⊂ H, where the govern-
ment has to choose policies. Likewise, Hm,ζ ⊂ H is the set of partial histories where the
market plays; i.e., ht

m,ζ = (ht , yt , dt , bt+1, ζt ). We denote the histories where the market
plays but the sunspot has not been realized by ht

m, so ht
m,ζ = (ht

m, ζt ). A policy maker’s

strategy is a function σg(ht , yt ) = (d
σg

t , b
σg

t+1 ) for all histories (ht , yt ) ∈ Hg. A strategy for
the market is a pricing function qm(ht , yt , dt , bt+1, ζt ) for all histories ht

m,ζ ∈ Hm. We de-
note by �g and �m the set of strategies for the government and the market. For a strategy
profile σ = (σg, qm ), we write V (σ|h) for the continuation expected utility, after history
h, of the representative consumer if agents play according to profile σ . For any strategy

7If the realized price at the auction is such that the budget constraint does not hold, the government
can access funds to guarantee that consumption equals zero (i.e., such that the budget constraint holds ex
post). However, due to accessing these special funds, in this case, utility is equal to −∞.
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profile σ ∈ � := �g ×�m, we define the continuation at ht
g ∈ Hg as

V
(
σ|ht

g

) = Et

{ ∞∑
s=t

βs−t
[(

1 − dts
)
u(ys − bs + qsbs+1 ) + dsu(ys )

]}
,

where (ys , ds , bs+1, qs ) are generated by the strategy profile σ .8

Equilibrium

A strategy profile σ = (σg, qm ) constitutes a subgame perfect equilibrium (SPE) if and
only if, for all partial histories ht

g ∈ Hg,

V
(
σ|ht

g

) ≥ V
(
σ ′
g, qm|ht

g

)
for all σ ′

g ∈ �g, (2.2)

and for all histories ht
m,ζ , it holds that

qm
(
ht
m,ζ

) = 1
1 + r

Et
(
1 − dσg

(
ht+1, yt+1

))
. (2.3)

That is, the strategy of the government is optimal given the pricing strategy of the lenders
qm(·); likewise, qm(·) is consistent with the default policy generated by σg. The set of all
subgame perfect equilibria is denoted as �∗ ⊂ �. Given any history h ∈ H, we denote
�∗(yt , bt+1 ) as the set of all equilibrium strategies of the subgame starting at ht .9

Equilibrium prices and continuation values

For any history ht
m, we define the highest and lowest equilibrium prices as

qE
(
ht
m

)
:= max

qm∈�∗(htm )
qm

(
ht
m,ζ

)
(2.4)

qE
(
ht
m

)
:= min

qm∈�∗(htm )
qm

(
ht
m,ζ

)
. (2.5)

The worst SPE price is zero (i.e., qE(ht
m ) = 0) and the associated equilibrium payoff is

given by the utility level of autarky. The lowest price qE(ht
m ) is attained by using a fixed

strategy for all histories (default after any history). The level of utility of autarky is given
by

V A(yt ) := u(yt ) +βEyt+1|yt V
A(yt+1 ). (2.6)

Alternatively, the highest price qE(ht
m ) is associated with a (different) fixed strategy for

all histories, is Markov in (bt , yt ) conditional on no default so far, and delivers the highest

8Note that expectation is taken with respect to the probability distribution of the stochastic processes
of output and the sunspot, given the strategy for both the market and the government. We sometimes use
bs = b

σg
s and ds = d

σg
s for clarity.

9Note that, as is standard in dynamic games, the history preceding (yt , bt+1 ) does not restrict the set of
equilibria after that history.
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equilibrium level of utility for the government.10 We denote the best equilibrium price
as qE(ht

m ) = q(yt , bt+1 ). The continuation utility (conditional on not defaulting) of the
choice bt+1 given bonds and output (bt , yt ) in the best equilibrium is given by

V nd(bt , yt , bt+1 ) := u
(
yt − bt + q(yt , bt+1 )bt+1

) +βV(yt , bt+1 ), (2.7)

where V(yt , bt+1 ) is defined as

V(yt , bt+1 ) := Eyt+1|yt

[
max

{
V nd(bt+1, yt+1 ), V A(yt+1 )

}]
(2.8)

and V
nd

(bt , yt ) := maxbt+1≥0 V
nd(bt , yt , bt+1 ). Aided by the previous definitions, the best

equilibrium price is defined as q(yt , bt+1 ) := Eyt+1|yt [1−d(yt+1,bt+1 )]
1+r , where d(yt+1, bt+1 ) is

equal to zero if and only if V nd(bt+1, yt+1 ) is greater than or equal to V A(yt+1 ). This equi-
librium that we just described is the one analyzed in the standard Eaton and Gersovitz
(1981) model.

Summing up

After the describing the environment, and the best and the worst SPE, in the next sec-
tion we prove the main result of the paper: we characterize probability distributions on
prices that can be a continuation equilibrium after an equilibrium history. Note that any
price in [0, q̄] can be realized (i.e., is a SPE outcome) after the realization of the sunspot.
However, as we will show in Proposition 1, equilibrium histories of play ht will place
restrictions on distributions of prices. For example, in one of our applications (Proposi-
tion 2), we characterize the maximum probability of obtaining low prices, by exploiting
the restrictions on distributions of prices that we obtain in Proposition 1. In particular,
we obtain formulas to compute

max
Q∈ECD(ht )

PrQ(q ≤ q̂), (2.9)

which is the maximum probability that debt prices are lower than q̂, after observing
the equilibrium history ht . Characterizing the set ECD(ht ), which denotes the set of
probability distributions that are consistent with an equilibrium history, is the main task
for the next section.

3. Equilibrium consistency

We now introduce the concept of equilibrium consistency. Given a SPE profile σ =
(σg, qm ), we define its equilibrium path x(σ ) as a sequence of measurable functions
x(σ ) = (d

σg

t (ζt−1, yt ), b
σg

t+1(ζt−1, yt ), qqmt (yt , ζt ))t∈N that are generated by following the
profile σ .

10In the Online Appendix of Passadore and Xandri (2020), we describe necessary and sufficient condi-
tions for equilibrium multiplicity, and we show that the best SPE is characterized by (2.7) and (2.8). See also
Proposition 6 in Auclert and Rognlie (2016) and Section 6 in Bloise, Polemarchakis, and Vailakis (2017) for
conditions under which there is equilibrium multiplicity.



1670 Passadore and Xandri Theoretical Economics 19 (2024)

Definition 1. A history h ∈ H is equilibrium consistent if and only if it is on the support
of some equilibrium path x(σ ), for some SPE profile σ .

3.1 Preliminaries

Before delving into the main result of the paper, we will define and characterize the best
equilibrium payoff after a history ht

m, which is a key input for Proposition 1. The max-
imum continuation value function v(yt , bt+1, qt ) given an income realization yt , bonds
bt+1, and issued at an equilibrium price qt , is given by

v(yt , bt+1, qt ) := max
σ∈�∗(yt ,bt+1 )

V (σ|qt ).

Two remarks. First, note that because σ ∈ �∗(yt , bt+1 ), strategies for the government
and the market are equilibrium strategies. In particular, prices are consistent with de-
fault policies for every history. For the case of dt+1 and qt , the default policies are con-
sistent with the realized price qt . In Appendix B, we characterize this payoff using the
standard approach of Abreu, Pearce, and Stacchetti (1990). Second, for this definition
we are using the fact that v(ht

m ) = v(yt , bt+1, qt ). That is, the best continuation payoff
after history ht

m only depends on (yt , bt+1, qt ). The next lemma provides the character-
ization and properties of v, which will be useful to prove the main results in the paper.
For Proposition 1, the following lemma will be useful.

Lemma 1. (a) The function v(yt , bt+1, qt ) is non-increasing in bt+1, and non-decreasing
and concave in qt . (b) It can be computed as

v(yt , bt+1, qt ) = max
d(·)∈{0,1}Y

Eyt+1|yt

[
d(yt+1 )V A(yt+1 ) + (

1 − d(yt+1 )
)
V

nd
(bt+1, yt+1 )

]
(3.1)

subject to

qt = Eyt+1|yt

(
1 − d(yt+1 )

)
1 + r

.

The fact that the function is non-increasing in bt+1 follows from the fact that the pay-

off V
nd

(bt+1, yt+1 ) is non-increasing in bt+1, which is a standard result in the literature
that follows Eaton and Gersovitz (1981). The fact that the function is non-decreasing
in qt follows from two facts. First, higher prices are associated with better continuation
equilibrium in which the government default in less states of nature. Second, because
bt+1 ≥ 0, contemporaneous consumption is higher when q is higher. Finally, concavity
follows from the fact that v(yt , bt+1, qt ) solves a linear programming problem.11 We use

11Note that because it is a linear program (linear objective and linear constraints), if there is an optimum,
it is in the boundaries. Thus, we can solve a relaxed version of the problem, in which dt ∈ [0, 1] instead of
dt ∈ {0, 1}. This relaxed problem has a convex feasible set. Thus, for q− = qλ := λq0 + (1 −λ)q1, it holds that
v(y−, b, qλ ) ≥ G[dλ(·)] = λv(y−, b, q0 ) + (1 − λ)v(y−, b, q1 ), where the inequality comes from the fact that
the combination of the optimal policies dλ =: λd0 + (1 − λ)d1 is feasible at qλ.
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these three properties of v(yt , bt+1, qt ) to characterize the set of equilibrium consistent
distributions and to obtain testable predictions.12

Discussion In the model that we discussed in Section 2, all defaults imply reversion to
permanent autarky, which is the worst equilibrium of the game. We do so to stay close to
the literature on sovereign debt, which builds on Eaton and Gersovitz (1981). However, it
does not need to be the case that all defaults are followed by permanent autarky. For this
reason, in Section 4, we study a variation of the model in which debt is state contingent.
In this variation, the worst subgame perfect equilibrium will still be autarky, but the best
continuation equilibrium value, v(yt , bt+1, qt ), which we just characterized in equation
(3.1), will be different. As a result of this different best continuation equilibrium value,
as we will see in Proposition 1, the predictions across all equilibria will be quantitatively
altered by alternative assumptions of what happens after a default.

3.2 A characterization

The main objective of the paper in characterizing equilibrium consistent policies and
distributions over prices in t. Formally, a distribution of debt prices Qt ∈ 	(R+ ) is equi-
librium consistent with history ht

m if and only if for any Borel measurable set of prices
A ⊆ R+, we have that Qt(A) = Pr(ζt : qm(ht

m,ζ ) ∈ A) for some qm ∈ �∗
m(yt , bt+1 ). De-

note the set of equilibrium consistent price distributions as ECD(ht
m ). A triple (dt =

0, bt+1, Qt ) is an equilibrium consistent outcome if and only if there exists an equilib-
rium profile σ = (σg, qm ) that generates on its path (dt = 0, bt+1 ) and the distribution of
prices Qt .13 Armed with these definitions, we will now characterize the implications of
equilibrium consistency on observables.

