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In a misspecified social learning setting, agents are condescending if they per-
ceive their peers as having private information that is of lower quality than it is
in reality. Applying this to a standard sequential model, we show that outcomes
improve when agents are mildly condescending. In contrast, too much conde-
scension leads to worse outcomes, as does anti-condescension.
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1. Introduction

Most human decisions are made under uncertainty and in a social context. Understand-
ing how economic agents use their private and social information to form beliefs is a
prerequisite for the understanding of important phenomena such as the diffusion of
ideas, the adoption of technologies, or the formation of political opinions. In particu-
lar, agents’ beliefs about their peers’ information is an important factor that can play a
decisive role in the social outcome.

We study the effect of condescension on social learning outcomes: What happens
when agents, through misspecification, underestimate the quality of the information
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that their peers have? Our main result is that condescension can lead to improved social
outcomes, as long as it is mild. In contrast, anti-condescension, in which agents over-
estimate their peers’ quality of information, leads to bad outcomes, as does too much
condescension.

We study a misspecified version of the classical sequential social learning model of
Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee (1992), with unbounded sig-
nals, as introduced by Smith and Sørensen (2000). Our notion of a good social learning
outcome is that of efficient learning (Rosenberg and Vieille (2019)), which is said to oc-
cur when the number of agents who choose the incorrect action has finite expectation.
In the well specified setting, the number of agents who choose the incorrect action is
always finite (Smith and Sørensen (2000)), but its expectation can be finite or infinite
(Rosenberg and Vieille (2019)).

In our misspecified setting, agents perfectly understand and interpret their own sig-
nal but misperceive the quality of their predecessors’ signals. When agents are mildly
condescending, efficient learning occurs. Because agents underestimate the quality of
others’ signals, they put too little weight on their predecessors’ actions. In consequence,
their actions are suboptimal, but reveal more of their own private information. When
this is done in moderation, more is gained than lost and in the long run, the result
is quick convergence to the correct action. This occurs even with signal distributions
that would have induced inefficient learning for well specified agents. Of course, since
agents are misspecified, each agent attains lower expected utility than they would if they
were not, ceteris paribus. Nevertheless, their behavior has positive externalities on later
agents, with improved asymptotic outcomes.

When agents are too condescending, they put so little weight on their predeces-
sors’ actions that no herd forms and both actions are taken infinitely often, i.e., asymp-
totic learning is not obtained. When agents are anti-condescending, they put too much
weight on their predecessors’ actions. In consequence, wrong herds form with positive
probability and again asymptotic learning is not obtained. Interestingly, it follows that
asymptotic learning is equivalent to efficient learning across all misspecified regimes.

Our proof techniques follow those introduced by Hann-Caruthers, Martynov, and
Tamuz (2018) and Rosenberg and Vieille (2019), who approximate the discrete time dy-
namics of the public belief using a continuous time differential equation. Due to the
misspecified nature of our model, our analysis deviates from theirs in a number of
places. For example, we need to circumvent the fact that the misspecified belief is not a
martingale. In their model, asymptotic learning is guaranteed by this martingale prop-
erty (Smith and Sørensen (2000)), whereas in our model we need to prove it by other
means.

Related literature A closely related paper is Bernardo and Welch (2001). They study a
cascade setting with binary signals, but where some fraction of the agents are overcon-
fident : They do not put enough weight (in Bayesian terms) on the public information.
Through mostly numerical analysis, the authors reach a conclusion that is similar to
ours: Moderate overconfidence is beneficial for society.

The empirical literature on social learning supports the idea of overweighting the
private information relative to the public information. For example, Weizsäcker (2010)
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finds in a meta-analysis of 13 social learning experiments that subjects underweight
their social observations relative to the payoff-maximizing strategy. Duffy, Hopkins, and
Kornienko (2021) find sizable proportions of both behavioral types, i.e., relative over-
and underweighting of the private information. Condescension provides one possi-
ble mechanism that leads to individually suboptimal low weights of public information.
Other mechanisms that may cause a distortion in the optimal weighting of private and
public information are, for example, cursedness (Eyster and Rabin (2005)) and naïveté
(Eyster and Rabin (2010)).

Our paper is related to the literature on social learning with misspecification. Most
of this literature documents a detrimental effect of misspecification on asymptotic out-
comes: For example, the gambler’s fallacy leads to incorrect learning almost surely (He
(2022)), and misinterpreting peers’ preferences can lead to incorrect (Frick, Iijima, and
Ishii (2020)) and cyclical (Gagnon-Bartsch (2016)) learning or entrenched disagreement
(Bohren and Hauser (2019)). Frick, Iijima, and Ishii (2023) analyze belief convergence in
a general setting. They demonstrate that in the sequential social learning environment,
arbitrarily small amounts of misspecification can lead to extreme failures of learning.
Bohren (2016) studies agents with misspecification regarding the correlation between
others’ actions, and shows that various undesirable outcomes are possible, depending
on the degree and direction of misspecification; see also Bohren and Hauser (2021) for
a more general setting that subsumes a number of previous ones. Our results highlight
potential positive welfare effects, i.e., misspecifications may increase the efficiency of
learning. Similar to some of these papers, our results show that learning outcomes de-
pend on the behavior of the signal distributions near the fixed points of the learning
dynamics, which in our case are the extremal beliefs.

The literature has identified other channels—not requiring misspecification—by
which agents may put more weight on their own signals as compared to the signals of
others. For example, idiosyncratic taste shocks (see, e.g., Goeree, Palfrey, and Rogers
(2006), Lobel and Sadler (2016)) imply that an agent’s own signal carries more informa-
tion about his/her own payoff relevant state than do the signals of the others. As in
our model, this causes agents to reveal more of their private information through their
actions, which in turn can improve information aggregation in the long term.

A paper that is slightly further away in its goal—but closer in techniques and some of
the results—is Chen (2022), who studies ambiguity in sequential social learning. In his
model, agents have ambiguity about the distributions of the other agents’ signals. The
main conclusion is that information cascades are a robust outcome that occurs when-
ever there is sufficient ambiguity. Technically, similar observations to our Propositions 1
and 2 appear in Chen (2022), but our paper is focused on the speed of learning (i.e.,
efficient learning), which is not studied in that paper.

Our work also complements a burgeoning literature that analyzes the rationale for
the persistence of misspecifications (e.g., He and Libgober (2020), Ba (2021), Fudenberg
and Lanzani (2022)). That is, in a sequential learning environment, misspecified agents
might have an evolutionary advantage over correctly specified agents by learning the
true state of the world faster. Consequently, misspecifications caused by intermediate
levels of condescension might persist in the long run.
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2. Model

2.1 Social learning with misspecification

There is a binary state of nature θ ∈ � = {�, h}, chosen at time zero and equal to h

with probability π ∈ (0, 1). A countably infinite set of agents {1, 2, � � �} arrive sequen-
tially. Each agent n, in turn, takes an action an ∈ {�, h}, with utility 1 if a = θ and
0 otherwise. Before choosing her action, agent n observes her predecessors’ actions
In = (a1, � � � , an−1 ).

Each agent also observes a private signal sn ∈ S. Here S is some measurable set of
possible signal realizations. Signals are independent and identically distributed con-
ditioned on the state. We denote probabilities by P and explicitly write Pπ when we
want to highlight varying values of the prior π. We further use the notation Ph to refer
to P(· | θ = h), the probability measure P conditional on the realized state being h. We
define Pπ,h analogously.

Let qn = P(θ = h|sn ) be the (random) private posterior, i.e., the belief induced by
observing the private signal of agent n. By a standard direct revelation argument, we
can assume that sn = qn, since qn is a sufficient statistic for θ given sn. Denote by F�

and Fh the cumulative distribution functions of qn, conditioned on θ = � and θ = h,
respectively. We define F = 1

2 (F� + Fh ). This is the cumulative distribution function of
qn for prior π = 1/2.

So far, this model matches the standard herding model (Bikhchandani, Hirshleifer,
and Welch (1992), Banerjee (1992), Smith and Sørensen (2000)). We deviate from these
models by introducing a misspecification regarding others’ private signals: Agents cor-
rectly observe their own type qn, but have a (common) misspecified prior about the dis-
tribution of types. Namely, each agent believes that all the others’ private posteriors have
conditional distributions F̃� and F̃h. Furthermore, it is common knowledge that these
are the agents’ beliefs. Note that agents still interpret their own private signals correctly,
with agent n calculating qn from sn according to qn = P(θ = h|sn ). We denote by P̃ the
posterior probabilities calculated according to the agents’ misspecified beliefs.

