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Reputation building under uncertain monitoring
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We study the standard reputation model with a long-run (LR) player facing a se-
quence of short-run (SR) opponents, with one difference: the SR players are un-
certain about the monitoring structure, while the LR player knows it. We construct
examples where the standard reputation result breaks down: Even if there is a
possibility that the LR player is a commitment type who always plays the action
to which he wants to commit, there exist “bad” equilibria in which the LR player
gets payoffs substantially lower than his commitment payoffs. In contrast, if there
is the possibility of dynamic commitment types who switch between “signaling”
actions that help the SR players learn the monitoring structure and “collection”
actions that are desirable for payoffs, our main theorem shows that a sufficiently
patient LR player obtains payoffs of at least the commitment payoffs in each state
in every equilibrium.

Keywords. Reputation, monitoring, repeated games, learning.

JEL classification. C73, L14.

1. Introduction

Consider a long-run firm building a reputation for producing environmentally-friendly
products. Such a reputation is valuable for the firm when consumers care about the
environmental impact of their purchases and are often willing to pay more for green
products. Consumers make purchase decisions based on whether products have “eco-
friendly” labels, but are typically unsure of how much to trust the labels. Many of these
labels are genuine certifications with stringent standards, but numerous others have
been discredited as being fake. As a result, on seeing an eco-label, consumers are un-
certain about its informational content, and may not be convinced about the product
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being environmentally friendly.1 But if consumers do not trust product labeling, a firm,
even after honest investment in green products and after undergoing reliable labeling,
may find it difficult to establish a positive reputation and convince consumers that its
products are indeed environmentally friendly. This motivates the central question of the
paper: Can reputations be built in environments with such uncertainty in monitoring?

To start, consider reputation building in environments in the absence of such un-
certainty. Canonical models of reputation (e.g., Fudenberg and Levine (1992)) consider
a long-run (LR) agent (a firm) who repeatedly interacts with short-run (SR) opponents
(consumers). There is incomplete information about the firm’s type: consumers enter-
tain the possibility that the firm is of a “commitment” type that is committed to playing
a particular action in every period. Even when the actions of the firm are noisily ob-
served, the classical reputation result states that if a sufficiently rich set of commitment
types occurs with positive probability, a patient firm can achieve payoffs arbitrarily close
to their Stackelberg payoff of the stage game in every equilibrium.2 Intuitively by mim-
icking a commitment type that always plays the Stackelberg action, a LR firm can even-
tually signal to the consumer its intention to play the Stackelberg action in the future
and thus obtain high payoffs in any equilibrium. Importantly, this result remains valid
even on introduction of other arbitrary commitment types. This intuition critically re-
lies on the consumer’s ability to accurately interpret the noisy signals, but if monitoring
is uncertain, the reputation builder may find it difficult to signal his intentions.

To study the effect of uncertain monitoring, we also consider the canonical model
of a LR firm facing a sequence of SR consumers, but with one key difference. At the
beginning of the game, a persistent state (θ,ω) ∈ � × � is realized, which determines
both the type of the firm, ω, and the monitoring structure, πθ :A1 → �(Y ): a mapping
from actions taken by the firm to distribution of signals, �(Y ), observed by consumers.
We assume that the firm knows the state of the world, but the consumer does not.

We first show in a simple example that uncertain monitoring can cause the tradi-
tional reputation result to break down: Even if consumers believe that the firm may be
a commitment type that plays the Stackelberg action every period, there exist equilibria
in which even a patient firm obtains payoffs far below its Stackelberg payoff. Such “bad
equilibria” arise due to an identification problem that stems from the uncertainty about
monitoring: Good actions in one state cannot be statistically distinguished from a bad
action in a different state.

Our simple example with such a bad equilibrium leads us to ask what might restore
reputation building under uncertain monitoring in the face of such identification prob-
lems. Under an assumption that the action space is sufficiently rich, we construct a set of
commitment types such that, if these types occur with positive probability, a sufficiently
patient firm obtains payoffs arbitrarily close to the Stackelberg payoff in all equilibria,

1The Federal Trade Commission maintains, “Very few products, if any, have all the attributes consumers
seem to perceive from such claims, making these claims nearly impossible to substantiate” (Source: E. Wy-
att, “FTC Issues Guidelines for Eco-Friendly Labels,” New York Times, Oct 1, 2012).

2The Stackelberg payoff is the payoff that the LR player would get if he could commit to an action in the
stage game, and the Stackelberg action is the corresponding commitment action.
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even when the consumers are uncertain about the monitoring environment.3 Impor-
tantly, the result holds independent of the fine details of the type space in that it remains
valid even if we include other arbitrary commitment types. The commitment types
that we construct are committed to dynamic (time-dependent) strategies that switch
infinitely often between signaling actions that help the consumer learn the unknown
monitoring state and collection actions that are desirable for payoffs (the Stackelberg
action). A key contribution is the construction of these dynamic commitment types
that play periodic strategies. As we will discuss later, such dynamic commitment types
are generally necessary for reputation building under uncertain monitoring, because
signaling the unknown state and Stackelberg payoff collection may require the use of
different actions in the stage game.

The proof of the main result involves establishing two properties, which together
imply that the LR player can guarantee payoffs close to Stackelberg payoffs in any equi-
librium. First, we show that by mimicking any commitment type, the LR player can
ensure in any equilibrium with high probability that the SR players’ predictions of the
public signal distribution are close to the true distribution generated by this commit-
ment type in all but a finite number of periods. This step demonstrates the classic result
in the spirit of “merging of opinions,” à la Blackwell and Dubins (1962), and is proved
using standard arguments from Gossner (2011).4 In our setting, ensuring accurate pre-
dictions of the public signal distribution by the SR players is not sufficient for a reputa-
tion result due to potential identification problems across states. Second, we show that
by mimicking the appropriate commitment type, the LR player can additionally ensure
that the SR players learn the state at a rate that is uniform across all equilibria. We prove
this by establishing a result on robust learning, which provides an easy-to-check suffi-
cient condition that guarantees that an observer will learn the validity of an event at a
uniform rate across a rich class of learning environments. The condition relates the uni-
form rate at which Hellinger transforms vanish across all learning environments in the
class to uniform learnability of an event.5 To the best of our knowledge, the robust learn-
ing theorem is a novel methodological contribution, which applies to general learning
environments beyond the specific reputation context of this paper.

A key feature of the constructed dynamic commitment types is that they return to
the signaling phase infinitely often. One might reasonably conjecture that the inclusion
of a commitment type that begins with a sufficiently long phase of signaling followed
by a permanent switch to playing the Stackelberg action for the true state would suffice
for reputation building. We show in examples that this is generally not sufficient. Also,
while this paper is motivated by environments with uncertain monitoring, our model
allows for uncertainty both about monitoring and about the payoffs of the reputation

3We can also interpret our model as one that represents subjective uncertainty that consumers have
about the actual monitoring structure and the behavior of the reputation-building firm. We show that the
firm can indeed effectively establish a reputation, as long as the consumers assign positive probability to
the constructed commitment types and the correct monitoring structure.

4See also the discussion after Lemma 3.
5See Section 5.3 for precise statements of our sufficient condition, as well as Torgersen (1991) and

Moscarini and Smith (2002) for illustrations of other applications of the Hellinger transform.
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builder. Finally, our main result continues to hold even if the signals observed by the SR
players are unobserved by the LR player.

While the main result establishes a lower bound on the LR player’s equilibrium pay-
off, a natural question is whether the LR player can obtain payoffs much higher than
the Stackelberg payoff. With uncertain monitoring, a patient LR player may be able to
obtain payoffs that are strictly higher than the Stackelberg payoff of the true state. The
reason is that the LR player may not find it optimal to signal the true state, but would
rather block learning to attain payoffs that are higher than the Stackelberg payoff in the
true state. Providing a general, sharp characterization of an upper bound on a patient
LR player’s equilibrium payoffs is difficult, as it depends on the specific set of commit-
ment types and the prior distribution over types.6 Nevertheless, we provide a joint suf-
ficient condition on the monitoring structure and stage game payoffs that ensures that
the lower bound and the upper bound coincide: Loosely speaking, these are games in
which state revelation is desirable for the LR player.

1.1 Related literature

We contribute to the literature on reputation that started with Kreps and Wilson (1982)
and Milgrom and Roberts (1982), and includes the canonical models of Fudenberg and
Levine (1989, 1992), and more recent contributions by Gossner (2011). As far as we know,
this paper is the first to study reputation under uncertain monitoring.

Aumann, Maschler, and Stearns (1995) and Mertens, Sorin, and Zamir (2014) study
repeated games with uncertainty in both payoffs and monitoring, but focus on zero-sum
games. Wiseman (2005), Hörner and Lovo (2009), and Hörner, Lovo, and Tomala (2011)
study payoff uncertainty in non-zero-sum repeated games, but do not allow uncertainty
about the monitoring structure. Our framework is closest to Fudenberg and Yamamoto
(2010), who study a repeated game in which there is uncertainty about both monitoring
and payoffs. However, Fudenberg and Yamamoto (2010) focus on perfect public ex post
equilibrium in which players play strategies whose best responses are independent of
any belief about the state. As a result, in equilibrium, no player has an incentive to affect
the beliefs of the opponents about the monitoring structure. We study more general
equilibria where the LR player may have incentive to affect the beliefs of the SR players
about the monitoring structure.

The necessity of dynamic commitment types for reputation building due to identifi-
cation problems is novel. Dynamic commitment types also arise in reputation building
against LR opponents, as in Aoyagi (1996), Celentani, Fudenberg, Levine, and Pesendor-
fer (1996), and Evans and Thomas (1997), because establishing a reputation for carrying
out punishments after certain histories can be beneficial for the reputation builder.7, 8

6This is in contrast to the previous papers in the literature, where the payoff upper bound is generally
independent of the fine details of the type space such as the relative probabilities of commitment types.

7Atakan and Ekmekci (2011, 2015), and Ghosh (2014) also use similar ideas.
8In this literature, some papers do not require the use of dynamic commitment types by restricting at-

tention to conflicting interest games. See, for example, Schmidt (1993) and Cripps, Dekel, and Pesendorfer
(2005).
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But in our setting with SR players, the threat of punishments has no bite. Dynamic com-
mitment types turn out to still be necessary to resolve a trade-off between signaling the
correct state and collecting the Stackelberg payoff, which are both desirable to the rep-
utation builder.

In a recent paper, Pei (2020) studies reputation with interdependent values. Pei
(2020) restricts attention to perfect monitoring and a finite number of stationary com-
mitment types, and studies the conditions under which the repeated game yields a rep-
utation result. In contrast, we study a model where actions are imperfectly observed, but
the observed public signals can potentially convey information about the state. We sim-
ilarly show that reputation building can break down when the type space only consists
of stationary commitment types, and further construct dynamic commitment types that
would restore a reputation result given general type spaces that contain these dynamic
commitment types in its support.

Our negative examples demonstrate that reputation building may be fragile in the
presence of uncertainty about monitoring, because multiple combinations of state and
action lead to the same distribution over observed public signals. Identification prob-
lems can also give rise to long-run disagreements between different agents in Acemoglu,
Chernozhukov, and Yildiz (2016), and can result in convergence to incorrect beliefs in
dynamic games with learning, as in Fudenberg and Levine (1993a, 1993b). The novel
question that we address here is whether or not such identification problems can be
circumvented by a patient long-lived player in a reputation setting.

