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The persuasion duality
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We present a unified duality approach to Bayesian persuasion. The optimal dual
variable, interpreted as a price function on the state space, is shown to be a super-
gradient of the concave closure of the objective function at the prior belief. Strong
duality holds when the objective function is Lipschitz continuous.

When the objective depends on the posterior belief through a set of moments,
the price function induces prices for posterior moments that solve the corre-
sponding dual problem. Thus, our general approach unifies known results for
one-dimensional moment persuasion, while yielding new results for the multidi-
mensional case. In particular, we provide a condition for the optimality of convex-
partitional signals, derive structural properties of solutions, and characterize the
optimal persuasion scheme when the state is two-dimensional and the objective
is quadratic.

Keywords. Bayesian persuasion, information design, duality theory, price func-
tion, moment persuasion, convex partition.
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1. Introduction

Kamenica and Gentzkow (2011) show that the optimal signal in a Bayesian persuasion
problem concavifies the objective function in the space of posterior beliefs over the state
(see Bergemann and Morris (2019) and Kamenica (2019) for excellent overviews of the
burgeoning literature on Bayesian persuasion). Although conceptually attractive, con-
cavification is not always a tractable approach. Thus, several recent papers (see Kolotilin
(2018), Dworczak and Martini (2019), Dizdar and Kováč (2020), Galperti, Levkun, and
Perego (2024), and Kolotilin, Corrao, and Wolitzky (2024)) used duality theory to charac-
terize the optimal signal.
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In this paper, we present a unified duality approach to the Bayesian persuasion prob-
lem. Our approach builds on and extends the geometric duality of Gale (1967). The
primal and the dual problems correspond to finding, respectively, the concave closure
and the concave envelope of the objective function. We show that the optimal dual vari-
able is a supergradient of the concave closure of the objective function at the prior belief
(Section 3). Moreover, the dual variable can be represented as a price function on the
state space. Because concave functions on finite-dimensional spaces have a supergra-
dient at any interior point, strong duality always holds when the state space is finite. It
may fail, however, when the state space is infinite; we prove that strong duality holds if
the objective function is Lipschitz.

If the objective function depends only on a finite set of moments of the posterior dis-
tribution (the “moment persuasion” case analyzed in Section 4), prices for states induce
prices for moments. The resulting price function is convex, lies above the graph of the
objective function, and exhibits all other properties of the optimal dual variable known
from the analysis of one-dimensional moment persuasion. Thus, our results general-
ize and unify the duality results established by Kolotilin (2018), Dworczak and Martini
(2019), Dizdar and Kováč (2020), and Kolotilin, Corrao, and Wolitzky (2024) for the one-
dimensional case. When the state space is multidimensional or the objective function
depends on more than one moment, our generalized duality approach yields new re-
sults and insights. If the objective function is differentiable, the price function can be
constructed explicitly as the upper envelope of hyperplanes that are tangent to the ob-
jective function at the conjectured support of moments. Using this construction, we
derive a necessary and sufficient condition for the optimality of a convex-partitional sig-
nal (an extension of the one-dimensional notion of a monotone-partitional signal), and
establish a multidimensional analog of the bipooling result due to Arieli, Babichenko,
Smorodinsky, and Yamashita (2023) and Kleiner, Moldovanu, and Strack (2021).

We use these tools to characterize the optimal signal in the classical model of Rayo
and Segal (2010) in which the state is two-dimensional and the objective function is a
quadratic form (Section 5). We show that the “bait and switch” pooling strategy of Rayo
and Segal results from a trade-off between the conflicting goals of disclosing as much
information as possible about a sum of two variables, while disclosing as little informa-
tion as possible about their difference. Under regularity conditions, duality permits us
to represent the optimal signal as a convex partition of the two-dimensional state space
into negative-sloped line segments. That is, the optimal signal discloses a weighted sum
of the two dimensions, with a weight that may depend on the induced posterior mo-
ment. We further characterize cases in which the weight is constant, such as when the
optimal signal is a sum of the two dimensions.

A contemporaneous paper (Malamud and Schrimpf (2022)) also made progress on
analyzing multidimensional moment persuasion, relying on different tools.1 While

1Using the theory of real analytic functions, Malamud and Schrimpf establish a remarkably powerful
result that, under a regularity condition on the prior and the objective function, there exists an optimal de-
terministic signal. This result forms the foundation of their analysis. Relying on metric geometry and the
theory of the Hausdorff dimension, they show that optimal signals correspond to low-dimensional mani-
folds.
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some of our results in Section 4.4.1 are related to theirs, we believe the two approaches

to be complementary: for example, Malamud and Schrimpf allow the state space to

be noncompact, while we cover cases when optimal signals are nondeterministic. The

precise relationship to this and other papers is discussed in more detail throughout the

paper in the context of specific results.

We briefly note that—despite our focus on Bayesian persuasion as the leading

application—the methods we develop can be applied in any problem in which a linear

objective is maximized over distributions of posteriors subject to a Bayes-plausibility

constraint. Such optimization programs arise in various models with multiple inter-

acting Receivers and in the analysis of rational-inattention and information-acquisition

problems. We further discuss alternative applications and directions for future research

in Section 6.

2. Model

Let (�, ρ) be a compact metric space, where ρ is a metric on �. We will also refer to � as

a measurable space, in which case the σ-algebra should be understood as the Borel σ-

algebra induced by the metric ρ. The set of Lipschitz functions on �, denoted by Lip(�),

is the set of functions p : � →R such that

‖p‖L := sup
{∣∣p(ω) −p

(
ω′)∣∣

ρ
(
ω, ω′) : ω, ω′ ∈�, ω �= ω′

}
<∞.

A function p ∈ Lip(�) is L-Lipschitz if ‖p‖L ≤ L. Let Lip1(�) denote the set of 1-

Lipschitz functions on �.

Let M(�) be the set of finite signed Borel measures on �, and �(�) be the subset of

probability measures. On the linear space M(�), we define the Kantorovich–Rubinstein

norm: for each μ ∈M(�),

‖μ‖KR := ∣∣μ(�)
∣∣ + sup

{∫
�
p(ω) dμ(ω) : p ∈ Lip1(�), p(ω0 ) = 0

}
,

where ω0 is an arbitrary fixed element of �. Since (�, ρ) is a compact metric space,

Theorem 6.9 and Remark 6.19 in Villani (2009) yield that ‖·‖KR metrizes the weak� topol-

ogy on �(�) and that (�(�), ‖·‖KR ) is a compact metric space. Let �(�(�)) be the set

of Borel probability measures on �(�), endowed with the Kantorovich–Rubinstein dis-

tance. Then �(�(�)) is also a compact metric space.

We now formally define the persuasion problem, as in Kamenica and Gentzkow

(2011). The state space is �, and there is a prior belief μ0 ∈ �(�). An objective function

V : �(�) → R is bounded and upper semicontinuous. We will be imposing increasingly

stronger assumptions on V to derive increasingly stronger results throughout the paper.
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The persuasion problem is to find a distribution of posterior beliefs τ ∈ �(�(�)) to2

maximize
∫
�(�)

V (μ) dτ(μ)

subject to
∫
�(�)

μdτ(μ) = μ0.

(P)

We will denote by T (μ0 ) the set of feasible distributions of posteriors, that is,

T (μ0 ) =
{
τ ∈ �

(
�(�)

)
:
∫
�(�)

μdτ(μ) = μ0

}
.

We define the concave closure of V at μ0 to be the value of the persuasion problem:

V̂ (μ0 ) := sup
τ∈T (μ0 )

∫
�(�)

V (μ) dτ(μ).

That is, V̂ (μ0 ) is the supremum of z ∈R over all (z, μ0 ) that can be expressed as a convex
combination of (V (μ), μ) with μ ∈ �(�).3

The dual problem is to find a price function p ∈ Lip(�) to

minimize
∫
�
p(ω) dμ0(ω)

subject to V (μ) ≤
∫
�
p(ω) dμ(ω) for all μ ∈ �(�).

(D)

We will denote by P(V ) the set of feasible price functions, that is,4

P(V ) =
{
p ∈ Lip(�) : V (μ) ≤

∫
�
p(ω) dμ(ω) for all μ ∈ �(�)

}
.

We define the concave envelope of V at μ0 to be the value of the dual problem:

V (μ0 ) := inf
p∈P(V )

∫
�
p(ω) dμ0(ω).

By Definition 7.4 in Aliprantis and Border (2006), the concave envelope of V at μ0 is the
infimum of values taken at μ0 by all continuous affine functions on M(�) that bound V

2Formally,
∫
�(�) μdτ(μ) = μ0 is understood as

∫
�(�) μ(B) dτ(μ) = μ0(B) for all measurable B ⊂ �. The

same comment applies whenever we integrate functions with values in the space of measures. An alterna-
tive approach is to use the Bochner integral instead of the familiar Lebesgue integral.

3Kamenica and Gentzkow (2011) define the concave closure of V as the smallest concave function that
lies above V . Instead, we defined it as the value of the persuasion problem. In the general case of com-
pact metric �, the equivalence of these definitions follows from Proposition 3 in the Online Appendix of
Kamenica and Gentzkow (2011).

4In an earlier draft Dworczak and Kolotilin (2019), we considered a dual problem with a continuous p

(but not necessarily Lipschitz). While that approach allowed for strong duality to hold under slightly more
permissive assumptions, we could not find any economic applications exploiting that additional generality.
The current formulation, inspired by a comment from Doron Ravid, leads to a more elegant exposition.
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Figure 1. The concave closure and the concave envelope at μ0 in the binary-state case. The
concave closure is the inner construction of the convex hull of the graph of V : It involves maxi-
mizing the value at μ0 over all convex combinations of points on the graph of V (exemplified by
blue lines in the figure). The concave envelope is the outer construction of the convex hull of the
graph of V : It involves minimizing the value at μ0 over all affine functions lying above the graph
of V (exemplified by the red lines in the figure).

from above on �(�). Our definition is equivalent: By Theorem 0 in Hanin (1992),5 the
space dual to (M(�), ‖·‖KR ) is the space Lip(�), modulo the constant functions. Hence,
any continuous linear function on (M(�), ‖·‖KR ) can be represented as

∫
� p(ω) dμ(ω)

for some p ∈ Lip(�).6 The construction of the concave closure and the concave enve-
lope are illustrated in Figure 1 (in the binary-state case).

We interpret the persuasion problem as a linear production problem of Gale (1960).
The states are economic resources, and the probability measure μ0 is a producer’s en-
dowment of resources. The set �(�) is the set of linear production processes available
to the producer. A process μ ∈ �(�) operated at unit level consumes the measure μ of
resources and generates income V (μ). A production plan τ describes the level at which
each process μ is operated. The primal problem is for the producer to find a production
plan that exhausts the endowment μ0 and maximizes the total income.

To interpret the dual problem, imagine that there is a wholesaler who wants to buy
out the producer. The wholesaler sets a unit price p(ω) for each resource ω. The pro-
ducer’s (opportunity) cost of operating a process μ at unit level is thus

∫
� p(ω) dμ(ω). A

price function p is feasible for the wholesaler if the income generated by each process
of the producer is not greater than the cost of operating the process, which makes the
producer willing to sell all the resources. The dual problem is for the wholesaler to find
feasible prices that minimize the total cost of buying up all the resources.7

5Hanin (1992) credits the result to Kantorovich and Rubinstein (1958). The version of the result that we
use is formulated in Exercise 8.10.143 in Bogachev (2007); see also Theorem 7.3 in Edwards (2011).

6The distinction between affine and linear functions is immaterial here since a continuous affine func-
tion

∫
� p(ω) dμ(ω) + c coincides with the continuous linear function

∫
�(p(ω) + c) dμ(ω) on �(�).

7In the persuasion context, similar interpretations of the dual variable as a price function appear in
Dworczak and Martini (2019), Galperti, Levkun, and Perego (2024), and Kolotilin, Corrao, and Wolitzky
(2024).
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3. Duality

In this section, we establish weak and strong duality for the persuasion problem:

• Weak duality states that V̂ (μ0 ) ≤ V (μ0 ), that is, the concave closure is bounded
above by the concave envelope.

• No duality gap requires the equality V̂ (μ0 ) = V (μ0 ), that is, the concave closure and
the concave envelope coincide.

• Primal and dual attainment additionally require existence of solutions to the pri-
mal and the dual problems, respectively. We use the term strong duality when both
primal and dual attainment (and hence also no duality gap) hold.8

For the case of a binary state, these properties are illustrated in Figure 1. Weak du-
ality follows from the fact that any red line (any affine function lying above the graph of
V ) achieves a higher value at μ0 than any blue line (any convex combination of points
on the graph of V ). No duality gap states that the infimum over values that red lines can
take at μ0 is equal to the supremum over values that the blue lines can take at μ0. Finally,
strong duality requires that these extrema are attained (as depicted by the bold red and
blue lines in the figure).

Weak duality serves as a verification tool. If we can find a feasible τ ∈ T (μ0 ) and
a feasible p ∈ P(V ) such that

∫
�(�) V (μ) dτ(μ) = ∫

� p(ω) dμ0(ω), then τ is optimal.
Within our interpretation, weak duality states that the total income generated by the
producer cannot exceed the total cost of the resources under feasible prices, which make
the producer willing to sell the resources. Thus, if there exists a plan for the producer
and feasible prices for the wholesaler that equalize the total income with the total cost,
then this plan must be optimal for the producer, and the prices must be optimal for the
wholesaler. However, weak duality does not guarantee that such solutions can be found.

No duality gap ensures that the bound imposed by weak duality is tight. Thus, a
feasible τ ∈ T (μ0 ) is optimal if and only if it achieves the value of the concave envelope
V (μ0 ). The absence of a duality gap still does not guarantee that the optimality of τ can
be verified by finding a feasible price function p.

Finally, primal and dual attainment ensure that the solutions to both the primal and
the dual problems exist, and hence optimality of the primal solution can be demon-
strated by exhibiting a dual solution. Within our interpretation, strong duality states
that there exists a feasible plan for the producer and feasible prices for the wholesaler
such that the cost of each operated process is equal to the income it generates. In the
remainder of this section, we establish weak duality, no duality gap, primal attainment,
and—under additional conditions—dual attainment.

Theorem 1 (Weak Duality). V̂ (μ0 ) ≤ V (μ0 ).

8The exact use of these terms varies across authors. For example, Villani (2009) uses the term strong
duality to refer to primal attainment and no duality gap. Our convention is consistent with the economics
literature where strong duality typically includes existence of solutions to the dual problem (see Daskalakis,
Deckelbaum, and Tzamos (2017) and Kleiner and Manelli (2019) for recent examples).
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Proof. The proof is relegated to Appendix A.1.

As the (standard) proof reveals, weak duality does not even require the weak assump-
tions on V that we imposed (it is only needed that the primal and the dual problems
are well-defined). Under our assumptions, weak duality is subsumed by the following
stronger claim.

Theorem 2 (No Duality Gap and Primal Attainment). There is no duality gap,

V̂ (μ0 ) = V (μ0 ), (O)

and the value of the concave closure V̂ (μ0 ) is attained by some feasible τ ∈ T (μ0 ).

Proof. The proof is relegated to Appendix A.3.

The primal problem (P) corresponds to maximizing an upper semicontinuous func-
tion V over the compact set of feasible distributions T (μ0 ), so existence of a solution
follows from the Weierstrass theorem. No duality gap is a consequence of hyperplane
separation. However, instead of explicitly relying on a version of the hyperplane separa-
tion theorem, we show that the second concave conjugate (double Legendre transform)
of the concave closure equals the concave envelope. The Fenchel–Moreau theorem then
establishes the absence of a duality gap (O). Theorem 2 thus implies that the concave
closure and the concave envelope coincide, and hence we can use the two notions in-
terchangeably.9

One consequence of duality in the persuasion setting is that we can provide a ver-
ification result for the persuasion problem and its dual. Within our interpretation, a
feasible plan and supporting prices are optimal if and only if the cost of each operated
process is equal to the income it generates.

Corollary 1 (Complementary Slackness). Distribution τ ∈ T (μ0 ) and price p ∈ P(V )
are optimal solutions to (P) and (D), respectively, if and only if

V (μ) =
∫
�
p(ω) dμ(ω), for all μ ∈ supp(τ). (C)

Proof. The proof is relegated to Appendix A.4.

In applications, Corollary 1 can be used to infer properties of solutions to the per-
suasion problem. However, for this approach to be applicable, we must ensure that a
solution to the dual problem exists. Our final goal is to establish conditions under which
dual attainment holds. Contrary to previous results, additional regularity conditions on
V are needed.

We say that V̂ is superdifferentiable at μ0 if there exists a continuous linear function
H on M(�) (called a supporting hyperplane of V̂ at μ0) represented by p ∈ Lip(�) (called

9When � is finite, this follows from Corollary 12.1.1 in Rockafellar (1970).
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a supergradient of V̂ at μ0) such that V̂ (μ0 ) =H(μ0 ) and V̂ (μ) ≤H(μ) = ∫
� p(ω) dμ(ω)

for all μ ∈ �(�). Note that the concave closure V̂ is a concave function. When � is
finite, a concave function on �(�) is also continuous on the interior of the domain, and
hence it is superdifferentiable at all interior points (Theorems 7.12 and 7.24 in Aliprantis
and Border (2006)). Interior points in case of finite � correspond to priors μ0 that have
full support on �. However, when � is infinite, the set of probability measures �(�)
has an empty (relative) interior—any μ0 ∈ �(�) is a boundary point. As a result, the
hyperplane separating (μ0, V̂ (μ0 )) from the graph of V̂ may be vertical, and hence the
required linear function H may fail to exist.10

Following Gale (1967), we say that V̂ has bounded steepness at μ0 if there exists a
constant L such that

V̂ (μ) − V̂ (μ0 )
‖μ−μ0‖KR

≤L, for all μ ∈ �(�).

Intuitively, bounded steepness says that the marginal increase in the value of the per-
suasion problem is bounded above for a small perturbation of the prior.

Theorem 3 (Dual Attainment). The following statements are equivalent:

(i) The problem (D) has an optimal solution.

(ii) V̂ is superdifferentiable at μ0.