Proposition 1. Suppose that (ht , yt ), with no default so far, is equilibrium consistent.
Then the triple (dt = 0, bt+1, Qt ), where Qt ∈ 	(R+ ), is an equilibrium consistent outcome
if and only if the following statements hold:

(a) Debt prices are SPE prices; i.e.,

Qt ∈ 	
([

0, q(yt , bt+1 )
])

. (3.2)

(b) The government is incentive compatible:

∫ q(yt ,bt+1 )

0

[
u(yt − bt + qtbt+1 ) +βv(yt , bt+1, qt )

]
dQt(qt ) ≥ V A(yt ). (3.3)

12We will use the notation v(yt−1, bt , qt−1 ) or v(yt , bt+1, qt ) interchangeably, depending on what is more
convenient. Note that the set of equilibrium strategies given history ht , which we denote by �∗(ht ), only
depends on the initial bonds bt and the seed value of income yt−1. Thus, �∗(ht ) = �∗(yt−1, bt ). There-
fore, if σ ∈ �∗(yt , bt+1 ) conditional on qt must satisfy the property that the goverment’s default choices are
consistent with the realized price qt .

13Following our focus on observable variables, the corresponding object to a pricing strategy qm(ht
m,ζ ) is

a distribution Qt , which is why we treat it as an observable physical outcome.
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The main contribution of our paper is using condition (3.3) to derive restrictions on
equilibrium objects that are consistent across SPE of the policy game. Note that condi-
tion (3.2) characterizes prices that are SPE outcomes. Debt prices are between zero and
the best equilibrium price q(yt , bt+1 ). The idea is that if we do not assume that the his-
tory ht

m is generated by some SPE, then there are no restrictions over debt prices other
than being equilibrium prices.

The idea of the proof of Proposition 1 is as follows. For necessity, fix an equilibrium
consistent distribution Q after history ht

m. If we assume that ht
m is on the equilibrium

path of some SPE, then the government strategies dt and bt+1 were optimal before the
realization of the sunspot ζt . This implies that the government ex ante preferred to pay
the debt (i.e., dt = 0) and issue bonds (bt+1) rather than default on the debt. If the re-
alized price is qt after these decisions, the payoff for the government would be at most
u(yt − bt + qtbt+1 ) plus the best ex post continuation value v(yt , bt+1, qt ). However, the
government is uncertain over which price will be realized for the debt issued, so the gov-
ernment forms an expectation with respect to the “candidate” equilibrium consistent
distribution Q. This expectation, and its associated expected utility, has to be at least
as good as defaulting; if not, the government would have defaulted instead of repaying.
The left hand side of condition (3.3) is an upper bound on the utility of not defaulting at
history ht

m. Thus, (3.3) is necessary. In other words, if it was violated, then we could not
construct promises that rationalize the past history ht

m.14

The idea of sufficiency, which is the reason why we eliminate bt−1 and all the previ-
ous policies, stems from the fact that both the output and the sunspot are non-atomic.15

The particular history that followed ht−1
m when bt−1 was chosen, i.e., the one with the

particular realization of ζt−1, had zero probability of occurring, because the sunspot has
a continuous distribution. Thus, it could always have been the case that the payoffs
that rationalized bt−1 and the previous policies were to be realized in a state that never
materialized. Therefore, ECD(bt , yt , bt+1 ) = ECD(ht

m ).
There are two points that are worth noting regarding alternative assumptions of the

game and how robust the predictions are. First, in the model that we developed in Sec-
tion 2, by assumption, all defaults imply reversion to the worst equilibrium, which pins
down the function v(yt , bt+1, qt ), characterized in (3.1). In the case in which permanent
autarky is the worst equilibrium, alternative assumptions of what happens after a de-
fault will imply a different characterization of the best continuation equilibrium (3.1)
and will affect predictions via (3.3). To clarify this case, in Section 4, we study the case
with excusable defaults as in Grossman and Van Huyck 1989, where, on the equilibrium
path, defaults do not trigger punishments.

Second, Proposition 1 can be specialized to obtain robust predictions over a cer-
tain subset of subgame perfect equilibrium. For example, the result can be adapted for
equilibria with limited equilibrium punishments. Namely, the same results would hold

14One might wonder why we cannot rely on the best continuation payoff V(yt , bt+1 ). This is because this
payoff is associated with the best equilibrium price, and this price need not be realized. The best possible
payoff after the price q is realized is v(yt , bt+1, qt ).

15Even if output was discrete, sunspots make shocks non-atomic, having the same effect as if we had
absolutely continuous output shocks.
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if we replace the worst equilibrium of the game V A(y ) with a higher equilibrium payoff
V > V A(y ) in the characterization of the best continuation equilibrium in equation (3.1)
and on the right hand side of (3.3). An example is the case in which agents are punished
after every default with a fixed (or random number of periods) in autarky.

3.3 Bounding certain prices

Aided by Proposition 1, we can now further characterize moments over distributions of
debt prices. Before bounding moments over distributions of prices, we characterize the
best continuation prices for the case without sunspots; i.e., ζt is constant. We term them
certain equilibrium consistent prices. First, for each (bt , yt , bt+1 ), we define the lowest
(certain) equilibrium consistent price q(bt , yt , bt+1 ) as the solution q to

u(yt − bt + qbt+1 ) +βv(yt , bt+1, q) = V A(yt ). (3.4)

Note that q(·) is a function that maps q(bt , yt , bt+1 ) : B×Y ×B → [0, 1
1+r ]. Note also that

q is unique, due to the monotonicity of u(·) and v(yt , bt+1, ·). The lowest (certain) equi-
librium consistent price q is the lowest price for debt issued bt+1, given a debt payment
bt under an income realization yt for which the government does not default. Second,
we can also define the highest equilibrium consistent price. It is given by q(yt , bt+1 ) and
is equal to the best equilibrium price defined in (2.4). The idea is that for any equilib-
rium history, the best equilibrium is a possible continuation equilibrium. In fact, if the
best equilibrium is not a possible continuation, then the previous history cannot be an
equilibrium history. Next we show some properties about these prices.

Corollary 1. Let q(bt , yt , bt+1 ) be the lowest (certain) equilibrium consistent price af-
ter history ht

m. The following statements hold: (a) q(bt , yt , bt+1 ) is increasing in bt ; (b)
for every equilibrium consistent history, −bt + q(bt , yt , bt+1 )bt+1 ≤ 0; (c) if income is
i.i.d., then q is decreasing in yt , and so is the set of (certain) equilibrium consistent prices
[q(bt , yt , bt+1 ), q(yt , bt+1 )].

The intuition for Corollary 1 follows. First, note that if the government just repaid
a large amount of debt (i.e., made an effort to repay the debt), then the past choices
are rationalized by higher continuation prices, which is a result of the fact that the util-
ity function is increasing in consumption and that the best continuation is increasing
in prices. Second, note that a positive capital inflow obtained at the lowest (certain)
equilibrium consistent prices would imply that u(yt ) − u(yt − bt + q(bt , yt , bt+1 )bt+1 ) is
negative. Intuitively, the country is not making any effort to repay the debt. Therefore,
it need not be the case that the country expects high prices for debt in the next period.
Finally, because there are no capital inflows at the lowest (certain) equilibrium consis-
tent prices, repaying debt at this price will become more costly for a lower realization of
income yt ; this is due to the concavity of the utility function. Mathematically, because of
concavity, u(yt ) − u(yt − bt + q(bt , yt , bt+1 )bt+1 ) is increasing as income decreases, and,
therefore, the promise-keeping constraint tightens as income decreases.
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Figure 3. The (certain) equilibrium consistent prices q and q. We describe the comparative
statistics after history ht

m. Thus, the relevant state variables are (bt , yt , bt+1 ).

A quantitative illustration We now numerically solve for the (certain) equilibrium con-
sistent prices. The process for log output is given by log yt = μ+ ρy log yt−1 + σyεt where
μ = 0.75, σy = 0.3025, εt is i.i.d. and εt ∼ N(0, 1), and ρy = 0.0945. The risk-free in-

terest rate is set to r = 0.017. The utility function is u(c) = c1−γ

1−γ , the coefficient of rel-
ative risk aversion is γ = 2, and the discount factor is β = 0.953. Figure 3 depicts the
numerical results. As we discussed before, the best equilibrium, q, coincides with the
equilibrium usually studied in the quantitative literature of sovereign debt. We plot the
best equilibrium consistent price in blue and the lowest in red. As shown in Figure 3,
for low levels of debt, the best equilibrium is risk-free (default). As we increase the level
of debt, the price drop and drop sharply, as it is in most models with short-term debt
(prices are volatile). The lowest (certain) equilibrium consistent prices q(bt , yt , bt+1 ) are
computed using (3.1) and (3.4). Note that the comparative statics that we specify in
Corollary 1 clearly emerge in Figure 3. First, in the left panel, when the government
repays debt bt = 0.5 and issues bt+1 = 0.75, the lowest (certain) equilibrium consistent
prices decrease with the realization of income. In addition, as one would expect, when
the amount of debt repaid climbs to bt = 0.75 and the amount of debt issued is still
bt+1 = 0.75, the dashed red line dominates the solid red line. The lowest (certain) equi-
librium consistent prices are now higher. Finally, note that the best equilibrium price is
constant through the realizations of income, because for those levels of debt bt+1 = 0.75,
default is not a concern. Also, note that in the right panel, we observe that with debt re-
payment, bt , we obtain the opposite: when the government repays a larger amount of
debt, then the lowest (certain) equilibrium consistent price increases. This is the case
for both (yt = 1, bt+1 = 0.50) and (yt = 1, bt+1 = 0.75). The dashed line corresponds to a
higher debt issuance, and as we just discussed, given a larger capital inflow, the prices
are expected to be lower.
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3.4 Bounding price distributions

We now delve into the implications of Proposition 1 on distributions of debt prices. The
first set of implications are over the probability of low prices. In particular, we character-
ize the maximum probability that a crisis will occur. Second, we provide bounds across
all equilibria for the expectation of prices. Third, we also provide bounds across all equi-
libria for the variance of distributions over prices.16 Finally, we study the comparative
statistics for the set of equilibrium consistent distributions, ECD(bt , yt , bt+1 ).

Maximum probability of crises We would like to infer the maximum probability (across
equilibria) that the government could assign to a price lower than or equal to q̂ in any
equilibrium after an equilibrium history ht

m. Formally, we define the function Q(q̂) as

Q(q̂; bt , yt , bt+1 ) := max
Q∈ECD(bt ,yt ,bt+1 )

PrQ(q ≤ q̂), (3.5)

where PrQ(q ≤ q̂) := ∫ q̂
0 dQ(q). Proposition 2 characterizes Q(·).

Proposition 2. Consider an equilibrium consistent history ht
m = (ht , yt , dt = 0, bt+1 ).