Finally, our robust learning theorem also relates to a recent literature that studies
rates of learning in decision theoretic settings. Moscarini and Smith (2002) and Mu,
Pomatto, Strack, and Tamuz (2021) both provide exact characterizations of the speed
of learning in decision theoretic settings, focusing on learning environments where the
signals arrive in an independent and identically distributed (i.i.d.) manner conditional
on the realized state. On the other hand, our robust learning theorem focuses only on
a lower bound on the rate of learning, while allowing for signals that may exhibit arbi-
trary forms of serial correlation. Our robust learning result also relates loosely to ideas
of uniform learning from Vapnik–Chervonenkis theory used, for example, in Al-Najjar
(2009) and Al-Najjar and Pai (2014). These papers study the uniform learning of a rich
class of events given any i.i.d. process. The main conceptual distinction of our robust
learning result is that we study uniform learning of finitely many events, but allow for
any arbitrary stochastic process that may involve arbitrary serial correlations.

2. Model

2.1 Notation

We first introduce some notation that we use throughout the paper. Given a countable
set X , let �(X ) denote the set of all probability measures on X . Let �+(X ) be the set of
full support probability measures on X . For any B ⊆ X , we let Bc denote the comple-
ment of B.

Given x, x′ ∈ X and some real number λ ∈ [0, 1], we let λx ⊕ (1 − λ)x′ ∈ �(X ) de-
note the probability measure that assigns probability λ to x and 1 − λ to x′. If ν ∈
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�(X1 × · · · ×Xn ), then margXjν is the marginal distribution of ν on Xj : margXjν(xj ) =∑
i �=j ν(xj , x−j ). Given a probability measure ν ∈ �(X ) and some function g : X → R,

define Eν[g(x)] to be the expectation of g(x) when x is distributed according to ν.
Given a finite set Y and a countable set X , define S(Y ,X ) as the set of all possi-

ble stochastic processes over Y∞ with state space X as follows. Formally, an element
s ∈ S(Y ,X ) is a sequence s = {st }∞t=0, where for each t, st ∈ �(Yt ×X ) satisfies the con-
sistency condition margYt−1×Xst = st−1. By Kolmogorov’s extension theorem, for any
s ∈ S(Y ,X ), there exists some s∞ ∈ �(Y∞ ×X ) such that margYt×Xs∞ = st for all t. For
any s ∈ S(Y ,X ) and any subset C ⊆ X , we can also define sC ∈ S(Y ,X ) as the corre-
sponding stochastic process conditional on C: sC = (st(·|C ))∞t=0.

We use N to represent the set of all natural numbers including zero and let N+ :=
N \ {0}. Finally, we establish the convention that both inf∅ = min∅ = ∞ and sup∅ =
max∅ = −∞.

2.2 Setting

A long-run (LR) player, player 1, faces a sequence of short-run (SR) player 2s. Before the
interaction begins, a pair (θ,ω) ∈ � × � of a state of the world and type of player 1 is
drawn independently according to the product measure γ0 := ν0 × μ0 with ν0 ∈ �+(�)
and μ0 ∈ �+(�). We assume that � is finite and enumerate � := {θ0, � � � , θm−1}, but �
may possibly be countably infinite.9 The realized pair of state and type (θ,ω) is then
fixed for the entirety of the game.

In each period t = 0, 1, 2, � � �, players simultaneously choose actions from their re-
spective action spaces at1 ∈ A1 and at2 ∈ A2. We assume A1 and A2 are finite. Let
A=A1 ×A2. Let Ai := �(Ai ) be the set of mixed actions of player iwith typical element
αi.

In each period t ≥ 0, after players have played action profile at ∈A, a public signal yt
is drawn from a finite signal space Y according to the probability measure, ψ(·|at , θ) ∈
�(Y ). Note importantly that both the action profile chosen at time t and the state of
the world θ potentially affect the signal distribution. The state of the world θ represents
the unknown monitoring structure. Denote by Ht := Yt the set of all t-period public
histories with typical element ht = (y0, � � � , yt−1 ) and assume by convention thatH0 := ∅.
LetH := ⋃∞

t=0H
t denote the set of all public histories of the repeated game.

We assume that the LR player observes the realized state of the world θ ∈� perfectly
so that his private history at time t is formally a vector, ht1 ∈Ht

1 :=�×At1 × Yt . Mean-
while the SR player at time t observes only the public signals up to time t and so his
information coincides exactly with the public historyHt

2 :=Ht .
A strategy for player i is a map σi :

⋃∞
t=0H

t
i → Ai. Denote the set of strategies of

player i by �i. Finally, let B1 be the set of static state-contingent mixed actions of player
1, B1 := {β1 :�→ A1} with typical element β1.

9The assumption of allowing � to be countably infinite is standard in the existing literature (e.g., Fu-
denberg and Levine (1992)) when the Stackelberg action of the stage game can be mixed. We do not know
whether our arguments can be extended to the setting where |�| is countably infinite. We leave this open
for future research.
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2.3 Type space

We assume that � =�com ∪ {ωs}, where �com is the set of commitment types and ωs is
a strategic type. Each commitment type ω ∈�com is associated with a strategy σω1 ∈ �1

such that typeω always plays σω1 . In contrast, typeωs ∈� is a strategic type who chooses
a strategy σ1 ∈ �1 to maximize payoffs, which we describe in the next subsection. Thus,
a strategy profile, denoted σ = ((σ1(ω))ω∈�, σ2 ), is a tuple for which σ1(ω) = σω1 for all
ω ∈�com.

2.4 Payoffs and equilibrium

Any strategy profile σ together with the prior γ induces a unique stochastic process,
(πσt )∞t=0 ∈ S(Y ×A,�×�) for all t. By the Kolmogorov extension theorem, there exists
some πσ∞ ∈ �(H∞ ×A∞ ×�×�) such that for all t, margHt×At×�×�πσ∞ = πσt .

To study SR players’ best responses, it will also be useful to define the following be-
liefs of the SR players after observing a public signal history:

λσt
(·|ht) := margA1×�πσt

(·|ht) ∈ �(A1 ×�),

γσt
(·|ht) := marg�×�πσt

(·|ht) ∈ �(�×�),

νσt
(·|ht) := marg�π

σ
t

(·|ht) ∈ �(�),

μσt
(·|ht) := marg�π

σ
t

(·|ht) ∈ �(�).

Then SR players’ expected payoffs in any period depend on the belief, λ ∈ �(A1 ×�):

u2(a2, λ) := Eλ
[
u2(a1, a2, θ)

] =
∑

a1∈A1,θ∈�
u2(a1, a2, θ)λ(a1, θ).

Thus, a strategy profile, σ , yields the expected payoff of u2(σ2(ht ), λσt (ht )) in period t
after the public history ht . Let B2(λ) denote the mixed best responses of player 2, i.e.,
B2(λ) := arg maxα2∈A2 u2(α2, λ). With a slight abuse of notation, we write B2(α1, θ) =
B2(α1 × 1θ ), where 1θ is the Dirac probability measure that assigns probability 1 to θ,
and B2(β1, p) = B2(λβ1,p ), where for β1 ∈ B1 and p ∈ �(�), λβ,p(a1, θ) = p(θ)β1(a1|θ).

The payoff of the LR strategic type, ωs , in state θ is given by

U1(σ1, σ2, θ; δ) := Eπσ∞

[
(1 − δ)

∞∑
t=0

δtu1
(
at1, at2, θ

)
|θ,ωs

]
.

Then the ex ante expected payoff of type ωs is

U1(σ1, σ2; δ) := Eν0

[
U1(σ1, σ2, θ; δ)

]
.

Finally, we can define the statewise-Stackelberg payoff of the stage game. The Stack-
elberg payoff of player 1 in state θ is given by

u∗
1(θ) := sup

α1∈A1

inf
α2∈B2(α1,θ)

u1(α1, α2, θ).
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For each ε > 0, let Sεθ be the set of ε-Stackelberg actions in state θ, which are the mixed
actions that approximate u∗

1(θ) up to ε in θ ∈�:

Sεθ :=
{
α1 ∈ A1 : inf

α2∈B2(α1,θ)
u1(α1, α2, θ)> u∗

1(θ) − ε
}

.

We analogously define Sε ⊆ B1 as

Sε := {
β1 ∈ B1 : β1(θ) ∈ Sεθ for all θ ∈�}

.

Our analysis will focus on Bayes Nash equilibria; to shorten the exposition, subsequently
we will refer to Bayes Nash equilibrium simply as equilibrium. We let BNEδ denote the
set of all equilibria of the game.10

2.5 Information structure and key assumptions

We now impose two key assumptions on the information structure, Assumptions 1 and
2, which we maintain for the entirety of the paper. We start with a definition.

Definition 1. A signal structure ψ satisfies action identification for (α1, θ) ∈ A1 ×� if,
for all α2 ∈ A2,

ψ(·|α1, α2, θ) =ψ(·|α′
1, α2, θ

) =⇒ α1 = α′
1.

Let Bid ⊆ B1 be the set of allβ1 ∈ B1 such that (β1(θ), θ) satisfies action identification for
all θ ∈�.

Assumption 1. For every ε > 0, Sε ∩Bid �= ∅.

In words, the above assumption holds if and only if in every state θ, there exists some
ε-Stackelberg action in state θ such that this action would be statistically identified from
all other actions regardless of the actions played by the SR player. Note that this is gen-
erally a minimal condition that is required for a LR player to be able to guarantee Stack-
elberg payoffs in state θ, since without it, reputation building may be impossible even
when θ is common knowledge.

While the above assumption concerns statistical identification of actions for a fixed
state θ, this is generally not sufficient for a reputation theorem. We furthermore impose
the following assumption, which concerns the statistical identification of actions across
states.

Assumption 2. For every θ′ �= θ, there exist some α1 ∈ A1 such that

ψ(·|α1, α2, θ) �=ψ(·|α′
1, α2, θ′)

for all α′
1 ∈ A1 and all α2 ∈ A2.

10Our main theorems provide bounds on payoffs across all equilibria. So these bounds also apply even
when restricting attention to more stringent solution concepts such as perfect Bayes Nash equilibria.
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Figure 1. Illustration of Assumption 2.

First note that Assumption 2 does not assume that α1 must be a ε-Stackelberg ac-
tion (for ε small) in state θ. Indeed, in many examples, such as those in Section 3, this
assumption will not be satisfied for those ε-Stackelberg actions.

Second, we can also visualize the assumption above as follows. Let us assume for the
purposes of illustration that the SR’s action does not affect the public signal distribution.
Then for each θ, denote by �θ the set of all probability distributions in �(Y ) that are
spanned by possibly mixed actions in A1 at the state θ:

�θ := {
ψ(·|α1, θ) ∈ �(Y ) : α1 ∈ A1

}
.

If for each pair of states θ �= θ′, neither�θ ⊆�θ′
nor�θ

′ ⊆�θ holds, then the assumption
holds as in Figure 1(a).11 On the other hand, Assumption 2 is violated if there exists a pair
of states in which�θ ⊆�θ′

as in Figure 1(b).

Remark. Notice that the model can indeed be recast in the standard reputation frame-
work by interpreting the pair of (θ,ω) as the type of the long-run player. However, in the
classical reputation literature, non-identification problems are typically avoided by as-
suming that the ε-Stackelberg actions (for ε > 0 small) are identified. In our setting, this
is no longer true. For an ε-Stackelberg action α1 ∈ Sεθ , our assumptions do not preclude
the possibility that there exist some other state θ′ and some other action α′

1 that gener-
ate the same distribution over public signals. We provide a more detailed discussion of
the relationship to the previous literature on reputation building with imperfect public
monitoring after the presentation of Theorem 1.

3. Illustrative example

We begin with a simple example to illustrate that uncertainty in monitoring can hin-
der reputation building. Consider a LR player (row player) who faces a sequence of SR
opponents (column player). There are two unknown states of the world, θ ∈�= {g, b}.
The state affects both the SR player’s payoffs and the monitoring structure. Figure 2
describes the stage game in each state.