(iii) V̂ has bounded steepness at μ0.

Proof. The proof is relegated to Appendix A.5.

Equivalence of conditions (ii) and (iii) is established by the duality theorem in Gale
(1967), which we can apply because we represented the space of distributions as a
normed space (by using the Kantorovich–Rubinstein norm).11 Equivalence of condi-
tions (i) and (ii) follows from the fact that continuous linear functions on M(�) can be
identified with Lipschitz functions on �. Intuitively, superdifferentiability of V̂ at the
prior means that we can find a supporting hyperplane at μ0. Due to the representation
theorem, a supporting hyperplane can be identified with a Lipschitz price function on
the state space. By definition of a supporting hyperplane, this price function is feasible
and touches the graph of V̂ at μ0—it must therefore be optimal by weak duality (Theo-
rem 1). This argument shows that the optimal price function is in fact a supergradient
of the concave closure V̂ at the prior μ0.

Geometrically, any price function p defines a hyperplane in �(�) ×R by specifying
what values it takes on extreme points (δω, p(ω)) (as depicted by the red lines in Fig-
ure 1). The price function p is feasible for (D) if the hyperplane lies above V on �(�).

10For an analogy, consider a concave and continuous function f (x) = √
x on [0, 1]. This function is

not superdifferentiable at the boundary point x = 0 because the supporting hyperplane would have to be
vertical.

11Holmes (1975) and Gretsky, Ostroy, and Zame (2002) extend Gale’s theorem from normed spaces to
locally convex spaces, which may be useful for future generalizations of our results.
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The dual problem is to find a hyperplane that lies above V and whose value at the prior
μ0 is minimized. Thus, the optimal hyperplane supports V̂ at μ0, and the optimal price
p�(ω) of each state ω is the value of the supporting hyperplane at the Dirac probability
measure δω at ω.

While Theorem 3 provides a necessary and sufficient condition for dual attainment,
the condition is stated in terms of a nonprimitive object, the concave closure of V . Next,
we present a useful sufficient condition on the primitive objective function V .

Theorem 4 (Lipschitz Preservation). Let V be Lipschitz on �(�). Then V̂ is also Lipschitz
on �(�). Consequently, V̂ has bounded steepness at each μ0 ∈ �(�).

Proof. The proof is relegated to Appendix A.2.

Corollary 2 (Strong Duality). When V is Lipschitz on �(�), strong duality holds for the
persuasion problem (P).

While the statement of Theorem 4 may seem intuitive, its proof is quite involved
in the general (infinite-dimensional) case.12 Informally, we show that given two priors,
μ0 and η0, and an optimal distribution τ ∈ T (μ0 ), we can find a perturbation η(μ) of
each posterior belief μ ∈ supp(τ) such that the perturbed posteriors η(μ) average out to
η0 under the distribution τ. Moreover, the average distance between the posteriors μ

and their perturbations η(μ) is equal to the distance between μ0 and η0. This implies
that the value of the persuasion problem under the prior μ0 cannot exceed the value
of the persuasion problem under the prior η0 by more than L‖μ0 −η0‖KR when V is
L-Lipschitz. Reversing the roles of μ0 and η0 leads to the desired conclusion.

To the best of our knowledge, Theorems 3 and 4 provide the first general dual at-
tainment result for Bayesian persuasion.13 Theorem 3 is mathematically more general
than the existing strong duality results in the sense that it applies on a larger domain
of problems; in fact, bounded steepness of the concave closure is shown to be neces-
sary and sufficient for dual attainment so it must imply all existing sufficient conditions.
However, verifying bounded steepness of the concave closure may be difficult in appli-
cations. Our Theorem 4 identifies Lipschitz continuity of V as a simple sufficient con-
dition for strong duality; while this condition is stronger than the most permissive suffi-
cient condition identified for one-dimensional moment persuasion (Dizdar and Kováč
(2020)), it has the advantage of being fully universal—it applies to any persuasion prob-
lem.

12Theorem 4 extends Lemma 1 and Corollary 2 in Guo and Shmaya (2021) from the case of finite � to
the general case. Theorem 1.17(f) in Laraki (2004) establishes a version of Theorem 4 for the total variation
norm on �(�), which is not suitable for our analysis because there is no tractable characterization of the
space that is dual to �(�) under the total variation norm.

13At the same level of generality, Section 8 of Dworczak and Martini (2019) establishes weak duality by
defining a price function on the space of beliefs �(�) and requiring it to be “outer-convex” (a relaxation of
convexity). Theorems 3 and 4 demonstrate that such a price function exists when V is Lipschitz, and that
the price function can in fact be taken to be linear on �(�).
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We conclude the section with an illustration of duality by studying conditions for op-
timality of two extreme information structures: full disclosure (distribution τF ∈ T (μ0 )
uniquely characterized by attaching probability one to the set of Dirac probability mea-
sures on �) and no disclosure (distribution τN ∈ T (μ0 ) that attaches probability one to
the prior μ0). We argue that strong duality makes the well-known sufficient conditions
necessary.

Suppose that μ0 has full support on � and let V be Lipschitz on �(�) so that, by
Theorems 3 and 4, dual attainment holds. Then full disclosure τF is optimal if and only
if V lies below a linear function that passes through each extreme point (δω, V (δω )):

V (μ) ≤
∫
�
V (δω ) dμ(ω) for all μ ∈ �(�). (F)

No disclosure τN is optimal if and only if

V is superdifferentiable at μ0. (N)

Theorem 3 implies that the dual problem (D) has an optimal solution. Thus, by Corol-
lary 1, a feasible distribution τ ∈ T (μ0 ) is optimal if and only if the optimal price function
p ∈ P(V ) satisfies (C). The support of τF is the set of all Dirac probability measures δω
on �, so (C) simplifies to p(ω) = V (δω ) for all ω ∈ �. Thus, τF is optimal if and only if
V (δω ), treated as a function of ω, belongs to P(V )—this simplifies to (F). Similarly, the
condition for optimality of τN follows from the observation that feasibility of p along
with (C) is equivalent to p being the supergradient of V at the prior, yielding (N).

Because sufficiency follows from weak duality, conditions (F) and (N) are sufficient
even without the assumptions on V and μ0. In Appendix B.1 of Dworczak and Kolotilin
(2024), we show that these intuitive conditions are no longer necessary when dual at-
tainment fails.

4. Moment persuasion

In this section, we apply the general duality approach developed in Section 3 to a persua-
sion problem in which the objective function depends on the posterior belief through a
finite set of moments—what we refer to as “moment persuasion.” This case arises nat-
urally in persuasion problems in which the Sender’s preferences only depend on the
Receiver’s action, and the Receiver’s optimal action depends only on aggregate statistics
such as the (potentially multivariate) mean, variance, or skewness of the posterior be-
lief.14 Multidimensionality allows for applications with multiple Receivers (under pub-
lic communication), potentially caring about different moments of the public belief. For
another example, suppose that there are N + 1 primitive states of the world but a Sender
only observes a partially revealing signal about the primitive state. The Sender sends
a signal informative about her own posterior belief to a Receiver. As long as the Re-
ceiver maximizes expectation of a utility function that depends on the primitive state—
by the law of iterated expectations—her payoff will only depend on the expectation of

14Even with a one-dimensional state, this nests the settings of Zhang and Zhou (2016) and Nikandrova
and Pancs (2017), as well as a separable special case of Kolotilin, Corrao, and Wolitzky (2024).
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the Sender’s belief, which can be represented as an element of an N-dimensional sim-
plex.15 Finally, moment persuasion captures information acquisition problems for cer-
tain well-behaved utility functions of the agent acquiring information (e.g., representing
mean-variance preferences).

Weak duality for (multidimensional) moment persuasion can be established directly
and is often sufficient to solve instances of persuasion problems. However, our approach
has two distinct advantages. First, by deriving duality for moment persuasion from the
general case, we unify existing approaches (differing in the representation of the con-
straints in the moment persuasion problem), demonstrate how the dual variables in
these alternative approaches relate to one another (Theorem 5), and extend them to
the multidimensional case. More substantially—due to strong duality—we are able to
derive general predictions about the structure of solutions (Theorems 6, 7, 8, as well as
Propositions 1 and 2 in the application in Section 5). In particular, strong duality implies
that the complementary slackness conditions (C) must always hold; even if the optimal
p is unknown, these conditions impose restrictions on the optimal persuasion scheme.

4.1 Formulation

We assume that, given some underlying state space �̃ and prior μ̃0,

Ṽ (μ̃) = v

(∫
�̃
m(ω̃) dμ̃(ω̃)

)
, for all μ̃ ∈ �(�̃),

for some measurable m : �̃ → R
N and some real-valued function v. It will be con-

venient to redefine the state space as � = m(supp(μ̃0 )) with the prior μ0 given by
μ0(B) = μ̃0(m−1(B)) for any measurable B ⊂�, so that

V (μ) = v

(∫
�
ωdμ(ω)

)
, for all μ ∈ �(�).

We then define the space of “moments” X as the convex hull of �.16 We assume that X
is a compact convex set with nonempty interior17 and that v : X → R is Lipschitz with
constant L.

The next lemma ensures that we can rely on dual attainment from Theorems 3 and 4.

Lemma 1. If v is Lipschitz, then V is also Lipschitz.

Proof. The proof is relegated to Appendix A.6.

In moment persuasion, a distribution τ of posterior beliefs μ ∈ �(�) influences the
objective only through the induced distribution of moments. By Strassen’s theorem (e.g.,

15Arieli et al. (2023) offer an analogous interpretation of the one-dimensional moment persuasion prob-
lem.

16By redefining the state space, we have converted a general case of moment persuasion to a problem in
which the objective function only depends on a multidimensional vector of posterior means.

17This is without loss of generality: As a convex set in R
N , X has a nonempty relative interior, so we can

always embed X in a (possibly lower-dimensional) Euclidean space such that X has a nonempty interior.
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Theorem 7.A.1 in Shaked and Shanthikumar (1994)), a distribution πX ∈ �(X ) of mo-
ments is feasible (i.e., induced by some Bayes-plausible distribution of posterior beliefs)
if and only if μ0 is a mean-preserving spread of πX . However, anticipating our results
and following Kolotilin (2018), we will formulate the moment persuasion problem as
optimization over joint distributions of moments and states. Formally, we call a distri-
bution π ∈ �(X ×�) feasible, denoted π ∈�(μ0 ), if∫

X×B
dπ(x, ω) =

∫
B

dμ0(ω), for all measurable B ⊂ �,∫
B×�

(x−ω) dπ(x, ω) = 0, for all measurable B ⊂ X .

The first equation is the Bayes-plausibility constraint, which says that the marginal dis-
tribution of states induced by π is μ0. The second equation is the martingale constraint,
which says that the conditional expectation Eπ[ω|x] induced by π is x.

We let πX denote the marginal distribution of moments induced by π. The primal
problem (P) simplifies to finding a joint distribution π ∈ �(X ×�) to

maximize
∫
X
v(x) dπX(x)

subject to π ∈�(μ0 ).

(PM)

When discussing intuitions, we will sometimes refer to π informally as a “signal.”

4.2 Prices for moments

Our first major result of this section derives the implications of the general duality from
Section 3 for the special case of moment persuasion.

Theorem 5. Suppose that v is L-Lipschitz and fix an optimal solution p : � → R to the
dual problem (D). There exists an extension p̄ : X →R of p to X (i.e., p and p̄ coincide on
�) such that, for any optimal solution π ∈�(μ0 ) to (PM):

(i) p̄ is convex, L-Lipschitz, satisfies p̄ ≥ v, and∫
X
v(x) dπX(x) =

∫
�
p̄(ω) dμ0(ω);

(ii) there exists a measurable function q : X →R
N such that ‖q(x)‖ ≤ L for all x ∈X ,

p̄(y ) = sup
x∈X

{
v(x) + q(x) · (y − x)

}
, for all y ∈X ,

p̄(ω) = v(x) + q(x) · (ω− x), for π-almost all (x, ω).

Conversely, if there exists a feasible π ∈ �(μ0 ) and a price function p̄ : X → R satisfying
any one of conditions (i) or (ii), then π is optimal for (PM). (The last claim is true under a
weaker assumption that v is measurable and bounded.)
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Theorem 5 provides sufficient and necessary conditions for optimality of a candi-
date solution π ∈ �(μ0 ). The main insight is that “prices for states” can be extended
to “prices for moments.” Additionally, condition (i) shows that optimal prices must be
convex in moment persuasion. To see that intuitively, note that in our interpretation of
the dual problem (D) from Section 2, a measure μ ∈ �(�) of resources and one unit of
resource x= Eμ[ω] are now equivalent for the producer. If prices failed to be convex, the
producer could sell at effectively higher prices by engaging in such “mean-preserving”
transformations of the resources. Thus, the wholesaler offers convex prices to begin
with.

Theorem 5 recovers (under a stronger assumption) the duality results for one-
dimensional moment persuasion from Kolotilin (2018), Dworczak and Martini (2019),
and Dizdar and Kováč (2020), and establishes strong duality for multidimensional mo-
ment persuasion. By providing the two conditions (i) and (ii) that are jointly necessary
but individually sufficient, the theorem unifies two alternative approaches to moment
persuasion. The price function from condition (i) is a direct analog of prices for mo-
ments in Dworczak and Martini (2019) who derive them as a multiplier on the mean-
preserving spread constraint (represented in its integral form for the one-dimensional
case). The price function from condition (ii), along with the function q, are analogs of
the dual variables from Kolotilin (2018) and Kolotilin, Corrao, and Wolitzky (2024) who
derive them as multipliers on the two constraints defining the set �(μ0 ) of joint dis-
tributions of moments and states. In particular, q is the multiplier on the martingale
constraint. Thus, the two existing duality formulations for moment persuasion are a
consequence of two alternative representations of feasible distributions for the primal
problem.18 Theorem 5 shows that both formulations are a special case of our general
duality, and that both can be extended to the multidimensional case.

Next, we give an overview of the proof of Theorem 5. Because we have guaranteed
dual attainment (by the assumption that v is Lipschitz), there exists a solution p to the
dual problem (D), and there is no duality gap: Equality (O) simplifies to∫

X
v(x) dπX(x) =

∫
�
p(ω) dμ0(ω),

for any π optimal for (PM). We can extend p (prices for states) from � to X (prices for
moments) using the so-called “convex-roof” construction (Bucicovschi and Lebl (2013)):

p̌(x) := inf
{∫

�
p(ω) dμ(ω) : μ ∈ �(�),

∫
�
ωdμ(ω) = x

}
, for all x ∈X . (R)

It is easy to show that p̌ is convex, p̌ ≥ v, and hence p̌ satisfies the constraint in (D).
Moreover, by definition, p̌ is pointwise smaller than p on �. If we could show that p̌ is
Lipschitz, then p̌ restricted to � would be a solution to the dual (D), and condition (i) in
Theorem 5 would hold.

18In Appendix B.2 of Dworczak and Kolotilin (2024), we formally introduce the problem dual to (PM),
show that the price function p̄ from Theorem 5 is indeed a solution to that problem, and formalize the
connection to previous duality formulations in Appendix B.3.
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However, p̌ does not even have to be continuous when N—the dimension of the
space of moments—is three or higher (even though p is Lipschitz).19 There are moment-
persuasion problems in which p ∈ Lip(�) solves (D) but its convex roof is discontinu-
ous. Furthermore, for non-Lipschitz v, one can construct examples in which there does
not exist any convex continuous extension of optimal prices for states to prices for mo-
ments. These cases help explain why our assumptions on the objective v are stronger
than those imposed by Dworczak and Martini (2019) and Dizdar and Kováč (2020) in the
one-dimensional case. In fact, the additional complications are a direct consequence
of a multidimensional space of moments: It can be shown that p̌ is Lipschitz when �

contains the boundary of X—a condition that holds trivially in the one-dimensional
case.20

To circumvent these difficulties, we prove a lemma showing that the graph of p̌ can
be separated by a hyperplane (with a properly bounded gradient, as captured by the
function q(x) from condition (ii)) from any point (x, v(x)) on the graph of the objective
function v. We can then define a new price function p̄ : X → R that is the supremum of
all such hyperplanes. The resulting price function is a convex and Lipschitz extension of
p that is “sandwiched” between p̌ and v. It follows that p̄ solves (D) (viewed as a function
on �) and that condition (i) of Theorem 5 holds. Additionally, using the function q(x),
we can show that the complementary-slackness condition (C) takes a particularly simple
form described in condition (ii) of Theorem 5.

In the remainder of this section, we leverage Theorem 5 to derive structural prop-
erties of solutions to (PM). Even though Theorem 5 guarantees existence of prices for
moments, it does not provide a direct way to construct them. We show next that when
v is continuously differentiable, we can take q(x) from condition (ii) of Theorem 5 to be
equal to the gradient of v at x on the support of any optimal πX .

4.3 Constructing solutions in the differentiable case

To derive tighter implications of duality for the properties of optimal solutions, we fur-
ther strengthen our assumptions on the objective function. We assume that v is contin-
uously differentiable on X , and thus has a continuous gradient ∇v on X .21 We will show
that, in this case, solving the problem (PM) can be reduced to finding the support of the
optimal distribution of moments.

For any closed set S ⊂ X (candidate support of the optimal distribution of mo-
ments), we define the function pS on � by

pS(ω) := max
x∈S

{
v(x) + ∇v(x) · (ω− x)

}
, for all ω ∈�. (S)

19A careful reader might notice that this implies that some assumption of Berge’s maximum theorem
must be violated. Indeed, it turns out that the feasibility correspondence (x) = {μ ∈ �(�) :

∫
� ωdμ(ω) =

x} is not necessarily lower hemicontinuous in R
N for N > 2. However, because  is an upper hemicontin-

uous correspondence, p̌ is lower semicontinuous, by Lemma 17.30 in Aliprantis and Border (2006).
20Formal arguments supporting the claims made in this paragraph can be found in Appendix B.4 of

Dworczak and Kolotilin (2024).
21We say that v is differentiable at x ∈ X if there exists a gradient ∇v(x) ∈ R

N such that f (x+h) = f (x) +
∇v(x) · h+ o(‖h‖) for all h ∈ R

N such that x+ h ∈ X , in which case ∇v(x) is unique.
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Figure 2. The construction of the function pS(x) in the one-dimensional case. The gray area
in the x-axis represents the nonconvex domain �. The left panel depicts the price function in-
duced by a suboptimal, discrete set S (indicated in blue)—the induced price function fails the
first condition in (M). The right panel depicts the price function induced by a set S that satisfies
condition (M) (for some π). The dashed red line depicts the extension of the function pS(ω)
from � to X obtained by applying formula (S) outside of �, while the red solid line is obtained
by applying the convex-roof construction.