In equilibrium, agents choose actions an to maximize their subjective expected util-
ities:

an = arg max
a∈{�,h}

P̃(θ = a|In, qn ).

Below we will restrict ourselves to qn with non-atomic distributions, i.e., we assume that
F� and Fh are continuous. This will ensure that agents are never indifferent and the
maximum above is unique. We will likewise assume that F̃� and F̃h are continuous.

A pair of conditional cumulative distribution functions (CDFs) (F�, Fh ) is symmetric
(around q = 1/2) if F�(q) + Fh(1 − q) = 1. This in turn implies F(q) + F(1 − q) = 1. To
simplify our exposition, we will make the following assumption.

Assumption 1 (Symmetry). We assume throughout that (F�, Fh ) and (F̃�, F̃h ) are sym-
metric.

When the prior is π = 1/2, this is equivalent to requiring that the model is invariant
with respect to renaming the states.
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2.2 Efficiency

To study efficiency in this setting, we follow Rosenberg and Vieille (2019) and introduce
some additional notation. Let W := #{n : an �= θ} be the (random) number of agents who
take the incorrect action.

The next definition includes two notions of efficiency of social learning.

Definition 1. (i) Asymptotic learning holds if all agents, except finitely many, choose
the correct action, that is, if W is finite P-almost surely.

(ii) Efficient learning holds if E[W ] <∞.

Note that asymptotic learning is equivalent to the sequence of actions an converging
to θ, which is again equivalent to an = θ for all n large enough. Note also that efficient
learning implies asymptotic learning.

2.3 The well specified case

Without misspecification, the classical herding result of Bikhchandani, Hirshleifer, and
Welch (1992) is that asymptotic learning does not hold for any finitely supported private
signal distribution in which no signal is revealing. This is an outcome that displays ex-
treme inefficiency: With positive probability, all but finitely many agents choose incor-
rectly, and, in particular, there is no asymptotic or efficient learning. Smith and Sørensen
(2000) show that asymptotic learning holds if and only if signals are unbounded, that is,
if the support of the distribution of the private posteriors qn includes 0 and 1. Thus,
when signals are sufficiently informative, the extreme inefficiency of the wrong herds in
Bikhchandani, Hirshleifer, and Welch (1992) is overturned.

Nevertheless, this result left open the possibility that many agents choose incorrectly
before the correct herd arrives. To quantify this intuition, Sørensen (1996) gave an exam-
ple in which learning is not efficient: E[W ], the expected number of agents who choose
incorrectly, is infinite. He also conjectured that this is the case for every signal distribu-
tion. This conjecture was shown to be false by Hann-Caruthers, Martynov, and Tamuz
(2018) and Rosenberg and Vieille (2019). In particular, Rosenberg and Vieille (2019) give
an elegant necessary and sufficient condition for efficient learning, showing that effi-
cient learning holds if and only if

∫ 1
0

1
F(x) dx < ∞.

2.4 Condescension

We use our misspecified social learning framework to study how outcomes change when
agents are condescending or think that others’ signals are less informative than they
really are. To formalize and quantify this notion, we restrict ourselves to signals that are
tail-regular : A pair of symmetric conditional CDFs (F�, Fh ) is tail-regular if there exists
α> 0 such that F(q) = (F�(q) + Fh(q))/2 behaves like qα near q = 0; formally, if

0 < lim inf
q→0

F(q)
qα

≤ lim sup
q→0

F(q)
qα

<∞.
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We use Landau notation and write

F(q) = �
(
qα

)
as a shorthand for the expression above.1

Assumption 2 (Tail-Regularity). We assume throughout that (F�, Fh ) and (F̃�, F̃h ) are
tail-regular.

The exponent α associated with a symmetric, tail-regular signal is unique and is
given by

α= lim
q→0

logF(q)
logq

.

It captures a notion of the thinness of the tail of the signals: For high α, there is a small
chance of very informative signals as compared to low α. Thus, in an asymptotic sense,
signals are less informative for higher α. Note that by a standard argument (Lemma 4),
if F(q) =�(qα ), then F�(q) = �(qα ) and Fh(q) =�(qα+1 ).

As an example of tail-regular signals, consider the family of beta distributions, which
are commonly used in the applied literature to model the distribution of posterior be-
liefs (see, e.g., McKelvey and Palfrey (1992), Nyarko, Schotter, and Sopher (2006), Bosch-
Domènech, Montalvo, Nagel, and Satorra (2010), Çelen, Geng, and Li (2020)). This is
a family of probability distributions on the interval [0, 1] parametrized by α, β> 0, with
probability density function given by gα,β(q) = Cqα−1(1−q)β−1, where C is a normaliza-
tion constant. The parameters β and α describe the thickness of the distribution around
0 and 1, respectively. Suppose that private signals have conditional densities f� = gα,α+1

and fh = gα+1,α. Then the unconditional density is again a beta distribution with proba-
bility density function f = gα,α. This is easily seen to be symmetric and tail-regular, with
exponent α.

An important example of signals that are not tail-regular is conditionally Gaussian
signals, with distributions N (−m, 1) and N (+m, 1), depending on the state. In this case,
limq→0

logF(q)
logq = ∞ and the tail-regularity condition is violated, as F(q) decays faster

than any polynomial.
In a misspecified model, we denote by α and α̃ the exponents associated with

(F�, Fh ) and (F̃�, F̃h ), respectively. When α̃ > α, we say that agents are condescending :
They believe that others’ signals are less informative than they really are. Conversely,
when α̃ < α, agents are anti-condescending. Thus, α̃ − α is a measure of how conde-
scending the agents are. Note that our definition of condescension is relatively mild, in
the sense that it only depends on the tail properties and not on the bulk of the distribu-
tion.

1More generally in Landau notation, given two functions f (x) and g(x), one writes f (x) = �(g(x)) if

0 < lim inf
x→0

f (x)
g(x)

≤ lim sup
x→0

f (x)
g(x)

< ∞.
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3. Results

Our first result characterizes the efficiency of learning outcomes for condescending and
anti-condescending agents. The formal proof appears in the Appendix. The intuition
and dynamics behind this result are presented in detail in Section 4.

Theorem 1. Suppose α̃ �= α. Then the following are equivalent: (i) asymptotic learning,
(ii) efficient learning, and (iii) α̃− α ∈ (0, 1).

The regime α̃ − α ∈ (0, 1) describes agents who are condescending (α̃ − α > 0), but
not overly condescending (α̃ − α < 1). In this regime the agents’ mild condescension
causes them to slightly discount the actions of their predecessors, resulting in an in-
creased chance that wrong herds are overturned and a correct herd starts. Since there
are infinitely many agents, there will be infinitely many fresh chances to do this, and
eventually one will succeed, even if each has a very low probability. Moreover, the suc-
cess probabilities are bounded from below, rendering the expected number of mistakes
finite.

In a model without misspecification, the results of Rosenberg and Vieille (2019) im-
ply that efficient learning occurs if and only if α < 1. In contrast, Theorem 1 shows that
efficiency can be regained under potentially small misspecification, for any α, as long as
agents are condescending, but not too condescending. Put differently, even for large val-
ues of α, i.e., when highly informative signals are extremely rare, learning can still be ef-
ficient under mild condescension. The technical reason for why a difference of exactly 1
between α̃ and α is the boundary between mild condescension and over-condescension
is related to the summability of certain sequences that determine whether or not a herd
can start immediately with positive probability. We explain this in detail in Section 4.

Note that the exponent α captures a tail property of the private signals rather than
a parameter that determines the entire distribution. Hence, two distributions can be
very different even if their exponents are very close or the same. When α̃ �= α, the finer
properties of the distributions do not play a role, and efficient learning is solely deter-
mined by the tail exponents. When α̃ = α, we conjecture that it is possible for learning
to be either efficient or inefficient, depending on finer properties of the distributions;
see footnote 5 for the technical details. We leave it for future work to identify these finer
properties that determine efficient learning in this regime.

The next two propositions shed light on why learning fails when agents are either
anti-condescending or overly condescending. These results also appear in the supple-
mentary material to Chen (2022). We provide proofs for these claims in Appendix E for
completeness.

The first proposition concerns the anti-condescension regime in which α̃ < α.

Proposition 1. Suppose that α̃ < α. Then, with P-positive probability, a wrong herd
forms, i.e., from some point on, all agents take the wrong action.