11Note that we only impose the condition above pairwise. In fact, even if for some θ, θ′, and θ′′, �θ ⊆
�θ

′ ∪�θ′′
, the above assumption may still hold.
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Figure 2. The stage game in each state.

The SR players do not directly observe the action of the LR player, but rather observe
a public signal. There are two possible public signals: Y = {ȳ, y}. Figure 3 describes the
distribution of signals, which depends only on the LR player’s action and the state.

Finally suppose that the LR player can be one of two types: ω ∈ {ωcom,ωs}.12 The
type ωcom is the commitment type who always plays C and ωs is the strategic type who
maximizes the sum of discounted payoffs.13

First note that if the state θwere commonly known, then all actions would be statisti-
cally identified. Thus, if θ= b were common knowledge, the classical reputation results
would imply that, for every ε > 0, for δ sufficiently high, the LR player would get a payoff
at least 1 − ε in every equilibrium. We show below that this is not true when there is
uncertainty about the state.14

3.1 Failure of reputation building

Consider a strategy profile, σ , in which ωs always plays D, ωcom always plays C, and SR
always plays N . We demonstrate a failure of reputation building: when μ0(ωcom ) > 0
is sufficiently small, the above strategy profile is indeed a perfect Bayesian equilibrium
(PBE) for all δ ∈ (0, 1) in which the LR player obtains a payoff of 0 in both states.15

To see this, suppose that μ(ωcom )> 0 is sufficiently small so that

μ0
(
ωcom)

ν0(b) = γ0
(
ωcom, b

)
<

2
3
γ0

(
ωs , g

) = 2
3
μ0

(
ωs

)
ν0(g).

Figure 3. The monitoring structure in each state.

12This type space mirrors those type spaces studied in the classical reputation literature.
13For expositional simplicity, we focus on a setting in which the commitment type plays the pure Stack-

elberg action. With suitable modification of the information structure, the example can easily be extended
to settings in which this type plays a mixed action. See Section 4.3.1 for an example along these lines.

14In our motivating example of eco-labeling, the state can be interpreted as the accuracy of the eco-label.
In that case, it may be more natural to assume that the state affects only the distribution of public signals
and not the SR player’s payoffs. It is easy to construct a similar example of the failure of reputation building
in that setting as well.

15We illustrate this example using PBE rather than Bayes Nash equilibrium to emphasize that the exam-
ple is robust even to standard refinements such as those imposed by perfect Bayesian Nash equilibrium.
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Now consider the beliefs γσt (ω, θ|ht ) that the SR player assigns to the pair (ω, θ) at a
public history ht . Becauseψ(·|C, b) =ψ(·|D, g), in equilibrium, at all public histories ht ,
the likelihood ratio between (ωc , b) and (ωs , g) remains at the prior and, hence,

γσt
(
ωcom, b|ht

) ≤ γσt
(
ωc , b|ht

)
γσt

(
ωs , g|ht

) = γ0
(
ωcom, b

)
γ0

(
ωs , g

) <
2
3

. (1)

Moreover, the SR finds it strictly optimal to playN whenever he assigns strictly less than
2/3 probability to the event that both θ= b and LR plays C.16 Sinceωcom is the only type
who plays C in state b, the SR plays N whenever γσt ((ωcom, b)|ht )< 2/3, which holds at
all public histories, as shown in (1). This implies that the SR’s strategy of always playing
N is indeed incentive compatible.

Finally given the SR’s strategy, there are no intertemporal incentives for LR and,
hence, it is optimal for ωs to always playD. Thus, σ is a PBE and gives the LR a payoff of
0 for all δ ∈ (0, 1).

Reputation building fails in this example because of non-identification of the (pure)
Stackelberg action across states: ψ(·|C, b) =ψ(·|D, g). Unlike in the classical reputation
models, the strategic type cannot gain by deviating to C in state b, because by doing
so, he will instead, mistakenly convince the SR player that she is actually facing type ωs

who always plays D in state θ = g. As a result, the equilibrium renders such deviations
unprofitable.17

3.2 Recovering reputation building

How can we recover reputation building in this example? Suppose that it was possible
for the LR player to undertake a costly action to signal the state. Consider the new stage
game and information structure in Figures 4 and 5. Notice that both the information
structure and the stage game payoffs are exactly as before when attention is restricted
to action profiles in {C,D} × {B,N }. The only change is that the firm can play a third
action, denoted by I, that can “inform” the SR player about the true state.

In this new game, if the type space is unaltered from the previous example, then we
still get a failure of reputation building, i.e., for any discount factor, δ ∈ (0, 1), there is a
PBE in which ωs always playsD and obtains a payoff of 0 in both states.

However, suppose now that there exists an additional type of LR that is committed to
playing I in period 0 followed by C thereafter. The existence of such a type then would
rule out the bad equilibrium constructed above. In equilibrium, a sufficiently patient

16To see this, consider any belief distribution λ overA1 ×�. Then

u2(B, λ)< u2(N , λ) ⇔ 3λ(C, b) − 2< 3
(
λ(C, g) + λ(D, g)

)
.

The latter inequality holds whenever λ(C, b)< 2/3.
17Unlike in the literature on bad reputation (e.g., Ely and Välimäki (2003) and Ely, Fudenberg, and Levine

(2008)), the failure of reputation building in this example does not rely on the existence of bad types. Here,
strategic types endogenously play bad actions in equilibrium. In the bad reputation setting of Ely, Fuden-
berg, and Levine (2008), low payoffs are attainable in equilibrium only if there is sufficiently high probability
of bad commitment types.
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Figure 4. The stage game.

ωs will no longer find it optimal to play D always in state θ = b. Instead, by mimick-
ing the new commitment type, he can obtain a relatively high payoff by convincing the
SR players of the correct state with certainty and then subsequently building a reputa-
tion to play C. Essentially by signaling the state in the initial period, he eliminates all
identification problems from future periods.

The remainder of the paper will generalize the construction of such a type to gen-
eral information structures that satisfies Assumptions 1 and 2. The generalization must
deal with some additional difficulties, since the information structure may have full sup-
port, in which case, learning about the state is not immediate as in our simple example.
Moreover, in such circumstances, it is impossible to convince the SR players with cer-
tainty about a state in finite time. Therefore, even after having convinced the SR to a
high level of certainty about the correct state, the LR cannot be sure that the belief about
the correct state will not dip to a low level thereafter. We provide a detailed discussion of
these issues after the statement of Theorem 1 in Section 4.

4. Main reputation theorem

Let C be a collection of commitment types ω that always play an associated strategy
σω, and let GC be the set of type spaces (�, μ) such that C ⊆ � and μ(ω) > 0 for all
ω ∈ C. Most reputation theorems in the existing literature have the following structure.
There exists a collection of commitment types C such that for every (�, μ) ∈ GC and every
ε > 0, there exists δ∗ such that whenever δ > δ∗, the LR player receives payoffs within
ε of the Stackelberg payoff in all equilibria. In particular, the fine details of the type
space beyond the mere fact that the appropriate commitment type exists with positive
probability in the belief space of the SR players do not matter for reputation building.

In our model with uncertain monitoring, we ask the following analogous question:
Is it possible to find a set of commitment types C such that regardless of the type space
in question, as long as all ω ∈ C have positive probability, then high payoffs can be sus-
tained in all equilibria for sufficiently patient players? We have already seen an example

Figure 5. The information structure.
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in Section 3 that shows that such a result will generally not hold if C contains only “sim-
ple” commitment types that play the same action every period. By introducing dynamic
(time-dependent but not history-dependent) commitment types, reputation building is
recovered.

4.1 Construction of commitment types

We now construct the appropriate commitment types. First, by Assumption 2, for
each pair θ′ �= θ, we can choose some α1(θ, θ′ ) ∈ A1 such that ψ(·|α1(θ, θ′ ), α2, θ) �=
ψ(·|α′

1, α2, θ′ ) for all α′
1 ∈ A1 and all α2 ∈ A2.18 To simplify exposition, let us also choose

an arbitrary action α1(θ, θ) ∈ A1 for each θ ∈�.
For β1 ∈ B1, a commitment type ωβ1 will be a type associated with the strategy de-

noted σβ1 defined as follows. First, recursively define the sequence

n0 = 0, n1 =m+ 1, nk+1 − nk =m+ k+ 1,

where m= |�|. Then for every β1 ∈ B1, we define the commitment type, ωβ1 , who plays
the (possibly dynamic) strategy σβ1 ∈ �1 in every play of the game. We define this strat-
egy σβ1 as follows, which depends only on calendar time and θ: for all private histories
hτ1 at time τ,

σβ1
τ

(
θ, hτ1

) =
{
β1(θ) if τ− max{nk : nk ≤ τ} ≥m,

α1(θ, θj ) if j = τ− max{nk : nk ≤ τ}<m.

In state θ, this commitment type plays a dynamic strategy that consist of blocks that
grow in length over time. This commitment type starts out in a signaling phase that
lasts for m periods, trying to convince the SR players of the state. After these first m
periods, then this commitment type transitions to a collection phase where it plays the
action β1(θ) for one period. Then the commitment type transitions again to a signal-
ing phase for m periods, after which play proceeds to a collection phase again, but this
time for two periods. This commitment type continues along this pattern transitioning
between m periods of signaling followed by a collection phase that increases in length
by one period after each repetition of the signaling and collection phase. As a result, the
times between subsequent signaling phases become longer and longer as t increases.
We defer discussion about the important features of this commitment type until after
the statement of our main reputation theorem.

We then introduce the following condition on the type space.

Definition 2. We say that the type space (�, μ) satisfies richness if for every ε > 0,
there exists β1 ∈ Sε ∩ Bid such that μ(ωβ1 )> 0.

18There may be many choices of α1(θ, θ′ ) that satisfy this condition, in which case, we choose this arbi-
trarily.
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4.2 Reputation theorem

Our main result shows that our assumptions on the monitoring structure along with
richness of the type space suffice for reputation building: A sufficiently patient strategic
LR player will obtain (at least) payoffs arbitrarily close to the Stackelberg payoff of the
complete information stage game in every equilibrium.

Theorem 1. Suppose that (�, μ) satisfies richness. Then for every ρ > 0, there exists some
δ∗ ∈ (0, 1) such that for all δ > δ∗ and all θ, infσ∈BNEδ U1(σ1, σ2, θ; δ) ≥ u∗

1(θ) − ρ.19

We present the proof of the theorem in Section 5.20 Before that, we discuss some
important features of our result.

In specific applications, if we fix payoffs and the information structure, the full range
of dynamic commitment types required by the richness assumption will not typically
be needed for a reputation theorem. The full range of dynamic commitment types is
needed to obtain a reputation result that does not depend on the fine details of the prior,
μ0.

To see the relationship of our main result with the classical reputation theorems,
consider the special case in which ε-Stackelberg actions are identified in the following
strong sense: Suppose that for each ε > 0 and θ, there exists some α1 ∈ Sεθ such that
for every θ′ �= θ, α′

1 ∈ A1, and all α2 ∈ A2, ψ(·|α1, α2, θ) �= ψ(·|α′
1, α2, θ′ ).21 Note that

this is a stronger requirement than Assumption 2, which does not require α1 to be an
ε-Stackelberg action. In this setting, the strategy of the commitment type ωβ1 can be
taken to be the stationary strategy that plays β1 = (α1(θ))θ∈� in every period. Thus,
under this stronger assumption, the above reputation theorem boils down to the classi-
cal reputation theorem with stationary commitment types.22 The reason is that in such
settings, ε-Stackelberg actions themselves can be used to signal the state.