In case � is not convex, we extend pS from � to X using the convex-roof construction:22

pS(x) := inf
{∫

�
pS(ω) dμ(ω) : μ ∈ �(�),

∫
�
ωdμ(ω) = x

}
, for all x ∈X \�.

Figure 2 illustrates these definitions: The function pS(ω) is found as the maximum over
hyperplanes tangent to the graph of the function v at points in the set S. The convex-roof
construction extends pS from � to X by minimizing the value achieved at any x ∈ X \�
of any convex combination of points belonging to the graph of pS on �.

Finally, for any feasible π ∈�(μ0 ), consider the condition:

pS(x) ≥ v(x), for all x ∈X ,
(M)

pS(ω) = v(x) + ∇v(x) · (ω− x), for all (x, ω) ∈ supp(π ).

The following theorem connects condition (M) to optimality of π.

Theorem 6. Suppose that v is continuously differentiable. A joint distribution π ∈�(μ0 )
is an optimal solution to (PM) if and only if condition (M) holds with S = supp(πX ).

Proof. The proof is relegated to Appendix A.8.

Theorem 6 gives rise to a “guess and verify” procedure that can be used to identify
optimal solutions to (PM). The “guess” involves conjecturing the optimal support S of

22Note that because pS is convex on � by definition, it does not matter whether we use the convex roof
for x ∈ X \ � or for all x ∈ X . The reader might be surprised that we rely on the convex roof construction
after arguing that it sometimes fails to properly extend prices for states to the prices for moments. And
indeed, the price function pS we construct does not necessarily satisfy all of the conditions of Theorem 5.
Nevertheless, it turns out that pS satisfies the conditions that are relevant for deriving properties of optimal
solutions to (PM), which is our ultimate goal.
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moments. Fixing S, prices pS can be computed mechanically, and then condition (M)
becomes necessary and sufficient for optimality of π with support S.

In general, different solutions to (PM) may have different supports S of posterior mo-
ments. However, duality implies that one can define a maximal set S� of posterior mo-
ments that can be induced by an optimal signal. In other words, any optimal signal must
induce posterior moments that belong to S�. Moreover, this set S� can be easily found
as long as we have one solution to (PM)—we formalize this in the following remark.

Remark 1. Suppose that π� ∈�(μ0 ) is optimal for (PM), and let

S� = {
x ∈ X : psupp(π�

X )(x) = v(x)
}

.

Then π ∈�(μ0 ) is optimal for (PM) if and only if supp(πX ) ⊂ S� and condition (M) holds
with S = S�.23

Proof. The proof is relegated to Appendix A.8.

Remark 1 is useful when proving uniqueness and characterizing properties of an
optimal solution. We turn to these issues next.

4.4 Structure of solutions

In this subsection, we focus on deriving the implications of Theorem 6 for the structure
of optimal solutions to (PM). We provide a condition under which there exists a unique
optimal solution π to (PM) that partitions the state space into convex sets, and pools
the states in each element of the partition. This is a natural extension of the idea of
monotone-partitional solutions from one-dimensional moment persuasion to the mul-
tidimensional case. We also generalize a result proven by Arieli et al. (2023) and Kleiner,
Moldovanu, and Strack (2021): In the one-dimensional case, there exists an optimal sig-
nal π ∈ �(μ0 ) with a bipooling structure. We derive a multidimensional analog of this
property.

To simplify exposition and obtain tighter results, we assume that � is a convex set
(so that � = X). In Appendix A.9, we extend the analysis to the general case.

4.4.1 Optimality of convex-partitional signals We first address the problem of when it
is without loss of optimality to restrict attention to convex-partitional signals. Formally,
we say that π ∈ �(μ0 ) is convex-partitional if there is a measurable function χ : � → X

such that, for all measurable sets A⊂X and B ⊂�,

π(A, B) =
∫
B

1
{
χ(ω) ∈A

}
dμ0(ω),

and the set χ−1(x) is convex for all x. Intuitively, χ represents a distribution that pools
all states in χ−1(x) into the moment x.

23It is easy to see that pS ≥ v in this case, so only the second condition in (M) is relevant.
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Theorem 7. Suppose that v is continuously differentiable and that μ0 has a density on �

with respect to the Lebesgue measure.24 Suppose there do not exist distinct x, y ∈X with

∇v(x) = ∇v(y ),

v(x) − ∇v(x) · x= v(y ) − ∇v(y ) · y,

λv(x) + (1 − λ)v(y ) ≥ v
(
λx+ (1 − λ)y

)
, for all λ ∈ [0, 1].

Then there is a unique optimal solution to (PM), and that solution is convex-partitional.

Proof. The proof is relegated to Appendix A.10.

Theorem 7 gives an easy-to-verify condition on the objective function v under which
the optimal distribution is unique and convex-partitional. The condition can be seen
as an extension of the affine-closure property from Dworczak and Martini (2019) that
guarantees optimality of a monotone partition in the one-dimensional case.

In Appendix B.5 of Dworczak and Kolotilin (2024), we state a version of Theorem 7
that imposes a slightly weaker sufficient condition, which turns out to be necessary;
if that weaker condition fails, then for at least some priors there exist optimal signals
that are not convex-partitional. To the best of our knowledge, these results provide the
most permissive conditions guaranteeing a convex-partitional signal for multidimen-
sional moment persuasion. Prior to the current version of this paper, Malamud and
Schrimpf (2022) obtained a stronger sufficient condition (requiring that ∇v(x) �= ∇v(y )
for x �= y).

In the remainder of this subsection, we give an overview of the proof of Theorem 7.
The first part of the proof investigates the structure of optimal solutions, and does not
rely on any of the assumptions of Theorem 7. Thus, our goal in the overview is to present
these additional results; they will be useful for subsequent analysis. The second part of
the proof gives an explicit construction of the elements of the optimal convex partition
from Theorem 7.

We begin by introducing some additional notation. Fix an optimal solution π� ∈
�(μ0 ) to (PM), and define the set S� as in Remark 1:

S� := {
x ∈X : psupp(π�

X )(x) = v(x)
}

.

Recall that we can interpret S� as the maximal set of posterior moments that can be
induced by an optimal solution. To simplify notation, let p�(x) := pS�(x), for all x ∈ X .
Next, we define the set � that encodes the second property in condition (M):

� := {
(x, ω) ∈ S� ×� : p�(ω) = v(x) + ∇v(x) · (ω− x)

}
.

The set � is called the contact set in the linear programming literature. In light of The-
orem 6 and Remark 1, a feasible π ∈ �(μ0 ) is optimal if and only if supp(π ) ⊂ �. Finally,

24The assumption that μ0 is a continuous distribution allows us to circumvent the thorny issue of how
to define a convex partition when there are atoms in the distribution of states—in this case, some of the
atoms may need to be split among multiple elements of the partition.
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we define the x-section of �,

�x := {
ω ∈� : (x, ω) ∈ �

}
.

Intuitively, the set �x contains states that can appear together with x in the support of
an optimal solution—states in �x (and only these states) can be pooled into the moment
x. Geometrically, �x is the projection of the face of the epigraph of p� exposed by the
direction (−1, ∇v(x)) on the state space, �x = arg maxω∈�{∇v(x) · ω − p�(ω)}. A more
intuitive statement of this property is that states can be pooled (in an arbitrary way as
long as the induced posterior moments belong to S�) within regions where the price
function is affine; at the same time, the optimal solution cannot pool together states
that do not belong to a region on which p� is affine. We can thus think of �x as the
“pooling region” of moment x.

The sets �x can intersect in general. If ω ∈ �x ∩ �y , then ω could appear in the sup-
port of π both conditional on x and conditional on y—this is possible when the signal
is random conditional on ω. However, an important consequence of the above geomet-
ric characterization is that each �x is convex, and that relint(�x ) ∩ relint(�y ) �= ∅ implies
�x = �y , where relint(·) stands for the relative interior of a set. Thus, the set � generates a
partition of � consisting of relatively open convex components {relint(�x )}x∈S� and the
set of points on the boundaries of these components: X \ ⋃

x∈S� relint(�x ). If x �= y im-
plies that �x �= �y , then π has a very simple structure: For any x ∈ S�, states in relint(�x )
are pooled together into the posterior mean x.

This is where the conditions of Theorem 7 come in. When the conditions on v hold,
it is indeed true that x �= y implies that �x �= �y . When μ0 has a continuous distribution,
we can ignore the measure-zero set of states on the boundaries of the convex elements
of the partition. Thus, a convex-partitional signal is optimal. Moreover, the optimal
χ : X → X is uniquely determined, for μ0-almost all ω ∈�, by

χ(ω) = {
x ∈ S� : ω ∈ �x

} = {
x ∈ S� : ∇p�(ω) = ∇v(x)

}
.

We illustrate this discussion with an application in the next section.

4.4.2 Beyond convex-partitional signals In this subsection, we turn attention to the
structure of solutions when the conditions of Theorem 7 fail. In the one-dimensional
case, the bipooling result of Arieli et al. (2023) and Kleiner, Moldovanu, and Strack (2021)
shows that even if no optimal signal is monotone-partitional, there still exist optimal
signals with a relatively simple structure. Namely, the state space is partitioned into in-
tervals, and conditional on any interval, an additional binary signal may be sent. We
will derive a multidimensional version of this result. Our generalization is a direct con-
sequence of duality, while Arieli et al. (2023) and Kleiner, Moldovanu, and Strack (2021)
rely on an extreme-point characterization of optimal signals.

For a set A ⊂ X , let cl(A) denote the closure of A, and ext(A) denote the set of
extreme points of the closed convex hull of A. Fixing a solution π to (PM), let

Sx := cl
(
supp(πX ) ∩ relint(�x )

)
,



Theoretical Economics 19 (2024) The pursuasion duality 1719

for any x ∈ supp(πX ). Recall that �x is the set of states that can be pooled into the pos-
terior moment x by an optimal signal. Thus, conditional on x being the realized pos-
terior moment under some optimal signal π, the set Sx contains all posterior moments
in the support of πX that could be generated by an optimal signal. For example, if the
conditions of Theorem 7 hold, then the (unique) optimal signal π satisfies Sx = {x} for
almost all x ∈ supp(πX ). This means that any state in the support of the optimal signal
conditional on x must be pooled into x; thus, the optimal signal is deterministic (and
convex-partitional since each �x is convex). The bipooling result of Arieli et al. (2023)
and Kleiner, Moldovanu, and Strack (2021) in the one-dimensional case can be refor-
mulated as stating that there exists an optimal solution such that Sx has at most two
elements. That is, for any realized posterior moment x, there exists at most one other
posterior moment y ∈ supp(πX ) such that �x = �y . In this case, states in the interval
�x can be pooled into either x or y, and we have Sx = Sy = {x, y}. The following result
extends that conclusion to the multidimensional case.

Theorem 8. Suppose that v is continuously differentiable and that μ0 has a density on �

with respect to the Lebesgue measure. There exists an optimal solution π ∈ �(μ0 ) to (PM)
such that Sx = ext(Sx ) for πX-almost all x.

Proof. The proof is relegated to Appendix A.10.

The conclusion Sx = ext(Sx ) means that no posterior mean in Sx can be expressed
as a convex combination of other posterior means in Sx. This generalizes the bipool-
ing result of Arieli et al. (2023) and Kleiner, Moldovanu, and Strack (2021) because in
the one-dimensional case, for any set S ⊂ R, | ext(S)| ≤ 2. In higher dimensions, Theo-
rem 8 guarantees that we can divide the state space into convex “pooling regions” (up
to a measure-zero set) and find an optimal signal that only pools states inside pooling
regions; moreover, the posterior moments induced from a given pooling region form a
set that only consists of extreme points (of its own convex hull).

The proof of Theorem 8 relies on the fact that supp(π ) ⊂ � is both necessary and
sufficient for the optimality of π ∈ �(μ0 ). As shown in Section 4.4.1, � defines (up to a
measure zero set) a convex partition of the state space, with a representative element
�x, which could in general coincide with �y for y �= x. That is, optimality of a signal
requires that states in �x are mapped only into posterior moments y for which �y = �x.
We can modify the solution on �x and it will remain optimal as long as we preserve the
above property. Formally—to deal with the fact that sets �x may have measure zero—we
introduce an auxiliary optimization problem in which we minimize the average norm
of induced posterior moments subject to maintaining the condition supp(π ) ⊂ �. The
auxiliary problem then picks an optimal solution in which Sx = ext(Sx ) must be satisfied,
as otherwise the value of the auxiliary problem could be lowered by shifting probability
mass toward some posterior mean y ∈ Sx that can be expressed as a convex combination
of other posterior means in Sx.

For one-dimensional problems, the geometric property Sx = ext(Sx ) implies the car-
dinality restriction |Sx| ≤ 2. This is no longer the case when the dimension N of the state
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space is two or more. In fact, one can construct an example in which Sx is infinite for
any choice of optimal π.25 The example implies that our result is tight if one works with
the partition of the state space defined by the price function through the contact set �,
as is implicitly assumed in our definition of Sx. However, that partition may sometimes
be unnecessarily coarse; intuitively, the price function may be affine over a region that
could be further subdivided into smaller “pooling regions” (sets of states that are only
pooled with one another but not with states from other pooling regions). Obłój and
Siorpaes (2017) and De March and Touzi (2019) show how to define the finest partition
into pooling regions relying directly on the distribution of posterior moments.26 If one
defines an analog of Sx for the finest partition (by replacing �x in the definition of Sx
by the element of the finest partition containing x), then it might be possible to tighten
the conclusion of Theorem 8, perhaps by showing that there are at most N + 1 posterior
means induced from every pooling region (as is loosely suggested by Carathéodory’s
theorem). Since duality does not seem immediately useful in pursuing this direction,
we leave it for future research.

5. Application: Quadratic objective

In this section, we show how our duality approach developed in the preceding section
can be used to solve a class of persuasion problems in which μ0 has a density on �

that is a compact convex set in R
2 with nonempty interior (so that � = X), the objective

function depends on a pair of moments x = (x1, x2 ), and v(x) is a quadratic form: v(x) =
x�xT .

Variants of this model received considerable attention in the literature. The case
v(x) = x1x2 is equivalent to the model of Rayo and Segal (2010), who analyzed it under
the assumption that � is a finite set. Nikandrova and Pancs (2017) studied this prob-
lem under the assumption that � is a strictly convex curve. These two papers mostly
focus on deriving necessary conditions for optimality.27

 Tamura (2018) considers the
case where v is a general quadratic form in R

N but imposes strong symmetry assump-
tions on the prior distribution. Kramkov and Xu (2022) consider a problem (inspired
by the insider trading model of Rochet and Vila (1994)) that turns out to be mathemati-
cally equivalent to a generalized version of our problem where the assumption � =X is
not imposed—their analysis is limited in its economic predictions since their methods
are designed to handle even fairly pathological distributions of the state. Our marginal
contribution is to provide a tighter characterization of optimal solutions for the well-
behaved case when � is a compact convex set (i.e., when � = X). Relative to Rayo and

25We provide one such example in Appendix B.6 of Dworczak and Kolotilin (2024).
26In the one-dimensional case, their construction can be understood through the integral characteriza-

tion of mean-preserving spreads: An element of a partition (in this case, an interval) is pinned down by
two consecutive points at which the integral constraint binds. In the multidimensional case, the construc-
tion is significantly more complicated since there exists no convenient representation of mean-preserving
spreads.

27Rayo (2013) and Onuchic and Ray (2023) restrict attention to monotone partitional signals in the set-
ting of Nikandrova and Pancs (2017).
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Segal (2010) and Nikandrova and Pancs (2017), we show that a set of necessary condi-
tions taken from these two papers become jointly sufficient for optimality in our case.
Prior to the current version of this paper, Malamud and Schrimpf (2022) provided an
alternative (less explicit) characterization of solutions under weaker assumptions.

We first argue that the case of a general quadratic form can easily be reduced to the
special case v(x) = x1x2. Indeed, for any quadratic form, there exists a basis such that
the quadratic form is diagonal: v(x) = λ1x

2
1 + λ2x

2
2. If λ1, λ2 ≥ 0 (resp., λ1, λ2 ≤ 0), then

full disclosure (resp., no disclosure) is optimal. If λ1 and λ2 have opposite signs, then
there exists yet another basis such that v(x) = x1x2, which we assume henceforth.

It is known from Rayo and Segal (2010) that the posterior means induced by an op-
timal signal must belong to a monotone set. Using duality, we can establish a stronger
claim. Formally, we will say that a set S ⊂X is

• monotone if (x1 − y1 )(x2 − y2 ) ≥ 0, for all x, y ∈ S;

• maximal monotone in X if it is monotone, and for each y ∈ X \ S, there exists x ∈ S

such that (x1 − y1 )(x2 − y2 ) < 0.

• almost-maximal monotone in X if it is monotone, compact, and, for each y ∈X \ S,
there exists x ∈ S such that (x1 − y1 )(x2 − y2 ) ≤ 0.

Intuitively, a monotone set S in R
2 has the property that if x ∈ S, then S cannot intersect

the interiors of either the upper-left or the lower-right quadrants centered at x. A mono-
tone set is maximal in X if it is not a proper subset of any monotone set in X . A maximal
monotone set must be compact (when X is compact, as assumed). An almost-maximal
monotone set S is a compact subset of a maximal monotone set S′ such that S′ \ S is a
collection of open line segments that are either horizontal or vertical.

Proposition 1. If π� ∈ �(μ0 ) is optimal, then the support of moments supp(π�
X ) in-

duced by π� is an almost-maximal monotone set in X .