In the case α̃ < α, agents are anti-condescending: They believe that others have sig-
nals that are more informative than they really are. In consequence, they are more easily
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swayed by other’s actions and tend to more often ignore their private signals.2 Thus,
wrong herds can form. This is despite the fact that signals are unbounded, which, with-
out misspecification, would rule out wrong herds.

Our next result tackles the question of why learning fails when agents are overly con-
descending, i.e., when α̃− α≥ 1.

Proposition 2. Suppose that α̃ ≥ α + 1. Then, P-almost surely, both actions are taken
by infinitely many agents.

In the case α̃ ≥ α + 1, agents are very condescending. They think that others have
very uninformative signals. In consequence, they follow their own signals too much,
and herds—wrong or right—do not form. Given enough time, an agent will come along
who will overturn her predecessor’s action.

To sum, Proposition 1 shows that if α̃ < α, then when public belief assigns a low
probability to the realized state, incorrect cascades remain stable with positive proba-
bility. Proposition 2 shows that if α̃ ≥ α + 1, then correct cascades are unstable, and,
thus, even if the public belief assigns high probability to the realized state, herds on the
correct action almost certainly break down. As we shall show, these conditions are also
determinants of efficient learning.

4. Dynamics

In this section, we study how agents update their beliefs and choose their actions under
misspecification. We define the public belief and derive its equations of motion. We
show that two properties of the well specified model—stationarity and the overturning
principle—still hold in our misspecified environment.

4.1 Belief updating

An important tool in social learning is the public belief (or social belief) at time n:

πn = P(θ = h|a1, � � � , an−1 ).

In our case, however, it is also important to consider the misspecified public belief,
which is given by

π̃n = P̃(θ = h|a1, � � � , an−1 ).

The public belief πn is the belief held by a well specified observer who sees the agents’
actions, but not their signals. In contrast, π̃n is the belief held by an observer who holds
the same misspecified beliefs as the agents and again sees only actions.

2The effect of anti-condescension is similar to that of naïveté in Eyster and Rabin (2010). The mechanism
is, however, very different. While naïve agents fail to realize that previous movers’ also infer from still earlier
actions, anti-condescending agents are fully aware of this and take it into account, but believe others to
have better information than they actually do.
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Let pn = P(θ = h|In, qn ) be the posterior belief held by a well specified agent who
observes all the information available to agent n. The actual, misspecified, posterior of
agent n is denoted p̃n = P̃(θ = h|In, qn ). Then, by Bayes’ law,

pn

1 −pn
= πn

1 −πn
× qn

1 − qn

p̃n

1 − p̃n
= π̃n

1 − π̃n
× qn

1 − qn
.

It follows that the action an chosen by agent n is equal to h if π̃n + qn ≥ 1 and to � oth-
erwise.3 Thus, conditioned on θ, the probability that agent n chooses the low action is
Fθ(1 − π̃n ).

This implies that when agent n chooses the low action, the public beliefs {πn} and
{π̃n} evolve as

πn+1

1 −πn+1
= πn

1 −πn
× Fh(1 − π̃n )

F�(1 − π̃n )
(4.1a)

π̃n+1

1 − π̃n+1
= π̃n

1 − π̃n
× F̃h(1 − π̃n )

F̃�(1 − π̃n )
. (4.1b)

When agent n chooses the high action,

πn+1

1 −πn+1
= πn

1 −πn
× 1 − Fh(1 − π̃n )

1 − F�(1 − π̃n )
(4.2a)

π̃n+1

1 − π̃n+1
= π̃n

1 − π̃n
× 1 − F̃h(1 − π̃n )

1 − F̃�(1 − π̃n )
. (4.2b)

4.2 Stationarity and the overturning principle

The above equations of motion imply that as in the well specified case, our model is
stationary, with π̃n capturing all the relevant information about the past.

Lemma 1 (Stationarity). For any fixed sequence b1, � � � , bk of actions in {�, h} and any
π̃ ∈ (0, 1),

P(an+1 = b1, � � � , an+k = bk | π̃n+1 = π̃ ) = Pπ̃(a1 = b1, � � � , ak = bk ).

That is, suppose that at time n, the misspecified public belief π̃n was equal to some
π̃. Then the probability that the subsequent actions are b1, � � � , bk is the same as the
probability of observing this sequence of actions at time 1, when the prior is π̃.

Another important observation that generalizes to the misspecified setting is
Sørensen’s overturning principle.

Lemma 2 (Overturning Principle). The misspecified public belief π̃n+1 in period n + 1 is
greater than or equal to 1/2 if and only if an = h.

3As we note above, indifference occurs with probability zero because we assume that the distribution of
qn is non-atomic.
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Proof. Observe that, by the law of total expectation,

π̃n+1 = Ẽ[1{θ=h}|a1, � � � , an]

= Ẽ
[̃
E[1{θ=h}|a1, � � � , an, qn]|a1, � � � , an

]
= Ẽ[p̃n|a1, � � � , an].

Therefore, an = h is equivalent to p̃n ≥ 1/2 and, hence, is equivalent to π̃n+1 ≥ 1/2.

4.3 Asymptotic learning and immediate herding

In the misspecified setting, the public belief π̃n is not a martingale under the correct
measure P. This martingale property is an important tool in the proof of asymptotic
learning for unbounded signals in the well specified case (Smith and Sørensen (2000)).
In our case, asymptotic learning indeed does not always hold and, in particular, we need
different tools to analyze it.

We denote by an → h the asymptotic event that the sequence of actions converges to
h. Namely, that an = h for all n large enough or that a high action herd forms eventually.
We denote by ā = h the event {a1 = h, a2 = h, � � �} that all agents took the high action;
this is the event that a high action herd formed immediately.

Asymptotic learning occurs when P�(an → �) = 1 and Ph(an → h) = 1. To study the
asymptotic events an → � and an → h, we study the immediate herding events ā = h

and ā = �. These are easier to analyze because conditioned on ā = � or on ā = h, the
sequence of misspecified public beliefs {π̃n} is deterministic and is given recursively by
(4.1b) or (4.2b), respectively.

To see the connection between asymptotic learning and immediate herding, condi-
tion on θ = h and consider the event an → h of a good herd forming eventually. In our
setting, we show that this event has probability 1 if and only if two conditions are met:4

(i) The event ā = � of an immediate bad herd has probability 0.

(ii) The event ā = h of an immediate good herd has positive probability.

The first condition is clearly necessary for asymptotic learning: If a bad herd can form,
then the probability of a good herd is less than 1. The reason that the second condition is
necessary is related to the stationarity of the process; for a good herd to form eventually,
it must have a positive probability to be formed at any point in time and, hence, also in
the beginning.

To see that these conditions are sufficient for asymptotic learning, note that again
applying stationarity, the first condition implies that it is impossible for a bad herd to
start at any point in time. This implies that the high action will be taken infinitely often.
Hence, there will be infinitely many chances for a good herd to start and, thus, by the
second condition (and again stationarity), a good herd will form eventually.

4We omit some technical details in the statements of these two conditions. A complete formal treatment
is presented in Appendix C, Lemmas 10 and 11.
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To apply stationarity, we need these two conditions to hold for any prior and, more-
over, uniformly so. This is done formally in Appendix C.

Having reduced the problem of asymptotic learning to that of immediate herding,
we turn to calculating the probability of the events ā = � and ā = h. Condition on ā = h.
Then the public belief π̃n evolves deterministically according to (4.2b). It will be useful
to consider the misspecified public log-likelihood ratio r̃n := log π̃n

1−π̃n
. In terms of r̃n, the

equation of motion (4.2b) becomes

r̃n+1 = r̃n + log
1 − F̃h

(
1

1 + er̃n

)

1 − F̃�

(
1

1 + er̃n

) .

It starts at the initial level r̃1 = log π
1−π . When (F̃�, F̃h ) is tail-regular with exponent α̃, we

can, for small q, approximate F̃�(q) with qα̃ and F̃h(q) with qα̃+1 (neglecting constants),
and since r̃n tends to infinity when ā = h, this equation of motion is well approximated
by

r̃n+1 ≈ r̃n + e−α̃r̃n . (4.3)

Intuitively, after each observed high action the misspecified public log-likelihood in-
creases by an amount e−α̃r̃n that becomes smaller as r̃n increases. More importantly,
e−α̃r̃n is also smaller when α̃ is higher, i.e., when the signals are less informative: After
many high actions, agents are less surprised to see another high action when signals are
less likely to be very informative.