(a) For any q̂ ≥ q(bt , yt , bt+1 ), Q(q̂; bt , yt , bt+1 ) = 1. (b) For any q̂ < q(bt , yt , bt+1 ), it holds
that

Q(q̂; bt , yt , bt+1 ) = V nd(bt , yt , bt+1 ) − V A(yt )

V nd(bt , yt , bt+1 ) − [
u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)

] . (3.6)

The idea of the proof is as follows. Lets us start with the case q̂ ≥ q(bt , yt , bt+1 ). The
reason why Q(q̂; bt , yt , bt+1 ) is equal to 1 is intuitive. A probability distribution that
places a probability equal to 1 on q(bt , yt , bt+1 ) is an equilibrium consistent distribu-
tion. For this distribution, PrQ(q ≤ q̂) is going to be equal to 1. Thus, the maximum
PrQ(q ≤ q̂) over the set of equilibrium consistent distributions is equal to 1. The case
in which q̂ < q(bt , yt , bt+1 ) is not that simple. Proposition 2 finds the maximum ex ante
probability (before ζt is realized) of observing a price qt that is lower than q̂, and it is less
than 1. To relax the incentive compatibility (IC) constraint for the government (condi-
tion (3.3)) as much as possible, we consider distributions with binary support over {q̂, q}.
For these distributions, when q is realized, we assign the best continuation equilibria for
the government, and when q̂ is realized, we assign the best continuation equilibrium af-
ter q = q̂, which is given by v(yt , bt+1, q̂). The expected value for the government under
this distribution, which we label Q(q̂; ·), needs to be as good as defaulting. When we
equalize the value of issuing debt with the distribution Q(q̂; ·) to the value of defaulting,
we obtain an equation for Q(q̂; bt , yt , bt+1 ), which is precisely given by (3.6).

Note that if the income realization is such that V
nd

(bt , yt ) = V A(yt ) (i.e., under
the best continuation equilibrium, the government is indifferent between defaulting or

16All of these bounds are independent of the nature of the sunspots (i.e., the distribution of sunspots,
its dimensionality, and so on), in the same way as the set of correlated equilibria does not depend on the
actual correlating devices.
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Figure 4. Plots of Q(q) for different levels of output for our main calibrated parameters. The
left panel fixes bt+1 and bt , and shows the comparative statistics with respect to yt . The right
panel fixes yt and shows the comparative statistics with respect to bt .

not, and still does not default), then Q(q̂; bt , yt , bt+1 ) = 0 for any q̂ < q(bt , yt , bt+1 ) =
q(yt , bt+1 ). The idea is that for these income levels, only q = q(yt , bt+1 ) is an equilibrium
consistent price, and the only distribution that is equilibrium consistent places proba-
bility 1 on that price. Note also that Q is a cumulative distribution function for q: it is
a non-increasing, right-continuous function with a range of [0, 1]; hence, it implicitly
defines a probability measure for debt prices.

Figure 4 presents the function for the maximum probability of low prices, Q(q̂; bt , yt ,
bt+1 ), for different states (bt , yt , bt+1 ). In the left panel, the two distributions differ on
the income realization under which the government repaid its debt. Let us start with the
blue line: the government repaid debt under an income realization (yt ) of 1.36, repaid
0.5 units of debt (bt ), and issued 0.5 units (bt+1 ). The function Q(0) is approximately 0.7;
in other words, the maximum probability of obtaining a price of zero is approximately
0.7. Any distribution where the probability of a price of zero is higher than 0.7, after
the history (bt , yt , bt+1 ) = (0.50, 1.36, 0.50), is not equilibrium consistent because it vi-
olates the IC constraint of the government. Second, note that as the price q̂ increases,
Q(q̂; bt , yt , bt+1 ) also increases: the government is willing to accept a higher probability
of obtaining low prices (lower than q̂), because these prices are not that low. Third, as
we should expect, given our previous discussion, the function Q(q̂; bt , yt , bt+1 ) reaches
1 at a price equal to q(bt , yt , bt+1 )|(bt ,yt ,bt+1 )=(0.50,1.36,0.50). Fourth, note that the function
Q(q̂) shifts if the government repays its debt under poor economic conditions (these
conditions imply a lower spot utility); for example, Q(0) is approximately 0.55 instead of
0.7 if income is 1.16 instead of 1.36, which is what one would expect so as not to violate
the incentive compatibility constraint, condition (3.3). Finally, the right hand side of the
panel shows the comparative statistics with respect to how much debt is repaid.
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Bounding expectations One application that is of particular interest is bounding the
moments of distributions across all equilibria. We start with expected values. Let
E(bt , yt , bt+1 ) be the the set of all possible

∫
qdQ for Q ∈ ECD(bt , yt , bt+1 ). The follow-

ing proposition shows that E(bt , yt , bt+1 ) is identical to the set of (certain) equilibrium
consistent prices when there are no sunspots.

Proposition 3. Suppose that history ht
m = (ht , yt , dt , bt+1 ) is equilibrium consistent.

Then the set of expected prices is equal to the set of certain equilibrium consistent prices
(without sunspots); i.e.,

E(bt , yt , bt+1 ) = [
q(bt , yt , bt+1 ), q(yt , bt+1 )

]
.

Moreover, if bt+1 > 0, then the minimum expected value is uniquely achieved at the de-
generate distribution Q̂, which assigns probability 1 to q = q(bt , yt , bt+1 ).

The argument for the proof is based on two facts. First is the monotonicity and the
concavity in q of the best ex post continuation value function v(yt , bt+1, q). Second is
that q(·) is the minimum price q for which u(yt − bt + qbt+1 ) +βv(yt , bt+1, q) is equal to

V A(yt ).17 From the second fact, note that the integrand in the left hand side of condition
(3.3) is larger than V A(yt ) only when q is greater than or equal to q(bt , yt , bt+1 ). The
concavity of v(yt , bt+1, q) and Jensen’s inequality then imply that for any distribution
Q ∈ ECD(bt , yt , bt+1 ), u(yt − bt +EQ(q)bt+1 ) +βv(yt , bt+1, EQ(q)) has to be greater than
or equal to

∫
[u(yt − bt + qbt+1 ) + βv(yt , bt+1, q)]dQ(q). Because Q is an equilibrium

consistent distribution, condition (3.3) implies that the latter needs to be greater than
or equal to V A(yt ). Thus, because of the monotonicity of v(yt , bt+1, q), we conclude that
EQ(qt ) is greater than (or equal) to q(bt , yt , bt+1 ). The fact that EQ(qt ) is less than or
equal to q(yt , bt+1 ) is immediate.

Bounding variances Next, we characterize bounds over variances. The importance of
this application comes not only from the fact that we can obtain dynamic implications
from equilibria; we can also know ex ante how much volatility the model can generate.
Note that without any a priori knowledge, this can be a daunting task. Which equi-
librium will yield the highest variance? In the next proposition, we can pin down how
much variance the model can generate, without trying every possible equilibrium. Take
any Q ∈ ECD(ht

m ) with EQ(qt ) = μ. Denote by S(ht
m, μ) the set of variances of these

distributions.

Proposition 4. Suppose that history ht
m = (ht , yt , dt , bt+1 ) is equilibrium consistent.

Define q∗ := [1 − Q(0)] × q(yt , bt+1 ). If Q ∈ ECD(ht
m ) and EQ(qt ) = μ, then S(ht

m, μ) =
[0, Var(ht

m, μ)], where Var(ht
m, μ) is defined as follows:

• If μ ≥ q∗, then Var(ht
m, μ) = μ(q−μ).

17The equality at q = q(·) follows from the strict monotonicity in q of equilibrium utility, which is given
by u(yt −bt +qbt+1 ) +βv(yt , bt+1, q). If the inequality were to be strict, then we could find a lower (certain)
equilibrium consistent price, which contradicts the definition of q(·).
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• If q(bt , yt , bt+1 ) ≤ μ < q∗, then Var(ht
m, μ) = μ(q + qμ − μ) − qμq, where qμ is the

unique solution to Q(qμ )qμ + (1 −Q(qμ ))q = μ and Q(q) is defined in Proposition 2.

The idea of the proof is as follows. We know that any price distribution with sunspots
lies in the interval [0, q(yt , bt+1 )]. We start from the observation that the maximum vari-
ance is achieved with a binary distribution. For the first case, we show that the no-
default incentive constraint (3.3) is not binding if the expected prices are high enough;
i.e., if μ ≥ q∗. Then the volatility of the candidate distribution (that has a mean μ and is
binary over {0, q}) is given by Var(ht

m, μ) = μ(q −μ). For the second case, when μ< q∗,
the incentive constraint for no default starts to be binding. The maximum variance
is still achieved by a binary distribution, but this binding constraint restricts how low
the price can be in the bad state. Thus, we fix qμ such that Pr(qμ )qμ + (1 − Pr(qμ ))q is
equal to μ for some probability Pr(qμ ). In addition, we choose Pr(qμ ) so that the incen-
tive constraint (3.3) is binding for the candidate distribution. This probability is exactly
Q(qμ ). This is intuitive, because it will make the probability of the low value as high as
possible, maximizing the variance.

Figure 5 presents the bounds of the variances for the equilibrium consistent distri-
butions given an expected value for prices. Each one of the panels and each of the two
cases in each panel are different because they display different values of (bt , yt , bt+1 ).
First, it is clear in the three panels that the frontier of the mean and variance has kinks.
All these kinks occur when the expected price is equal to q∗. Second, note that in all of
the panels, both curves are the same up to the kink of the blue line. This result occurs
because q∗ is a function of (bt , yt , bt+1 ), which marks the kink for each of the curves. If

Figure 5. The function Var(ht
m, μ) for different levels of output and for our main calibrated

parameters. The left panel fixes bt+1 and bt , and gives comparative statistics with respect to yt .
The middle panel fixes yt and bt , and gives comparative statistics with respect to bt+1. The right
panel fixes yt and gives comparative statistics with respect to bt .
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the expectation of prices E(q) is higher than the maximum of both q∗ (that is a function
of the history), then the variances are identical and given by μ(q − μ).18 In the right
panel, the red line falls faster than the red line, because for the blue line, the debt repay-
ment is larger (bt = 1.35 and bt = 1.2, respectively); thus, for a given mean, the variance
needs to be smaller. Alternatively, in the middle panel, the blue line falls faster. Because
more debt is issued in the history that corresponds to the red line, for a given mean, the
government tolerates higher variances of prices without violating condition (3.3).

A general characterization of moments We now formulate a simple linear program that
characterizes all non-centered moments. We denote by Mq(t ) the moment generating
function of debt prices.19We can characterize the maximum and minimum of the set of
moments as a solution to the linear programming problem. In particular, suppose that
ht
m is an equilibrium consistent history. Then the maximum nth non-centered moment

of q solves the linear program

E
(
qn|ht

m

)
:= max

Q

dn

dtn
(
EQ

(
etq

))
|t=0

subject to (3.2) and (3.3). The idea for the minimum non-centered moment is analogous
when we replace the max operator with the min operator. Note that this is a linear pro-
gramming problem because we can interchange the expectation and the derivative. The
logic of this procedure extends Propositions 2, 4, and 3.

Comparative statics and stochastic dominance We close this subsection by providing
the comparative statics over the set of distributions ECD(bt , yt , bt+1 ).