Proof. Suppose that π� ∈ �(μ0 ) is optimal. To simplify notation, let p� := psupp(π�
X )

as defined by (S). By Remark 1, p� ≥ v and supp(π�
X ) ⊂ S�, where S� = {x ∈ X : p�(x) =

v(x)}; moreover, p� = pS� , and hence, since � = X and v(x) = x1x2, we have, for all
x ∈ X ,

p�(x) = max
y∈S� {x1y2 + x2y1 − y1y2}.

We claim that the set S� is monotone: Otherwise, we would have x, y ∈ S� such that
(x1 − y1 )(x2 − y2 ) < 0, but then

p�(x) ≥ x1x2 − (x1 − y1 )(x2 − y2 ) > x1x2 = v(x),

contradicting that x ∈ S�. Next, we claim that the set S� is maximal monotone in X .
Otherwise, there would exist x ∈X \ S� such that (x1 − y1 )(x2 − y2 ) ≥ 0 for all y ∈ S�, and
thus

p�(x) = max
y∈S�

{
x1x2 − (x1 − y1 )(x1 − y2 )

} ≤ x1x2 = v(x).
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But then, since p� ≥ v, we would have that p�(x) = v(x), contradicting that x /∈
S�.

Since supp(π�
X ) ⊂ S�, and we have shown that S� is a monotone set, supp(π�

X ) is also
a monotone set. Finally, we claim that supp(π�

X ) is almost-maximal monotone in X .
Otherwise, there would exist x ∈ X such that (y1 − x1 )(y2 − x2 ) > 0 for all y ∈ supp(π�

X ),
which implies that (since supp(π�

X ) is compact)

p�(x) = max
y∈supp(π�

X )

{
x1x2 − (x1 − y1 )(x1 − y2 )

}
< x1x2 = v(x),

contradicting that p� ≥ v.

In light of Remark 1, the proof of Proposition 1 implies that the optimal price func-
tion can always be derived from some candidate support S of the distribution of mo-
ments that is a maximal monotone set. A natural class of maximal monotone sets in
X are graphs of continuous increasing functions. The main result of this section de-
scribes necessary and sufficient conditions for the optimality of a solution π� ∈ �(μ0 )
with supp(π�

X ) equal to the graph Gr(f ) of a given well-behaved function f . By The-
orem 7, the unique solution is convex-partitional; the optimal partition divides �

into negatively-sloped line segments; a line segment that induces the posterior mean
(t, f (t )) has slope −f ′(t ), as illustrated in Figure 3. These observations are formalized in
the following proposition.

Proposition 2. Let f : [x1, x1] →R be a twice continuously differentiable function, with
f ′(t ) > 0 for all t ∈ [x1, x1], such that the graph Gr(f ) is a maximal monotone subset of
X . An optimal π� ∈�(μ0 ) induces a support of moments supp(π�

X ) equal to Gr(f ) if and
only if � can be partitioned, up to a measure zero set,28 into a collection of disjoint open
line segments {It }t∈[x1,x1] such that:

(i) E[ω|ω ∈ It ] = (t, f (t )), for almost all t ∈ [x1, x1];29

(ii) It = relint({ω ∈� : t ∈ arg max
s∈[x1,x1]

{ω1f (s) +ω2s − sf (s)}}), for all t ∈ [x1, x1].

Whenever the above conditions hold, the optimal signal is convex-partitional and pools
the states within each It ; moreover, It ⊆ {ω ∈ � : ω2 = f (t ) − f ′(t )(ω1 − t )}, for all t ∈
[x1, x1].

Proof. We will prove that existence of the required partition of � is sufficient for op-
timality of the corresponding π�. We relegate the more technical proof of necessity to
Appendix A.11.

28That is, � \ {
⋃

t∈[x1,x1] It } has zero (Lebesgue) measure.
29Since It has zero measure under the prior, E[ω|ω ∈ It ] is formally defined almost everywhere via the

conditional expectation of ω conditional on a σ-algebra generated by {It }t∈[x1,x1]. We provide an explicit
formula for the conditional expectation in Appendix B.7 of Dworczak and Kolotilin (2024).
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Figure 3. Illustration of Proposition 2: The optimal signal pools all states in each of the nega-
tively sloped intervals It , and the resulting posterior means belong to Gr(f ).

Suppose that there exists a collection of line segments {It }t∈[x1,x1] satisfying condi-
tions (i) and (ii). We can define π� ∈ �(μ0 ) as the convex-partitional signal that pools
states in each It (it is irrelevant how the signal is defined for ω ∈ � not belonging to
any It ). By condition (i), the induced posterior-mean curve supp(π�

X ) is equal to Gr(f ).
Following Section 4.3, define the price function

pGr(f )(x) = max
y∈Gr(f )

{
v(y ) + ∇v(y ) · (x− y )

} = max
t∈[x1,x1]

{
x1f (t ) + x2t − tf (t )

}
.

We will verify that condition (M) holds; optimality of π� will then follow from Theorem 6.
First, we argue that pGr(f )(x) ≥ v(x), for all x ∈ X . It suffices to show that there exists a
t ∈ [x1, x1] such that x1f (t ) + x2t − tf (t ) ≥ x1x2, or equivalently, (t − x1 )(f (t ) − x2 ) ≤ 0.
The claim is obvious when x ∈ Gr(f ), and follows from the fact that Gr(f ) is maximal
monotone in X when x ∈ X \ Gr(f ). To complete the proof that (M) holds, note that, by
condition (ii), for almost all ω ∈ It ,

pGr(f )(ω) = v
(
x(t )

) + ∇v
(
x(t )

) · (ω− x(t )
) =ω1f (t ) +ω2t − tf (t ).

This shows that the equality in (M) holds for all (x, ω) ∈ ⋃
t∈[x1,x1]((t, f (t )) × It ); by con-

tinuity, the equality extends to the closure of this set, which is supp(π� ).
Finally, the inclusion It ⊆ {ω ∈ � : ω2 = f (t ) − f ′(t )(ω1 − t )}, for t ∈ (x1, x1 ), follows

from the observation that, by condition (ii), the first-order condition (ω1 − t )f ′(t )+ω2 −
f (t ) = 0 must hold for all ω ∈ It .30 For t ∈ {x1, x1}, the proof of the inclusion is more
complicated, and thus relegated to Appendix A.11.

Proposition 2 provides a tight characterization of optimal signals under the ad-
ditional regularity requirement that the induced posterior mean curve is sufficiently
regular (a graph of a twice differentiable function). If an optimal signal π� induces

30This observation shows that it would suffice to require E[ω1|ω ∈ It ] = t in condition (i) in Proposition 1.
Indeed, (ω1 − t )f ′(t ) + ω2 − f (t ) = 0 for all t ∈ (x1, x1 ) and ω ∈ It implies that (E[ω1|ω ∈ It ] − t )f ′(t ) +
E[ω2|ω ∈ It ] − f (t ) = 0, from which the second required equality E[ω2|ω ∈ It ] = f (t ) follows.
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supp(π�
X ) = Gr(f ), then it must have a simple convex-partitional structure in which only

states belonging to negatively-sloped line segments It are pooled together. Moreover,
the slopes of these line segments are uniquely pinned down by f . The full proof in Ap-
pendix A.11 additionally reveals that the closures of these line segments can only inter-
sect at the endpoints; the endpoints can be found by solving the optimization problem
in condition (ii) in Proposition 2.

As an illustration, we provide conditions under which it is optimal to reveal only
some linear combination of ω1 and ω2. A simple implication of this characterization is
that it is optimal to reveal ω1 +ω2 if the prior is symmetric around the line ω2 =ω1.

Proposition 3. The joint distribution π ∈ �(μ0 ) induced by the disclosure of the real-
ization of aω1 + ω2, with a > 0, is optimal if and only if supp(πX ) ⊂ {(t, at + b) : t ∈ R},
with b ∈R.

Proof. If. Let π ∈ �(μ0 ) be induced by disclosure of the realization of aω1 + ω2, and
suppose that supp(πX ) ⊂ {(t, at + b) : t ∈ R}. Note that π partitions � into parallel open
line segments {It }t∈[x1,x1], where It = relint({ω ∈ � : aω1 +ω2 = 2at + b}), and the range
[x1, x1] is defined by the property that (t, at + b) ∈ �. Since supp(πX ) ⊂ {(t, at + b) : t ∈
R}, the induced posterior mean curve is a line segment with slope a that is a monotone
maximal set in �. Finally, condition (ii) in Proposition 2 holds since{

ω ∈� : t ∈ arg max
s∈[x1,x1]

{
ω1(as + b) +ω2s − s(as + b)

}} = {ω ∈� : aω1 +ω2 = 2at + b},

which is precisely our definition of It . Thus, Proposition 2 shows that π is optimal.
Only if. Here, we prove the necessity part under a regularity condition that the sup-

port of πX corresponding to disclosure of the realization of aω1 +ω2 is a twice continu-
ously differentiable function f with f ′ > 0; we relegate the complete proof (without any
regularity condition) to Appendix A.12. If disclosing aω1 +ω2 is optimal, then the open
line segments It partitioning � (whose existence is guaranteed by Proposition 2 under
the regularity condition) must be parallel and have slope −a. But then we must have
that ω2 = f (t ) − f ′(t )(ω1 − t ) if and only if ω2 = 2at + b− aω1, for some b, which is only
possible when f (t ) = at + b.

Proposition 3 showcases two ways in which Proposition 2 can be used. First, it can be
applied to verify the optimality of a conjectured posterior mean curve. Once a posterior
mean curve is fixed, Proposition 2 allows us to construct the unique candidate solution,
and then check whether it is indeed optimal. Second, Proposition 2 provides a way to
construct the optimal signal. Suppose that we partition � (up to a measure-zero set)
into negatively-sloped open line segments in such a way that pooling the states within
these line segments induces a posterior mean curve that is a graph of some continuous
function f . Then this signal is optimal as long as condition (ii) holds. Moreover, if f
is differentiable and the closures of these line segments are disjoint, then it suffices to
verify that the slope of the line segment inducing posterior mean (t, f (t )) is −f ′(t ).
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Finally, we offer an intuition for our results. We can rewrite the objective function as

v(ω) =ω1ω2 = 1
a

[(
aω1 +ω2

2

)2

−
(
aω1 −ω2

2

)2]
.

Thus, intuitively, the objective is to disclose as much information as possible about
aω1 + ω2 while disclosing as little as possible about aω1 − ω2. Typically, aω1 + ω2 and
aω1 − ω2 will be correlated, leading to a trade-off. However, when E[aω1 − ω2|aω1 +
ω2] = E[aω1 − ω2], (so that disclosing aω1 + ω2 does not change the expectation of
aω1 −ω2), it becomes optimal to disclose aω1 +ω2. The condition supp(πX ) ⊂ {(t, at +
b) : t ∈ R} states precisely that E[ω2|aω1 + ω2] = aE[ω1|aω1 + ω2] + b. Proposition 3
shows that this intuitive condition is not only sufficient but also necessary for the opti-
mality of disclosing aω1 +ω2. Note that no correlation between aω1 −ω2 and aω1 +ω2

requires that a = sd(ω2 )/sd(ω1 ) (where sd stands for standard deviation) implying that
the optimal weight equalizes the contribution of the two states to the variability of the
signal. The general case, covered by Proposition 2, can be understood as setting the
weight a locally, as captured by the condition that the slope of It must be equal to −f ′(t ).

6. Concluding remarks

We conclude with a few remarks on extensions and connections to other problems.

Potential applications Several other potential applications of persuasion duality are
worth mentioning. Galperti, Levkun, and Perego (2024) show that duality can be used to
quantify the value of “data records”; our results could thus be helpful in calculating that
value. Benoît and Dubra (2011), Yang and Zentefis (2024), and Kolotilin and Wolitzky
(2024) characterize the set of feasible distributions of posterior quantiles; it might be in-
teresting to study the consequences of general duality for the special case of “quantile
persuasion”—paralleling the developments for moment persuasion. Finally, a large lit-
erature on rational inattention and costly-information acquisition studies optimization
problems in which a linear objective is maximized over distributions of posterior beliefs
subject to Bayes’ plausibility. Our analysis applies under the assumption that the cost of
information satisfies posterior-separability (see, among many others, Caplin and Dean
(2013, 2015), Gentzkow and Kamenica (2014), and Denti (2022)).

Additional constraints in the persuasion problem Doval and Skreta (2024), inspired
by an earlier contribution of Le Treust and Tomala (2019), observe that many persua-
sion problems feature additional linear constraints (such as moral-hazard, inventive-
compatibility, or capacity constraints) that modify the structure of optimal persuasion
schemes. Our general duality approach easily accommodates a finite number M of ad-
ditional linear constraints: In this case, there are M new prices that enter the objec-
tive function in the dual problem (D) (see an earlier version of the paper Dworczak and
Kolotilin (2019), for details).

Such an extension could be useful in analyzing problems with a privately informed
Receiver (see, among others, Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) and Guo
and Shmaya (2019)). Candogan and Strack (2023) point out that the one-dimensional
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moment persuasion problem with a privately informed Receiver reduces to the stan-
dard one-dimensional moment persuasion problem with additional linear constraints.
It would be interesting to see if duality could be fruitfully applied to such a representa-
tion of the informed-Receiver problem.

Belief-based versus recommendation-based approach We have formulated the persua-
sion problem in terms of distributions of posterior beliefs. An alternative approach is to
explicitly introduce a Sender and a Receiver, and maximize the Sender’s utility from the
realized state and the Receiver’s action over joint distributions of states and recommen-
dations, subject to Bayes’ plausibility and an obedience constraints for the Receiver.

We first note that none of these two approaches is more general—it is in fact pos-
sible to reformulate the belief-based problem using the recommendation-based ap-
proach, and vice versa. To illustrate this point, suppose that � is a finite set. Con-
sider a problem in which the Sender’s and Receiver’s utility functions are w(a, ω) and
u(a, ω), respectively, where a is the action of the Receiver. Kamenica and Gentzkow
(2011) show that this problem can be analyzed through the belief-based approach by
defining V (μ) = Eμ[w(a�(μ), ω)], where a�(μ) ∈ arg maxa∈AEμ[u(a, ω)]. Conversely, the
problem we introduced in Section 2 is equivalent to a problem in which the action space
is A = �(�), the Sender’s utility is given by w(a, ω) = V (a), and the Receiver’s utility is
u(a, ω) = 2a(ω) − ∑

ω′∈� a2(ω′ ). Indeed, given a posterior μ, the Receiver takes an ac-
tion a�(μ) = μ, which maximizes his expected utility

∑
ω∈�(2a(ω)μ(ω) − a2(ω)), and

thus the objective function is V (μ).
In the context of moment persuasion, the two approaches are unified by Theorem 5

through the lens of duality—this is because the martingale constraint in the definition
of the feasible set �(μ0 ) can be regarded as an obedience constraint for a Receiver with
quadratic preferences who matches the action to the state (see Kolotilin (2018)). It is
interesting to ask whether duality could similarly cast light on the relationship between
the two approaches in more general contexts, such as a multidimensional version of the
nonlinear persuasion problem considered by Kolotilin, Corrao, and Wolitzky (2024).

Multiple receivers Perhaps the biggest limitation of our setting is that it does not cover
the case in which a Sender wishes to communicate privately with multiple interacting
Receivers. Of course, our results do apply when the Sender is restricted to public sig-
nals, as in Inostroza and Pavan (2023). Moreover, our duality approach could be useful
in analyzing private persuasion problems in conjunction with existing results. Math-
evet, Perego, and Taneva (2020) show how to adapt the belief-based approach to per-
suasion in games, by decomposing a general signal into its public and (purely) private
part. Our results apply to the optimal design of the public part of the signal. Additionally,
in a recent contribution, Arieli, Babichenko, and Sandomirskiy (2023) apply transporta-
tion duality to cast light on the optimal design of the purely private signal—it is natu-
ral to ask whether our approach and theirs could be unified. Duality may also be use-
ful within the recommendation-based approach to information design in games (intro-
duced by Bergemann and Morris (2016), and Taneva (2019)). Galperti and Perego (2018)
obtain strong duality under finite action and state spaces, while Smolin and Yamashita
(2024) rely on weak duality in their analysis of “concave games.” Obtaining conditions
for strong duality in a general environment remains an open problem.
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Appendix: Proofs

We will prove the results in Section 3 in a different order than they appear in Section 3.
We first deal with weak duality and primal attainment, as their proofs are standard. We
then prove Theorem 4. Finally, relying on Theorem 4, we prove Theorem 2 and Theo-
rem 3.

A.1 Proof of Theorem 1 and primal attainment

We first prove Theorem 1. By the definition of the Lebesgue integral, τ belongs to T (μ0 )
if and only if for any measurable and bounded p : � → R,∫

�(�)

∫
�
p(ω) dμ(ω) dτ(μ) =

∫
�
p(ω) dμ0(ω).

Thus, for any τ ∈ T (μ0 ) and any such p that additionally satisfies V (μ) ≤ ∫
� p(ω) dμ(ω)

for all μ ∈ �(�), we have∫
�(�)

V (μ) dτ(μ) ≤
∫
�(�)

∫
�
p(ω) dμ(ω) dτ(μ) =

∫
�
p(ω) dμ0(ω).

Taking the supremum over T (μ0 ) on the left-hand side and the infimum over P(V ) on
the right-hand side (any p ∈ P(V ) is measurable and bounded) yields the desired result.

Next, we prove primal attainment under the weaker assumption that V is bounded
only from above, because this stronger version will be used in the proof of Theorem 8.

Lemma 2. Let V : �(�) → R∪ {−∞} be bounded from above and upper semicontinuous.
Then (P) has an optimal solution.

Proof. Because the function τ → ∫
�(�) μdτ(μ) is continuous, the feasible set T (μ0 )

is compact, being a closed subset of the compact set �(�(�)). Moreover, T (μ0 ) is
nonempty, as it contains the Dirac probability measure δμ0 at μ0, which corresponds
to no disclosure. Since V is bounded from above and upper semicontinuous, the func-
tion τ → ∫

V (μ) dτ(μ) is also upper semicontinuous, and thus attains its maximum on
the compact set T (μ0 ), by the Weierstrass theorem. Thus, an optimal solution τ� to the
problem (P) exists.