The above reputation theorem is a generalization to environments in which such
identification does not hold for the ε-Stackelberg actions. In such environments, our
example in Section 3 already suggested that reputation building may fail with only sim-
ple commitment types that are committed to playing the same (possibly mixed) action
in every period. The broad intuition is that, since the uncertainty in monitoring con-
founds the SR player’s ability to interpret the outcomes she observes, reputation build-
ing is possible only if the LR firm can both teach the SR player about the monitoring
state and also the intention to play the desirable Stackelberg action. The commitment
types that we constructed above do exactly this: They are committed to playing both

19Because the commitment types, ωβ1 , play time-dependent strategies that do not condition on past
public signals, a similar proof shows that Theorem 1 remains true even if the signals, y0, y1, � � �, are privately
observed only by the SR players.

20Our theorem assumes richness, but the requirements that both β1 ∈ Sε and β1 ∈ Bid are made for
expositional purposes. A reputation theorem with a weaker lower bound can still be established if either of
these is relaxed.

21For example, in the special case where A2 does not affect the public signal distribution, this would
hold generically if |Y | > |A1 ×�| + 1.

22We thank an anonymous referee for making this observation.
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Figure 6. The information structure.

signaling actions that help the consumer learn the unknown monitoring state and col-
lection actions that are desirable for payoffs of the LR player. Because of the necessity to
play both types of actions, our commitment types are nonstationary, playing a periodic
strategy that alternates between signaling phases and collection phases.23

Finally, as we have already emphasized, our reputation result does not depend on
specific distributional assumptions on the type space. In particular, it remains valid
even if we include other possibly bad commitment types, as richness of the type space
(�, μ) only requires the existence of typesωβ1 , while placing no restrictions on the exis-
tence or absence of other commitment types.

4.3 Necessary characteristics of commitment types

The commitment types, ωβ1 , have two key features: (i) They switch play between sig-
naling and collection phases, and (ii) they do so infinitely often. These two features are
important and in some sense also necessary for reputation building, given the possibility
of identification problems in the monitoring structure.

Consider again the stage game from Figure 2 and suppose that the information
structure is now given by Figure 6. To highlight the importance of (i), we provide an ex-
ample below in which the strategic LR player regardless of his discount factor obtains a
low equilibrium payoff in state θ= b if all commitment types play stationary strategies.
To highlight the importance of (ii), we consider type spaces in which all commitment
types play strategies that front-load the signaling phases and again construct equilibria
in which LR gets a payoff much below the Stackelberg payoff in state b.

4.3.1 Stationary commitment types Consider any arbitrary countable set �∗ of com-
mitment types, each of which is associated with the play of a state-contingent action
β ∈ B1 at all periods. For each ω ∈ �∗, let βω be the associated state-contingent mixed
action plan of type ω. Notice that this type space contains only stationary commitment
types. We now show that the existence of such types is generally not sufficient for repu-
tation building.

Formally, given any countable set of stationary commitment types, �∗, we can con-
struct a set of commitment types �com ⊇�∗ and a probability measure μ ∈ �+(�com ∪
{ωs}) such that there exists an equilibrium in which the strategic LR player obtains a
payoff significantly below the Stackelberg payoff in state b.

23A similar reputation theorem can be proved also with stationary commitment types that have access to
a public randomization device. In particular, we would need a rich space of stationary commitment types
that each signal the state with different probabilities. We thank Johannes Hörner for pointing this out.
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To simplify notation, let Ab := {α1(C ) ≥ 2/3}. Notice that B is a best response to α1

in state b if and only if α1 ∈ Ab. Let �b := {ω ∈�∗ : βω(b) ∈ Ab}.
Given the information structure, ψ, for every α1 ∈ Ab, there exists a corresponding

bad action, α1, in state g such that ψ(·|α1, b) =ψ(·|α1, g). For everyω ∈�b, letω denote
a type who plays βω(b) in state g andD in state b. Let the type space consist of

�=�∗ ∪ {ω :ω ∈�b} ∪ {
ωs

}
.

Claim 1. Suppose that γ0(ω, b) < 2
3γ0(ω, g) for all ω ∈ �b. Then for every δ ∈ (0, 1), it

is a PBE for the LR to always play D and the SR to always play N . In particular, this PBE
yields a payoff of 0< u∗

1(b) = 4/3 to the LR in state θ= b.

Proof. Let σ denote the above strategy profile and consider the belief, λσt ((C, b)|ht ),
that the SR assigns to the event (C, b) at a history ht . By construction, for any ω ∈ �b,
γσt ((ω, b)|ht ) = γ0(ω,b)

γ0(ω,g)γ
σ
t ((ω, g)|ht ) for any ht . Therefore,

λσt
(
(C, b)|ht

) =
∑
ω∈�b

γσt
(
(ω, b)|ht

)
βω(C|b) +

∑
ω/∈�b

γσt
(
(ω, b)|ht

)
βω(C|b)

<
∑
ω∈�b

2
3
γσt

(
(ω, g)|ht

) +
∑
ω/∈�b

2
3
γσt

(
(ω, b)|ht

) ≤ 2
3

.

Recall that it is a best response to play N at a history if λσt ((C, b)|ht )< 2/3. Hence, it is
a best response for the SR to play N at all histories. Then it is immediate that it is a best
response for te LR to playD at all histories.

If ν0(b) = 1, as long as the closure of Ab ∩ {βω(b) : ω ∈ �b} contains 2/3 (the mixed
Stackelberg action), then a sufficiently patient player obtains payoffs close to 4/3 in any
equilibrium, since a deviation to mimicking one of the good commitment types in �b
guarantees such a high payoff. Now consider the case when ν0(b) = 1/2. Consider again
a deviation to mimicking a good type in �b. Such a deviation no longer guarantees a
high payoff, since there are now also bad commitment types in {ω̄ : ω ∈ �b} in state g
that replicate exactly the same distribution over public signals as the good commitment
types. As a result, SR players are never able to differentiate between these types, and if
the prior places relatively higher weight on such types in state g, then the SR players will
never become optimistic about the event �b × {b}.

4.3.2 Type spaces with front-loaded signaling Next we present an example where each
commitment type switches between signaling and collection, but not infinitely often;
i.e., they can play signaling actions for at most N periods and then switch to collection
forever. In such type spaces, we show that a reputation theorem again does not hold
generally.

Again consider the same stage game (Figure 2) and information structure (Figure 6)
from the previous subsection. Let ωb be a bad commitment type who always plays α∗

1 =
2
3C ⊕ 1

3D in state g and always plays D in state b. Note that ψ(·|α∗
1, g) = ψ(·|C, b). Let
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ωt denote a commitment type who plays D until period t (signaling phase) and there-
after switches to the action C forever after (collection phase).24 For any N ∈ N+ ∪ {∞},
consider the set of types �N := {ωt : t ∈N+, t ≤N } ∪ {ωs ,ωb}.25

We now show in the following claim that without further distributional assumptions
on the type space, reputation building cannot be guaranteed.

Claim 2. LetN ∈N+ ∪ {∞} and ν0(g) = ν0(b) = 1/2. Then there exists some μ0 ∈ �+(�N )
such that for any δ ∈ (0, 1), it is a PBE for the LR to always play D and the SR to always
play N . Moreover, this PBE yields a payoff of 0< 4/3 = u∗

1(b) to ωs for all discount factors
in state b.

Proof. Consider the probability distribution over types given by

μ0
(
ωt

) = κtε, μ0
(
ωb

) = ε, μ0
(
ωs

) = 1 −
N∑
τ=0

κτε.

We assume that κ ∈ (0, 1/4] and ε ∈ (0, 1/2), in which case, μ0 is a valid probability mea-
sure since

∑N
τ=0 κ

τε < 1.
Let σ denote the above strategy profile. Consider the probability, λσt ((C, b)|ht ).

Since only types {ω1, � � � ,ωt } play C in state b at such a history,

λσt
(
(C, b)|ht

) = γσt
({
ω1, � � � ,ωt−1} × {b}|ht

)
,

but for each τ, the likelihood ratio between (ωτ , b) and (ωb, g) is given by

γσt
(
ωτ , b|ht

)
γσt

(
ωb, g|ht

) = μ0
(
ωτ

)
μ0

(
ωb

) τ∏
τ′=1

ψ(yτ′ |D, b)
ψ(yτ′ |α1, g)

≤ μ0
(
ωτ

)
μ0

(
ωb

)(
3
2

)τ
=

(
3
2
κ

)τ

Therefore,

λσt
(
(C, g)|ht

) ≤
t−1∑
τ=1

(
3
2
κ

)τ
γσt

(
ωb, g|ht

) ≤
∞∑
τ=1

(
3
8

)τ
<

2
3

.

Again recall that whenever λσt ((C, g)|ht ) < 2
3 , the SR has a strict incentive to play N .

Therefore, this shows that it is indeed optimal for the SR to playN at all histories. Given
this, it is immediate that it is a best response for ωs to always playD.

Reputation building fails in this example because all signaling is front-loaded by all
commitment types. To see the basic idea, consider again the deviation to a strategy of
mimicking ωt . The hope under such a deviation for the LR is that the initial t periods of
signaling would be sufficient to convince the SR players that the state is b to a sufficient

24For expositional simplicity, we focus only on those commitment types who play the pure Stackelberg
action in the collection phase. The example can be easily extended to settings where such types play mixed
actions in the collection phase.

25WhenN = ∞, �N = {ωt : t ∈N+} ∪ {ωs ,ωb}.



186 Deb and Ishii Theoretical Economics 20 (2025)

degree of confidence that it eliminates identification problems across states. However,
the claim above shows that this is infeasible for the LR. The problem is that under the
constructed belief, μ0 ∈ �+(�), the likelihood of (ωt , b) is much smaller than the like-
lihood of (ωb, g), so that even after t periods of signaling, the SR still maintains high
probability on (ωb, g).

Remark. If instead γ0(ωt , b) were sufficiently large relative to t for every t, then a repu-
tation result would hold in the example. However, as previously emphasized, this illus-
trates the dependence of reputation building on the fine details of the prior distribution
over types (beyond just the support of the prior distribution) when signaling is front-
loaded.

Both of these issues highlighted in the above examples are no longer problematic
given the commitment types constructed in the main theorem. First, because the com-
mitment types enter signaling phases many times, there are no bad types in other states
that can replicate similar distributions over public signals during these signaling phases
for long periods of time. Second, the commitment types signal the state indefinitely so
that a LR player who mimics such a commitment type can ensure eventual correct learn-
ing of the state even if the probability of such a commitment type is initially very small.

Finally, while the above analysis demonstrates the necessity of dynamic commit-
ment types in particular examples, there are many specific settings where either station-
ary commitment types or commitment types with front-loaded signaling suffice.26 An
exact characterization in general games of when such simpler types suffice is beyond the
scope of this paper.27 Despite this, we emphasize again that Theorem 1 holds as long as
richness is satisfied without any restrictions on what other types are or are not present.

5. Proving Theorem 1

We now return to prove Theorem 1. The overall structure of the proof follows the stan-
dard approach in the reputation literature. We show that for β1 ∈ Sε, a sufficiently pa-
tient LR player, by playing the strategy, σβ1 , associated with typeωβ1 , can obtain payoffs
at least u∗

1(θ) − ρ in any equilibrium.
To show this, we prove two key properties that hold uniformly across all equilibria:

For every ε > 0, there exists some J (that can be chosen independent of the choice of
equilibrium) such that by deviating to play σβ1 in any equilibrium, the following state-
ments hold:

P1. The SR players’ predictions of the current period’s public signal distribution are
approximately correct in all but J periods with probability at least 1 − ε (see
Lemma 3 for details).28

26See the discussion after Theorem 1 and the remark above.
27The main obstacle is the difficulty of explicit construction of equilibria in general reputation games.
28By “approximately correct,” we mean that the SR players’ predictions will be close to the actual public

signal distribution under σβ1 and state θ.
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P2. The SR players’ beliefs assign probability at least 1 − ε on the correct state θ in all
but J periods with probability at least 1 − ε (see Lemma 4 for details).