Corollary 2. Suppose that ht
m, with no default so far, is equilibrium consistent. The

following comparative statistics hold: (a) The set of equilibrium price distributions
ECD(bt , yt , bt+1 ) is non-increasing (in a set order sense) with respect to bt , and if in-
come is i.i.d, it is non-decreasing in yt . (b) Suppose that Q ∈ ECD(bt , yt , bt+1 ) and Q′ is
a probability distribution for equilibrium prices; i.e., Q′ ∈ 	([0, q(yt , bt+1 )]). If Q′ first
order stochastically dominates (FOSD) Q, then Q′ ∈ ECD(bt , yt , bt+1 ). (c) We have Q �/∈
ECD(bt , yt , bt+1 ). Furthermore, for every Q ∈ ECD(bt , yt , bt+1 ), it holds that Q FOSD Q,
and if Q′ is some other lower bound, then Q FOSD Q′.

The idea of the argument follows. First, the intuition of the first part of these com-
parative statistics again stems from the revealed preference argument. If the govern-
ment repaid a larger amount of debt, then the distribution of the prices that they would

18It is worth noting that for values of E(q) that are higher than q∗, the blue and red lines do not need
to coincide. The reason why they coincide is because q(yt , bt+1 ) is flat for both variables in the range of
(yt , bt+1 ) in the plots.

19Recall that the moment generating function of the random variable q pins down all the non-centered
moments (a standard result in mathematical statistics); in particular,

E
(
qn

) = dn

dtn
(
Mq(t )

)
|t=0.
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expect needs to shift toward higher prices. If the set does not change, then there will be
a distribution that will be inconsistent with equilibrium because it will violate condition
(3.3). Second, the proposition shows that once a distribution is consistent with equi-
librium, any distribution that FOSD this distribution will be an equilibrium consistent
distribution. This is intuitive: higher prices lead to both higher consumption and higher
continuation equilibrium values for the government, since both are weakly increasing
in the debt price qt . Finally, by its own definition, Q is the infimum over all possible dis-
tributions in ECD. In addition, Q �/∈ ECD(bt , yt , bt+1 ) follows immediately from the fact
that the support of Q is [0, q(bt , yt , bt+1 )].

3.5 Bounding moments: Prices and policies

Up to now, the focus in Section 3 has been on predictions on prices and distributions
over prices given policies and output (stochastic driving variable). However, we can also
obtain predictions of the joint distribution of policies, output, and prices, which are use-
ful in applied settings. For example, for our model of sovereign debt, we compute the
maximum volatility of prices given that the covariance of capital flows and output is
negative. Note that in Proposition 4, we obtain the maximum variance, given the mean
expected price. In Proposition 6, we add a constraint that depends on the joint behavior
of prices, policies, and the stochastic driving force.

The first step is to extend Proposition 1 to a case that is useful to obtain restric-
tions on both prices and policies. For this, we focus on histories, ht , before income yt
is realized, where the government policies (dt(y ), bt+1(y )) are not certain. The triple
(dt(·), bt+1(·), Qt(·)) is an equilibrium consistent outcome if and only if for all y, the
triple (dt(y ), bt+1(y ), Qt(y )) is an equilibrium consistent outcome.

Proposition 5. Suppose that ht , with no default so far, is equilibrium consistent. Then
the triple (dt(·), bt+1(·), Qt(·)), where Qt(·) ∈ 	(R+ ), is an equilibrium consistent out-
come if and only if for all y ∈ Y , the following statements hold: (a) Debt prices are SPE
prices; i.e.,

Qt(y ) ∈ 	
([

0, q
(
y, bt+1(y )

)])
for y : dt(y ) = 0. (3.7)

(b) The government is incentive compatible:

d(y )V A(y ) + (
1 − d(y )

)∫ q(y,bt+1(y ))

0

[
u
(
y − bt + q̂tbt+1(y )

)
+βv

(
y, q̂t , bt+1(y )

)]
dQt(q̂t ; y ) ≥ V A(y ). (3.8)

(c) The default decision is consistent:

Ey
[
1 − dt(y )|ht

] = (1 + r )qt−1. (3.9)

As in the case of Proposition 1, price distributions and policies need to be equilib-
rium consistent. However, now, they need to be equilibrium consistent contingent on
each realization of income yt , which is guaranteed by (3.7) and (3.8). In addition, we
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need to add a consistency requirement of t − 1 prices and t default policies, which is
(3.9). The idea of the proof follows closely the one of Proposition 1.

Second, aided by the result in Proposition 5, we will characterize bounds that these
conditions imply. To do so, we will obtain bounds on realized prices. Note that
for low enough values of bt+1, in the best equilibrium, the debt prices are equal to
(1 + r )−1. We define B(bt , yt ) as the highest bond issue for which the government
is indifferent between defaulting or not. By definition of q(·) and q(·), it holds that

q(bt , yt , bt+1 ) = q(yt , bt+1 ) when bt+1 = B(bt , yt ). We denote this value of the price as

qB(bt , yt ) := q(yt , B(bt , yt )). Note that qB(bt , yt ) is increasing in bt , because the worst
continuation price, q, is increasing in bt . Using Proposition 3, which bounded expected

prices, we know that Eζ(qt|y ) ∈ [qB(bt , y ), 1
(1+r ) ]. Figure 3.5 depicts the bounds on bond

issuance and expected prices.
Proposition 6 characterizes the bounds on price variance Var(qt|ht ) given the co-

variance constraint Cov(−bt + bt+1qt , yt|ht ) ≤ −A. For a history ht , denote the set of
income realizations where the government does not default in the best equilibrium as

Ynd
(ht ). In particular, Ynd

(ht ) := {y ∈ Y : d(y|ht ) = 0}, where d(·|ht ) is the default rule
that implements the best continuation equilibrium, v(yt−1, bt , qt−1 ), after history ht .20

The following proposition holds.

Proposition 6. Suppose that the history ht is equilibrium consistent. Then, for any
equilibrium consistent outcome (dt(y ), bt+1(y ), Qt(y )), it holds that

Var
(
qt|ht

) ≤ min
{

1

4(1 + r )2 , q∗
(
ht

)[ 1
1 + r

− q∗
(
ht

)]}
,

where q∗(·) is the lowest equilibrium consistent expected price after history ht . This price
q∗(ht ) is defined as the solution of the program

q∗
(
ht

)
:= min

q(·)
Ey

[
q(y )|yt−1, y ∈ Ynd(

ht
)]

(3.10)

subject to the constraints (a) q(y ) ∈ [qB(bt , y ), 1
(1+r ) ] and (b)

Ey
[
q(y )B(bt , y )

(
y −E

(
y|ht

))
|yt−1, y ∈ Ynd(

ht
)] ≥A, (3.11)

where Ey(y|ht ) := Ey[y|yt−1, y ∈ Ynd
(ht )].

There are two main ideas that determine the maximum variance. First, the lowest
expected price after history ht is q∗(ht ), which is given by (3.10). Note that after history
ht , the set of possible expected prices, qt , is given by [qB(bt , y ), 1

(1+r ) ]. The upper bound
is the best equilibrium price, and the lowest bound is the lowest equilibrium expected
price, which depends on the realization of output in t, which is not known at ht . The

20Recall that this function is given by (3.1). The default rule pins down default at t. We need to define
this set because the price is not defined if the government does not default. We use the default rule of the
best continuation equilibrium because we would like to obtain an upper bound on the variance.
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Figure 6. The x axis features different levels of debt issuance bt+1. The y axis features the possi-
ble realizations of debt prices after history ht given yt for each value of bt+1; q(yt , bt+1 ) is the best
equilibrium price function; B(bt , yt ) is the maximum debt issuance such that the government is
indifferent between defaulting and repaying; qB(bt , yt ) is the lowest (certain) equilibrium con-
sistent price realization with no default.

expected price q∗(ht ) is the minimal price that we can expect, before the realization of
yt , on expectation, subject to the constraint that the price realization belongs to the set of
equilibrium prices and that we meet the covariance constraint (3.11).21 Note that when

computing expectations, we integrate over Ynd
(ht ), because those are the realizations

of output in which the country does not default in the best continuation. These bounds
are illustrated in Figure 6.

Second, the maximum variance is the minimum of two terms. The first term of the
minimum is the maximum unconstrained variance. This is the case, for example, when
the history has low debt bt . In this case, the government can support large variance in
equilibrium (and still repay the debt), so we can always find an equilibrium that ratio-
nalizes the observed history. This large variance is the one that puts probability to a
price of zero and 1/(1 + r ). The second term of the minimum kicks in for histories in
which the government enters time t with high values of debt. In this case, the govern-
ment can tolerate lower variances (because otherwise it would default). In the extreme
case when debt reaches a threshold, the variance due to sunspots needs to be equal to
zero (but there is still fundamental variance).

4. A general dynamic policy game

In this section, we show that the main result that we proved Section 3 (Proposition 1)
extends to a more general class of policy games. This should not be surprising. The
main economic argument for Proposition 1 follows from revealed preference: what the
government leaves on the table bounds its expectations regarding future play. These

21The covariance is one example of a constraint that we can accommodate.
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bounds place restrictions over outcomes or over distributions. Therefore, in this section

we do three things. First, we propose a general model of a dynamic policy game in the

spirit of Stokey (1991).22 Second, for this more general setup, we provide an analog of

Proposition 1. Finally, we apply the general model for the case when defaults are not

punished with permanent autarky.

Model

We follow the model notation in Stokey (1991). In our model, there are two types of play-

ers: an infinitely long-lived player (government) and short-lived agents (market) that

set expectations according to a particular rule. In each period t, agents play an exten-

sive form stage game with five subperiods (t, τi )i∈{1,5}. The payoff-relevant states are an

exogenous random shock yt and an endogenous state variable bt . The time line of the

stage game is as follows:

• τ = τ1: A publicly observable random variable yt ∈ Y ⊆ Rl is realized that follows a

(controlled) Markov process: yt ∼ f (y|yt−1, bt ).23

• τ = τ2: The long-lived player (government) chooses a control dt ∈ D ⊆ Rd and a

next period state variable bt+1 ∈ B ⊂ Rb (where both D and B are compact sets). We

say that (dt , bt+1 ) is feasible if (dt , bt+1 ) ∈ �(bt , yt ), where � : B × Y ⇒ D × B is a

nonempty, compact-valued, and continuous correspondence.

• τ = τ3: A sunspot variable ζt is realized and distributed according to ζt ∼ U[0, 1].

• τ = τ4: The agents determine their expectations about future play. This process is

modeled in reduced form, with the market choosing qt ∈Rk to satisfy

qt = Et

{ ∞∑
s=t

δs−tT (bs+1, ys+1, ds+1, bs+2 )

}
,

where δ ∈ (0, 1) and T : B×Y ×D×B →Rk is a continuous and bounded function.

The expectation is taken over future shocks {yt+s}∞s=1 knowing the strategy profile of

the long-lived player.

22To keep notation simple and the exposition more concrete, we focus on games in which the short-run
players form an expectation regarding next period policy. There is a large class of models that share this
timing. For sovereign debt, one class follows Eaton and Gersovitz (1981). For monetary policy, one class
is the New Keynesian model as in Galí (2015). There are policy games that focus on alternative timings;
for example, a class of games in which the decision of the long-lived player and the short-lived players
occurs sequentially, but in the same period. This timing has been used mainly for monetary policy and
capital taxation. See, for example, Chari and Kehoe (1990). Our results can be extended to incorporate
these alternative timings.