The asymptotic behavior of this discrete time equation can in turn be approximated
by the differential equation dr̃(t )

dt = e−α̃r̃(t ), whose solution is r̃(t ) = α̃−1 log(1 + α̃t ); this is
shown formally in Appendix B, Lemmas 8 and 9. Thus, conditioned on the event ā = h,
the misspecified public log-likelihood r̃n takes the sequence of deterministic values r̃hn ,
which we can approximate by r̃hn ≈ α̃−1 log(1 + α̃n). Transforming this back to public
beliefs, we get

π̃h
n ≈ 1 − n−1/α̃. (4.4)

Thus, the sequence of misspecified public beliefs converges to 1, and it does so more
slowly for higher α̃, i.e., for less informative signals.

We remind the reader that an = h if and only if qn ≥ 1 − π̃n: The agent takes the high
action if her private posterior qn = P(θ = h|sn ) exceeds 1 − π̃n. Hence, the event ā = h is
the event that qn ≥ 1 − π̃h

n for all n. Conditioned on θ = h, the (actual, not misspecified)
probability of this event is

1 − Fh

(
1 − π̃h

n

) ≈ 1 − Fh

(
n−1/α̃) ≈ 1 − n− α+1

α̃ ,

where the first approximation uses (4.4) and the second uses Fh(q) = �(qα+1 ).
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Since the random variables qn are independent conditioned on the state, we get that
the probability of ā= h is

Ph(ā = h) =
∞∏
n=1

(
1 − Fh

(
1 − π̃h

n

)) ≈
∞∏
n=1

(
1 − n− α+1

α̃
)
.

Crucially, we are only interested in whether this probability is positive or zero. As we
show formally in Lemma 12 in Appendix D, the approximations we perform are good
enough, in the sense that the first product vanishes if and only if the second one does.
Thus, by an elementary argument, we get that Ph(ā = h) > 0 if and only if α̃− α< 1.

This argument shows that immediate good herds can form if and only if α̃ − α < 1,
i.e., agents are not overly condescending. A similar line of reasoning shows that Ph(ā =
�) = 0 if and only if α̃ − α ≥ 0, i.e., immediate bad herds are excluded when agents are
condescending.

The assumption of tail-regularity is used in the approximation r̃n+1 ≈ r̃n+e−α̃r̃n of the
evolution of the public log-likelihood ratio made in (4.3). Tail-regularity is also crucial
for showing that the differential equation dr̃(t )

dt = e−α̃r̃(t ) is a good approximation of this
discrete time dynamics; see the proofs of Lemmas 8 and 9 in Appendix B.

4.4 Efficient learning

In the previous section, we explained why asymptotic learning holds only in the regime
α̃− α ∈ [0, 1). This immediately implies that outside this range there is also no efficient
learning. In this section, we explain why efficient learning does hold when α̃−α ∈ (0, 1).

Suppose α̃ − α ∈ (0, 1). As asymptotic learning holds, we know that the agents will
take the high action from some point on. Until then, there will be runs of wrong ac-
tions, i.e., sequences of consecutive agents who make the wrong choice. These will be
separated by runs of agents who make the correct choice.

The argument for efficient learning includes two parts. First, we show that the ex-
pected number of bad runs is finite. Second, we show that the expected length of each
bad run is finite. Moreover, the expected length of a bad run is uniformly bounded, re-
gardless of the history that came before that run. It follows that the total number of
agents W who take the wrong action has a finite expectation.

The reason that the number of bad runs has finite expectation is that regardless of
the history, there is a uniform lower bound δ on the probability that a good herd con-
tinues forever. This implies that the distribution of the number of bad runs is stochasti-
cally dominated by a geometric distribution, which has a finite expectation. This holds
whenever α̃− α < 1, i.e., whenever agents are not overly condescending. The argument
is similar to the one from the previous section, which showed that in this range, the
probability of ā = h is positive in the high state.

To show that the expected length of each bad run is finite, we again follow the line
of argument from the previous section that shows that ā = � has zero probability in the
high state. This holds whenever α̃ > α, i.e., when agents are condescending. Moreover,
we show that the expected length of a bad run is uniformly bounded, regardless of the
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history that came before it started. This is a consequence of the fact that the public belief
at the onset of a run cannot be arbitrarily high or low, but is bounded away from 0 and
1. This is a consequence of tail regularity (see Proposition 7).

We note that this last step is obtained in the well specified setting of Rosenberg
and Vieille (2019) by appealing to the overturning principle and the fact that { 1−πn

πn
} is

a martingale under the correct conditional measure (that is, Ph in the high state). In our
misspecified case, the overturning principle still holds, but the public likelihood { 1−π̃n

π̃n
}

is not a martingale under the correct measure. Thus, we have to apply a mechanical
method that appeals to tail-regularity.

4.5 Expected time of the first correct action

Rosenberg and Vieille (2019) consider another notion of the efficiency of learning, which
is briefly discussed in this section. Let τ be the first time that the correct action is taken:

τ = min{n : an = θ}.

This is a random time that takes values in N∪ {∞}.
Rosenberg and Vieille (2019) show that in the well specified setting, the finiteness of

the expectation of τ coincides with efficient learning, i.e., the finiteness of the expecta-
tion of W .

In our model, when agents are condescending, i.e., when α̃ > α, the expectation of τ
is finite (see Proposition 7). This holds even when agents are over-condescending (i.e.,
α̃ ≥ α+ 1) and efficient learning does not hold. In the latter regime, there is no learning
because the agents’ condescension causes them to put too much weight on their own
signals, resulting in both actions being taken infinitely often and also in small expected
τ. When agents are anti-condescending, there is a positive probability of τ = ∞ (see
Proposition 5) and, in particular, τ has an infinite expectation.

5. Conclusion

In this paper, we study social learning with condescending agents who underestimate
the quality of their peers’ information. We show that mild condescension can have pos-
itive externalities that result in efficient learning. In particular, there are private signal
distributions for which learning is not efficient in the well specified case, but is efficient
with even very small levels of condescension.

We make several simplifying assumptions for expositional purposes. For example,
relaxing symmetry (Assumption 1) yields the same type of results, but where the expo-
nent α needs to be defined for each of the two states (corresponding to the left and right
tails) and outcomes can be different in each state. We believe that our results also hold
for private belief distributions that are not continuous, but currently, our proof tech-
niques only apply in the continuous case.

A more substantial assumption is that all agents have the same misspecified beliefs
about others. We see this as a smallest possible deviation from the well specified case, in-
volving misspecification only about the distribution of agents’ types and nothing else. In
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particular, because all agents have the same prior, higher order beliefs are trivial, which
makes the model tractable. A natural avenue for future work is to relax this assumption.
Indeed, higher order beliefs play an interesting and important role in the misspecified
social learning literature (Bohren (2016), Bohren and Hauser (2021)).

Our analysis of social welfare is restricted to the question of whether the expected
number of incorrect actions is finite or not. A more nuanced question is to study how
this expectation changes as the actual and perceived distributions of private signals vary.
In particular, for private signal distributions where this expectation is finite in the well
specified case, it is interesting to understand how misspecification alters this expec-
tation; this is possible even when α̃ = α. It is, furthermore, natural to consider a dis-
counted sum of the number of incorrect actions. These are interesting questions that
currently seem to be beyond what is technically tractable.

Appendix A: Preliminaries

The following lemma is a standard result, with proofs given, for example, in Appendix A
of Hann-Caruthers, Martynov, and Tamuz (2018) or Rosenberg and Vieille (2019).

Lemma 3. Let G� and Gh be two cumulative distribution functions on [0, 1], with
the Radon–Nikodym derivative dGh/dG� satisfying the iterated likelihood principle
dGh
dG� (q) = q/(1 − q). Then it holds that

Gh(q) = 2
(
qG(q) −

∫ q

0
G(x) dx

)

G�(q) = 2
(

(1 − q)G(q) +
∫ q

0
G(x) dx

)
,

where G= 1
2 (G� +Gh ). These in turn imply that Gh(q) ≤ 2qG(q) and |G�(q) − 2G(q)| ≤

3qG(q). Therefore, limq→0 Gh(q)/G(q) = 0 and limq→0 G�(q)/G(q) = 2.

We use this lemma to prove the following additional lemma that relates the exponent
of G to the exponents of G� and Gh.

Lemma 4. Suppose G(q) = �(qα ). Then G�(q) = �(qα ) and Gh(q) =�(qα+1 ).