Property P1 holds in previous papers studying reputation building under imperfect
monitoring such as Fudenberg and Levine (1986) and Gossner (2011), and its proof fol-
lows these standard arguments. In those environments, with appropriate identification
assumptions, P1 implies that with high probability, the SR players’ best responses will be
approximately correct in all but J1 periods. However, this property alone is inadequate
for a reputation theorem in our environment. Even if the SR players’ predictions of to-
day’s public signal distribution is exactly the same in all periods as that of σβ1 in state
θ, because of identification problems across states, this does not necessarily imply that
the SR players’ beliefs are concentrated on the correct state θ.

Property P2 addresses this issue. To prove it, we prove a theorem on robust learning
(Theorem 2) that establishes a simple-to-check sufficient condition to ensure that an
observer learns the relevant state at a rate that is uniform across a rich class of general
learning environments. We then apply this theorem to the reputation setting to show
that SR players learn the state θ at a rate that is uniform across all equilibria.

5.1 Formal details of the proof of Theorem 1

We now provide details of the proof of Theorem 1. Proofs not provided in the text can
be found in the Appendices. We first extend the notion of ε-entropy confirming best
response of Gossner (2011) to our framework.29 To state this, first recall the definition
of the Kullback–Leibler divergence of two probability measures: Given two probability
measures P ,Q ∈ �(Y ),

D(P‖Q) :=
∑
y∈Y

P(y ) log
(
P(y )
Q(y )

)
.

Recall the basic properties of relative entropy that D(P‖Q) ≥ 0 for all P ,Q ∈ �(Y ), and
D(P‖Q) = 0 if and only if P =Q.

Definition 3. Let (κ, ε) ∈ [0, 1]2. Then α2 ∈ A2 is a (κ, ε)-confirming best response at
(α1, θ) if there exists some λ ∈ �(A1 ×�) such that

(i) α2 ∈ B2(λ)

(ii) D(ψ(·|α1, α2, θ)‖ψ(·|λ, α2 )) ≤ ε (see footnote 30)30

(iii) marg�λ(θ) ≥ 1 − κ.

We let CBRκ,ε(α1, θ) be the set of all (κ, ε)-confirming best responses at (α1, θ).

29Fudenberg and Levine (1992) provide a similar definition that uses the notion of total variational dis-
tance between probability measures instead of Kullback–Leibler divergence.

30We define ψ(·|λ, α2 ) := ∑
a1,a2,θ ψ(·|a1, a2, θ)λ(a1, θ)α2(a2 ).
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The following lemma motivates the definition of (κ, ε)-confirming best responses
and shows that for ε small, if short-run players play an (ε, ε)-confirming best response,
then the LR player obtains payoffs close to those as if the SR player were best responding
with perfect knowledge of both the LR player’s action and state.

Lemma 1. For every α1 ∈ A1,

lim inf
ε→0

inf
α2∈CBRε,ε(α1,θ)

u1(α1, α2, θ) ≥ inf
α2∈B2(α1,θ)

u1(α1, α2, θ).

Proof. By Assumption 1 and the property thatD(P|Q) = 0 if and only if P =Q, we have
that CBR0,0(α1, θ) = B2(α1, θ). Moreover, CBRε,ε(α1, θ) is upper hemi-continuous with
respect to ε, and so the inequality follows.

Notice that a (1, ε)-confirming best response is essentially the extension of the idea
of ε-entropy confirming best response in Gossner (2011) to the current setting. Un-
der a (1, ε)-confirming best response, condition (iii) in Definition 3 is trivially satis-
fied and so the definition only requires that the public signal distribution associated
with the belief λ required to sustain α2 as a best response be ε-close in Kullback–
Leibler divergence to the true distribution of public signals under the action profile
(α1, α2 ) and state θ. When κ is small, condition (iii) additionally requires that λ in-
deed places large probability on the state θ. This additional requirement is important
in Lemma 1, since generally, lim infε→0 infα2∈CBR1,ε(α1,θ) u1(α1, α2, θ) may be strictly less
than infα2∈B2(α1,θ) u1(α1, α2, θ).

The following lemma constitutes the key step in the proof of the main theorem,
which shows that if the LR deviates to play σβ1 in any equilibrium, then the SR plays
strategies consistent with (ε, ε)-confirming best responses in all but a finite number of
periods with very large probability. Formally, define the following set of histories given
an equilibrium σ and a type ω ∈� who plays strategies that only depend onHt ×� 31

Mσ ,(ω,θ)(J, κ, ε) := {
h∞ ∈H∞ :

∣∣{t : σ2
(
ht

)
/∈ CBRκ,ε

(
σ1

(
ω, ht , θ

)
, θ

)}∣∣< J}.

These are the set of public histories, h∞, where type ω and the SR players together
play action profiles that are (κ, ε)-confirming best responses at state θ in all but J peri-
ods. The following lemma provides a lower bound on the probability of such histories
that applies uniformly across all equilibria.

Lemma 2. Suppose that μ(ωβ1 ) > 0. Then for every ε > 0, there exists some J such that

infσ∈BNEδ π
σ ,(ωβ1 ,θ)∞

(
Mσ ,(ωβ1 ,θ)(J, ε, ε)

) ≥ 1 − 2ε.32

31In the analysis, we are concerned with these sets only for types ωβ1 who play strategies that only de-
pend on Ht ×�. Therefore, the restriction to such types is not restrictive.

32Notice that in this lemma, we do not necessarily require that β1 ∈ Sε′
for some ε′ > 0 small. Later in the

proof of Theorem 1, when we use this lemma, we will use Lemma 2 for the particular case in which β1 ∈ Sε′

for ε′ > 0 small to ensure that by mimicking ωβ1 , the LR can ensure high payoffs.
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There are two aspects of the lemma above that are worth emphasis. First is that the
set of histories in Mσ ,(ω,θ)(J, ε, ε) ensures that players play action profiles consistent
with (ε, ε)-confirming best responses in all but J periods. One could weaken this to an-
alyze the probability of the set of histories in Mσ ,(ω,θ)(J, 1, ε) that only require players to
play action profiles consistent with (1, ε)-confirming best responses in all but J periods
as in Gossner (2011). Indeed, the arguments of Fudenberg and Levine (1986) and Goss-
ner (2011) imply a uniform lower bound on the probability of such histories across all
equilibria. However, this is insufficient for our reputation theorems since as previously
discussed, Lemma 1 does not apply to (1, ε)-confirming best responses.

The conclusion of the above lemma does not hold for any arbitrary typeω and holds
only for types ωβ1 . This is again because the definition of Mσ ,(ω,θ)(J, ε, ε) requires SR
players to hold approximately correct beliefs on the state θ in all but J periods. In partic-
ular, if ω were a stationary commitment type, then πσ ,(ω,θ)∞ (Mσ ,(ω,θ)(J, ε, ε)|ω, θ) may
actually be quite small for some equilibria, σ .

We prove Lemma 2 in Section 5.2. Before this, we present the proof of Theorem 1,
which is now immediate.

Proof of Theorem 1. Define u := mina∈Aminθ∈� u1(a, θ). and choose any θ. We will
show that there exists some δ∗ < 1 such that whenever δ > δ∗,U1(σ , θ; δ)> u∗

1(θ) −ρ for
all σ ∈ BNEδ. This then proves the theorem, since there are finitely many states θ ∈�.

First choose some ε∗ > 0 such that for all ε < ε∗,

(1 − 2ε)

(
u∗

1(θ) − ρ

4

)
+ 2εu > u∗

1(θ) − ρ.

By assumption, we can choose β1 ∈ Sρ/8 such that μ(ωβ1 )> 0. By Lemma 1, there exists
some ε ∈ (0, ε∗ ) such that

u1
(
β1(θ), α2, θ

)
> min
α2∈B2(β1(θ),θ)

u1
(
β1(θ), α2, θ

) − ρ

8
≥ u∗

1(θ) − ρ

4

for all (β1(θ), α2 ) that is an (ε, ε)-confirming best-response at θ, where the last inequal-
ity follows from construction that β1 ∈ Sρ/8.

By Lemma 2, there exists some J such that for every equilibrium, σ ,

πσ ,(ωβ1 ,θ)∞
(
Mσ ,(ωβ1 ,θ)(J, ε, ε)

) ≥ 1 − 2ε.

As a result, in any equilibrium, σ , by mimicking the strategy of the commitment type
ωβ1 , the LR player 1 obtains at least the payoff

(1 − 2ε)

((
1 − δJ)u+ δJ

(
u∗

1(θ) − ρ

4

))
+ 2εu.

Then we can choose some δ∗ < 1 such that for all δ > δ∗,

(1 − 2ε)

((
1 − δJ)u+ δJ

(
u∗

1(θ) − ρ

4

))
+ 2εu > u∗

1(θ) − ρ.
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5.2 Proving Lemma 2

We now prove our key lemma, which follows in a straightforward manner from the fol-
lowing two lemmas. The complete proof of Lemma 2 is provided in Appendix D. To
simplify notation, given C ⊆�×�, define

φσt
(·|ht) = margYπ

σ
t

(·|ht), φσ ,C
t

(·|ht) = margYπ
σ
t

(·|ht , C)
.

In words, φσt (·|ht ) is the distribution over yt ∈ Y in period t in the equilibrium σ , con-
ditional on the public history ht .33 Additionally, φσ ,C

t is this distribution when condi-
tioned on the event (ω, θ) ∈ C.

Lemma 3 (Merging). Suppose that γ0(ω, θ)> 0. Then for every ε > 0, there exists some J1

such that in every equilibrium σ ,

πσ ,(ω,θ)∞
({
h∞ ∈H∞ :

∣∣{t :D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))> ε}∣∣< J1
}) ≥ 1 − ε.

Lemma 4 (Uniform Learning). Suppose μ0(ωβ1 ) > 0. Then for every ε > 0, there exists
some J2 such that for all σ ∈ BNEδ,

πσ ,(ωβ1 ,θ)∞
({
h∞ ∈H∞ :

∣∣{t : νσt
(
θ|ht

)
< 1 − ε}∣∣< J2

}) ≥ 1 − ε.

As in Fudenberg and Levine (1986) and Gossner (2011), Lemma 3 strengthens the
classical merging results, e.g., Blackwell and Dubins (1962) and Kalai and Lehrer (1993),
by establishing a uniform upper bound across all equilibria on the probability of his-
tories in which the SR player’s prediction of today’s public signal distribution, φσt (·|ht ),
diverges substantially from the “true” public signal distribution, φσ ,(ω,θ)

t (·|ht ), in more
than J1 time periods, when LR plays σ(ω) in state θ. The proof follows using stan-
dard merging arguments of Gossner (2011), which we include for completeness in Ap-
pendix C.

To prove Lemma 4, we show that in any state θ, by playing σβ1 (θ), the LR player can
ensure that the SR players learn the state θ at a rate that is uniform across all equilibria.
Indeed standard arguments immediately imply that in any equilibrium, SR players learn
the true state θwhenever the LR player plays σβ1 (θ). However, the additional uniformity
requirement requires further analysis, which we now address in Section 5.3.