23Sometimes, we say that y includes a sunspot if ∃{y∗
t , zt } such that (i) y∗

t ⊥ zt for all t, (ii) y∗
t is a controlled

Markov process, i.e., y∗
t ∼ g(y∗

t |y∗
t−1, bt ), and (iii) zt ∼i.i.d Uniform[0, 1].
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• τ = τ5: The payoffs for the long-lived player are realized and given by a continuous
utility function u(bt , yt , dt , bt+1, qt ). Lifetime utility is then given by

V0 := E0

{ ∞∑
t=0

βtu(bt , yt , dt , bt+1, qt )

}
,

where β ∈ (0, 1).

Example 1. This example is exactly the one studied in Section 2. In this model, yt is na-
tional income, bt ≥ 0 is the outstanding public debt to be repaid, dt ∈ {0, 1} is the default
decision, and qt = E( 1−dt+1

1+r |ht+1 ) is the risk neutral price set by lenders in equilibrium.
Flow utility is given by u(bt , yt , dt , bt+1, qt ) = (1 −dt )u(yt −bt +qtbt+1 ) +dtu(yt ), assum-
ing that when the government defaults on its debt, it gets to consume its income and
is banned forever from international financial markets. Note that the feasibility corre-
spondence is given by �(yt , bt , bt+1, qt ) = yt − bt + qtbt+1 ≥ 0.24 ♦

Example 2. A variant of our model is a model with excusable (or state contingent) debt.
In such a model, the only difference is that there are no constraints on the government’s
ability to issue new debt after a default. Formally, the government’s flow utility is now
u(bt , yt , dt , bt+1, qt ) = u(yt − bt + dtbt + qtbt+1 ). If we allow for dt ∈ [0, 1], we generalize
the setting to one with partial excusable defaults, as in Grossman and Van Huyck (1989).

♦

Example 3. Our model also incorporates New Keynesian (NK) models of monetary pol-
icy with no endogenous state variables (e.g., Galí (2015), Athey, Atkeson, and Kehoe
(2005), and Waki, Dennis, and Fujiwara (2018)). In the case of the NK model, the con-
trol variable is dt = πt , where πt is inflation. Agents set inflation expectations to match
future inflation, as qt := πe

t = Et(πt+1 ). Inflation and output are related according to a
forward looking Phillips curve, xt = πt − βπe

t , where xt is the output gap. In addition,
let π∗

t be a random variable that gives the optimal natural level of inflation (absent an
inflation gap). The random shocks are then yt = π∗

t , and the government is assumed to
minimize the loss function

L
(
π, πe, yt

) = χ

2

(
πt −βπe

t

)2 + 1
2

(πt − yt )2,

where the first term in the loss function is the output gap. In this example, the feasibility
constraint represents the fact that πt needs to be bounded. ♦

Consistency

As we did in Section 2, it is useful to define the best ex post continuation payoff. We
also define the set of equilibrium payoffs and the worst equilibrium payoff. We denote

24Given that the market chooses after the government, it can be the case that this constraint is ex post
violated. In that case, the government has a technology available to generate resources such that the budget
constraint holds; in this case, the government obtains utility of −∞.
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E(y−, b) as the set of equilibrium payoffs, and let Q(y−, b) ⊆ Rk be its projection over
q.25 The best continuation value function gives the maximum equilibrium value for the
long-lived player if qt = q− is realized; i.e.,

v(y−, b, q− ) := max
v∈R

v s.t. (q−, v) ∈ E(y−, b). (4.1)

By following steps that are similar to those used in the Appendix B, we can also show that
if E(y−, b) is convex-valued and u(·) is concave in q, then v(y−, b, q− ) is also concave in
q. The max-min value is the worst possible value that the long-lived player can obtain
in any SPE, going forward. Formally,

U(y, b) := max
(d,b′ )∈�(b,y )

{
min

(q,v)∈E(y,b′ )
u
(
b, y, d, b′, q

) +βv
}

. (4.2)

In the sovereign debt model, U(y, b) is equal to V A(y ).26 Finally, we informally state a
generalization of the main result presented in Proposition 1 in Section 3 for the general
model that we just introduced. Suppose that ht

m is an equilibrium consistent history.
Then Qt is an equilibrium consistent distribution if and only if (a) SPE prices, i.e.,

Qt ∈ 	
[
Q(yt , bt+1 )

]
;

(b) the long-lived player has incentive compatibility,∫
q̂∈Q(yt ,bt+1 )

[
u(bt , yt , dt , bt+1, q̂) +βv(yt , bt+1, q̂)

]
dQt(q̂) ≥U(yt , bt ). (4.3)

State contingent debt

We now study robust predictions for an extension of the Eaton and Gersovitz (1981) ap-
proach in which not all defaults trigger permanent autarky. In the terminology of Gross-
man and Van Huyck (1989), defaults that occur on the equilibrium path are excusable.

As we did before, the initial step is to characterize the worst equilibrium and the
best continuation. First, the worst equilibrium of this alternative model is permanent
autarky. Second, we denote by vSC(yt , bt+1, qt ) the best equilibrium payoff function after
history (ht , yt , bt+1, qt ), which is the analog to the function v(yt , bt+1, qt ) defined in (3.1).
Applying the characterization of the v(·) function for the general model (see Appendix C,
which builds on Waki, Dennis, and Fujiwara 2018) to this environment, we obtain vSC(·)

25We can characterize this set using the concept of self-generation and enforceability in Abreu (1988),
Abreu, Pearce, and Stacchetti (1990), and Atkeson (1991). It can be shown that if y is non-atomic and u is
concave in q (for example, risk aversion of the long-lived player), then E(y−, b) is compact- and convex-
valued. This is satisfied by the three examples discussed above.

26There are several papers that develop the techniques to solve for the set of equilibrium payoffs follow-
ing the seminal contribution of Judd, Yeltekin, and Conklin (2003). Following Waki, Dennis, and Fujiwara
(2018), it can be shown that v(y−, b, q− ) can be expressed as the unique fixed point of a contraction map-
ping, given U(y, b).
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as the unique solution to the recursive equation

vSC(y−, b, q− ) := max
d(·),b′(·),q(·)

∫ [
u
(
y − b+ d(y )b+ b′(y )q(y )

)
+βvSC

(
y, b′(y ), q(y )

)]
dF(y|y− ) (4.4)

subject to⎧⎪⎨
⎪⎩
Ey|y−

(
1 − d(y )

)
1 + r

= q−

u
(
y − b+ d(y )b+ b′(y )q(y )

) +βvSC
(
y, b′(y ), q(y )

) ≥ V A(y ) for all y.

The best equilibrium price will be qSC(y, b′ ) = Ey′|y (1−dSC (y ′,b′ ))
1+r , where dSC(y ′, b′ ) is policy

that solves (4.4). As in the case with v(·) in our original model, is easy to show that vSC is
(a) strictly decreasing in b, and (b) increasing and concave in q−. We can also show that
vSC ≥ v.

The second step is finding the condition for equilibrium consistency. Following
steps analogous to Proposition 2, we can show that Qt is equilibrium consistent with
(the equilibrium consistent history) ht if and only if (a) Qt ∈ 	([0, qSC(yt , bt+1 )]) and (b)
the incentive compatibility of the government holds; i.e.,

∫ qSC (yt ,bt+1 )

0

[
u(yt − bt + q̂bt+1 ) +βvSC(yt , bt+1, q̂)

]
dQt(q̂) ≥ V A(yt ). (4.5)

Note that the difference with respect to our previous results is a different best continua-
tion vSC(yt , bt+1, q̂) and a different best equilibrium price qSC(yt , bt+1 ). In this particu-
lar case of excusable defaults, the worst equilibrium payoff is again autarky. So whether
predictions are weaker in the case of excusable defaults depends on how much larger
vSC(yt , bt+1, q̂) is with respect to the one we characterized in (3.1), and how qSC(yt , bt+1 )
compares to q(yt , bt+1 ).

5. Conclusion

Dynamic policy games have been extensively studied in macroeconomic theory to in-
crease our understanding of how a lack of commitment restricts the outcomes that a
government can achieve. One of the challenges in studying dynamic policy games is
equilibrium multiplicity. Our paper acknowledges and embraces equilibrium multiplic-
ity. For this reason, we focus on obtaining robust predictions: these are predictions that
hold across all equilibria or, in the language of Bergemann and Morris (2018), across
every possible information structure. We obtain robust predictions by characterizing
what we term equilibrium consistent outcomes. The basis of our predictions is a re-
vealed preference argument, which is also exploited to obtain the testable implications
of equilibria in Jovanovic (1989). The idea of the revealed preference argument is that by
taking a particular action, the government obtains some utility, and by doing so, incurs
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some opportunity cost. This implied opportunity cost places bounds on what the gov-
ernment can receive in the future. Equilibrium consistency is a general principle. Even
though we focus on a model of sovereign debt that follows Eaton and Gersovitz (1981),
our results can be generalized to other dynamic policy games, as we show in the last
section of the paper.

Appendix A: Proofs

A.1 Proof of Proposition 1

Step 1: Necessity (=⇒).
Step 1.1: Incentive Compatibility of No Default. Let H(σ ) be the histories on the path

of a strategy profile σ = (σg, qm ). Suppose that there is an equilibrium strategy σ such
that ht

m ∈ H(σ ) and that there is no default so far. The fact that the government optimally
decided not to default at period t implies∫ 1

0

[
u
(
yt − bt + qm

(
ht
m, ζt

)
bt+1

) +βV σ
(
ht
m, ζt

)]
dζt ≥ u(yt ) +βEyt+1|yt V

A(yt+1 ). (A.1)

Step 1.2: Bounding Equilibrium Payoffs. We denote by E(yt , bt+1 ) the set of equilib-
rium payoffs of the game.27 Since σ is an SPE, it holds that for all sunspot realizations
ζt ∈ [0, 1]: (V σ (ht

m, ζt ), qσm(ht
m, ζt )) ∈ E(yt , bt+1 ). The latter further implies

(a) qm(ht
m, ζt ) ∈ [0, q(yt , bt+1 )] (i.e., it delivers equilibrium prices)

(b) v(yt , bt+1, qm(ht
m, ζt )) ≥ V σ (ht

m, ζt ).
This occurs because v is the maximum possible continuation value given the

price realization q = qm(ht
m, ζt ).

Step 1.3: The Distribution of Prices. The price distribution implied by σ can be de-
fined by a measure Q over measurable sets A⊆ R+. More precisely,

Q(A) ≡
∫ 1

0
1
{
qm

(
ht
m, ζt

) ∈A
}
dζt = Pr

{
ζt : qm

(
ht
m, ζt

) ∈A
}

.

Note that condition (a) shows that the support of the distribution is over equilibrium
prices; i.e., Supp(Q) ⊆ [0, q(yt , bt+1 )].

Step 1.4: The Necessary Condition. By changing the integration variables in (A.1),
using the definitions above, and conditions (a) and (b), we have that∫ q(yt ,bt+1 )

0

[
u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)

]
dQ(q̂)

≥
∫ 1

0

[
u
(
yt − bt + qm

(
ht
m, ζt

)
bt+1

) +βV σ
(
ht
m, ζt

)]
dζt

≥ u(yt ) +βEyt+1|yt V
A(yt+1 ),

which proves the desired result.