A.2 Proof of Theorem 4

We start with a key lemma.

Lemma 3. Let μ0, η0 ∈ �(�) and τ ∈ T (μ0 ). There exists a measurable function η :
�(�) → �(�) such that∫

�(�)
η(μ) dτ(μ) = η0 and

∫
�(�)

∥∥μ−η(μ)
∥∥

KR dτ(μ) = ‖μ0 −η0‖KR.
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Before proving Lemma 3, we show that it implies Theorem 4. First, since V is Lips-
chitz, it is upper semicontinuous, and hence, by Lemma 2, for any μ0 ∈ �(�), there exists
τ ∈ T (μ0 ) that attains the concave closure of V at μ0, so that V̂ (μ0 ) = ∫

�(�) V (μ) dτ(μ).
Next, since V is Lipschitz, there exists L ∈ R, such that, for all μ0, η0 ∈ �(�), we have
|V (μ0 ) − V (η0 )| ≤ L‖μ0 −η0‖KR. Then, using Lemma 3 to define the function η, we
obtain

V̂ (μ0 ) − V̂ (η0 ) ≤
∫
�(�)

V (μ) dτ(μ) −
∫
�(�)

V
(
η(μ)

)
dτ(μ)

≤
∫
�(�)

L
∥∥μ−η(μ)

∥∥
KR dτ(μ) = L‖μ0 −η0‖KR.

By reversing the roles of μ0 and η0, we conclude that V̂ is Lipschitz (with constant L).
Thus, it remains to prove Lemma 3.

Proof of Lemma 3. The idea behind the proof is to “perturb” each posterior belief
μ ∈ �(�) (with η describing the perturbation function) in such a way that perturbed
posteriors η(μ) average out to η0, and the average distance between each posterior μ

and its perturbation η(μ) is the same as the distance between the “priors” μ0 and η0.
A naive approach would be to perturb each posterior μ by the same magnitude and in
the same direction η0 −μ0. However, this could easily take the perturbed beliefs outside
the set �(�). Thus, our construction is more complicated: We rely on a property of the
Kantorovich–Rubinstein norm to find the transportation plan λ ∈ �(�×�) that defines
the distance between μ0 and η0; we then define the perturbation by conditioning on
each realized posterior belief μ ∈ �(�), and using a properly constructed conditional
transportation plan.

Since every norm is convex, we have ‖μ0 −η0‖KR ≤ ∫
�(�)‖μ−η(μ)‖KR dτ(μ) for any

measurable function η : �(�) → �(�) such that
∫
�(�) η(μ) dτ(μ) = η0. Thus, it suffices

to show the existence of a measurable function η : �(�) → �(�) satisfying the reverse
inequality.

By the Kantorovich–Rubinstein theorem (Theorem 8.10.45 in Bogachev (2007)),

‖μ0 −η0‖KR = min
λ∈�(μ0,η0 )

∫
�×�

ρ
(
ω, ω′)dλ

(
ω, ω′),

where �(μ0, η0 ) is the set of probability measures λ ∈ �(� × �) such that λ(A × �) =
μ0(A) and λ(� × B) = η0(B) for all measurable sets A, B ⊂ �. In particular, the mini-
mum is attained at some λ ∈�(μ0, η0 ), which we fix for the remainder of the proof.

Define a probability measure σ ∈ �(�(�) × �) by σ(M , A) = ∫
M μ(A) dτ(μ) for all

measurable M ⊂ �(�) and A ⊂ �. For all measurable A ⊂ �, we have σ(�(�), A) =
μ0(A) because

∫
�(�) μdτ(μ) = μ0. For any probability measure on a product of two

compact metric spaces, we can define its conditional measures (Theorem 10.4.5 in Bo-
gachev (2007)). Since � and �(�) are compact, there exists a measurable function
ω → σ(·|ω), from � into �(�(�)), such that σ(M , A) = ∫

Aσ(M|ω) dμ0(ω) for all mea-
surable A ⊂ � and M ⊂ �(�). Similarly, there exists a measurable function ω → λ(·|ω),
from � into �(�), such that λ(A, B) = ∫

A λ(B|ω) dμ0(ω) for all measurable A, B ⊂�.
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Define a probability measure ζ ∈ �(� × � × �(�)) by ζ(A, B, M ) = ∫
A λ(B|ω)σ(M|

ω) dμ0(ω) for all measurable A, B ⊂�, and M ⊂ �(�). For all measurable A, B ⊂�, and
M ⊂ �(�), we have ζ(A, B, �(�)) = λ(A, B) and ζ(A, �, M ) = σ(M , A), by construc-
tion. Since �×� and �(�) are compact, there exists a measurable function μ → ζ(·|μ),
from �(�) into �(�×�), such that ζ(A, B, M ) = ∫

M ζ(A, B|μ) dτ(μ) for all measurable
A, B ⊂�, and M ⊂ �(�).

Finally, define a measurable function μ→ η(μ), from �(�) into �(�), by η(μ)(B) =
ζ(�, B|μ) for all μ ∈ �(�) and all measurable B ⊂ �. Notice that the conditional mea-
sure ζ(·, ·|μ) on �×� is a feasible transportation plan between μ and η(μ), for τ-almost
all μ ∈ �(�). Indeed, ζ(�, ·|μ) = η(μ)(·) by construction, and for any measurable A⊂�

and M ⊂ �(�),∫
M
ζ(A, �|μ) dτ(μ) = ζ(A, �, M ) = σ(M , A) =

∫
M
μ(A) dτ(μ),

establishing that ζ(·, �|μ) = μ(·) for τ-almost all μ ∈ �(�).
To show that the constructed function η satisfies the required properties, note first

that, for any measurable B ⊂ �,∫
�(�)

η(μ)(B) dτ(μ) =
∫
�(�)

ζ(�, B|μ) dτ(μ) = ζ
(
�, B, �(�)

) = λ(�, B) = η0(B),

and hence
∫
�(�) η(μ) dτ(μ) = η0. Moreover,∫
�(�)

∥∥μ−η(μ)
∥∥

KR dτ(μ) ≤
∫
�(�)

[∫
�×�

ρ
(
ω, ω′)dζ

(
ω, ω′|μ

)]
dτ(μ)

=
∫
�×�

ρ
(
ω, ω′)dλ

(
ω, ω′) = ‖μ0 −η0‖KR,

where the inequality follows from the Kantorovich–Rubinstein theorem and the fact that
the conditional measure ζ(·, ·|μ) on � × � is a feasible transportation plan between μ

and η(μ), for τ-almost all μ ∈ �(�), as shown above.

A.3 Proof of Theorem 2

Existence of an optimal solution to the primal problem follows from Lemma 2.
To prove the rest of the theorem, we introduce some basic tools from convex anal-

ysis used in the proof of the next lemma.31 Let E be a normed vector space and E� its
topological dual space, that is, the space of all continuous linear functions on E. Let
ϕ : E → R ∪ {+∞} be an extended-valued function that is not identically {+∞}. The
Legendre transform of ϕ is the function ϕ� : E� →R∪ {+∞} given by

ϕ�
(
z�

) = sup
z∈E

{〈
z�, z

〉 −ϕ(z)
}

for all z� ∈E�,

31See Chapter 1.4 in Brezis (2011) for further details.
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where 〈·, ·〉 is the duality product between E and E�. It is easy to verify that ϕ� is convex,
lower semicontinuous, and not identically {+∞}. Next, define the function ϕ�� : E →
R∪ {+∞} as the Legendre transform of ϕ�, restricted from E�� to E,

ϕ��(z) = sup
z�∈E�

{〈
z�, z

〉 −ϕ�
(
z�

)}
for all z ∈ E.

Clearly, ϕ�� is a convex and lower semicontinuous function satisfying ϕ��(z) ≤ ϕ(z) for
all z ∈ E. The Fenchel–Moreau theorem states that if ϕ : E → R ∪ {+∞} is convex and
lower semicontinuous, and not identically {+∞}, then ϕ�� = ϕ. We remark that the
Fenchel–Moreau theorem is a consequence of an appropriate hyperplane separation
theorem.32

We prove the theorem in two steps. First, we show the conclusion for Lipschitz ob-
jective functions. Here, we rely on the (already proven) Theorem 4. Second, we use an
approximation argument to extend the conclusion to all bounded and upper semicon-
tinuous objectives.

Lemma 4. Let V ∈ Lip(�(�)). Then (O) holds.

Proof. Let E = (M(�), ‖·‖KR ); then, as argued in the main text, E� = Lip(�). Define
the function ϕ on M(�) as

ϕ(η) =

⎧⎪⎨⎪⎩
− sup

τ∈T (η)

∫
�(�)

V (μ) dτ(μ), η ∈ �(�),

+∞, η /∈ �(�).

First, we note that ϕ is convex. Indeed, let η1, η2 ∈ M(�) and λ ∈ (0, 1). If η1, η2 ∈
�(�), then, by Lemma 2, there exist τ1 ∈ T (η1 ) and τ2 ∈ T (η2 ) such that

ϕ(η1 ) = −
∫
�(�)

V (μ) dτ1(μ) ∈R and ϕ(η2 ) = −
∫
�(�)

V (μ) dτ2(μ) ∈R.

By the definition of T ,

λτ1 + (1 − λ)τ2 ∈ T
(
λη1 + (1 − λ)η2

)
and hence, by the definition of ϕ,

ϕ
(
λη1 + (1 − λ)η2

) ≤ −
∫
�(�)

V (μ) d
(
λτ1 + (1 − λ)τ2

) = λϕ(η1 ) + (1 − λ)ϕ(η2 ).

If η1 /∈ �(�) or η2 /∈ �(�), then, trivially,

ϕ
(
λη1 + (1 − λ)η2

) ≤ λϕ(η1 ) + (1 − λ)ϕ(η2 ) = +∞.

Second, we note that ϕ : M(�) → R∪ {+∞} is lower semicontinuous, because ϕ is Lips-
chitz on the compact set �(�), by Theorem 4.

32Indeed, an earlier version of this paper Dworczak and Kolotilin (2019) contained a proof of strong
duality that directly relied on a hyperplane separation theorem.
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Let us compute the Legendre transform of ϕ. For each g ∈ Lip(�),

ϕ�(g) = sup
η∈M(�)

{∫
�
g(ω) dη(ω) −ϕ(η)

}

= sup
η∈�(�),τ∈T (η)

{∫
�
g(ω) dη(ω) +

∫
�(�)

V (μ) dτ(μ)

}

= sup
η∈�(�),τ∈T (η)

{∫
�(�)

(∫
�
g(ω) dμ(ω) + V (μ)

)
dτ(μ)

}

= sup
η∈�(�)

{∫
�
g(ω) dη(ω) + V (η)

}
,

where the last equality follows from the fact that by treating Ṽ (μ) := ∫
� g(ω) dμ(ω) +

V (μ) as an objective function, we obtain a persuasion problem in which we choose both
a prior η and a distribution τ of posteriors, which averages out to the prior, so it is opti-
mal to choose a prior η ∈ arg maxμ∈�(�) Ṽ (μ) and a degenerate distribution τ = δη.33

Let us finally compute ϕ��(μ0 ),

ϕ��(μ0 ) = sup
p∈Lip(�)

{∫
�
p(ω) dμ0(ω) −ϕ�(p)

}

= sup
p∈Lip(�)

{∫
�
p(ω) dμ0(ω) − sup

η∈�(�)

{∫
�
p(ω) dη(ω) + V (η)

}}

= − inf
p∈Lip(�)

{∫
�
p(ω) dμ0(ω) + sup

η∈�(�)

{
V (η) −

∫
�
p(ω) dη(ω)

}}

= − inf
p∈Lip(�)

{∫
�
p(ω) dμ0(ω) : sup

η∈�(�)

{
V (η) −

∫
�
p(ω) dη(ω)

}
= 0

}

= − inf
p∈P(V )

{∫
�
p(ω) dμ0(ω)

}
,

where the third equality follows from substituting p for −p as the optimization variable,
and the fourth follows, because for any fixed η, adding a constant to p does not change
the value of the outer infimum—it is thus without loss of generality to normalize p by in-
sisting that the inner supremum is equal to 0 (note that the inner supremum is attained
and finite at each p ∈ Lip(�)). The Fenchel–Moreau theorem implies that ϕ = ϕ��, so
(O) follows from ϕ(μ0 ) = ϕ��(μ0 ).

Lemma 5. Let V be bounded and upper semicontinuous. Then (O) holds.

Proof. This follows from a standard approximation argument as, for example, in the
proof of Theorem 1.3 in Villani (2003). By Baire’s theorem (see, e.g., Box 1.5 in San-
tambrogio (2015)), there exists a nonincreasing sequence of Lipschitz functions Vk ∈

33This observation is also made in the proof of Theorem 2 in Dworczak (2020).
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Lip(�(�)) converging pointwise to V . That is, Vk(μ) ≥ Vk+1(μ) for all μ ∈ �(�) and
k ∈ N, and limk→∞ Vk(μ) = V (μ) for all μ ∈ �(�). Let τ�k denote an optimal solution to
(P) with the objective function Vk. For each k ∈N, we have∫

�(�)
V (μ) dτ�(μ) ≤ inf

p∈P(V )

∫
�
p(ω) dμ0(ω) ≤ inf

p∈P(Vk )

∫
�
p(ω) dμ0(ω)

=
∫
�(�)

Vk(μ) dτ�k(μ),

where the first inequality holds by Theorem 1, the second inequality holds by P(Vk ) ⊂
P(V ) for Vk ≥ V , and the equality holds by Lemma 4 for Lipschitz Vk. To establish (O)
for upper semicontinuous V , it is thus sufficient to show that

lim
k→∞

∫
�(�)

Vk(μ) dτ�k(μ) ≤
∫
�(�)

V (μ) dτ�(μ).

Thanks to compactness of T (μ0 ), up to extraction of a subsequence, we can suppose
that τ�k converges weakly to some τ ∈ T (μ0 ). Then, for each j ∈N, we have

lim
k→∞

∫
�(�)

Vk(μ) dτ�k(μ) ≤ lim
k→∞

∫
�(�)

Vj(μ) dτ�k(μ) =
∫
�(�)

Vj(μ) dτ(μ),

where the first inequality holds because Vk ≤ Vj for k≥ j, and the equality holds because
Vj is (Lipschitz) continuous and τ�k → τ. Then, letting j go to infinity and invoking the
monotone convergence theorem,

lim
j→∞

∫
�(�)

Vj(μ) dτ(μ) =
∫
�(�)

V (μ) dτ(μ),

we obtain

lim
k→∞

∫
�(�)

Vk(μ) dτ�k(μ) ≤
∫
�(�)

V (μ) dτ(μ) ≤
∫
�(�)

V (μ) dτ�(μ),

where the last inequality holds because τ� is an optimal solution to (P). This establishes
(O) for upper semicontinuous V . As a by-product, it also shows the optimality of τ.34

A.4 Proof of Corollary 1

By Theorem 2, τ ∈ T (μ0 ) and p ∈ P(V ) are optimal solutions to (P) and (D) if and only if∫
�(�)

V (μ) dτ(μ) =
∫
�
p(ω) dμ0(ω) ⇐⇒

∫
�(�)

(
V (μ) −

∫
�
p(ω) dμ(ω)

)
dτ(μ) = 0.

Since the term in parenthesis is nonpositive for p ∈ P(V ), it follows that τ(�) = 1 where

� =
{
μ ∈ �(�) : V (μ) =

∫
�
p(ω) dμ(ω)

}
=

{
μ ∈ �(�) : V (μ) ≥

∫
�
p(ω) dμ(ω)

}
.

34In the persuasion literature, a similar argument appears in the proof of Theorem 1 in Dizdar and Kováč
(2020) for the special case of one-dimensional moment persuasion.
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The set � is closed because V (μ) is upper semicontinuous in μ and
∫
� p(ω) dμ(ω) is

continuous in μ, given that each p ∈ P(V ) is Lipschitz continuous. Thus, supp(τ) ⊂ �

and (C) follows, since supp(τ) is defined as the smallest closed set on which τ is concen-
trated.

A.5 Proof of Theorem 3

The duality theorem in Gale (1967) shows that V̂ is superdifferentiable at μ0 if and only
if V̂ has bounded steepness at μ0. Thus, Theorem 3 follows from the following lemma.

Lemma 6. There exists an optimal solution p ∈ P(V ) to (D) if and only if V̂ is superdiffer-
entiable at μ0.

Proof. If V̂ is superdifferentiable at μ0, then, by the fact that (M(�), ‖·‖KR )� = Lip(�),
there exists p ∈ Lip(�) such that

V̂ (μ0 ) =
∫
�
p(ω) dμ0(ω) and V̂ (μ) ≤

∫
�
p(ω) dμ(ω), for all μ ∈ �(�).

Thus,

V (μ) ≤ V̂ (μ) ≤
∫
�
p(ω) dμ(ω), for all μ ∈ �(�),

so p ∈ P(V ) is an optimal solution to (D), by Theorem 1.
Conversely, if p ∈P(V ) is optimal, then we have p ∈ Lip(�),

V (μ0 ) =
∫
�
p(ω) dμ0(ω), and V (μ) ≤

∫
�
p(ω) dμ(ω), for all μ ∈ �(�).

By the definition of the concave envelope,

V (μ) ≤
∫
�
p(ω) dμ(ω), for all μ ∈ �(�).

Therefore, by Theorem 2,

V̂ (μ0 ) =
∫
�
p(ω) dμ0(ω), and V̂ (μ) ≤

∫
�
p(ω) dμ(ω), for all μ ∈ �(�).

Thus, p is a supergradient of V̂ at μ0, and thus V̂ is superdifferentiable at μ0 (simply
define H(μ) = ∫

� p(ω) dμ(ω), which is a continuous linear function on M(�) because
p ∈ Lip(�)).