5.3 A robust learning theorem

Consider the following general model of learning. There is a finite signal space Y and a
countable state space �. A learning environment is some π ∈ S(Y ,�) for which π� :=
marg�π has full support on �. Recall that for any B ⊆ �, πB ∈ S(Y ,�) denotes the
stochastic process conditional on ξ ∈ B: πB = (πt(·|B))∞t=0. Note that this allows the
stochastic process, πξ, for any ξ ∈�, to be very general, which may potentially contain
arbitrary forms of serial correlations.

33In fact, φσt (·|ht ) is the SR players’ subjective belief of the period t public signal after observing ht .
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To interpret, in a learning environment, at the beginning of each period t = 1, 2, � � �,
an observer updates her beliefs about the true state ξ ∈� according to Bayes’ rule upon
the realization of a history of signals ht = (y0, � � � , yt−1 ). Let ρπt (·|ht ) ∈ �(�) denote the
observer’s beliefs after observing ht . We now describe formally our definition of robust
learning.

Definition 4. Let ξ∗ ∈ B ⊆ � and S∗ ⊆ S(Y ,�). Then we say that an observer S∗-
robustly learns B at ξ∗ if for every κ ∈ (0, 1), there exists someK such that

inf
π∈S∗π∞

( ∞⋂
t=K

{
h∞ : ρπt

(
B|ht

) ≥ 1 − κ}
|ξ∗

)
≥ 1 − κ.

Intuitively, S∗-robust learning requires an observer’s beliefs to concentrate on B for-
ever after periodK with high probability for all learning environments in S∗.

Our main theorem in this section establishes a simple sufficient condition on S∗
that guarantees S∗-robust learning of B at ξ∗. To state it, we first need a few defini-
tions that are well known from the theory of statistical experiments. First fix a learn-
ing environment π ∈ S(Y ,�), some ξ∗ ∈ �, and B ⊆ �. We now define the function
Hπ
t (·; B, ξ∗ ) : [0, 1] → R, which is also known as the Hellinger transform. Formally this

function is defined as

Hπ
t

(
z; B, ξ∗) :=

∑
ht∈Ht

(
πBt

(
ht

))z(
π
ξ∗
t

(
ht

))1−z = E
π
ξ∗
t

[(
πBt

(
ht

)
π
ξ∗
t

(
ht

)
)z]

.

This is the moment generating function of the (random) log-likelihood ratio at time t,

log πBt (ht )

π
ξ∗
t (ht )

, when ht is distributed according to πξ
∗
t . Toward our robust learning result,

let us also define

Hπ
t

(
B, ξ∗) = inf

z∈[0,1]
Hπ
t

(
z; B, ξ∗) ∈ [0, 1].

Roughly speaking, Hπ
t (B, ξ∗ ) measures the informativeness of the learning environ-

ment at time t with respect to learning the relative likelihoods of B vs. ξ∗. Notice that by
Jensen’s inequality, Hπ

t (B, ξ∗ ) ≤ 1. Intuitively, a completely uninformative learning envi-
ronment attains this maximal value of Hπ

t (B, ξ∗ ) = 1. On the other hand, if the supports
of πBt and πξ

∗
t are disjoint so that the learning environment distinguishes B from ξ∗ per-

fectly, then Hπ
t (B, ξ∗ ) = 0. In Appendix A, we list some additional useful properties of

the Hellinger transform.34

In the following theorem, we show that when the Hellinger transforms converge
to zero (information converges to perfect information) at a fast enough rate uniformly
across all learning environments, π ∈ S∗, then the observer S∗-robustly learns B at ξ∗.

34See also Torgersen (1991) and Moscarini and Smith (2002) for more details on the Hellinger transform.
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Theorem 2. Let S∗ ⊆ S(Y ,�) and ξ∗ ∈ B⊆�. Suppose that infπ∈S∗ π�(ξ∗ )> 0 and

lim
K→∞

sup
π∈S∗

∞∑
t=K

Hπ
t

(
Bc , ξ∗) = 0.

Then an observer S∗-robustly learns B at ξ∗.35

The following corollary will be useful: It shows that if we can guarantee S∗-robust
learning of a finite collection of sets at ξ∗, then we can also guarantee S∗-robust learning
of the intersection of these sets at ξ∗.

Corollary 1. Let ξ∗ ∈ B1, � � � , Bn ⊆� and S∗ ⊆ S(Y ,�). Suppose that infπ∈S∗ π�(ξ∗ )>
0 and that for all �= 1, 2, � � � , n,

lim
K→∞

sup
π∈S∗

∞∑
t=K

Hπ
t

(
Bc� , ξ∗) = 0.

Then the observer S∗-robustly learns B1 ∩B2 ∩ · · · ∩Bn at ξ∗.

5.3.1 Uniform signaling of the state in reputation building Given any equilibrium, σ ,
the SR players face a learning environment about the state space � = � ×� along the
same lines as in Section 5.3. Of course, when we view an equilibrium, σ , as a learning
environment, we can also define the appropriate Hellinger transforms. Thus, for any
equilibrium σ and any eventA⊆�×�, we define the Hellinger transform as

Hσ
t

(
z; B, (ω, θ)

) =
∑
ht∈Ht

(
πσ ,B
t

(
ht

))z(
πσ ,(ω,θ)
t

(
ht

))1−z
.

We also accordingly define

Hσ
t

(
B, (ω, θ)

) = inf
z∈[0,1]

Hσ
t

(
z; B, (ω, θ)

)
.

Through a straightforward computation in Lemma 8 in Appendix B, we show that
for any θ′ �= θ,

lim
K→∞

sup
σ∈BNEδ

∞∑
t=K

Hσ
t

(
�× {

θ′},
(
ωβ1 , θ

)) = 0.

By Corollary 1, the SR players BNEδ-robustly learn
⋂
θ′ �=θ � × (� \ {θ′}) = � × {θ} at

(ωβ1 , θ), which proves Lemma 4.

35We leave open the question of whether this condition is also necessary for S∗-robust learning for future
research.
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6. Upper bound on payoffs

Thus far, we have focused our analysis on a lower bound of equilibrium payoffs. This
section studies the tightness of the established lower bound. For this section only, we
make the following assumption that the public signal distribution only depends on the
action of the LR player.36

Assumption 3. For all θ, α1, α2, α′
2,ψ(·|α1, α2, θ) =ψ(·|α1, α′

2, θ). With a slight abuse of
notation, we write ψ(·|α1, θ).

Because of possible non-identification of actions across different states, there may be
equilibria in which the LR player obtains payoffs strictly above the Stackelberg payoff. In
reputation games where |�| = 1 (and with suitable action identification assumptions),
the upper bound on payoffs is independent of initial conditions such as the probability
distribution over types, as long as the LR player is sufficiently patient.37 In contrast,
we show in Appendix F that the upper bound (even for very patient players) typically
depends on these initial conditions of the game if |�| ≥ 2. As a result, providing a general
sharp upper bound is difficult.

Instead, we first provide a general upper bound theorem when the probability of
commitment types is small. We also show in Corollary 2 that this derived upper bound
is indeed tight in a class of games where state revelation is desirable. The ideas presented
here follow closely those of Mertens, Sorin, and Zamir (2014), Chapter V.3.

Definition 5. Let p ∈ �(�). A state-contingent strategy β ∈ B1 is called nonrevealing
at p if for all θ, θ′ in the support of p, ψ(·|β(θ), θ) = ψ(·|β(θ′ ), θ′ ). Let NR(p) be the set
of all β ∈ B1 that are nonrevealing at p.

In words, this means that if player 1 plays according to a nonrevealing strategy at p,
then with probability 1, player 2’s beliefs about�will not change regardless of the public
signal she sees.

We can now define the value function, if NR(p) �= ∅, as

V (p) := sup
β∈NR(p)

sup
α2∈B2(β,p)

∑
θ∈�

p(θ)u1
(
β(θ), α2, θ

)
.

Notice that because we are interested in an upper bound, unlike in the definition
of Stackelberg payoffs, we take the supremum rather than the infimum over α2 ∈
B2(β, p).38 On the other hand, if NR(p) = ∅, let us define V (p) = u. Define cavV to
be the smallest concave function that is weakly greater than V pointwise.

36We do not know whether the same results can be extended to environments in which the SR players’
actions also affect the public signal distribution.

37See Fudenberg and Levine (1992) and Gossner (2011) for these results.
38There are settings in which this value coincides with an analogous value defined by taking the infimum

over α2 ∈ B2(β, p). See Theorem 3.3 in Fudenberg and Levine (1992) for a discussion of this issue.
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Theorem 3 (Upper Bound Theorem). Let ε > 0. Then there exists some κ∗ > 0 and δ∗ < 1
such that whenever μ(�c )< κ∗ and δ > δ∗,

sup
σ∈BNEδ

U1(σ ; δ) ≤ cavV (ν0 ) + ε.

Note first that, unlike in Theorem 1, richness of the type space is not necessary for
the theorem. Second, the theorem imposes a condition on the probability of commit-
ment types. In Appendix F, we present an example in which the bound provided here
does not apply when commitment types occur with large probability. The reason for the
discrepancy is that when commitment type probabilities are large, the SR player’s beliefs
about � in an equilibrium, conditional on the strategic type, is no longer a martingale.
In contrast, when the commitment type probabilities are small, these beliefs conditional
on the strategic type’s strategy follow a stochastic process that almost resembles a mar-
tingale, in which case cavV provides an approximate upper bound.

6.1 Statewise payoff bounds and payoff uniqueness

Finally, we apply Theorem 3 to a setting in which the type space satisfies richness. In
the following corollary, we show that in games where cavV (ν0 ) = ∑

θ∈� ν0(θ)u∗
1(θ), a

sufficiently patient LR player receives payoffs close to u∗
1(θ) in all states θ ∈ � and all

equilibria when commitment types are small in probability.

Corollary 2. Suppose that cavV (ν0 ) = ∑
θ∈� ν0(θ)u∗

1(θ) and that (�, μ) satisfies rich-
ness. Let ε > 0. Then there exists some κ∗ > 0 and δ∗ < 1 such that whenever μ(�c )< κ∗
and δ > δ∗, then in any state θ ∈� and any equilibrium σ ∈ BNEδ,

u∗
1(θ) − ε≤U1(σ , θ; δ) ≤ u∗

1(θ) + ε.

A key distinction between Theorem 3 and the above corollary is that we provide an
upper bound on payoffs in each state. A key step in the proof of this statewise upper
bound in the corollary relies on the richness of the type space. This assumption is im-
portant for the argument, as it first allows us to provide a lower bound on payoffs in
each state using Theorem 1, which then together with the ex ante payoff upper bound
of Theorem 3 allows us to prove the upper bound in each state.

7. Conclusion

We study reputation building by a long-run agent in environments in which there is
uncertainty about how the agent’s actions relate to observed outcomes. In contrast to
the previous literature, reputation building generally requires the inclusion of dynamic
commitment types: types that switch infinitely often between signaling actions and col-
lection actions. Our main theorem shows that when such commitment types occur with
positive probability, a sufficiently patient LR player obtains at least his Stackelberg pay-
offs (or arbitrarily close payoffs) in each state.
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We conclude with some future directions for research. First, we conjecture that a
similar reputation result follows even if the state is initially unknown to the LR player.
The intuition is that because the LR player observes his own actions, with mild identifi-
cation assumptions, he should be able to learn the state over time. However, as the LR
player’s beliefs evolve, he may want to to play different strategies contingent on what he
has learned. As a result, the construction of commitment types would need substantial
modification, since the strategies must depend on the realized signals in the long run.
Second, Cripps, Mailath, and Samuelson (2004) show that in reputation models with im-
perfect public monitoring, the scope for reputation building disappears in the long run,
since in any equilibrium, the SR players eventually learn the LR strategic player’s type.
Whether or not a similar result holds in a setting with monitoring uncertainty remains
unclear due to identification problems across states.39

Appendix A: Proofs of robust learning

A.1 Properties of the Hellinger transform

Below, we list some important properties of the Hellinger transform, that we will use
later.