27In Appendix B, we define the equilibrium value correspondence and discuss how it can be computed.
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Step 2: Sufficiency (⇐=). Suppose that ht is an equilibrium consistent history and
that condition (3.3) is satisfied. Then we need to construct an equilibrium strategy
where at time t, bond prices are distributed according to Qt , there is no default, and
bond issuance is bt+1 (i.e., generates ht

m on its path).
Step 2.1: Preliminaries. We denote by FQ the associated cumulative probability func-

tion for Q. We denote by σ∗(yt , bt+1, q) the strategy that achieves the continuation value
v(yt , bt+1, q); i.e.,

σ∗(yt , bt+1, q) ∈ argmax
σ∈�∗(yt ,bt+1 )

V σ
(
h0) s.t. q0 ≤ q.

As we show in Appendix B, the constraint in this problem, q0 ≤ q, is binding.
Step 2.2: Constructing the Equilibrium Strategy. Because ht is an equilibrium

consistent history, we know there exists an equilibrium profile σ̂ = (σ̂g, q̂m ) such
that ht ∈ H(σ̂ ). For histories hs, successors of histories ht+1, which are hs � ht+1 =
(ht , yt , dt , b̂t+1, ζt , q̂t ), we define the strategy profile σ for the government as

σg
(
hs , ys

)
:=

{
σd

(
hs , ys

)
if dt = 1 or b̂t+1 �= bt+1 or q̂t /∈

[
0, q(yt , bt+1 )

]
σ∗(yt , bt+1, q̂t )

(
hs

)
otherwise.

(A.2)

For all hs � ht
m, or hs ⊀ ht

m or hs � ht
m, we define σg(hs ) := σ̂g(hs ). This strategy, σg, pre-

scribes the best continuation equilibrium if the government follows (dt = 0, bt+1 ) and
the price that it obtains is an equilibrium price. Alternatively, if the government defaults,
chooses a debt level that is different than bt+1, or receives a price that is not an equilib-
rium price, the government will play default forever after (will be in autarky). In addition,
the strategy σg that we just defined generates the history ht

m on its path. Likewise, we
define the strategy profile for the market. For histories (ht

m, ζt ) = (ht , yt , dt = 0, bt+1, ζt ),
let

qm
(
ht
m, ζt

)
:= F−1

Q (ζt ), (A.3)

where F−1
Q (ζ ) = inf{q ∈ R : FQ(q) ≥ ζ} is its inverse. For hs � ht

m, or hs ⊀ ht
m or hs � ht

m,
we define qm(hs ) := q̂m(hs ). For any other history, the market will choose a price of zero.

Step 2.3: Checking Incentive Compatibility. Now we need to check that dt = 0 and
bt+1 is incentive compatible for the candidate strategy profile that we just constructed.
Before time t, incentive compatibility comes from the fact that ht

m is equilibrium consis-
tent (i.e., ht

m ∈ H(σ )). At history ht
m, for the candidate strategy σ , it will be optimal not

to default (if we follow strategy σ for all successor nodes) if∫ 1

0

[
u
(
yt − bt + F−1

Q (ζt )bt+1
) +βV σ

(
yt , bt+1, F−1

Q (ζt )
)]
dζt ≥ u(yt ) +βEyt+1|yt V

A(yt+1 ),

where V σ (yt , bt+1, ζt ) is the continuation payoff of strategy σ after (yt , bt+1, ζt ). This
condition is equivalent (if and only if) to∫ q(yt ,bt+1 )

0

[
u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)

]
dQ(q̂) ≥ u(yt ) +βEyt+1|yt V

A(yt+1 ), (A.4)
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where we use the fact that F−1
Q (ζt ) =d Uniform[0, 1] and, by construction, V σ (yt , bt+1,

ζt ) = v(yt , bt+1, qt ). Condition (A.4) is exactly (3.3) and, thus, is satisfied by hypothesis.
Therefore, the government does not want to deviate at time t. For any other history, be-
cause σd and σ∗(yt , bt+1, q̂) are subgame perfect equilibrium profiles, the government
does not want to deviate. Therefore, σ(hs ) defined in (A.2) and (A.3) is an SPE profile
(since it is a Nash equilibrium at every possible history) that generates ht

m and Q on its
path.

A.2 Proof of Corollary 1

We define D(bt , yt , bt+1, qt ) := u(yt − bt + qtbt+1 ) + βv(yt , bt+1, qt ) − V A(yt ). We can
rewrite (3.4) as the solution to the equation q̂ : D(bt , yt , bt+1, q̂) = 0 given (bt , yt , bt+1 ).
Note that D is strictly increasing in q when bt+1 > 0 and is a strictly decreasing function
of bt , and, therefore, the solution q is unique and increasing in bt , showing (a). For (b),
suppose h = (ht , yt , bt+1, dt ) with dt = 0 is equilibrium consistent. Since v(yt , bt+1, q) ≥
E[V A(yt+1 )|yt ], the fact that q solves the equation D(bt , yt , bt+1, q) = 0 implies u(yt −bt +
qbt+1 )−u(yt ) = β{E[V A(yt+1 )|yt ]−v(yt , bt+1, q)} ≤ 0, which implies that yt −bt +qbt+1 ≤
yt . Finally, for (c) note that if income is i.i.d, it holds that V A(yt ) = u(yt ) + β 1

1−βE[u(y )]
and also that v(·) is constant in yt (since it does not change the expectation over next
period output shocks). Therefore, the function D(bt , yt , bt+1, qt ) is differentiable with
respect to yt and ∂D

∂yt
(bt , yt , bt+1, qt ) = u′(yt − bt + qtbt+1 ) − u′(yt ). Using the fact that

−bt +q(bt , yt , bt+1 )bt+1 ≤ 0 and that u is a strictly concave function, at q = q(bt , yt , bt+1 ),
we have u′(yt − bt + q(bt , yt , bt+1 )bt+1 ) > u′(yt ) and, hence, D(·) is a strictly increasing
function of yt . This, together with the fact that D(·) is increasing in q makes the solution
q̂ : D(bt , yt , bt+1, q̂) = 0 decreasing in yt , as we wanted to show.

A.3 Proof of Proposition 2

Step 1: Determine the Upper Bound for the Probability of q = 0. We denote by Q(q̂ = 0)
the largest probability of a price equal to zero across all equilibrium consistent distribu-
tions. To construct Q(q̂ = 0) after history ht

m, we can focus on probability distributions
Q that are binary, and place positive probability only on q̂ = 0 and the best equilibrium
price. In this way, we relax the IC of the government as much as possible. Note that
1 − Q(q̂ = 0) is the (lowest) probability of the best equilibrium consistent price. The IC
constraint (3.3) needs to hold with equality for this distribution. Thus,

Q(q̂ = 0)
[
u(yt − bt ) +βEyt+1|yy V

A(yt+1 )
] + (

1 −Q(q̂ = 0)
)[
V

nd
(bt , yt , bt+1 )

] = V A(yt ).

This implies that

Q(q̂ = 0) = 	nd(bt , yt , bt+1 )

	nd(bt , yt , bt+1 ) + u(yt ) − u(yt − bt )
,

where 	nd(·) denotes the maximum utility difference between not defaulting and de-
faulting (under the best equilibrium), given by 	nd(bt , yt , bt+1 ) := V nd(bt , yt , bt+1 ) −
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V A(yt ). Note further that Q(q̂ = 0) is bounded away from 1 from an ex ante perspective
(i.e., before the sunspot is realized, but after the government decision has been made)
as long as bt > 0.

Step 2: Determine the Upper Bound for q = q̂. Let p = Pr(ζt : q(ζt ) ≤ q̂). With a rea-
soning that is similar to that in Step 1, we can conclude that by focusing on equilibria
that have support q(ζt ) ∈ {q̂, q(yt , bt+1 )}, we relax the IC constraint (3.3) as much possi-
ble (i.e., focus on binary distributions). Thus, we consider equilibria that assign the best
continuation equilibria when q(ζt ) > q̂ (i.e., q(ζt ) = q(yt , bt+1 ) and v(ζt ) = V(yt , bt+1 ))
and assign v(y−, b, q̂) (the greatest continuation utility consistent with q ≤ q̂) when
q(ζt ) ≤ q̂; the latter because v(y−, b, q̂) is increasing in q̂. Therefore, for any such dis-
tribution, (3.3) holds: p[u(yt − bt + q̂bt+1 ) + βv(yt , bt+1, q̂)] + (1 − p)V nd(bt , yt , bt+1 ) ≥
V A(yt ). The distribution Q(q̂; bt , yt , bt+1 ) is defined by the equality of the previous con-
dition; that is,

Q(q̂; bt , yt , bt+1 ) = 	nd(bt , yt , bt+1 )

V A(yt ) − [
u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)

] +	nd(bt , yt , bt+1 )
.

Note that distribution Q(q̂; bt , yt , bt+1 ) is less than 1 only when

u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂) > V A(yt )

and this happens only when q̂ > q(bt , yt , bt+1 ), where the last inequality comes from the
(alternative) characterization of q(bt , yt , bt+1 ).

A.4 Proof of Proposition 3

We already know that maxE(bt , yt , bt+1 ) = q(yt , bt+1 ) since the degenerate distribution
Q over q = q(yt , bt+1 ) is equilibrium consistent. In the same way, we also know that the
degenerate distribution Q̂ that assigns probability 1 to q = q(bt , yt , bt+1 ) is equilibrium
consistent; this distribution corresponds to a case where both investors and the govern-
ment ignore the realization of the correlating device, and q(·) is exactly the only price
that satisfies

u
(
yt − bt + q(bt , yt , bt+1 )bt+1

) +βv
(
yt , bt+1, q(bt , yt , bt+1 )

) = V A(yt ). (A.5)

In Appendix B, we show that v(y−, b, q) is a concave function in q, which, together
with the fact that u is strictly concave and bt+1 > 0 implies that the function H(q) :=
u(yt − bt + qbt+1 ) + βv(yt , bt+1, q), is strictly concave in q. For any distribution Q ∈
ECD(bt , yt , bt+1 ), let EQ(q̂) = ∫

q̂ dQ(q̂). Jensen’s inequality then implies that

u
(
yt − bt +EQ(q)bt+1

) +βv
(
yt , bt+1, EQ(q)

)
≥︸︷︷︸
(a)

∫ [
u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)

]
dQ(q̂)

≥︸︷︷︸
(b)

V A(yt ),
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with strict inequality in (a) if Q is not a degenerate distribution. Then the definition
of q(bt , yt , bt+1 ) implies that for any distribution Q ∈ ECD(bt , yt , bt+1 ), we have that
EQ(q) ≥ q(bt , yt , bt+1 ). Therefore, the minimum expected value is exactly q(bt , yt , bt+1 ),

which is achieved uniquely at the degenerate distribution Q̂ (because of the strict con-
cavity of u(·)). Finally, knowing that E is naturally a convex set, we then obtain

E(bt , yt , bt+1 ) =
[

min
Q∈Q(bt ,yt ,bt+1 )

∫
q̂ dQ(q̂), max

Q∈Q(bt ,yt ,bt+1 )

∫
q̂ dQ(q̂)

]
= [

q(bt , yt , bt+1 ), q(bt , yt , bt+1 )
]
.