Proof. Lemma 3 immediately implies that G�(q) = �(qα ) whenever G(q) = �(qα ). To
see that Gh(q) = �(qα+1 ), note that G(q) = �(qα ) implies there are constants C ≥ c > 0
such that for all q ∈ [0, 1], we have cqα ≤ G(q) ≤ Cqα. The previous lemma thus implies
that Gh(q) ≤ 2Cqα+1. Next, let us define m := (c/2C )1/α and observe that

G(mq) ≤ C(mq)α = c

2
qα ≤ 1

2
G(q).

Since G is increasing, then G(x) ≤ G(q)/2 for all x ≤ mq and, therefore,
∫ mq

0 G(x) dx ≤
mqG(q)/2. In addition, G being increasing implies that

∫ q
mqG(x) dx ≤ (1 − m)qG(q).
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Therefore, we obtain the following upper bound for the integral:∫ q

0
G(x) dx =

∫ mq

0
G(x) dx+

∫ q

mq
G(x) dx

≤ m

2
qG(q) + (1 −m)qG(q) =

(
1 − m

2

)
qG(q).

It follows from the expression for Gh in the previous lemma that Gh(q) ≥ mqG(q) and,
hence, Gh(q) ≥mcqα+1. Therefore, we have shown that Gh(q) = �(qα+1 ).

Appendix B: The evolution of the public log-likelihood

Define the misspecified public log-likelihood ratio by

r̃n = log
π̃n

1 − π̃n

and define the well specified public log-likelihood ratio by

rn = log
πn

1 −πn
.

At n = 1, it holds that r1 = r̃1 = log π
1−π . Conditioned on the event ā = h, π̃n satisfies

the recursive equation (4.2b), and, thus, π̃n is deterministic and equal to some π̃h
n . We

accordingly denote r̃hn = log π̃h
n

1−π̃h
n

.

Lemma 5. We have limn→∞ π̃h
n = 1.

Proof. The perceived distributions F̃h and F̃� satisfy the iterated likelihood principle,
that is,

dF̃h

dF̃�
(q) = q

1 − q
.

This relation implies that F̃h − F̃� is strictly decreasing on [0, 1/2] and strictly increasing
on [1/2, 1]. Therefore, for every π ∈ (0, 1/2], it must be that

F̃h(π ) − F̃�(π ) < F̃h(0) − F̃�(0) = 0 ⇒ F̃h(π ) < F̃�(π ),

and for every π ∈ [1/2, 1), we have

F̃h(π ) − F̃�(π ) < F̃h(1) − F̃�(1) = 0 ⇒ F̃h(π ) > F̃�(π ).

Observe that due to (4.2b), the sequence π̃n is strictly increasing. Now assume by con-
tradiction that π̃n → π̂ ∈ (0, 1). Then it must be that

1 − F̃h(1 − π̂ )

1 − F̃�(1 − π̂ )
= 1,

which is in contrast to the previous two implications about {F̃�, F̃h}.
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In this section, we provide asymptotic results for the evolution of rn and r̃n on the
high action path. As discussed above, on this path, these random variables are deter-
ministic, and equal to some constants rhn and r̃hn , respectively. These constants satisfy
the reformulation of expressions in (4.2a) and (4.2b),

rhn+1 = rhn +U
(
r̃hn

)
(B.1)

r̃hn+1 = r̃hn + Ũ
(
r̃hn

)
, (B.2)

where

U(r ) := log
1 − Fh

(
1

1 + er

)

1 − F�

(
1

1 + er

)

Ũ(r ) := log
1 − F̃h

(
1

1 + er

)

1 − F̃�

(
1

1 + er

) .

We can readily show that both U and Ũ are decreasing functions. In addition, they
always take positive values, because Fh � F� and F̃h � F̃� in first order stochastic domi-
nance. This means not only {r̃hn }, but also {rhn } is an increasing sequence.

Lemma 5 implies that limn r̃
h
n = ∞. Thus, to study the public belief at large times n,

we need to understand U(r ) and Ũ(r ) for large r. The next lemma provides the asymp-
totic behavior of these functions.

Lemma 6. For large r, we have U(r ) = �(e−αr ) and Ũ(r ) = �(e−α̃r ); that is,

0 < lim inf
r→∞

U(r )

e−αr ≤ lim sup
r→∞

U(r )

e−αr <∞

and

0 < lim inf
r→∞

Ũ(r )

e−α̃r
≤ lim sup

r→∞
Ũ(r )

e−α̃r
<∞.

Proof. Define μ = 1
1+er . We first propose an upper bound on U . To this end, note that

U(r ) = log
1 − Fh(μ)
1 − F�(μ)

≤ − log
(
1 − F�(μ)

)
.

Due to Lemma 3, F�(q) ≤ 2F(q); therefore, U(r ) ≤ − log(1 − 2F(μ)). Since for small
enough x, we have − log(1 − x) ≤ x+ x2, then

U(r ) ≤ 2F(μ)
(
1 + 2F(μ)

)
,

thereby establishing an upper bound.
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Before proceeding with a lower bound, we introduce the Landau notations o(·) and
O(·). We say f (x) = o(g(x)) if limx→0

f (x)
g(x) = 0, and f (x) =O(g(x)) if lim supx→0

f (x)
g(x) < ∞.

To propose a lower bound, observe that because of Lemma 3, Fh(q) ≤ 2qF(q) and
F�(q) ≥ 2(1 − q)F(q); therefore,

eU(r ) ≥ 1 − 2μF(μ)
1 − 2(1 −μ)F(μ)

≥ (
1 − 2μF(μ)

)(
1 + 2(1 −μ)F(μ) + 2(1 −μ)2F(μ)2)

= 1 + 2F(μ) − 4μF(μ) + 2
(
1 −O(μ)

)
F(μ)2.

Since log(1 + x) ≥ x− x2/2, then

U(r ) ≥ 2F(μ) − 4μF(μ) + (
2 −O(μ)

)
F(μ)2 + o

(
F(μ)2)

≥ 2F(μ)

(
1 − 2μ+ 3

2
F(μ)

)
.

The above upper and lower bounds imply that limr→∞ U(r )
2F(μ) = 1. In addition, because

of tail-regularity (Assumption 2), it holds that F(μ) = �(e−αr ), thereby justifying the
lemma’s first claim. A similar argument implies that Ũ(r ) =�(e−α̃r ).

So far our results sidestepped the role of the prior π, which determines the initial
value for the sequence {r̃hn }, and only looked at the asymptotics as n → ∞. In the next
lemma, we establish a property of this sequence that will prove useful for uniform con-
vergence results. We use the notation r̃hn (π ) to refer to the value of r̃hn when the initial
belief was π, that is, when r̃h1 = log( π

1−π ). The rest of the sequence evolves according to
(B.2).

Lemma 7. For every r̄ ≥ 0, there exists n0 such that r̃hn (π ) ≥ r̄ for all n ≥ n0 and, impor-
tantly, for all initial π ≥ 1/2.

Proof. The idea is similar to the proof of Lemma 12 in Rosenberg and Vieille (2019).
Let us introduce the mapping �(r ) := r + Ũ(r ) and show its n-times composition by �n.
Hence, we have r̃hn = �n−1( r̃1 ). First observe that since Ũ > 0, if r̃1 ≥ r̄, then �n( r̃1 ) ≥ r̄.
Now assume by contradiction that the conclusion of the lemma does not hold. Then,
for every n ∈ N, there exists an initial belief π(n) such that r̃hn (π(n) ) ≤ r̄. Also, we have
�m−1( r̃1(π(n) )) = r̃hm(π(n) ) ≤ r̄ for all m ≤ n. Since the interval [0, r̄] is compact, there
is a subsequence of initial values {r̃1(π(n) )}, which we index by k, that is converging to
r∗ ∈ [0, r̄]. Since the mapping �n is continuous for every fixed n, then we have

�n
(
r∗

) = lim
k→∞

�n
(
r̃1

(
π(k))) ≤ r̄.

The above inequality holds for every n; hence, it leads to a contradiction, because for
every initial prior π > 0, the induced sequence {r̃hn } increases to infinity (this follows
from Lemma 5).
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In the next two lemmas we calculate the asymptotic behavior of r̃hn and show that

er̃
h
n = �(n1/α̃ ). We first establish a lower bound for r̃hn . We achieve this by introducing a

lower bound for the increments of r̃hn in (B.2). We then approximate the resulting lower
envelope with the solution to a differential equation.