Lemma 5. Let π ∈ S(Y ,�) and ξ∗ /∈ B, B ⊆ �. Then Hπ
t (z; B, ξ∗ ) satisfies the following

properties:

(i) For all t and all z ∈ [0, 1], 0 ≤ Hπ
t (z; B, ξ∗ ) ≤ 1.

(ii) For all t and all z ∈ (0, 1), Hπ
t (z; B, ξ∗ ) = 1 if and only if πBt (ht ) = π

ξ∗
t (ht ) for all

ht such that πξ
∗
t (ht )> 0.

(iii) For every z ∈ [0, 1], Hπ
t (z; B, ξ∗ ) is weakly decreasing in t.

See Torgersen (1991) p. 40 for the first two properties. Property (iii) follows from
the fact that the Hellinger transform is monotone in the Blackwell order; see Torgersen
(1991) p. 358.

A.2 Proving Theorem 2

We use Hπ
t (B, ξ∗ ) to provide a lower bound on the probability of learning after some

timeK.40

Lemma 6. Let π ∈ S(Y ,�), ξ∗ ∈ B ⊆ �. Suppose that
∑∞
t=0 Hπ

t (Bc , ξ∗ ) < +∞ and that
π�(ξ∗ )> 0. Then for allK and any κ > 0,

πξ
∗

∞

( ∞⋂
t=K

{
h∞ : ρπt

(
B|ht

) ≥ 1 − κ}) ≥ 1 − max
{

1, (1 − κ)/
(
κπ�

(
ξ∗))} ∞∑

t=K
Hπ
t

(
Ac , ξ∗).

39We thank an anonymous referee for suggesting these questions.
40Moscarini and Smith (2002) and Mu et al. (2021), respectively, use the Hellinger transform and the

Renyi divergence (a monotone transformation of the Hellinger transform) to compare the informational
value of experiments when the experiments are repeated sufficiently many times in an i.i.d. manner. In
contrast, our learning environments allow for arbitrary serial correlation in public signals.
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Proof. If π�(Bc ) = 0, then the lemma holds trivially, so let us assume that π�(Bc )> 0.
First note that for any z ∈ (0, 1],

π
ξ∗
t

(
ρπt

(
Bc|ht

)
ρπt

(
B|ht

) > κ

1 − κ
)

≤ πξ∗
t

(
ρπt

(
Bc|ht

)
ρπt

(
ξ∗|ht

) > κ

1 − κ
)

= πξ∗
t

((
π�

(
Bc

)
π�

(
ξ∗)

)z(πBct (
ht

)
π
ξ∗
t

(
ht

)
)z
>

(
κ

1 − κ
)z)

≤ πξ∗
t

((
πB

c

t

(
ht

)
π
ξ∗
t

(
ht

)
)z
>

(
κ

1 − κπ�
(
ξ∗))z)

≤
(

κ

1 − κπ�
(
ξ∗))−z

Hπ
t

(
z; Bc , ξ∗)

≤ max
{

1, (1 − κ)/
(
κπ�

(
ξ∗))}Hπ

t

(
z; Bc , ξ∗),

where the second to last inequality follows from Markov’s inequality. Since the above
holds for every z ∈ (0, 1], we have

π
ξ∗
t

(
ρπt

(
Bc|ht

)
ρπt

(
B|ht

) > κ

1 − κ
)

≤ max
{

1, (1 − κ)/(κπ�
(
ξ∗)}Hπ

t

(
Bc , ξ∗).

Then we have

πξ
∗

∞

( ∞⋂
t=K

{
h∞ : ρπt

(
B|ht

) ≥ 1 − κ}) = πξ∗
∞

( ∞⋂
t=K

{
h∞ :

ρπt
(
Bc|ht

)
ρπt

(
B|ht

) ≤ κ

1 − κ
})

= 1 −πξ∗
∞

( ∞⋃
t=K

{
h∞ :

ρπt
(
Bc|ht

)
ρπt

(
B|ht

) > κ

1 − κ
})

≥ 1 −
∞∑
t=K

π
ξ∗
t

(
ρπt

(
Bc|ht

)
ρπt

(
B|ht

) > κ

1 − κ
)

≥ 1 − max
{

1, (1 − κ)/(κπ�
(
ξ∗)} ∞∑

t=K
Hπ
t

(
Bc , ξ∗).

Note that in Lemma 6, the lower bound of the probability of learning established in
the above lemma depends only on four parameters: κ,K, π�(ξ∗ ), and

∑∞
t=KHπ

t (Bc , ξ∗ ).
In particular, other aspects of the learning environment do not influence this lower
bound. As a result, this lemma implies Theorem 2.

Proof of Theorem 2. By assumption there exists ε > 0 such that π�(ξ∗ ) ≥ ε for all
π ∈ S∗. By Lemma 6, for every π ∈ S∗ and everyK,

πξ
∗

∞

( ∞⋂
t=K

{
h∞ : ρπt

(
B|ht

) ≥ 1 − κ}) ≥ 1 − max
{

1, (1 − κ)/(κε)
}

sup
π∈S∗

∞∑
t=K

Hπ
t

(
Bc , ξ∗).
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By assumption there exists someK sufficiently large such that

1 − max
{

1, (1 − κ)/(κε)
}

sup
π∈S∗

∞∑
t=K

Hπ
t

(
Bc , ξ∗) ≥ 1 − κ.

Therefore, infπ∈S∗ πξ
∗

∞ (
⋂∞
t=K{h∞ : ρπt (B|ht ) ≥ 1 − κ}) ≥ 1 − κ.

A.3 Proof of Corollary 1

Let κ > 0. By Theorem 2, there exists someK such that for all �= 1, 2, � � � , n,

inf
π∈S∗π

ξ∗
∞

( ∞⋂
t=K

{
h∞ : ρπt

(
B�|ht

) ≥ 1 − κ

n

})
≥ 1 − κ

n
.

Therefore,

1 − κ≤ inf
π∈S∗π

ξ∗
∞

(
n⋂
�=1

∞⋂
t=K

{
h∞ : ρπt

(
B�|ht

) ≥ 1 − κ

n

})

≤ inf
π∈S∗π

ξ∗
∞

( ∞⋂
t=K

{
h∞ : ρπt

(
B1 ∩ · · · ∩Bn|ht

) ≥ 1 − κ})
.

Appendix B: Uniform learning across all equilibria

Lemma 7. Fix any θ. Let θj �= θ. Then there exists some ε > 0 such that for any k ∈N,

sup
σ∈BNEδ

Hσ
j+nk+1

(
�× {θj },

(
ωβ1 , θ

)) ≤ (1 − ε)k.

Proof. Let z ∈ (0, 1). By construction,ψ(·|α1, α2, θj ) �=ψ(·|α1(θ, θj ), α2θ) for allα1 ∈ A1

and all α2 ∈ A2. Then by Lemma 5, there exists some ε > 0 such that

sup
α1∈A1,α2∈A2

∑
y∈Y

π(y|α1, α2, θj )zπ
(
y|, α1(θ, θj ), α2, θ

)1−z ≤ 1 − ε.

Note that this chosen ε only depends on the information structureπ and is independent
of the chosen equilibrium, commitment types, etc.

Now consider any equilibrium σ . The claim holds trivially for k = 0. By induction,
suppose that the claim holds for t ′ = nk−1 + j+1 and consider the claim for t = nk+ j+1.
Then by the law of iterated expectations, note that

Hσ
t

(
z;�× {θj },

(
ωβ1 , θ

)) = E

[(
π
σ ,�×{θj }
t

(
ht

)
πσ ,(ωβ1 ,θ)
t

(
ht

)
)z

|
(
ωβ1 , θ

)]

≤ (1 − ε)E
[(

π
σ ,�×{θj }
t

(
ht−1)

πσ ,(ωβ1 ,θ)
t

(
ht−1)

)z
|
(
ωβ1 , θ

)]

= (1 − ε)Hσ
t−1

(
z;�× {θj },

(
ω
β
1 , θ

))
.
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Again by Lemma 5, since Ht is a non-increasing sequence, we have

Hσ
t

(
z;�× {θj },

(
ωβ1 , θ

)) ≤ (1 − ε)Hσ
t ′
(
z;�× {θj },

(
ωβ1 , θ

)) ≤ (1 − ε)k.

Since the above holds for fixed z > 0, the claim also holds for the infimum over z ∈ [0, 1].
Hence, for every σ ∈ BNEδ,

Hσ
nk+j+1

(
�× {θj },

(
ωβ1 , θ

)) ≤ (1 − ε)k.

Lemma 8. For all θ′ �= θ,

lim
K→∞

sup
σ∈BNEδ

∞∑
t=K

Hσ
t

(
�× {

θ′},
(
ωβ1 , θ

)) = 0.

Proof. Let θj = θ′. Then by the previous lemma, there exists some ε > 0 such that for
any k ∈N,

sup
σ∈BNEδ

Hσ
j+nk+1

(
�× {θj },

(
ωβ1 , θ

)) ≤ (1 − ε)k.

Let K ≥ j + n0 + 1 and let k(K) be the maximal value of k for which j + nk + 1 ≤K. For
any σ ∈ BNEδ, since Hσ

t (�× {θj }, (ωβ1 , θ)) is weakly decreasing in t,

∞∑
t=K

Hσ
t

(
�× {θj },

(
ωβ1 , θ

)) ≤
∞∑

k̂=k(K)

j+n
k̂+1∑

t=j+n
k̂
+1

Hσ
t

(
�× {θj },

(
ωβ1 , θ

))

≤
∞∑

k̂=k(K)

(m+ k̂+ 1)(1 − ε)k̂.

Therefore,

lim
K→∞

sup
σ∈BNEδ

∞∑
t=K

Hσ
t

(
�× {θj },

(
ωβ1 , θ

)) ≤ lim
K→∞

∑
k̂=k(K)

(m+ k̂+ 1)(1 − ε)k̂ = 0.

Appendix C: Merging and the proving Lemma 3

The arguments in this section are results proved by Gossner (2011). We modify the argu-
ments and notation slightly. We begin with the following key lemma of Gossner (2011).

Lemma 9. Let ε ∈ (0, 1) and P , P ′ ∈ �(X ) for some finite set X . Suppose that Q = εP +
(1 − ε)P ′. Then

D(P‖Q) ≤ − logε.

See Lemma 3 of Gossner (2011) for the proof.
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Lemma 10. Suppose that γ0(ω, θ)> 0. Then for every σ ∈ BNEδ,

πσ ,(ω,θ)∞
({
h∞ ∈H∞ :

∣∣{t :D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))> ε}∣∣ ≥ J}) ≤ − logγ0(ω, θ)
Jε

.

Proof. For every T , by the chain rule for Kullback–Leibler divergence,

D
(
margHT π

σ ,(ω,θ)
T ‖margHT πσT

) = E
πσ ,(ω,θ)
T

[
T∑
t=0

D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))
]

= E
πσ ,(ω,θ)∞

[
T∑
t=0

D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))
]

.

Moreover, D(margHT π
σ ,(ω,θ)
T ‖margHT πσt ) ≤ − logγ0(ω, θ) by the previous lemma.

Therefore, by the monotone convergence theorem,

E
πσ ,(ω,θ)∞

[ ∞∑
t=0

D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))
]

≤ − logγ0(ω, θ).

Then by Markov’s inequality,

πσ ,(ω,θ)∞
({
h∞ ∈H∞ :

∣∣{t :D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))> ε}∣∣> J})
≤ πσ ,(ω,θ)∞

( ∞∑
t=0

D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))> Jε
)

≤ − logγ0(ω, θ)
Jε

.