A.6 Proof of Lemma 1

Suppose that v is L-Lipschitz on X ⊂ R
N . Since all norms are equivalent in an N-

dimensional Euclidean space, without loss of generality, we endow R
N with the Eu-

clidean norm,

‖x‖ =
√√√√ N∑

i=1

x2
i , for all x ∈ R

N .
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For any μ, η ∈ �(�), with μ �= η,∣∣V (μ) − V (η)
∣∣

‖μ−η‖KR
=

∣∣v(Eμ[ω]
) − v

(
Eη[ω]

)∣∣∥∥Eμ[ω] −Eη[ω]
∥∥

∥∥Eμ[ω] −Eη[ω]
∥∥

‖μ−η‖KR
≤L

∥∥Eμ[ω] −Eη[ω]
∥∥

‖μ−η‖KR
.

Because the function f (ω) =ωi is 1-Lipschitz,

∣∣Eμ[ωi] −Eη[ωi]
∣∣ =

∣∣∣∣∫
�
ωi d(μ−η)(ω)

∣∣∣∣ ≤ ‖μ−η‖KR,

and thus

∥∥Eμ[ω] −Eη[ω]
∥∥ =

√√√√ N∑
i=1

(
Eμ[ωi] −Eη[ωi]

)2 ≤ √
N‖μ−η‖KR,

showing that V is L
√
N-Lipschitz.

A.7 Proof of Theorem 5

By Lemma 1, we know that V : �(�) → R is Lipschitz, since v is Lipschitz. It follows
from Theorems 2, 3, and 4 that there exists a solution p ∈ Lip(�) to the dual problem
(D); moreover, since (PM) is a special case of the general problem (P), π ∈ �(μ0 ) is then
optimal for (PM) if and only if∫

X
v(x) dπX(x) =

∫
�
p(ω) dμ0(ω).

Let p̌ be the convex roof extension of p from � to X , defined in the main text. By
construction, p̌ ≤ p on �. Moreover, the infimum in the definition of p̌ is attained
because p is (Lipschitz) continuous on � and the set of feasible distributions is com-
pact. Hence, for any x ∈ X , we can write p̌(x) = ∫

� p(ω) dμx(ω) for some μx ∈ �(�)
with

∫
�ωdμx(ω) = x. By the definition of p̌, for any x, y ∈X , λ ∈ (0, 1), we have

λp̌(x) + (1 − λ)p̌(y ) =
∫
�
p(ω) d

(
λμx + (1 − λ)μy

)
(ω) ≥ p̌

(
λx+ (1 − λ)y

)
,

showing that p̌ is convex. Moreover, by feasibility of p, for any x ∈X ,

p̌(x) =
∫
�
p(ω) dμx(ω) ≥ V (μx ) = v(x).

Next, we prove a key lemma.

Lemma 7. Let v be L-Lipschitz and p̌ ≥ v. There exists a measurable function q : X → R
N

such that ‖q(x)‖ ≤ L for all x ∈X , and

p̌(y ) ≥ v(x) + q(x) · (y − x), for all y, x ∈X .
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Proof. Define

F(x) := {
r ∈R

N : p̌(y ) ≥ v(x) + r · (y − x), for all y ∈X
}

,

and let

q(x) := arg minr∈F(x)‖r‖, for all x ∈X .

Note that F(x) is closed-valued and convex-valued. Thus, if F(x) is nonempty, then q(x)
exists and is unique because q(x) is the projection of 0 onto the nonempty closed convex
set F(x). If we can additionally prove that ‖q(x)‖ ≤ L for all x ∈ X , then q will be mea-
surable by the measurable maximum theorem (Theorem 18.19 in Aliprantis and Border
(2006)). To see that, note that the definition of q will not change if we additionally require
that ‖r‖ ≤L, so that the correspondence x⇒ F(x)∩ {r ∈R

N : ‖r‖ ≤L} is compact-valued
and upper hemicontinuous (given that p̌ is lower semicontinuous and v is continuous),
and thus measurable, by Theorem 18.20 in Aliprantis and Border (2006).

We deal with some easy cases first. If 0 ∈ F(x), then q(x) = 0 and 0 = ‖q(x)‖ ≤ L.
Next, if 0 /∈ F(x) but p̌(x) = v(x), then we have, for any y ∈X ,

p̌(y ) − p̌(x) ≥ v(y ) − v(x) ≥ −L‖y − x‖,

because p̌ ≥ v and v is L-Lipschitz. By the duality theorem in Gale (1967), q(x) is well-
defined and ∥∥q(x)

∥∥ = − inf
y∈X

p̌(y ) − p̌(x)
‖y − x‖ ≤L.

Thus, for the rest of the proof, we fix an arbitrary x ∈ X such that 0 /∈ F(x) and p̌(x) >
v(x).

We first show that F(x) is nonempty. Because p̌(x) > v(x), the point (x, v(x)) does
not belong to the epigraph of p̌, defined as epi(p̌) := {(y, t ) ∈X ×R : t ≥ p̌(y )}. Note that
epi(p̌) is closed and convex, because p̌ is lower semicontinuous (see footnote 19) and
convex. By the separation theorem (e.g., Corollary 11.4.1 in Rockafellar (1970)), there
exists (α, β) ∈R

N ×R such that, for all y ∈X and t ≥ p̌(y ),

α · y +βt > α · x+βv(x).

Clearly, β ≥ 0; otherwise, the inequality would be violated for sufficiently large t. More-
over, β �= 0; otherwise, the inequality would be violated for (y, t ) = (x, p̌(x)). Thus, eval-
uating the inequality for t = p̌(y ), for all y ∈ X , proves that −α/β belongs to F(x). Thus,
F(x) is indeed nonempty (and hence q(x) is well-defined).

We now show that ‖q(x)‖ ≤ L. Define the set

Y := {
y ∈X : p̌(y ) = v(x) + q(x) · (y − x)

}
.

Note that Y is nonempty: If there is no y ∈X such that p̌(y ) = v(x) + q(x) · (y − x), then
the constraint in the definition of F(x) is slack, so it is possible to reduce ‖r‖, contra-
dicting that q(x) is a minimizer (this step uses the fact that p̌ is lower semicontinuous).
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Since p̌ is convex, the set Y is convex. Since p̌(x) > v(x), the set Y cannot contain x.
Also, let

E := {
e ∈R

N : e · q(x) < 0
}

.

We will prove that there exists y� ∈ Y such that e · (y� − x) ≥ 0 for all e ∈ E. Suppose that
such y� does not exist. Since any such y� must satisfy y� − x = −tq(x) for some t ≥ 0,
we conclude that the compact convex set Y − x := {y − x : y ∈ Y } and the closed convex
cone {−tq(x) : t ≥ 0} must be disjoint. By the separation theorem (e.g., Corollary 11.4.1
in Rockafellar (1970)), there exists e ∈R

N such that

max
y∈Y

e · (y − x) < inf
t≥0

e · (−tq(x)
)
.

Notice that we must have e · q(x) ≤ 0, as otherwise the right-hand side is −∞ and the
inequality cannot hold. In fact, there exists e ∈R

N such that e · q(x) < 0, because we can
always replace e with e− εq(x) for a sufficiently small ε > 0 without violating the above
inequality, given that Y is compact. Since there is e ∈ E such that e · (y − x) < 0 for all
y ∈ Y , there is δ > 0 such that for all z in the δ-neighborhood of Y , we have e · (z−x) < 0,
and thus for all ε > 0,

v(x) + (
q(x) + εe

) · (z − x) < v(x) + q(x) · (z − x).

Since p̌(z) > v(x) + q(x) · (z − x) for z /∈ Y , and p̌ is convex and lower semicontinuous,
there exists γ > 0 such that for all z ∈X outside the δ-neighborhood of Y , we have

p̌(z) > v(x) + q(x) · (z − x) + γ.

Consequently, there exists a sufficiently small ε > 0 such that, for all z ∈X ,

p̌(z) > v(x) + (
q(x) + εe

) · (z − x).

This is a contradiction with the definition of q(x). Indeed, the above inequality shows
that q(x) + εe ∈ F(x) and, by the fact that e ∈ E and q(x) �= 0, we have ‖q(x) + εe‖ <

‖q(x)‖ for sufficiently small ε > 0.
We have thus proven that there exists y� ∈ Y such that e · (y� − x) ≥ 0 for all e ∈ E.

Since e · (y� − x) ≥ 0 for all e ∈ E and Y does not contain x, it follows that there exists
t > 0 such that x− y� = tq. Thus,

q(x) · (x− y�
) = ∥∥q(x)

∥∥∥∥x− y�
∥∥.

And since y� ∈ Y , we have that

v(x) − p̌
(
y�

) = q(x) · (x− y�
)
.

Putting these two equalities together, we conclude that∥∥q(x)
∥∥∥∥x− y�

∥∥ = v(x) − p̌
(
y�

) ≤ v(x) − v
(
y�

) ≤L
∥∥x− y�

∥∥,

showing that ‖q(x)‖ ≤ L.
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Fixing q(x) from Lemma 7, we define

p̄(y ) := sup
x∈X

{
v(x) + q(x) · (y − x)

}
, for all y ∈X .

Note that p̄ is convex as a pointwise supremum of affine functions. It lies everywhere
above v, by definition. Finally, we show that p̄ is L-Lipschitz. Take any y, z ∈ X . Let
xn be a sequence of points in X that generate the supremum in the definition of p̄(y ).
Because X is compact and q is bounded, we can assume that xn and q(xn ) converge.
Then we have that

p̄(y ) − p̄(z) = lim
n→∞

{
v(xn ) + q(xn ) · (y − xn )

} − p̄(z)

≤ lim
n→∞

{
v(xn ) + q(xn ) · (y − xn ) − v(xn ) − q(xn ) · (z − xn )

}
= lim

n→∞
{
q(xn )

} · (y − z) ≤L‖y − z‖.

Because y and z were arbitrary, this proves that p̄ is L-Lipschitz.
Finally, notice that p̄ ≤ p̌, by Lemma 7. Therefore, on �, we have that

p̄ ≤ p̌≤ p.

Since p̄ is Lipschitz, p̄ ≥ v and p̄ is convex, it follows that p̄ (restricted to �) is feasible
for the dual (D); indeed, for any μ ∈ �(�),∫

�
p̄(ω) dμ(ω) ≥ p̄

(∫
�
ωdμ(ω)

)
≥ v

(∫
�
ωdμ(ω)

)
= V (μ).

But since p solves the dual problem (D), we must have that p = p̄ almost surely on �.
Since both these function are (Lipschitz) continuous, we can conclude that p and p̄ co-
incide on �. In particular, we have shown that p̄ is convex and solves (D) when restricted
to �.

Next, we prove that if π ∈�(μ0 ) is optimal for (PM), then conditions (i) and (ii) hold.
We have already shown that p̄ is convex, Lipschitz, and satisfies p̄ ≥ v. To complete the
proof that condition (i) holds, note that∫

X
v(x) dπX(x) =

∫
�
p(ω) dμ0(ω) =

∫
�
p̄(ω) dμ0(ω),

where the first equality is due to the absence of a duality gap (Theorem 2) and the second
is by the fact that p = p̄ on �. We can also prove that condition (ii) holds: p̄ satisfies the
required equality by definition when q is defined by Lemma 7; moreover,∫

X×�

(
v(x) + q(x) · (ω− x)

)
dπ(x, ω) =

∫
X
v(x) dπX(x) =

∫
�
p̄(ω) dμ0(ω)

=
∫
X×�

p̄(ω) dπ(x, ω),
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where the first and last equality follow from the feasibility of π, and the second equality
was established above. Because, by definition, p̄(ω) ≥ v(x) + q(x) · (ω− x) for all (x, ω),
we must have that for π-almost all (x, ω),

v(x) + q(x) · (ω− x) = p̄(ω).

It remains to show that any one of conditions (i) or (ii) imply optimality of π ∈ �(μ0 ).
Note that we will not use the assumption that v is Lipschitz in that part of the proof.

Assume that condition (i) holds. Note that, under these assumptions, p̄ is feasible
for the dual (D) when viewed as a function on � (in particular, as shown previously,
convexity and p̄ ≥ v imply that

∫
� p̄(ω) dμ(ω) ≥ V (μ), for all μ ∈ �(�)). But then the

fact that πX achieves no duality gap means that π must be optimal.
Assume that condition (ii) holds. Note that under these assumptions, we have shown

previously (using only the definition of p̄ and the property that q is measurable with
‖q(x)‖ ≤ L for all x ∈ X) that p̄ is feasible for the dual (D) on �. Moreover, by the last
equation of condition (ii),∫

�
p̄(ω) dμ0(ω) =

∫
X×�

(
v(x) + q(x) · (ω− x)

)
dπ(x, ω) =

∫
X
v(x) dπX(x),

showing that p̄ and πX achieve no duality gap, and hence π is optimal.

A.8 Proof of Theorem 6 and Remark 1

Since v is continuously differentiable on the compact set X , it is L-Lipschitz on X where

L := max
x∈X

∥∥∇v(x)
∥∥<∞,

so all previous results apply. We now prove the two implications of the equivalence sep-
arately.

If. Fix π ∈ �(μ0 ), and let S = supp(πX ). The function pS is convex (see footnote 22).
Moreover, by condition (M), pS ≥ v. Thus, there exists a function q as in Lemma 7. Then,
for any feasible π̃ ∈�(μ0 ), we have∫

X×�
v(x) dπ̃(x, ω) =

∫
X×�

(
v(x) + q(x) · (ω− x)

)
dπ̃(x, ω)

≤
∫
X×�

pS(ω) dπ̃(x, ω) =
∫
�
pS(ω) dμ0(ω) =

∫
X×�

pS(ω) dπ(x, ω)

=
∫
X×�

(
v(x) + ∇v(x) · (ω− x)

)
dπ(x, ω) =

∫
X×�

v(x) dπ(x, ω),

showing that π is optimal. The inequality follows from Lemma 7. The second to last
equality holds by condition (M). The remaining equalities follow from the feasibility of
π̃ and π.

Only if. Fix an optimal distribution π ∈�(μ0 ). By Theorem 5, there exists an optimal
solution p to (D) and it is convex on �. Define the convex roof extension p̌ of p from �
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to X , as in formula (R). For each x ∈X , the infimum in the definition of p̌(x) is attained
at some μx ∈ �(�). By feasibility of p, for any x ∈ X ,

p̌(x) =
∫
�
p(ω) dμx(ω) ≥ V (μx ) = v(x).

Consequently,∫
X
v(x) dπX(x) ≤

∫
X
p̌(x) dπX(x) ≤

∫
�
p̌(ω) dμ0(ω) =

∫
�
p(ω) dμ0(ω),

where the first inequality holds because p̌ ≥ v, the second inequality holds because p̌

is convex and μ0 is a mean-preserving spread of πX , and the equality holds because p̌

coincides with p on �, given that p is convex on �. Hence, condition (i) in Theorem 5
implies that all inequalities hold with equality,∫

X
v(x) dπX(x) =

∫
X
p̌(x) dπX(x) =

∫
�
p̌(ω) dμ0(ω).

Thus, πX(Š) = 1, where Š = {x ∈ X : v(x) = p̌(x)}. Since X is closed, v is continuous, p̌
is lower semicontinuous (see footnote 19), and the set Š can be equivalently written as
Š = {x ∈X : v(x) ≥ p̌(x)}, it follows that the set Š is closed. Thus, supp(πX ) ⊂ Š.

Taking into account that v is continuously differentiable and p̌ is convex and satisfies
p̌ ≥ v, we obtain that p̌ has a subgradient ∇v(x) at each x ∈ Š, so, for all y ∈X ,

p̌(y ) ≥ p̌(x) + ∇v(x) · (y − x) = v(x) + ∇v(x) · (y − x).

Indeed, for x ∈ Š, y ∈X , and ε > 0, we have

p̌(y ) − p̌(x) ≥ 1
ε

(
p̌
(
x+ ε(y − x)

) − p̌(x)
) ≥ 1

ε

(
v
(
x+ ε(y − x)

) − v(x)
)
,

where the first inequality is by convexity of p̌, and the second inequality is by p̌ ≥ v and
p̌(x) = v(x). Taking ε ↓ 0 yields that ∇v(x) is a subgradient of p̌ at x ∈ Š.

Thus, since π ∈ �(μ0 ) and p = p̌ on �, we have∫
�
p(ω) dμ0(ω) ≥

∫
X×�

(
v(x) + ∇v(x) · (ω− x)

)
dπ(x, ω) =

∫
X×�

v(x) dπ(x, ω).

As shown above, the inequality holds with equality, so π(�̌) = 1, where

�̌= {
(x, ω) ∈ Š ×� : p̌(ω) = v(x) + ∇v(x) · (ω− x)

}
.

Note that the set �̌ is closed, given that Š and � are closed and ∇v and p̌ are continuous
on X and �, respectively. Thus, supp(π ) ⊂ �̌. But then we have that, for all ω ∈ �,

psupp(πX )(ω) = max
x∈supp(πX )

{
v(x) + ∇v(x) · (ω− x)

} = p̌(ω),

where the first equality is by the definition of pS , and the second equality is by
supp(π ) ⊂ �̌. This shows that psupp(πX )(ω) = p̌(ω) = p(ω) for ω ∈�, and hence also that



1740 Dworczak and Kolotilin Theoretical Economics 19 (2024)

psupp(πX )(x) = p̌(x) for x ∈ X . Thus, we have shown that psupp(πX ) satisfies condition
(M), which completes the proof of the theorem.

Finally, we explain why the above proof also implies Remark 1. First, note that in
the “only if” part of the proof we established psupp(πX ) ≡ p̌ for an arbitrary optimal π. It

follows that S�, as defined in Remark 1, is equal to Š in the proof (note that Š does not
depend on which optimal solution π we consider). Thus, we also have that pS� ≡ p̌.

Fix a feasible π ∈ �(μ0 ). Suppose that π is optimal for (PM). Then the “only if” part
of the above proof shows that supp(πX ) ⊂ Š and supp(π ) ⊂ �̌. As argued in the previous
paragraph, we can replace Š with S� and p̌ with pS� , and hence condition (M) holds with
S = S�. Conversely, if supp(πX ) ⊂ S� and condition (M) holds with S = S�, then the “if”
part of the proof shows that π is optimal for (PM).

A.9 Generalized analysis for Section 4.4

In this Appendix, we set up generalized notation that agrees with the notation defined
in Section 4.4 in the special case of convex � but may differ in the general case of non-
convex �. In Appendix A.10, we use this generalized notation to prove Theorems 7 and
8 without assuming that � is convex.