Lemma 8 (Lower Envelope). The misspecified public log-likelihood satisfies

lim inf
n→∞

er̃
h
n

n1/α̃
> 0. (B.3)

Proof. By Lemma 6, there exists c > 0 such that for all sufficiently large n (say n ≥ n̄), we
have Ũ( r̃hn ) ≥ c e−α̃r̃hn . Additionally, observe that the mapping z → z+c e−α̃z is increasing
for all sufficiently large z (say z ≥ z̄). Since r̃hn → ∞, we can choose N ≥ n̄ such that
r̃N ≥ z̄. For all n ≥N , it holds that

r̃hn+1 − r̃hn = Ũ
(
r̃hn

) ≥ c e−α̃r̃hn . (B.4)

We show that this discrete time equation can be bounded from below by the differential
equation

dz(t )
dt

= c e−α̃z(t ).

This equation has the solution form z(t ) = α̃−1 log(κ + cα̃t ), where the initial condition
parameter κ is chosen so that at n = N , we have z(N ) = r̃hN . Next, we inductively show
r̃hn ≥ z(n) for all n ≥ N , which in turn establishes the claim in (B.3). The base step holds
by definition. Suppose the claim also holds at some n >N , i.e., r̃hn ≥ z(n). Then observe
that because of the mean value theorem, there exists t ∈ [n, n+ 1] such that

z(n+ 1) − z(n) = c e−α̃z(t ) ≤ c e−α̃z(n),

where the inequality follows because z(t ) is increasing. Therefore, we have

z(n+ 1) ≤ z(n) + c e−α̃z(n)

≤ r̃hn + c e−α̃r̃hn ≤ r̃hn+1.

The second inequality holds because z → z + c e−α̃z is increasing for z ≥ z̄, and z(n) ≥ z̄

for n ≥N . The third inequality holds because of (B.4). This justifies the claim in (B.3).

The next lemma posits an upper bound for the increments of r̃hn . Its proof strategy is
similar to that of the previous lemma, with some additional technical considerations.

Lemma 9 (Upper Envelope). The misspecified public log-likelihood satisfies

lim sup
n→∞

er̃n

n1/α̃
<∞. (B.5)
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Proof. As in the proof of the previous lemma—but changing the direction of the
inequalities—there exists C > 0 and n̄ such that for all n ≥ n̄, we have Ũ( r̃hn ) ≤ Ce−α̃r̃hn .
Likewise, the mapping z → z+Ce−α̃z is increasing for all z ≥ z̄, and we can choose N ≥ n̄

such that r̃hN ≥ z̄. Then for all n ≥N it holds that

r̃hn+1 − r̃hn = Ũ
(
r̃hn

) ≤ Ce−α̃r̃hn . (B.6)

Take the following differential equation as an upper envelope for the above difference
equation:

dz(t )
dt

= 2Ce−α̃z(t )

with the solution form z(t ) = α̃−1 log(κ+ 2Cα̃t ). Observe that for all κ > 0 and n ≥ 1, we
have

2e−α̃z(n+1) ≥ e−α̃z(n). (B.7)

Therefore, we can choose κ large enough such that z(N ) ≥ r̃hN . Next, we inductively show
r̃hn ≤ z(n) for all n ≥ N , which in turn establishes the claim in (B.5). The base step holds
by definition. Suppose the claim also holds at some n > N . Then observe that because
of the mean value theorem, there exists t ∈ [n, n+ 1] such that

z(n+ 1) − z(n) = 2Ce−α̃z(t ) ≥ 2Ce−α̃z(n+1) ≥ Ce−α̃z(n),

where the first inequality holds because z(t ) is increasing and the second inequality
follows from (B.7). Since z → z + Ce−α̃z is increasing for all z ≥ z̄, and n ≥ N , then
z(n) ≥ r̃hn ≥ z̄ implies that

z(n+ 1) ≥ z(n) +Ce−α̃z(n) ≥ r̃hn +Ce−α̃r̃hn ≥ r̃hn+1,

where the last inequality follows from (B.6). This concludes the induction and, thus,
establishes the asymptotic upper bound for er̃

h
n in (B.5).

The previous two lemmas jointly imply that er̃
h
n = �(n1/α̃ ). Importantly, this holds

regardless of the initial belief π (i.e., the initial level r̃1). Of course, the implied constants
may depend on π.

Appendix C: Characterization of asymptotic learning

In Section 4.3, we drew a connection between asymptotic learning and immediate herd-
ing. In this section, we formalize this, establishing necessary and sufficient conditions
for asymptotic learning in terms of immediate herding. Note that the results of this sec-
tion, Lemmas 10 and 11, do not require tail-regularity and apply more broadly.

The first lemma states that asymptotic learning in the high state implies that imme-
diate herding on the high action happens with positive probability for some prior π ′ and
that immediate herding on the low action cannot occur.
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Lemma 10 (Necessary Condition). Assume an → h, Ph-almost surely. Then the following
two conditions hold:

(i) ∃π ′ < 1 such that Pπ′,h(ā = h) > 0

(ii) Ph(ā = �) = 0.

Proof. Condition on θ = h and let σ be the random time of the last incorrect action,
which has to be finite, because an → h. Since aσ = �, then it must be that π̃σ+1 < 1/2 by
the overturning principle. Therefore,

1 = Ph(an → h) =
∞∑
k=0

Ph(σ = k)

=
∞∑
k=0

Ph(am = h∀m>k, π̃k+1 < 1/2).

Applying the law of total expectations, this is

=
∞∑
k=0

Eh

[
Ph(am = h∀m>k, π̃k+1 < 1/2 | π̃k+1 )

]

=
∞∑
k=0

Eh

[
Ph(am = h∀m>k | π̃k+1 )1{π̃k+1<1/2}

]

=
∞∑
k=0

Eh

[
Pπ̃k+1,h(ā = h)1{π̃k+1<1/2}

]
,

(C.1)

where the last equality is an application of stationarity. To show (i), assume by contra-
diction that Pπ′,h(ā = h) = 0 for every π′ ∈ [0, 1). Then the right hand side is equal to 0,
thereby resulting in a contradiction.

Since the event an → h is disjoint from the event ā = �, the assumption that the for-
mer happens with probability 1 implies that the latter has probability 0, and, thus, we
have shown (ii).

The next lemma shows that asymptotic learning in the high state is implied by uni-
formly positive probability (over priors at least 1/2) for immediate herding on the high
action and zero probability (for any prior at least 1/2) for immediate herding on the low
action.

Lemma 11 (Sufficient Condition). The following two conditions are sufficient for an → h,
Ph-almost surely:

(i) infπ′≥1/2 Pπ′,h(ā= h) > 0

(ii) Pπ′,h(ā = �) = 0 for all π ′ > 0.
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Proof. To show asymptotic learning, we first rule out convergence to the wrong action;
that is, we claim Ph(an → �) = 0. Let σ be the last time that agents take the correct action
h; hence, π̃σ+1 ≥ 1/2. Then an → � if and only if σ < ∞. Therefore, applying the same
logic of (C.1) leads to

Ph(an → �) =
∞∑
k=0

Ph(σ = k) =
∞∑
k=0

Eh

[
Pπ̃k+1,h(ā = �)1{π̃k+1≥1/2}

]
.

Since Pπ′,h(ā = �) = 0 for all π′ > 0, the above expression implies that Ph(an → �) = 0.
Whereas we have shown that an does not converge to �, it follows that the sequence

of actions an has some number of bad runs: consecutive agents who take the wrong
action flanked by agents who take the correct action. To show asymptotic learning, it
suffices to show that the number of bad runs is finite. Let

δ= inf
π′≥ 1

2

Pπ′,h(ā = h).

At the end of a bad run, the next action is h, and so the misspecified public belief is at
least 1/2. Hence, by stationarity, there is a chance of at least δ of never having another
bad run. Since signals are independent conditioned on the state, this implies that the
probability of having m bad runs is at most (1 − δ)m. In particular, the probability of
infinitely many bad runs is 0.

Appendix D: Proof of Theorem 1

We divide the proof of Theorem 1 into two: Proposition 3 characterizes asymptotic
learning and Proposition 6 characterizes efficient learning. Jointly, they imply the theo-
rem.

D.1 Parametric characterization for asymptotic learning

In this section we characterize the range of condescension where asymptotic learning is
achieved.

Proposition 3. The following are equivalent:

(i) asymptotic learning

(ii) α̃− α ∈ [0, 1).