A.5 Proof of Proposition 4

Step 1: Bounds for General Random Variables. To show the bounds on the variance, we
rely on the fact that for any random variable X with support in [a, b] ⊆ R and mean
E(X ) = μ, it holds that Var(X ) ≤ μ(b + a − μ) − ab. Moreover, this upper bound in the
variance is achieved by a binary distribution Qμ over {a, b}, with Qμ(a) = (b−μ)/(b−a),
and of course, Pμ(b) = (μ− a)/(b− a).

Step 2: Are These Bounds Equilibrium Consistent? It Depends. Since the price re-
alization must have support on [0, q(yt , bt+1 )] after history ht

m, according to Proposi-
tion 1, we know that if Q is such that EQ(qt ) = μ, then VQ(qt ) ≤ μ(q(yt , bt+1 ) − μ). In
addition, from Step 1, we know that this bound is achieved by distribution Qμ with sup-
port at {0, q}, defined as Qμ(0) = q−μ

q . However, this particular distribution may not
be equilibrium consistent since it may violate the ex ante IC for no default, condition
(3.3). Whether this constraint is violated or not will depend on the particular value of
μ ∈ [q(bt , yt , bt+1 ), q(yt , bt+1 )]. We define q∗ as q∗ := Q(0) × 0 + (1 −Q(0))q, which will
be key in the next steps.

Step 3. We define the function D(ht
m, .) of prices qt as

D
(
ht
m, qt

)
:= u(yt − bt + qtbt+1 ) +βv(yt , bt+1, qt ) − V A(yt ).

According to condition (3.3), a distribution Q is equilibrium consistent in history hm
t if

EQD(ht
m, qt ) ≥0. From the previous propositions, we know that the function D(ht

m, qt )
is (a) D(ht

m, 0) < 0 and D(ht
m, q) ≥ 0, and (b) D(ht

m, q) is strictly increasing and strictly
concave in q.

Step 4: Case I. EQ(qt ) = μ ≥ q∗. From Steps 1 and 2 we know that we can focus on
distributions that put mass on {0, q}. Note that for a binary distribution Q, we define the
function

L(μ) := EQD
(
ht
m, qt ; μ

)
subject to EQ(q) = μ. Note that L(μ) is a strictly increasing function of μ. Thus, it is
sufficient to show that L(q∗ ) = 0.

We now show that L(q∗ ) = 0. Note that, by definition of q∗, the binary distribution
that yields EQ(q) = q∗ places probabilities {Q(0), (1 −Q(0))} on {0, q}. Thus,

L
(
q∗) = E{Q(0),(1−Q(0))}D

(
ht
m, qt

) = Q(0)D
(
ht
m, 0

) + (
1 −Q(0)

)
D

(
ht
m, q

) = 0,

where the last equality follows from the characterization of Q(0) in Proposition 2.
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Step 4: Case II. q(bt , yt , bt+1 ) ≤ EQ(qt ) = μ < q∗. Case 2. Proposal Violates IC for a
Low Mean. In this case, because L(·) is strictly increasing, we know that L(μ) < 0, and
we cannot use a discrete distribution with meanμ and support on {0, q}, because it is not
equilibrium consistent. However, we still know that the lower bound on the expectation
of D(ht , q) can always be achieved with binary support distributions. Therefore, we look
for distributions with support {qμ, q} such that{

λqμ + (1 − λ)q = μ

λD
(
ht
m, qμ

) + (1 − λ)D
(
ht
m, q

) = 0,

where λ := Pr(qμ ). This gives a system of equations in (qμ, λ). Note that the second con-
straint (the no-default incentive constraint), given qμ, is the definition of the infimum

distribution λ= Q(qμ ) = D(htm,q)
(D(htm,q)−D(htm,qμ ))

, given in Proposition 2. Using this in the first

equation, we obtain one equation in the unknown qμ:

Q(qμ )qμ + (
1 −Q(qμ )

)
q = μ ⇐⇒ D

(
ht
m, q

) −D
(
ht
m, qμ

)
q− qμ

= D
(
ht
m, q

)
q−μ

. (A.6)

Because D(ht
m, q) is increasing in q, the solution qμ of (A.6) is increasing in μ in the

region where μ< q∗.

A.6 Proof of Corollary 2

Step 1: First Order Stochastic Dominance. We define the function

U(Q; bt,yt , bt+1 ) :=
∫ {

u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)
}
dQ(q).

Note that this function is strictly increasing in yt and strictly decreasing in bt . Further-
more, the set Q(bt , yt , bt+1 ) can be rewritten as

Q(bt , yt , bt+1 ) = {
Q ∈ 	

(
[0, q]

)
: U(Q; bt,yt , bt+1 ) ≥ V A(yt )

}
.

The function H(q) := u(yt −bt +qbt+1 ) +βv(yt , bt+1, q) is strictly increasing in q. There-
fore, if Q′FOSDQ and Q ∈Q(bt , yt , bt+1 ), then

∫
H(q)dQ′ ≥ ∫

H(q)dQ ≥ V A(yt ).
Step 2: Comparative Statistics. This follows from the fact that U(Q; bt,yt , bt+1 ) −

V A(yt ) is monotonic on yt (when income is i.i.d.) and on bt .
Step 3: Q �/∈ ECD(bt , yt , bt+1 ). Finally, we show that Q is not an equilibrium consistent

distribution. By definition, (3.5) cannot be an equilibrium consistent price; this implies
that the Lebesgue–Stjeljes measure associated with Q(·) has the property that Supp(Q) =
[0, q(bt , yt , bt+1 )] and Q(q = 0) = p0 > 0, which implies that

∫ q(yt ,bt+1 )

0

{
u(yt − bt + q̂bt+1 ) +βv(yt , bt+1, q̂)

}
dQ(q̂)

< u
(
yt − bt + q(·)bt+1

) +βv
(
yt , bt+1, q(·)) = V A(yt ),

where the last equation comes from the definition of q(·) and the function H(q̂) is
strictly increasing in q̂.
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A.7 Proof of Proposition 5

Necessity Suppose history ht is equilibrium consistent. Therefore, there exist some SPE
profile σ̂ = (σ̂g, q̂m ) that generated history ht . We define the policies (dt(y ), bt+1(y )) :=
(d

σ̂g

t (ht , y ), b
σ̂g

t+1(ht , y )) and the conditional price distribution defined as Qt(y )(A) =
Pr{ζ ∈ [0, 1] : q̂m(ht , y, dt(y ), bt+1(y ), ζ ) ∈ A}, where A ⊆ [0, (1 + r )−1] is a measurable
set of debt prices. Since σ is an SPE and it is equilibrium consistent, we know that the
price qt−1 must be consistent with the default rule at period t, i.e., Ey(1 − dt(y )|yt−1 ) =
(1 + r )qt−1, which delivers condition (3.9). To show (3.7) and (3.8), we first take the
shocks y, such that dt(y ) = 0. For this, define the triple (dt , bt+1, Qt ) = (0, bt+1(y ), Qt(y ))
and use it with Proposition 1, delivering conditions (3.7) and (3.8). The case for the
shocks dt(y ) = 1 is immediate.

Sufficiency As we did in Proposition 1, since Qt(y ) satisfies (3.7), we can define for
all ζ ∈ [0, 1] the price outcome qt(y, ζ ) := F−1

Qt (y )(ζ ) (so its distribution coincides with

Qt(y )). We need then to find a SPE strategy profile σ̃ = (σ̃g, q̃m ): (C1) (d
σ̃g

t (ht , y ), b
σ̃g

t+1(ht ,
y )) = (dt(y ), bt+1(y )) for all y ∈ Y and (C2) q̃m(ht , y, dt(y ), bt+1(y ), ζt ) = qt(y, ζt ) for all
(y, ζt ). Recall that because ht is equilibrium consistent, there is a strategy σ̂ that on
its path generates ht . For each ht+1 � ht , define σ∗(·|ht+1 ) = (σ∗

g , q∗
m )(·|ht+1 ) to be the

strategy profile that achieves the value v(yt , bt+1, qt ). We then define

σ̃g
(
hk
g

)
:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
dt(yt ), bt+1(yt )

)
if hk

g = (
ht , yt

)
σ̂g

(
hk, yk

)
if k< t or k> t : hk

g � ht

σ∗
g

(
hk, yk|ht

)
for hk

g � (
ht , yt , dt(yt ), bt+1(yt ), ζt , qt(yt , ζt )

)
σd

(
hk, yk|ht

) = (1, 0) for hk
g �

(
ht , yt , dt(yt ), bt+1(yt ), ζt , qt(yt , ζt )

)
and hk

g coincides with ht on first t periods

q̃m
(
hk
m

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qt(yt , ζt ) if hk
m = (

ht , yt , dt(yt ), bt+1(yt ), ζt
)

q̂m
(
hk, yk, dk, bk+1, ζk

)
if k< t or k> t with hk � ht

q∗
m

(
hk, yk, dk, bk+1, ζk|ht

)
for hk

m � (
ht , y, dt(y ), bt+1(y ), ζt

)
qdm

(
hk, yk, dk, bk+1, ζk|ht

) = 0 for hk
m �

(
ht , y, dt(y ), bt+1(y ), ζt

)
and hk

m coincides with ht on first t periods.

Observe that by construction, σ̃ satisfies conditions (C1) and (C2). Since the profiles σ̂

(the one rationalizing ht ), σ∗ and σd are all subgame perfect, σ̃ is a mutual best response
for all histories h �= ht . Condition (3.8) shows that σ̃g is optimal at ht

g. Using the defini-
tion of qt(·) and condition (3.9), we have that q̃m(ht−1

g ) = qt−1 is the rational forecast
given σ̃g, finishing the proof.

A.8 Proof of Proposition 6

Step 1: Variance Decomposition. For a given equilibrium outcome (dt(y ), bt+1(y ), Qt(y )),
we can use the law of total variance to obtain

Var
(
qt|ht

) = Ey
[
VarQt (y )

(
qt|y, ht

)] + Vary
[
EQt (y )

(
qt|y, ht

)]
. (A.7)
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For the first term, the term between brackets is the one that we characterized in
Proposition 4, and we know that VarQt (y )(qt|y, ht ) ≤ q(y )(R−1 − q(y )), where q(y ) :=
EQt (y )(qt|y, ht ). For the second term, by definition of variance, note that Vary[EQt (y )(qt|y,
ht )] = Ey[q2(y )] − [Ey(q(y ))]2. Using both results in (A.7), we get that

Var
(
qt|ht

) ≤ Ey

[
q(y )

(
1

1 + r
− q(y )

)]
+Ey

[
q2(y )

] − [
Ey

(
q(y )

)]2

= Ey
[
q(y )

]( 1

(1 + r )
−Ey

[
q(y )

])
. (A.8)

Step 2: A Simpler Program. The problem is now reduced to look over all possible
expected values q = Ey[q(y )] to maximize (A.8) subject to the constraint Covy(−bt +
qtbt+1, y|ht ) ≤ −A for some outcome (dt(y ), bt+1(y ), Qt(y )). To do so, we define

q∗ := min
d(·),bt+1(·),Qt (y )

Ey
[
q(y )|ht

]
subject to Covy(bt − qtbt+1, y|ht ) ≤ −A.