It will be convenient to consider solutions π ∈ �(μ0 ) on the extended space X × X

even though supp(π ) ⊆ X × �. To make our notation more intuitive, we will use the
symbols x, y, z ∈X to refer to moments, and ω ∈X to refer to the “extended states.”

For a closed set S ⊂ X , let pS : X → R be defined as in Section 4.3. Let S� be defined
as in Remark 1. Specifically, S� is the closed subset of X such that

S� = {
x ∈X : pS�(x) = v(x)

}
,

and condition (M) holds with S = S� (for any optimal solution π). Define the function
p� : X → R,

p�(ω) := max
x∈S�

{
v(x) + ∇v(x) · (ω− x)

}
, for all ω ∈X .

Note that this definition agrees with the one introduced in Section 4.4 when � = X be-
cause p� and pS� coincide on �; however, p� and pS� may differ on X \�.

Define the contact set �⊂X ×X ,

� := {
(x, ω) ∈ S� ×X : p�(ω) = v(x) + ∇v(x) · (ω− x)

}
,

and its x-section,

�x := {
ω ∈X : (x, ω) ∈ �

}
, for all x ∈ S�.

To extend Theorem 7, we must first define convex-partitional signals for the case when
� is not necessarily a convex set. To circumvent this difficulty, we define the partition on
the convex hull of � (i.e., on X), and we require each element of the partition of X to be
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convex.35 Formally, we say that π ∈ �(μ0 ) is convex-partitional if there is a measurable
function χ : X →X such that, for all measurable sets A⊂X and B ⊂ �,

π(A, B) =
∫
B

1
{
χ(ω) ∈ A

}
dμ0(ω),

and, for all x ∈X , the set χ−1(x) is convex.

A.10 Proof of Theorems 7 and 8

In this Appendix, we rely on the general notation set up in Appendix A.9.
Before proceeding to the proofs of Theorems 7 and 8, we state and prove a key

lemma. Define the correspondence X : X ⇒X by

X (ω) := arg maxx∈S�
{
v(x) + ∇v(x) · (ω− x)

}
, for all ω ∈X ,

and fix any measurable selection χ : X → X from X , which exists by the measurable
maximum theorem (Theorem 18.19 in Aliprantis and Border (2006)). We start with a key
lemma that we will be using throughout.

Lemma 8.

(i) The function p� is convex and Lipschitz on X . Moreover, p� is differentiable at any
ω ∈ int(X ) if and only if the set {∇v(x) : x ∈ X (ω)} is a singleton, and in that case
∇p�(ω) = ∇v(x) for all x ∈ X (ω).

(ii) The set � ⊆ X × X is closed. Its projection along the first coordinate is S�, and its
projection along the second coordinate is X . For each x ∈ S�, �x is a compact convex
set such that x ∈ �x and

�x = arg minω∈X
{
p�(ω) − ∇v(x) ·ω}

.

Moreover, for any x, y ∈ S�, we have

(a) ∇v(x) = ∇v(y ) =⇒ �x = �y ;

(b) relint(�x ) ∩ relint(�y ) �= ∅ =⇒ �x = �y ;

(c) relint(�x ) ∩ �y �= ∅ =⇒ �x ⊂ �y .

Proof. (i) Clearly, p� is convex on X as a pointwise maximum of affine functions.
Moreover, it is Lipschitz on X , because for any ω, ω′ ∈X ,

p�(ω) −p�
(
ω′) ≤ v

(
χ(ω)

) + ∇v
(
χ(ω)

) · (ω−χ(ω)
) − v

(
χ(ω)

) − ∇v
(
χ(ω)

) · (ω′ −χ(ω)
)

= ∇v
(
χ(ω)

) · (ω−ω′) ≤L
∥∥ω−ω′∥∥,

35To understand why we adopt this convention, consider the distribution π induced by no disclosure.
Intuitively, pooling all states should correspond to a convex-partitional signal. However, the support of this
distribution over states conditional on the induced moment is equal to �, and is hence not convex when �

is not convex. We circumvent this by defining the partition on X ; then the unique element of that partition
corresponding to no disclosure is X itself, a convex set. And of course, this partition restricted to � still
represents no disclosure.
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with L defined (as in Appendix A.8) as the maximal value of the norm of the gradient of
v on X .

The remainder of part (i) is a consequence of the envelope theorem. For N = 1, this
follows immediately from Corollary 4 in Milgrom and Segal (2002). Below, we extend
their analysis to the general case N ≥ 1.

Suppose, by contradiction, that p� is differentiable at ω ∈ int(X ) but there exist x, y ∈
X (ω) such that ∇v(x) �= ∇v(y ). Denote u := ∇v(x) − ∇v(y ), so that ∇v(x) · u > ∇v(y ) ·
u. Since ω ∈ int(X ), we have ω ± hu ∈ X for small enough h > 0. Moreover, by the
definitions of p� and X ,

p�(ω+ hu) −p�(ω)
h

≥ ∇v(x) · u and
p�(ω− hu) −p�(ω)

h
≥ −∇v(y ) · u,

and thus

− lim
h↓0

p�(ω− hu) −p�(ω)
h

≤ ∇v(y ) · u < ∇v(x) · u ≤ lim
h↓0

p�(ω+ hu) −p�(ω)
h

,

showing that p� is not differentiable at ω.
Conversely, suppose that ω ∈ int(X ) and {∇v(x) : x ∈ X (y )} is a singleton. Fix any

u ∈ R
N and small enough h′′ > h′ > 0, so that ω+ h′u and ω+ h′′u are both in X . By the

definition of p�,

∇v
(
χ
(
ω+ h′u

)) · u≤ p�
(
ω+ h′′u

) −p�
(
ω+ h′u

)
h′′ − h′ ≤ ∇v

(
χ
(
ω+ h′′u

)) · u.

Taking the limit superior in this inequality as h′ ↓ 0 yields

lim sup
h′↓0

∇v
(
χ
(
ω+ h′u

)) · u ≤ p�
(
ω+ h′′u

) −p�(y )

h′′ ≤ ∇v
(
χ
(
ω+ h′′u

)) · u.

Taking the limit inferior in the resulting inequality as h′′ ↓ 0 yields

lim sup
h′↓0

∇v
(
χ
(
ω+ h′u

)) · u≤ lim
h′′↓0

p�
(
ω+ h′′u

) −p�(ω)

h′′ ≤ lim inf
h′′↓0

∇v
(
χ
(
ω+ h′′u

)) · u.

Since the limit superior is never smaller than the limit inferior, we conclude that the two
limits coincide, and hence

lim
h↓0

p�(ω+ hu) −p�(ω)
h

= lim
h↓0

∇v
(
χ(ω+ hu)

) · u.

Since the correspondence X : X ⇒ X is upper hemicontinuous, a version of Berge’s
maximum theorem (see Lemma 17.30 in Aliprantis and Border (2006)) yields

lim
h↓0

p�(ω+ hu) −p�(ω)
h

= lim
h↓0

∇v
(
χ(ω+ hu)

) · u≤ max
x∈X (ω)

∇v(x) · u.
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Since {∇v(x) : x ∈ X (ω)} is a singleton, we have maxx∈X (ω) ∇v(x) · u = ∇v(x) · u for all
x ∈ X (ω). Finally, taking into account that, by the definition of p�, for any x ∈ X (ω) and
any small enough h> 0, we have

∇v(x) · u ≤ p�(ω+ hu) −p�(ω)
h

,

it follows that

lim
h↓0

p�(ω+ hu) −p�(ω)
h

= ∇v(x) · u, for all x ∈ X (ω),

showing that p� is differentiable at y and ∇p�(ω) = ∇v(x) for all x ∈ X (ω).
(ii) The set � is closed, because the function p�(ω) − v(x) −∇v(x) · (ω−x) is contin-

uous in (x, ω) on X ×X . The projection of � along the second coordinate is X , because
(χ(ω), ω) ∈ � for each ω ∈ X . The projection of � along the first coordinate is S� by the
definition of S� and the fact that �x is nonempty, for any x ∈ S�, which is shown in the
next paragraph.

Fix any x ∈ S�. We have

�x = {
ω ∈X : p�(ω) = v(x) + ∇v(x) · (ω− x)

}
= {

ω ∈X : p�(ω) ≤ v(x) + ∇v(x) · (ω− x)
}

,

where the first equality is by the definition of � and �x, and the second equality is by the
definition of p�, which, in particular, implies that

p�(ω) ≥ v(x) + ∇v(x) · (ω− x), for all ω ∈X .

Thus, the set �x is compact and convex, as it is a sublevel set of the (Lipschitz) contin-
uous and convex function p�(ω) − v(x) − ∇v(x) · (ω − x) (viewed as a function of ω).
Moreover, we have x ∈ �x, because

v(x) = pS�(x) ≥ p�(x) ≥ v(x),

where the equality is by x ∈ S�, the first inequality is by the definition of pS� , and the last
inequality is by the definition of p� and the fact that x ∈ S�. Since p�(x) = v(x), we have

p�(ω) ≥ p�(x) + ∇v(x) · (ω− x), for all ω ∈X ,

and thus

�x = arg max
ω∈X

{∇v(x) ·ω−p�(ω)
}

.

We have thus shown that �x is the projection along the first coordinate of the face of the
epigraph of p� exposed by the direction (−1, ∇v(x)). Then implication (a) is immediate,
whereas implications (b) and (c) follow from Corollary 18.1.2 and Theorem 18.1 in Rock-
afellar (1970). For completeness, we provide short self-contained proofs of (b) and (c).
To show (c), let ω ∈ relint(�x ) ∩ �y . Since �x is convex, for any ω′ ∈ �x with ω′ �= ω, there
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exists ω′′ ∈ �x and λ ∈ (0, 1) such that ω= λω′ + (1 − λ)ω′′. Next, by the definition of p�,
we have

p�
(
ω′) ≥ v(y ) + ∇v(y ) · (ω′ − y

)
and p�

(
ω′′) ≥ v(y ) + ∇v(y ) · (ω′′ − y

)
.

Both inequalities must hold with equality, as otherwise we would have

p�(ω) ≥ λp�
(
ω′) + (1 − λ)p�

(
ω′′)> v(y ) + ∇v(y ) · (ω− y ),

contradicting that ω ∈ �y . Since ω′ is arbitrary, we get �x ⊂ �y , proving (c). To prove (b),
notice that if relint(�x ) ∩ relint(�y ) �= ∅, then relint(�x ) ∩ �y �= ∅ and relint(�y ) ∩ �x �= ∅,
implying that �x ⊂ �y and �y ⊂ �x, and thus �x = �y .

In the remainder, we complete the proofs of Theorems 7 and 8. To deal with the gen-
eral case in which � �=X , we follow Appendix A.9 and consider solutions defined on the
larger space X rather than on �. All the notation used in the following proof comple-
tions is then defined as in Appendix A.9, and becomes consistent with the notation used
in the main text under the assumption that � is convex (so that � = X).

Completion of the proof of Theorem 7 Let X̃ be the set of interior points of X where p� is
differentiable. The set of boundary points of the convex set X is Lebesgue-negligible, by
Theorem 1 in Lang (1986). The set of interior points of X where p� is not differentiable
is Lebesgue-negligible by Rademacher’s theorem (Theorem 10.8 in Villani (2009)). Thus,
taking into account that μ0 has a density on X , the set X̃ has full measure under μ0:
μ0(X̃ ) = 1.

Fix ω ∈ X̃ . We claim that |X (ω)| = 1. Suppose, by contradiction, that there exist
distinct x, y ∈ X (ω). Since ω ∈ int(X ) and p� is differentiable at ω, part (i) of Lemma 8
yields

∇p�(ω) = ∇v(x) = ∇v(y ).

In turn, part (ii) of Lemma 8 yields x ∈ �x, y ∈ �y , and �x = �y , and thus, given that
p� is affine on �x by the definition of �x, we have p�(y ) = p�(x) + ∇p�(ω) · (y − x) or,
equivalently,

v(x) − ∇v(x) · x= v(y ) − ∇v(y ) · y.

Next, for all λ ∈ [0, 1], we have pS�(λx+ (1 − λ)y ) = λv(x) + (1 − λ)v(y ) as follows from

λv(x) + (1 − λ)v(y ) = λp�(x) + (1 − λ)p�(y ) = p�
(
λx+ (1 − λ)y

)
≤ pS�

(
λx+ (1 − λ)y

) ≤ λpS�(x) + (1 − λ)pS�(y )

= λv(x) + (1 − λ)v(y ),

where the first equality is by x ∈ �x and y ∈ �y , the second equality is by affinity of p� on
the convex set �x = �y , the first and second inequality follow from the definition of pS� ,
and the last equality is by pS� = v on S�. Thus, since pS� ≥ v on X , we get

λv(x) + (1 − λ)v(y ) ≥ v
(
λx+ (1 − λ)y

)
, for all λ ∈ [0, 1].
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This contradicts the conditions of the theorem. Thus, X (ω) is a singleton {χ(ω)} for
each ω ∈ X̃ , where χ(ω) is determined by{

χ(ω)
} = {

x ∈ S� : ω ∈ �x
} = {

x ∈ S� : ∇p�(ω) = ∇v(x)
}

.

The first equality is by the definition of X , and the second is by part (i) of Lemma 8.
Finally, for any optimal π ∈�(μ0 ), we have

1 = π(�) = π

( ⋃
ω∈X̃

({
χ(ω)

} × {ω}
))

,

where the first equality is by Remark 1, and the second equality is by � = ⋃
ω∈X(X (ω) ×

{ω}), X (ω) = {χ(ω)} for ω ∈ X̃ , and μ0(X̃ ) = 1. Since χ(ω) is determined by p� for μ0-
almost all ω ∈ X , and p� is independent of π, we conclude that π is uniquely determined
by

π(A, B) =
∫
B

1
{
χ(ω) ∈ A

}
dμ0(ω), for all measurable A⊂X and B ⊂X .

Completion of the proof of Theorem 8 Fixing any solution to the primal problem (PM)
and the corresponding price function, define the set S�, the contact set �, and the sets
�x as in Appendix A.9. Recall that Sx = cl(supp(πX ) ∩ relint(�x )). By Theorem 1 in Lar-
man (1971), X can be partitioned (up to a measure zero set) into a collection of disjoint
(relatively) open sets �= {relint(�x )}x∈S� (where we ignore duplicates whenever �x = �y

for x �= y).
Consider an auxiliary problem of finding a joint distribution π ∈ �(μ0 ) to maximize∫

X×X w(x, ω) dπ(x, ω), where

w(x, ω) :=
{

−‖x‖2, (x, ω) ∈ �,

−∞, (x, ω) ∈ (X ×X ) \ �.

Note that
∫
X×X w(x, ω) dπ(x, ω) is finite for π ∈ �(μ0 ) if and only if supp(π ) ⊂ �, which

in turn is equivalent to optimality of π ∈ �(μ0 ) for the primary problem. Since w is up-
per semicontinuous and bounded from above, by Lemma 2, there exists an optimal so-
lution π ∈ �(μ0 ) to the auxiliary problem, which is also optimal for the primal problem
(PM). We fix such π ∈�(μ0 ).

Intuitively, the auxiliary problem selects a solution to the primal problem (PM) that
minimizes the average norm of the induced posterior means. The rest of the proof
shows that if the set Sx induced by π differs from ext(Sx ) on a positive measure set of
x ∈ supp(πX ), we would obtain a contradiction with π solving the auxiliary problem.
While this conclusion is intuitive, the details of the proof are complicated by the fact
that the selection induced by the auxiliary problem may be “local” in the sense that it af-
fects the structure of the solution on uncountably many measure-zero sets. Our strategy
is to decompose the distribution π into conditional distributions conditional on each
induced relint(�x ).
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Note that we can treat the set � as a measurable space, endowing it with the Borel σ-
algebra generated by the Hausdorff metric. We can then define π� to be the probability
distribution over � induced by π: For any measurable subset A⊂�,

π�(A) := π
({

(x, ω) ∈X ×X : ω ∈ relint(�x ), relint(�x ) ∈A
})

.

By the disintegration theorem (e.g., Theorem 2.3 in Caravenna and Daneri (2010)), there
exists a measurable function ξ �→ π(·|ξ) from � to �(X × X ) such that for every “test
function” h ∈ C(X ×X ), we have∫

X×X
h(x, ω) dπ(x, ω) =

∫
�

∫
X×X

h(x, ω) dπ(x, ω|ξ) dπ�(ξ).

Let πX(·|ξ) and π�(·|ξ), for ξ ∈ �, denote the marginal distributions of x and ω (i.e.,
the first and second coordinate, respectively) induced by π(·|ξ). Then, for πX-almost all
x ∈X , we have

supp
(
π�

(·| relint(�x )
)) ⊂ cl

(
relint(�x )

)
, (A.1)

supp
(
πX

(·| relint(�x )
)) = Sx, (A.2)∫

A×X
(ω− x) dπ

(
x, ω| relint(�x )

) = 0, for all measurable A⊂X , (A.3)∫
w(x, ω) dπ

(
x, ω| relint(�x )

) ≥
∫

w(x, ω) dπ̃(x, ω),

for all π̃ ∈�
(
π�

(·| relint(�x )
))

, (A.4)

where the first three properties follow from definitions, and the last inequality must be
true because otherwise we would have a contradiction with the definition of π as the
solution to the auxiliary problem.