To prove this statement we leverage the necessary and sufficient conditions found
in Lemmas 10 and 11 as well as prove the following two propositions that relate the
probability of immediate herding events to the underlying parameters α and α̃:

Proposition 4. The following are equivalent:

(i) infπ′≥1/2 Pπ′,h(ā = h) > 0
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(ii) ∃π′ < 1 such that Pπ′,h(ā = h) > 0

(iii) α̃− α< 1.

Proposition 5. The following are equivalent:

(i) Pπ′,h(ā = �) = 0 for all π′ > 0

(ii) Pπ′,h(ā = �) = 0 for some π′ < 1

(iii) α̃− α ≥ 0.

Proposition 4 implies that the probability of an immediate good herd is uniformly
positive (over all initial beliefs larger than 1/2) if and only if α̃ − α < 1, i.e., when agents
are not overly condescending. Proposition 5 claims that the probability of an immediate
wrong herd is 0 for all positive initial beliefs if and only if α̃− α ≥ 0, i.e., when agents are
condescending.

We use these propositions to prove Proposition 3, before proceeding with their
proofs.

Proof of Proposition 3. Suppose that asymptotic learning holds, i.e., an → θ, P-
almost surely. Then an → h, Ph-almost surely. By Lemma 10, this implies that condition
(ii) of both Propositions 4 and 5 hold. Hence, by these propositions, conditions (iii) in
the two propositions hold and α̃− α ∈ [0, 1).

Suppose that α̃ − α ∈ [0, 1). Then condition (iii) of both Propositions 4 and 5 hold.
Therefore, condition (i) of both propositions hold. Hence, by Lemma 11, we have
asymptotic learning.

D.1.1 Proof of Proposition 4 The proof of the first implication, namely (i) ⇒ (ii), is
immediate. The next lemma establishes the second implication, i.e., (ii) ⇒ (iii). In fact,
it shows a stronger statement.

Lemma 12. The following are equivalent:

(i) α̃− α< 1

(ii) Ph(ā = h) > 0.

Proof. Conditioned on the event ā = h, the public belief π̃n is deterministic and equals
π̃h
n . Thus, the event ā = h is equal to the event {qn + π̃h

n ≥ 1, ∀n}. Since the random
variables qn are independent conditioned on θ = h, we have that

Ph(ā = h) =
∏
n

Ph

(
qn + π̃h

n ≥ 1
) =

∏
n

(
1 − Fh

(
1 − π̃h

n

))
. (D.1)

This implies that Ph(ā = h) > 0 if and only if −∑
n log(1 − Fh(1 − π̃h

n )) < ∞. For two

sequences fn and gn, we say fn ∼ gn if fn
gn

→ 1 as n → ∞. Since π̃h
n → 1, then − log(1 −
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Fh(1 − π̃h
n )) ∼ Fh(1 − π̃h

n ), and the previous sum is finite if and only if∑
n

Fh

(
1 − π̃h

n

)
<∞.

Observe that Lemma 4 implies that Fh(q) = �(qα+1 ). Also, as n → ∞, we have e−r̃hn ∼
1 − π̃h

n ; therefore, the above sum is finite if and only if∑
n

e−(α+1)r̃hn <∞. (D.2)

Because of the Lemmas 8 and 9, we have e−(α+1)r̃hn = �(n− α+1
α̃ ). Thus, the sum in (D.2) is

finite if and only if α̃− α< 1.

The following two lemmas are aimed at proving the third and final implication in
Proposition 4, that is, (iii) ⇒ (i). In the first one, we show that the sum in (D.2) can
be made arbitrarily small if the initial value r̃1 is large enough. Often in the following
expressions, we use the notation r̃hn (r ) to refer to the process initiated at r̃1 = r. Also,
recall our former notation, where we used r̃hn (π ) to refer to the process initiated at r̃1 =
log π

1−π . We use both of these notations interchangeably, depending on the context.

Lemma 13. Assume α̃ − α < 1. Then for every ε > 0, there exists r̄ ≥ 0 such that for all
r ≥ r̄, we have

∑
n≥0 e−(α+1)r̃hn (r ) < ε.

Proof. We appeal to the idea used in the proof of Lemma 8. Since Ũ(r ) =�(e−α̃r ), then
there exists c > 0, and, correspondingly, a threshold r̄, such that Ũ(r ) ≥ c e−α̃r for every
r ≥ r̄ and the mapping r → r + c e−α̃r is increasing on [r̄, ∞). In particular, since r̃hn is
increasing in n, starting the process at any r̃1 = r ≥ r̄ implies

Ũ
(
r̃hn (r )

) ≥ c e−α̃r̃hn (r ).

Next, we recall the continuous time process z(t ) such that z(0) = r̄ and

dz(t )
dt

= c e−α̃z(t ).

The solution to this differential equation takes the form

z(t ) = 1
α̃

log
(
eα̃r̄ + cα̃t

)
.

Using induction, similar to the one used in Lemma 8, we can show r̃hn (r ) ≥ z(n) for every
initial value r ≥ r̄. Therefore, for every r ≥ r̄, it holds that

∑
n≥0

e−(α+1)r̃hn (r ) ≤
∑
n≥0

e−(α+1)z(n) =
∑
n≥0

(
eα̃r̄ + cα̃n

)− α+1
α̃ .

Since α+ 1 > α̃, for a given ε > 0, we can choose r̄ large enough such that the above sum
is less than ε.
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Let η : [1/2, 1] → [0, 1],

η(π ) = Pπ,h(ā = h),

be the probability of immediate herding on the high action, conditioned on the high
state, when the prior is π. By (D.1),

η(π ) =
∏
n

(
1 − Fh

(
1 − π̃h

n (π )
))

.

Lemma 14. Assume α̃− α< 1. Then η is continuous.

Proof. Let

ηn(π ) = Pπ,h(a1 = h, � � � , an = h) =
n∏

k=1

(
1 − Fh

(
1 − π̃h

k (π )
))

(D.3)

be the probability that the first n agents take the high action, conditioned on the high
state, when the prior is π. By definition, η(π ) = limn ηn(π ). Since the distribution of
the private posteriors qn is non-atomic, each ηn is continuous. Thus, we prove that η is
continuous by showing that ηn converges uniformly to η.

First, Lemma 4 implies that Fh(e−r ) = �(e−(α+1)r ) and, hence, there exists C > 0
such that Fh(e−r ) ≤ Ce−(α+1)r . Second, because of Lemma 13, for a given ε1 > 0, there
exists r̄ ≥ 0 such that for all r1 ≥ r̄, we have∑

n≥0

e−(α+1)r̃hn (r1 ) ≤ ε1.

Then, because of Lemma 7, there exists n0 ≡ n0( r̄ ) such that r̃hn (π ) ≥ r̄ for all initial π ≥
1/2 and n≥ n0. By (D.3),

ηn+1(π ) = ηn(π )(1 − Fh

(
1 − π̃h

n (π )
)
,

so that |ηn+1(π ) −ηn(π )| ≤ Fh(1 − π̃h
n (π )). Hence, for every k> 0 and π ≥ 1/2,

∣∣ηn0+k(π ) −ηn0 (π )
∣∣ ≤

∞∑
n=n0

Fh

(
e−r̃hn (π )) ≤ C

∑
n≥n0

e−(α+1)r̃hn (π ) ≤Cε1. (D.4)

The third inequality above holds because r̃hn0
(π ) ≥ r̄ and, thus, Lemma 13 implies the

sum is smaller than ε1. Since ε1 was chosen independently, the final term above can be
made arbitrarily small by taking n0 large enough. This implies that the sequence {ηn} is
Cauchy with respect to the sup-norm in C[1/2, 1] and, thus, it converges uniformly to η.
Therefore, η is continuous.

Using the above lemma, we can now conclude the proof of the last implication in
Proposition 4, namely (iii) ⇒ (i). Assume by contradiction that condition (i) does not
hold. Then infπ≥1/2 η(π ) = 0. By the previous lemma, η is a continuous function; hence,
there must exist π̂ ∈ [1/2, 1] such that η(π̂ ) = 0. Since, η(1) �= 0, then π̂ ∈ [1/2, 1) and
Lemma 12 implies that α̃ − α ≥ 1. This violates the initial assumption (i.e., α̃ − α < 1)
and, hence, concludes the proof of Proposition 4.
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D.1.2 Proof of Proposition 5 The first implication, namely (i) ⇒ (ii), is immediate. For
the remaining two implications, define

ξ(π ) = Pπ,h(ā = �)

and appeal to the next lemma.

Lemma 15. For every π ∈ (0, 1), we have ξ(π ) = 0 if and only if α̃− α ≥ 0.