Step 3: Solution to the Original Program. The following statements hold: (a) if q∗ <
(1 + r )−1/2, then we can attain the unconstrained maximum, which is given by (1 +
r )−2/4; (b) if q∗ ≥ (1 + r )−1/2, then the maximum variance is attained at q∗ with a value
for the variance equal to Var(qt|ht ) ≤ q∗( 1

(1+r ) − q∗ ).
Step 4: Rewriting the Covariance. For the final statement of the proposition, using

the law of total covariance, we arrive at the desired result:

Covy,Q
(
bt − qtbt+1, y|ht

) = −Ey,Q
(
qtbt+1(y )y|ht

) +Ey,Q
(
qtbt+1(y )

)
Ey

(
y|ht

)
= −Ey

(
EQ

(
qtbt+1(y )y

)
|ht

) +Ey
(
EQ

(
qtbt+1(y )

)
|ht

)
Ey

(
y|ht

)
= −Ey

(
bt+1(y )q(y )y|ht

) +Ey
(
bt+1(y )q(y )|ht

)
Ey

(
y|ht

)
.

Appendix B: Characterization of v(y−, b, q− )

In this Appendix we show how to compute v(y−, b, q− ) given the equilibrium value cor-
respondence E(y−, b).28 Note that in our model, the elements of the equilibrium value
correspondence for each (y−, b) consists of all the equilibrium pairs of utility of the gov-
ernment and prices of debt for investors, given an initial seed value y− (recall that in-
come follows a first order Markov process), and the government initially owes b bonds.
The best ex post continuation value is when the income realized is y− and b bonds are
issued at price q−, which is defined as

v(y−, b, q− ) := max
σ∈�∗(y−,b)

V (σ|y−, b, q− ).

The function v(y−, b, q− ) yields the highest expected utility that a government can ob-
tain if given a realization of income y−, they issued b bonds and the bonds were issued

28There are several techniques that characterize E(y−, b), which are now standard in the literature.
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at an equilibrium price q−. Note that v(y−, b, q− ) is the Pareto frontier in the correspon-
dence of equilibrium values:

v(y−, b, q− ) := max
{
v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E(y−, b) and q̂ ≤ q−

}
. (B.1)

Note that we focus on a relaxed version of the problem, where we replace the equality
q̂ = q− by the inequality q̂ ≤ q−. Proposition 7 enables us to rewrite (B.1) as a linear
program. Proposition 8 enables us to compute v(y−, b, q− ).

Proposition 7. For all q ∈ [0, q(y−, b)], the maximum continuation value v(y−, b, q− )
solves

v(y−, b, q− ) = max
d(·)∈{0,1}Y

Ey|y−
[
d(y )V A(y ) + [

1 − d(y )
]
V

nd
(b, y )

]
subject to

q− = Ey|y−
[
1 − d(y )

]
1 + r

. (B.2)

Furthermore, v(y−, b, q− ) is non-decreasing and concave in q−.

Proof. Step 1.1: Programming Problem for an Arbitrary ṽ. Take any ṽ such that

ṽ ∈ {
v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E(y−, b) and q̂ ≤ q−

}
.

Because ṽ is an equilibrium value, there exists a policy (d̃(·), b̃(·)), such that

ṽ = Ey|y−
[(

1 − d̃(y )
)[
u
(
y − b+ q̄

(
y, b′(y )

)
b′(y )

) +βV
(
y, b′(y )

)]
+ d̃(y )V A(y )

]
(
d̃(y ), b̃(y )

) ∈ arg max
(d(y ),b′(y ))

(
1 − d(y )

)[
u
(
y − b+ q̄

(
y, b′(y )

)
b′(y )

) +βV
(
y, b′(y )

)]
+ d(y )V A(y )

Ey|y−
[
1 − d̃(y )

]
1 + r

≤ q−.

Step 1.2. For a given choice of b′(y ), (d(y ), b′(y )) is an equilibrium policy if and only

if, the following statement holds: d(y ) = 0 implies V
nd

(b, y, b′(y )) ≥ V A(y ).
Step 1.3: The Program for the Largest ṽ. Therefore, to maximize the arbitrary ṽ, the

program is

v(y−, b, q− ) = max
(d(·),b′(·))

Ey|y−
[(

1 − d(y )
)
V

nd(
b, y, b′(y )

) + d(y )V A(y )
]

subject to

V
nd(

b, y, b′(y )
) ≥ V A(y ) for all y : d(y ) = 0 (B.3)

q− ≥ Ey|y−
[
1 − d(y )

]
1 + r

. (B.4)
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Step 1.4: Dropping One Constraint. Note that we can relax the constraint (B.3) by
choosing the optimal b′(y ) and we can increase the objective function. Therefore, we

can substitute V
nd

(b, y, b′(y )) with V
nd

(b, y ) in (B.3). Furthermore, note that we can
drop constraint (B.3), because to maximize the function, you never want to violate that
constraint.

Step 1.5. The Price Constraint is Binding (B.4). Note that if we remove the price con-
straint, the agent will choose the default rule to obtain price q(y−, b) (the one associated
with the best equilibrium). Thus, for any q < q(y−, b), this constraint must be binding.
Thus, the programming problem of the government is

v(y−, b, q− ) = max
d(·)

Ey|y−
[(

1 − d(y )
)
V

nd
(b, y ) + d(y )V A(y )

]
(B.5)

subject to q− = Ey|y− [1−d(y )]
1+r .

Step 1.6: Increasing in q−. Given this formulation of the problem, it is immediate
that v(y−, b, q− ) is weakly increasing in q−.

Step 2: Concavity. Take q0, q1 ∈ [0, q(y−, b)]. Let di(y ) with i ∈ {0, 1} be one of the
solutions for the program (B.5) when q− = qi for i ∈ {0, 1}. Define: dλ(y ) := λd0(y ) + (1 −
λ)d1(y ). Clearly, this might not be a feasible default policy for the program (B.5); dλ may
belong to (0, 1). We solve a relaxed version of the program where d ∈ [0, 1]. Note that
because the program is linear, the solution is in the boundaries and that dλ is feasible

when q− = qλ := λq0 + (1 − λ)q1, since:
Ey|y− (1−dλ(y ))

1+r = λq0 + (1 − λ)q1 = qλ. Therefore,
the optimal continuation value at q− = qλ must be greater than the objective function
evaluated at dλ. This is because the optimum will be at a corner even in the relaxed
problem. We define the functional as

G
[
d(·)] := Ey|y−

[
d(y )V A(y ) + [

1 − d(y )
]
V

nd
(b, y )

]
.

Assuming that G[d(·)] is an affine functional in d(·), and that both d0(·) and d1(·) are the
optimizers at q0 and q1, we can show that

v(y−, b, qλ ) ≥G
[
dλ(·)] = λv(y−, b, q0 ) + (1 − λ)v(y−, b, q1 ).

Proposition 8 solves the programming problem from Proposition 7 by reducing it to
solving a problem of one equation in one unknown.

Proposition 8. Given (y−, b, q− ), there exists a constant γ = γ(y−, b, q− ) such that

v(y−, b, q− ) = Ey|y−
[
d(y )V A(y ) + (

1 − d(y )
)
V

nd
(b, y )

]
,

where

d(y ) = 0 ⇐⇒ V
nd

(b, y ) ≥ V A(y ) + γ(y−, b, q− ) for all y ∈ Y (B.6)

and γ is the (maximum) solution for the single variable equation

1
1 + r

Py|y−
{
y : V

nd
(b, y ) ≥ V A(y ) + γ(y−, b, q− )

} = q−.
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Proof. We solve a relaxed version of the programming problem in (B.5) where d(y ) ∈
[0, 1]. Recall that the solution will be in the corners, because we are solving a linear
program. The Lagrangian is

L = Ey|y−
[(

1 − d(y )
)
V

nd
(b, y ) + d(y )V A(y )

] +Ey|y−μ(y )
[
1 − d(y )

][
V

nd
(b, y ) − V A(y )

]
+ λ

(
q−(1 + r ) − 1 +Ey|y−d(y )

)
.

The first order condition with respect to d(y ) is given by

∂L
∂
[
d(y )

] = [−V
nd

(b, y ) + V d(y ) + λ
]
dF(y|y− ),

where dF(y|y− ) denotes the conditional probability of state y. This implies that the op-
timal default rule is d(·) with γ := λ, and we obtain the desired result, (B.6).

Appendix C: v(y−, b, q− ) with restricted punishments

In this section, we study the case introduced in Section 4 where equilibrium values must
be greater than G(y−, b), where G(y−, b) is a mapping that provides an equilibrium
value for every (y−, b). In particular, we are interested in finding the equivalent “best
equilibrium value” function when restricted to these punishments. The programming
problem for vG is given by

vG(y−, b, q− ) = max
(v,q)∈E(y−, ,b):v≥G(y−,b)

v,

i.e., the best equilibrium value among all equilibrium pairs (v, q) that satisfy the lower
bound constraint. In the particular case where E(y−, , b) ≥ G(y−, b), this would corre-
spond to vG = v. The programming problem for UG(y, b) is given by

UG(y, b) := max
(d,b′ )∈�(b,y )

{
min

(q,v)∈E(y,b′ ):v≥G(y,b′ )
u
(
b, y, d, b′, q

) +βv
}

.

Generalizing the argument in Waki, Dennis, and Fujiwara (2018), we can link the prob-
lem of finding vG to finding the fixed point of a contraction mapping. Namely, we will
study the mapping T : B(Y ×B ×R) → B(Y ×B ×R) defined as

T (f )(y−, b, q− ) = sup
d(·),b′(·),q(·),w(·)

Ey
[
u
(
b, y, d(y ), b′(y ), q(y )

) +βw(y )|b, y−
]

subject to ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
(
b, y, d(y ), b′(y ), q(y )

) +βw(y ) ≥UG(y, b) (a) ∀y
Ey

[
T

(
b, y, d(y ), b′(y )

) + δq(y )
] = q− (b)

G
(
y, b′(y )

) ≤w(y ) ≤ f
(
y, b′(y ), q(y )

)
(c) ∀y(

q(y ), w(y )
) ∈ E

(
y, b′(y )

)
(d) ∀y,

where (a) is the incentive constraint, (b) is the moment condition for q−, (c) are the
bounds for continuation value, which must be above G for all values of y and below the
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candidate for best equilibrium value f (y−, b, q− ), and (d) that q(·) and w(·) are equi-
librium payoffs. It is easy to check that T satisfies Blackwell conditions (monotonic-
ity and discount) and is, hence, a contraction mapping with modulus β, and, hence, it
has a fixed point f ∗(y−, b, q− ). Note that in the sup program of T , we will always have
w(y ) = f (y, b′(y ), q(y )) and then it is easy to see that the fixed point f ∗ is self-generating
(see Waki, Dennis, and Fujiwara (2018) for an extended argument for this).
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