Toward a contradiction, suppose that there exists a πX-positive-measure set of
points x such that Sx �= ext(Sx ); that is, there exist distinct x0, x1, � � � , xn ∈ Sx such that
x0 = λ1x1 + · · · + λnxn, where λ1, � � � , λn > 0 and λ1 + · · · + λn = 1. (We suppress the
dependence of these variables on x.) By condition (A.2), since x1, � � � , xn ∈ Sx, for all
i = 1, � � � , n, and δ > 0, we have πX(Bδ(xi )| relint(�x )) > 0, where Bδ(xi ) denotes an
open ball with radius δ centered at xi. To simplify notation, let πi

δ(·) denote the condi-
tional probability measure on X induced from πX(·| relint(�x )) by conditioning on the
event Bδ(xi ). There exists a sufficiently small δ such that for some λ1

δ, � � � , λnδ > 0 with
λ1
δ + · · ·+λnδ = 1, we have x0 = λ1

δx
1
δ + · · ·+λnδx

n
δ where xiδ = ∫

X xdπi
δ(x). Finally, by con-

dition (A.3), for some sufficiently small ε > 0, there exists π̃ ∈ �(π�(·| relint(�x ))) such
that, for all measurable A⊂ X ,

π̃X(A) = πX

(
A| relint(�x )

) + εδx0 − ε
∑
i

λiδπ
i
δ(A),

where δx0 denotes the Dirac measure at x0. Intuitively, π̃X modifies πX(·| relint(�x ))
by transferring some mass from the neighborhoods of points xi into x0. But then, by
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Jensen’s inequality, and relying on conditions (A.1) and (A.2) to ensure that supp(π(·|
relint(�x )) ⊂ � and supp(π̃ ) ⊂ �, we have∫

X×X
w(x, ω) dπ̃(x, ω) −

∫
X×X

w(x, ω) dπ
(
x, ω| relint(�x )

)
= ε

(∑
i

λiδ

∫
X
x2 dπi

δ(x) − (
x0)2

)
≥ ε

(∑
i

λiδ
(
xiδ

)2 − (
x0)2

)
> 0,

yielding a contradiction with (A.4).

A.11 Proof of Proposition 2

In this Appendix, we prove the necessity part of Proposition 2. Fix an optimal π� ∈�(μ0 ).
Since μ0 has a density and ∇v(x) = (x2, x1 ) �= (y2, y1 ) = ∇v(y ) for x �= y, Theorem 7 im-
plies that π� is the unique optimal signal, and that it is convex-partitional. Suppose that
supp(π�

X ) is the graph of the function f , as described in the proposition.
By the definition of �x from Section 4.4, for each t ∈ [x1, x1],

�(t,f (t )) = {ω ∈ � : t ∈ arg max
s∈[x1,x1]

{
ω1f (s) +ω2s − sf (s)

}
.

First, consider t ∈ (x1, x1 ). The necessary first-order condition yields ω2 = f (t ) −
f ′(t )(ω1 − t ) for all ω ∈ �(t,f (t )). Define, for all t ∈ [x1, x1],

lt := min
ω∈X{ω1 − t},

subject to ω2 = f (t ) − f ′(t )(ω1 − t ),

ω2 + (t −ω1 )
(
f (t ) −ω2

)
s −ω1

≤ f (s), for all s ∈ (ω1, x1],

and

lt := max
ω∈X{ω1 − t},

subject to ω2 = f (t ) − f ′(t )(ω1 − t ),

ω2 + (t −ω1 )
(
f (t ) −ω2

)
s −ω1

≥ f (s), for all s ∈ [x1, ω1 ).

Notice that (t + lt , f (t ) − f ′(t )lt ) and (t + lt , f (t ) − f ′(t )lt ) are the points in �(t,f (t )) with
the lowest and highest first coordinate. To see this, consider ω ∈ �(t,f (t )) with t > ω1 (and
thus f (t )−ω2 = −f ′(t )(t−ω1 ) < 0) and notice that, for s ≤ω1, we have f (s) ≤ f (t ) <ω2;
thus,

(t −ω1 )
(
f (t ) −ω2

)
< 0 ≤ (s −ω1 )

(
f (s) −ω2

)
.

Consequently, ω ∈� with ω1 < t belongs to �(t,f (t )) if and only if

ω2 = f (t ) − f ′(t )(ω1 − t ),
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ω2 + (t −ω1 )
(
f (t ) −ω2

)
s −ω1

≤ f (s), for all s ∈ (ω1, x1].

Since (t, f (t )) ∈ �(t,f (t )), it follows that (t + lt , f (t ) − f ′(t )lt ) is indeed the point in �(t,f (t ))

with the lowest first coordinate. An analogous argument shows that (t+ lt , f (t ) − f ′(t )lt )
is the point in �(t,f (t )) with the highest first coordinate. Finally, since, by Lemma 8,
�(t,f (t )) is convex, it follows that

�(t,f (t )) = cl(It ) := {
ω ∈� : ω1 = x1 + l, ω2 = f (x1 ) − f ′(x1 )l, l ∈ [

l(x1 ), l(x1 )
]}

.

It turns out that the above condition also holds for x ∈ supp(π�
X ) with x1 ∈ {x1, x1}. How-

ever, the proof of that fact is significantly more complicated.

Lemma 9. �(t,f (t )) = cl(It ) for t ∈ {x1, x1}.

Proof. See Appendix A.11.1.

By Lemma 9, we can conclude that �(t,f (t )) = cl(It ) for each t ∈ [x1, x1]. Since the
projection of the contact set � along the second coordinate is X = �, it follows that � =⋃

t∈[x1,x1] cl(It ). Define It = relint(cl(It )), for t ∈ [x1, x1].36 By part (ii)(b) in Lemma 8, for
t �= s, the open line segments It and Is do not intersect. In fact, part (ii)(c) in Lemma 8
yields a stronger conclusion that, for t �= s, the closed line segments cl(It ) and cl(Is )
can intersect only at a common endpoint. Thus, as in the proof of Theorem 7, invoking
Theorem 1 in Larman (1971), we conclude that � \ {

⋃
t∈[x1,x1] It } has zero (Lebesgue)

measure. In sum, we have established that there exists a collection {It }t∈[x1,x1] of open
disjoint line segments that partition �, up to a measure-zero set.

Condition (i) then follows directly from the above characterization of the optimal
signal π� and the assumption that supp(π�

X ) = Gr(f ). Condition (ii) follows from the
definition of cl(It ). Moreover, the inclusion It ⊆ {ω ∈ � : ω2 = f (t ) − f ′(t )(ω1 − t )}, for
t ∈ [x1, x1], follows directly from the fact that �(t,f (t )) = cl(It ) for each t ∈ [x1, x1]. This
finishes the proof of the proposition.

A.11.1 Proof of Lemma 9 We start by proving yet another lemma.

Lemma 10. There exists ε > 0 such that

ω2 + (x1 −ω1 )
(
f (x1 ) −ω2

)
y1 −ω1

< f (y1 ),

for all x1 ∈ [x1, x1], ω1 ∈ [x1 −ε, x1], y1 ∈ (ω1, x1 )∪ (x1, x1], and ω2 = f (x1 )−f ′(x1 )(ω1 −
x1 ).

Proof. Since f ′ and f ′′ are continuous and f ′ > 0 on the compact set [x1, x1], we have
f ′ = minx̃1∈[x1,x1] f

′(x̃1 ) > 0 and f ′′ = minx̃1∈[x1,x1] f
′′(x̃1 ) ∈ R. Thus, there exists ε > 0

36Note that It is a point when cl(It ) is degenerate, since a point is a relatively open set.
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such that 2f ′ + εf ′′ > 0. Fix such ε. By direct calculation,

ω2 + (x1 −ω1 )
(
f (x1 ) −ω2

)
y1 −ω1

< f (x1 ) + f ′(x1 )ε− f ′(x1 )ε2

y1 − x1 + ε
,

for all x1 ∈ [x1, x1], ω1 ∈ (x1 −ε, x1], y1 ∈ (ω1, x1 )∪ (x1, x1], and ω2 = f (x1 )−f ′(x1 )(ω1 −
x1 ). Thus, it suffices to show that

f (x1 ) + f ′(x1 )ε− f ′(x1 )ε2

y1 − x1 + ε
< f (y1 ),

for all x1 ∈ [x1, x1] and y1 ∈ (x1 − ε, x1 ) ∪ (x1, x1].
If f ′′ ≥ 0, the inequality holds because the right-hand side f (y1 ) is convex in y1 with

derivative f ′(x1 ) at x1, while the left-hand side is strictly concave in y1 with derivative
f ′(x1 ). So, assume that f ′′ < 0 and denote

ŷ1 = x1 + f ′(x1 ) − f ′

−f ′′ .

Since f ′′(y1 ) ≥ f ′′ and f ′(y1 ) ≥ f ′, for all y1 ∈ [x1, x1], we have f (y1 ) ≥ f (y1 ), where

f (y1 ) =

⎧⎪⎪⎨⎪⎪⎩
f (x1 ) + f ′(x1 )(y1 − x1 ) + f ′′

2
(y1 − x1 )2, y1 ≤ ŷ1,

f (x1 ) + f ′(x1 )(ŷ1 − x1 ) + f ′′

2
(ŷ1 − x1 )2 + f ′(y1 − ŷ1 ), y1 > ŷ1.

Thus, it suffices to show that

f (x1 ) + f ′(x1 )ε− f ′(x1 )ε2

y1 − x1 + ε
< f (y1 ). (A.5)

By direct calculation, for y1 ∈ (x1 − ε, x1 ) ∪ (x1, ŷ1], inequality (A.5) is equivalent to
2f ′(x1 )+f ′′(y1 −x1 +ε) > 0, which holds if and only if it holds at ŷ1. At ŷ1, (A.5) simplifies
to f ′(x1 ) + f ′ + f ′′ε > 0, which holds because 2f ′ + εf ′′ > 0. Again, by direct calculation,
for y1 > ŷ1, inequality (A.5) is equivalent to(

f ′(x1 ) − f ′)2

2
(−f ′′) (y1 − x1 + ε) + f ′(y1 − x1 )(y1 − x1 + ε) − f ′(x1 )(y1 − x1 )ε > 0,

where the left-hand side is quadratic and convex in y1. Moreover, the derivative at y1 = ŷ1

is positive because 3f ′ + f ′(x1 ) + 2f ′′ε > 0, as follows from 2f ′ + εf ′′ > 0. Thus, the left-
hand side is increasing in y1 and inequality (A.5) holds for y1 > ŷ1, because it holds for
y1 = ŷ1, as shown above.

We are now ready to prove Lemma 9. We will focus on the case t = x1 since the
other case is fully analogous. The necessary Kuhn–Tucker condition yields ω2 ≤ f (x1 ) −
f ′(x1 )(ω1 − x1 ) for all ω ∈ �(x1,f (x1 )). We claim that ω2 ≥ f (x1 ) − f ′(x1 )(ω1 − x1 ) for all
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ω ∈X , and thus ω2 = f (x1 )−f ′(x1 )(ω1 −x1 ) for all ω ∈ �(x1,f (x1 )), so �(x1,f (x1 )) = cl(Ix1 ),
by the same argument as previously. Toward a contradiction, suppose that there exists
z ∈X such that z2 < f (x1 )−f ′(x1 )(z1 −x1 ) and z1 < x1 (the case z1 > x1 is analogous and
omitted). Since X is convex and the graph of f is a maximal monotone set in X , it fol-
lows that z2 > f (x1 ) and that there exists ε > 0 such that, for all ω1 ∈ (x1 − ε, x1 ), points
(ω1, f (x1 )−f ′(x1 )(ω1 −x1 )) and (ω1, f (x1 )−ι(ω1 −x1 )) with ι= (z2 −f (x1 ))/(x1 −z1 ) ∈
(0, f ′(x1 )) belong to X . It is easy to see that, for all ω1 < x1 and y1 > x1, we have

ω2 − ι(ω1 − x1 ) − ι
(x1 −ω1 )2

y1 −ω1
<ω2 − f ′(x1 )(ω1 − x1 ) − f ′(x1 )

(x1 −ω1 )2

y1 −ω1
.

Thus, by Lemma 10, for sufficiently small ε > 0, points (ω1, f (x1 ) − f ′(x1 )(ω1 −x1 )) and
(ω1, f (x1 )−ι(ω1 −x1 )) belong to �x. But then �x has a nonempty interior, and all points
in the interior belong only to �x, by Lemma 8. Consequently, since μ0 has full support
density on X , ∫

�x

(
ω2 − f (x1 ) − f ′(x1 )(ω1 − x1 )

)
dμ0(ω)

=
∫

int(�x )

(
ω2 − f (x1 ) − f ′(x1 )(ω1 − x1 )

)
dμ0(ω) < 0,

as the boundary of the convex set �x has zero Lebesgue measure, by Theorem 1 in Lang
(1986), and the integrand is strictly negative on the interior of �x, as implied by the
Kuhn–Tucker condition. This shows that any π supported on � cannot be in �(μ0 ),
as it violates the second constraint in the definition of �(μ0 )—a contradiction.

A.12 Proof of Proposition 3

Suppose that π ∈ �(μ0 ), induced by the disclosure of the realization of aω1 + ω2, is
optimal. Define � = {θ = aω1 + ω2 : ω ∈ �}. Since � is a compact convex set with a
nonempty interior, we have � = [θ, θ] for some θ < θ. By Proposition 1, supp(πX ) is
a monotone set. Thus, since μ0 has full-support density on �, we have supp(πX ) =
{(x1(θ), x2(θ)) : θ ∈ �} for some nondecreasing functions x1 and x2 satisfying ax1(θ) +
x2(θ) = θ for all θ ∈ � and (x1(θ), x2(θ)) ∈ int(�) for almost all θ ∈ �. Note that x1 is
1/a-Lipschitz and x2 is 1-Lipschitz, and thus �̃ = {θ ∈ � : (x1(θ), x2(θ)) ∈ int(�)} is an
open set of full measure.

Lemma 11. For each θ ∈ �̃, there exists δ > 0 such that, for all θ′ ∈ (θ− δ, θ+ δ),

a
(
x1

(
θ′) − x1(θ)

) = x2
(
θ′) − x2(θ) = 1

2

(
θ′ − θ

)
.

Proof. Since θ ∈ �̃, there exists ε > 0 such that ω ∈ int(�) for all ω ∈ R
2 such that ω1 ∈

(x1(θ) − ε, x1(θ) + ε) and ω2 ∈ (x2(θ) − ε, x2(θ) + ε). Fix δ = min{ε/2, aε/2}. We claim
that for all θ′ ∈ (θ − δ, θ + δ) and all ω′ ∈ R

2 such that ω′
2 ∈ (x2(θ′ ) − δ, x2(θ′ ) + δ) and

aω′
1 + ω′

2 = θ′, we have x(θ′ ) ∈ int(�) and ω′ ∈ int(�). Indeed, since x1 and x2 are non-
decreasing and satisfy ax1(θ′ ) + x2(θ′ ) = θ′, we have x1(θ′ ) ∈ (x1(θ) − δ/a, x1(θ) + δ/a)
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and x2(θ′ ) ∈ (x2(θ)−δ, x2(θ)+δ), so x(θ′ ) ∈ int(�). Next, since aω′
1 +ω′

2 = θ′ = ax1(θ′ )+
x2(θ′ ) and ω′

2 ∈ (x2(θ′ ) − δ, x2(θ′ ) + δ), we have ω′
2 ∈ (x2(θ′ ) − δ, x2(θ′ ) + δ) ⊂ (x2(θ) −

2δ, x2(θ) + 2δ) and ω′
1 ∈ (x1(θ′ ) − δ/a, x1(θ′ ) + δ/a) ⊂ (x1(θ) − 2δ/a, x1(θ) + 2δ/a), so

ω′ ∈ int(�).
Fix θ′ ∈ (θ−δ, θ+δ) and an integer n > 0. For i ∈ {0, � � � , n}, define θi = θ+(θ′ −θ)i/n,

ωLi = (x1(θi ) − δ/a, x2(θi ) + δ), and ωRi = (x1(θi ) + δ/a, x2(θi ) − δ). As shown in the
previous paragraph, we have x(θi ), ωLi, ωRi ∈ int(�) for all i. Next, by Theorem 6, we
have, for all i ∈ {0, � � � , n},(

x1
(
θi

) −ωLi
1

)(
x2

(
θi

) −ωLi
2

) ≤ (
x1

(
θi+1) −ωLi

1

)(
x2

(
θi+1) −ωLi

2

)
⇐⇒ x2

(
θi+1) − x2

(
θi

) ≥ a
(
x1

(
θi+1) − x1

(
θi

))
1 + a

δ

(
x1

(
θi+1) − x1

(
θi

)) ,

and (
x1

(
θi

) −ωRi
1

)(
x2

(
θi

) −ωRi
2

) ≤ (
x1

(
θi+1) −ωRi

1

)(
x2

(
θi+1) −ωRi

2

)
⇐⇒ x2

(
θi+1) − x2

(
θi

) ≤ a
(
x1

(
θi+1) − x1

(
θi

))
1 − a

δ

(
x1

(
θi+1) − x1

(
θi

)) .

Since x1 is 1/a-Lipschitz, we have, for all i ∈ {0, � � � , n},

a
(
x1

(
θi+1) − x1

(
θi

))
1 + 1

nδ

(
θ′ − θ

) ≤ x2
(
θi+1) − x2

(
θi

) ≤ a
(
x1

(
θi+1) − x1

(
θi

))
1 − 1

nδ

(
θ′ − θ

) .

Summing over i ∈ {0, � � � , n− 1} gives

a
(
x1

(
θ′) − x1(θ)

)
1 + 1

nδ

(
θ′ − θ

) ≤ x2
(
θ′) − x2(θ) ≤ a

(
x1

(
θ′) − x1(θ)

)
1 − 1

nδ

(
θ′ − θ

) .

Since n is arbitrary, we have x2(θ′ ) − x2(θ) = a(x1(θ′ ) − x1(θ)). Taking into account that
ax1(θ) + x2(θ) = θ and ax1(θ′ ) + x2(θ′ ) = θ′ completes the proof of the lemma.

Since �̃ is an open set in R, it is the union of at most countably many disjoint open

intervals (θi, θ
i
). Lemma 11 implies that

a
(
x1

(
θ′) − x1(θ)

) = x2
(
θ′) − x2(θ) = 1

2

(
θ′ − θ

)
, for all θ′, θ ∈ (θi, θ

i
).

Since �̃ has full Lebesgue measure, it follows that cl(�̃) = �. Since x1 and x2 are (Lips-
chitz) continuous, we have

a
(
x1

(
θ′) − x1(θ)

) = x2
(
θ′) − x2(θ) = 1

2

(
θ′ − θ

)
, for all θ′, θ ∈�,

and thus x2(θ) = ax1(θ) + b for all θ ∈� and some b ∈R.
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