Proof. Because of the symmetry assumption, we have ξ(π ) = P1−π,�(ā = h). Let π̃h
n =

π̃h
n (1 − π ) be the misspecified public belief on the high action path, initiated at π̃1 =

1 −π. Then, following the same argument of Lemma 12, we have

ξ(π ) =
∏
n

(
1 − F�

(
1 − π̃h

n (1 −π )
))

.

Therefore, ξ(π ) > 0 if and only if −∑
n log(1 − F�(1 − π̃h

n )) < ∞. Since π̃h
n → 1 on the

high action path, then − log(1 −F�(1 − π̃h
n )) ∼ F�(1 − π̃h

n ), and the previous sum is finite
if and only if ∑

n

F�
(
1 − π̃h

n

)
<∞.

Lemma 3 implies that F�(q) = �(qα ). Also, as n → ∞, we have 1 − π̃h
n ∼ e−r̃hn . Therefore,

the above sum is finite if and only if ∑
n

e−αr̃hn < ∞.

It was shown in Lemmas 8 and 9 that er̃n = �(n1/α̃ ). Thus we can deduce that the above
sum is finite if and only if α> α̃. Therefore, ξ(π ) = 0 if and only if α̃− α ≥ 0.

Observe that ξ(1) = 0. Therefore, the second and the third implications of Propo-
sition 5, namely (ii) ⇒ (iii) ⇒ (i), respectively follow from the above lemma, thereby
concluding the proof of Proposition 5.

D.2 Parametric characterization for efficient learning

In this section, we characterize the range of condescension where efficient learning is
achieved.

Proposition 6. Assume α̃ �= α. The following characterizations are equivalent:

(i) efficient learning

(ii) α̃− α ∈ (0, 1).

Proof. The implication (i) ⇒ (ii) follows immediately from Proposition 3, since effi-
cient learning implies asymptotic learning.
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Toward sufficiency, assume α̃ − α < 1. Following the same logic as in the proof of
Lemma 11, we obtain that conditioned on θ = h, the probability of having m bad runs is
at most (1 − δ)m for some δ > 0 and, hence, the number of bad runs has a finite expec-
tation.

By Proposition 7 below, conditioned on the high state, α̃ − α > 0 implies that the
expected length of the first bad run is bounded by C0

1−π
π for some constant C0 > 0. This

proposition also implies, by stationarity, that conditioned on θ = h and on any prior
history, the expected length of any future bad run is at most C0B, where B > 0 is another
constant. It thus follows from the fact that signals are conditionally independent and
identically distributed (i.i.d.) that the expected total number of low actions in the high
state is finite. The argument is analogous to the one that appears in Appendix B.3 of
Rosenberg and Vieille (2019).

Finally, by symmetry, the expected number of high actions in the low state is also
finite, and, thus, we have efficient learning.

We end this section with the following proposition, which is the main ingredient of
the proof above. It shows that α̃− α > 0 implies that the expected length of a bad run is
uniformly bounded.

Define τθ := min{n : an = θ}. Note that conditioned on θ = h, τh is the length of the
first bad run.

Proposition 7. Assume α̃− α> 0. Then the following statements hold:

(i) Let π ≤ 1/2. There exists a constant C0 > 0 (independent of π) such that

Eπ,h[τh] ≤ C0
1 −π

π
.

(ii) Let π̃n+1 be the misspecified public belief after observing a history ending with
an−1 = h and an = �. Then 1−π̃n+1

π̃n+1
≤ B for some constant B < ∞ that does not de-

pend on the history.

Proof. To see (i), observe that because of symmetry, we have Eπ,h[τh] = E1−π,�[τ�].
Also, it holds that

E1−π,�[τ�] = 1 +
∑
n≥1

P1−π,�(τ� > n).

By Bayes law,

P1−π,�(τ� > n) = 1 −π

π
× 1 −πh

n+1

πh
n+1

P1−π,h(a1 = · · · = an = h),

where πh
n is the correctly specified public belief on the high action path, starting at

1 −π and following the dynamics in (4.2a). Recall that rhn represents the correctly spec-
ified public log-likelihood on the high action path, which follows the dynamics in (B.1),
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namely rhn+1 − rhn =U( r̃hn ). Hence, the above expression implies that

E1−π,�[τ�] ≤ 1 + 1 −π

π

∑
n≥1

e−rhn+1 . (D.5)

Since the initial belief is set to 1−π and it is assumed in part (i) that π ≤ 1/2, then rhn ≥ 0.
Next, observe that on the path ā = h, the misspecified public log-likelihood follows the
difference equation (B.2), namely, r̃hn+1 − r̃hn = Ũ( r̃hn ). Additionally, because of Lemma 6,

there exists C > 0 such that Ũ( r̃hn ) ≤ Ce−α̃r̃hn . We continue by finding a continuous time
upper envelope for r̃hn , which is analogous to Lemma 9 with a slight catch in selecting the
initial condition. Choose r̄ > 0 such that the mapping r → r+Ce−α̃r becomes increasing
on [r̄, ∞). Let n0 := min{n : r̃hn ≥ r̄}. Note that n0 is finite because r̃n → ∞ on the high
action path. Since Ũ(·) is a decreasing function, then r̄ ≤ r̃hn0

≤ r̄ + Ũ(0). Let z(t ) be the
solution to the differential equation

dz(t )
dt

= 2Ce−α̃z(t ),

starting at z(0) = r̄ + Ũ(0). Therefore, z(t ) = α̃−1 log(er̄+Ũ(0) + 2Cα̃t ). Following the
recipe of Lemma 9, we can show by induction that z(k) ≥ r̃hk0+n for all k ≥ 0. Next, we

examine Raabe’s criterion5 for the infinite sum
∑

n≥1 e−rhn , that is, we examine the limit
of the expression

n

(
e−rhn

e−rhn+1

− 1
)

= n
(
eU( r̃hn ) − 1

) ≥ nU
(
r̃hn

)
.

Note that U is decreasing, that z(k) ≥ r̃hk0+n for all k ≥ 0, and that there exists c > 0 such
that U(z) ≥ c e−αz . Hence

lim inf
n→∞ n

(
e−rhn

e−rhn+1

− 1
)

≥ lim sup
k→∞

cke−αz(k) = lim sup
k→∞

c k(
er̄+Ũ(0) + 2Cα̃k

)α/α̃ .

Since α̃ > α, the limit superior on the right hand side above is infinite and, thus, the sum∑
n≥1 e−rhn is convergent. Together with (D.5), this implies that there exists a constant

C0 > 0 such that Eπ,h[τh] ≤ C0 ( 1−π
π ). This establishes (i).

To see (ii), condition on the event {an−1 = h, an = �}. Equivalently, π̃n ≥ 1/2 and
π̃n+1 ≤ 1/2 by the overturning principle. Then Bayes law implies

1 − π̃n+1

π̃n+1
= 1 − π̃n

π̃n
× F̃�(1 − π̃n )

F̃h(1 − π̃n )
.

5 Raabe’s criterion for convergence of sums states that
∑

n νn converges if lim infn ρn > 1 and diverges if
lim supn ρn < 1, where ρn = n(νn/νn+1 − 1). It is inconclusive when limn ρn = 1. This latter case corresponds
to α̃= α.
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Since F̃�(q) = �(qα̃ ) and F̃h(q) =�(qα̃+1 ), then there are constants C > 0 and c > 0 such
that F̃�(q) ≤ Cqα̃ and F̃h(q) ≥ cqα̃+1 for all q ∈ [0, 1/2]. Therefore,

1 − π̃n+1

π̃n+1
≤ 1 − π̃n

π̃n

C(1 − π̃n )α̃

c(1 − π̃n )α̃+1
≤ 2C

c
.

This establishes (ii).

Appendix E: Proving Propositions 1 and 2

Proof of Proposition 1. Suppose that α̃ < α. Then, by Proposition 5, we have Ph(ā =
�) > 0, so that a wrong herd forms immediately with positive probability.

Proof of Proposition 2. Suppose that α̃ ≥ α + 1. Condition on the high state. Then,
by Proposition 4, for any prior π′ < 1, the probability of an immediate herd on the high
action is 0. Hence, by stationarity, the probability that an → h is 0. By Proposition 5,
the probability of an immediate herd on the low action is also 0 and, hence, again by
stationarity, the probability that an → � is 0. Thus, the agents take both actions infinitely
many times. The same argument applies when conditioning on the low state.
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