The proof of Lemma 3 is now immediate.

Proof of Lemma 3. Choose J1 sufficiently large such that − logγ0(ω,θ)
J1ε

< ε. Then
Lemma 3 is immediate from Lemma 10.

Appendix D: Proof of Lemma 2

By Lemmas 3 and 4, there exist J such that for all σ ∈ BNEδ,

1 − ε≤ πσ ,(ωβ1 ,θ)∞
({
h∞ :

∣∣{t :D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))> ε}∣∣< J}),

1 − ε≤ πσ ,(ωβ1 ,θ)∞
({
h∞ :

∣∣{t : νσt
(
θ|ht

)
< 1 − ε}∣∣< J}).

Therefore, for all σ ∈ BNEδ,

πσ ,(ωβ1 ,θ)∞
(
Mσ ,(ωβ1 ,θ)(2J, ε, ε)

)
≥ πσ ,(ωβ1 ,θ)∞

({
h∞ :

∣∣{t :D
(
φσ ,(ω,θ)
t

(·|ht)‖φσt (·|ht))> ε}∣∣, ∣∣{t : νσt
(
θ|ht

)
< 1 − ε}∣∣< J})

≥ 1 − 2ε.
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Appendix E: Proving Theorem 3

The proof of Theorem 3 uses ideas from Mertens, Sorin, and Zamir (2014) with some
modifications. Let us begin with some notation. Given any probability vector x ∈ �(�),
let ‖x‖ denote the Euclidean norm:

‖x‖2 =
∑
θ∈�

x(θ)2.

Note that if player 1 plays a strategy that induces λ ∈ �(A1 ×�) as the joint distribu-
tion overA1 ×� and player 2 plays a2, then player i obtains the expected utility

ui(a2, λ) := Eλ
[
ui(a1, a2, θ)

] =
∑
a1,θ

ui(a1, a2, θ)λ(a1, θ).

We now extend the definition of a best response to ε-best response:

BRε2(λ) :=
{
a2 ∈A2 : max

a′
2∈A2

u2
(
a′

2, λ
) − u2(a2, λ) ≤ ε

}
.

Define for any ε≥ 0,

W ε(λ) = max
a2∈Bε2(λ)

u1(a2, λ).

Finally, given λ ∈ �(A1 × �), let q(·|y, λ) be the induced posterior belief about θ after
observation of the signal y:

q(θ|y, λ) =

∑
a1∈A1

λ(a1, θ)ψ(y|a1, θ)

∑
θ′∈�

∑
a1∈A1

λ
(
a1, θ′)ψ(

y|a1, θ′) .

Proposition 1. For every ε > 0, there exists some ρ > 0 such that

E
[∥∥q(·|y, λ) − marg�λ

∥∥2]
< ρ⇒W 0(λ) ≤ cavV (marg�λ) + ε.

See Appendix H for the proof.
The following lemma provides a uniform bound (across all equilibria) on the num-

ber of times where the expected movement (in terms of ‖ · ‖2 distance) in the SR players’
beliefs is greater than ε.

Lemma 11. For any σ ∈ BNEδ and any ε > 0,

∣∣{t : Eπσ∞
[∥∥νσt+1

(
ht+1) − νσt

(
ht

)∥∥2] ≥ ε}∣∣ ≤ 1
ε

.

Proof. Consider any time t + 1:

Eπσ∞
[∥∥νσt+1

(
ht+1) − ν0

∥∥2] = Eπσ∞
[∥∥νσt+1

(
ht+1)∥∥2] − ‖ν0‖2 ≤ 1.
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By the martingale property of beliefs, πσ∞-almost surely, Eπσ∞[νστ+1(hτ+1 )|hτ] = νστ (hτ ).
Therefore, it is straightforward to show that

1 ≥ Eπσ∞
[∥∥νσt+1

(
ht+1)∥∥2] − ‖ν0‖2] =

t∑
τ=0

Eπσ∞
[∥∥νστ+1

(
hτ+1) − νστ

(
hτ

)∥∥2]
.

Since the above holds for every t, it implies that

∞∑
τ=0

Eπσ∞
[∥∥νστ+1

(
hτ+1) − νστ

(
hτ

)∥∥2] ≤ 1,

which implies the claim.

We can now prove Theorem 3.

Proof of Theorem 3. We first provide an upper bound on

Eπσ∞

[
(1 − δ)

∞∑
t=0

δtu1
(
at1, at2, θ

)]

that holds across all σ ∈ BNEδ. Notice that the above payoff is not equal to U1(σ , θ; δ),
since the expectation does not condition on ωs. However, one can interpret the payoff
above as follows. For any equilibrium σ ∈ BNEδ, let σ̄1 denote the strategy, where the
LR player fictitiously draws some ω′ ∈ � according to μ0 and plays the strategy in the
equilibrium, σ , associated with that type for the entirety of the repeated game.41 Indeed
U1(σ̄1, σ2; δ) corresponds to the payoff above.

By Proposition 1, there exists some ρ > 0 such that

Eλ
[∥∥q(·|y, λ) −p∥∥2]

< ρ⇒W 0(λ) ≤ cavV (marg�λ) + ε/8.

Choose n ∈N such that 1
n (u− u)< ε/8 and δ∗ such that for all δ > δ∗,

(
1 − δnmρ )

u+ δnmρ cavV (ν) + ε

4
< cavV (ν) + ε

2
. (2)

For any σ ∈ BNEδ, let

T σ :=
{
t : Eπσ∞

[∥∥νσt+1

(·|ht+1) − νσt
(·|ht)∥∥2] ≥ ρ

n

}
.

For all t /∈ T σ , by Markov’s inequality, we have

πσ∞
(∥∥νσt+1

(·|ht+1) − νσt
(·|ht)∥∥2 ≥ ρ) ≤ 1

n
.

41For example, if the LR player draws a commitment type ω, then the LR player plays σω. If instead the
LR player indeed draws ωs , then the LR player simply plays σ1.
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Figure 7. Quality choice.

Thus, at all t /∈ T σ ,

Eπσ∞
[
W 0(νσt (·|ht))] ≤ 1

n
(u− u) +Eπσ∞

[
cavV

(
νσt

(·|ht))] + ε/8 ≤ cavV (ν0 ) + ε/4.

Therefore,

U1(σ̄1, σ2; δ) ≤ (1 − δ)
∞∑
t=0

δtEπσ∞
[
W 0(νσt

(·|ht)]

= (1 − δ)

( ∑
t∈T σ

δtu+
∑
t /∈T σ

δtEπσ∞
[
W 0(νσt (·|ht))])

≤ (1 − δ)

( ∑
t∈T σ

δtu+
∑
t /∈T σ

δt
(
cavV (ν0 ) + ε/4

))
.

By Lemma 11, for every σ ∈ BNEδ, |T σ | ≤ nm/ρ. Therefore, for all δ > δ∗ and any σ ∈
BNEδ,

U1(σ̄1, σ2; δ) ≤ (
1 − δnm/ρ)u+ δnm/ρcavV (ν0 ) + ε/4< cavV (ν0 ) + ε/2.

Finally, note that

U1(σ̄1, σ2; δ) ≥ (
1 −μ0

(
�c

))
U1(σ1, σ2; δ) +μ0

(
�c

)
u.

Let χ∗ > 0 be such that for all χ< χ∗,

1
1 −χ

(
cavV (ν0 ) + ε

2
−χu

)
< cavV (ν0 ) + ε.

Thus, for all δ > δ∗ and μ0(�c )<χ∗,

U1(σ1, σ2; δ) ≤ 1

1 −μ(
�c

)(
cavV (ν0 ) + ε

2
−μ0

(
�c

)
u

)
< cavV (ν0 ) + ε.

Appendix F: Example

The following example shows that the probability of commitment types matters for the
upper bound even when δ is close to 1. Consider the quality choice game with the
stage game payoffs given by Figure 7. In the repeated game this stage game is repeat-
edly played and all payoffs are common knowledge. Note that the Stackelberg payoff of
the above game is 3/2. Furthermore, note that B is a best response for the SR player in
the stage game if and only if α1(C ) ≥ 1/2.
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Figure 8. The information structure.

There are two states �= {1, −1} that only affect the signal distribution of the public
signal. There are two types in the game: �= {ωc ,ωs}. The commitment type, ωc , in this
game is a type that always plays the mixed action, 2

3H ⊕ 1
3L, regardless of the state.42 In

particular, we assume that the probability of each state is identical and the probability
of the commitment type is μ ∈ (0, 1).

The signal space is binary, Y = {ȳ, y} and the information structure is given by Fig. 8.

Note that according to this information structure, ( 2
3H ⊕ 1

3L, θ) is statistically indis-
tinguishable from (L, −θ): ψ(·| 2

3H ⊕ 1
3L, θ) = ψ(·|L, −θ). In this example, we have the

following observation.

Claim 3. There exists μ∗ such that for all μ> μ∗ and any δ ∈ (0, 1), there exists an equi-
librium in which the strategic player obtains a payoff of 2 in both states.

Proof. Consider the candidate equilibrium strategy profile in which the strategic LR
player always playsL. Choose μ∗ = 3

4 . Then we will show that when μ>μ∗, this strategy
profile is indeed an equilibrium for any δ ∈ (0, 1).

Consider the incentives of the SR player. To study this, we want to compute the prob-
ability that the SR player assigns to action T given the candidate equilibrium strategy of
the LR player:

λσt
(
H|ht

) = 2
3
μσt

(
ωc|ht

) = 2
3

(
γσt

(
ωc , 1|ht

) + γσt
(
ωc , −1|ht

))
.

Consider the likelihood ratio

γσt
(
ωc , θ|ht

)
γσt

(
ωs , −θ|ht

) = γσt
(
ωc , θ|h0)

γσt
(
ωs , −θ|h0) = μ

1 −μ .

This then implies that for all ht , μ(ωc|ht ) = μ, μ(ωs|ht ) = 1 − μ. Thus, for all ht and all
μ>μ∗,

λσt
(
H|ht

) = 2
3
μ>

1
2

.

This then implies that for all ht , the SR player’s best response is to play L. Furthermore,
because the SR player is playing the same action at all histories, the strategic LR player’s
best response is to play B at all histories. Thus, the proposed strategy profile is indeed

42Note that this is in reality not the mixed Stackelberg action. However, by appropriately modifying the
information structure, the same conclusions hold, even if the commitment type plays some other mixed
action in every period.
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an equilibrium. Furthermore, according to this strategy profile, the strategic LR player’s
payoff is 2 in both states, concluding the proof.

The above discussion shows that when the commitment type occurs with large prob-
ability, even an arbitrarily patient strategic LR player obtains a payoff strictly greater
than the Stackelberg payoff in equilibrium. We now examine an upper bound when the
commitment type probability is small.

Claim 4. Let ε > 0. Then there exists some μ∗ > 0 and δ∗ < 1 such that for all μ<μ∗ and
δ > δ∗, U1(σ , δ)< 3/2 + ε for all σ ∈ BNEδ.

Proof. Consider V (p) for any p ∈ �(�). Because the stage game utilities are state-
independent, it is straightforward to show that

V (p) ≤ sup
α1∈A1

max
a2∈B2(α1 )

u1(α1, a2 ) = 3/2,

where the equality follows from a straightforward calculation. The claim then follows
from Theorem 3.

Appendix G: Proof of Corollary 2

The lower bound is a consequence of Theorem 1. Let us now show the upper bound.
Choose some ν ∈ (0, minθ∈� ν0(θ)).

Suppose by way of contradiction that there exists some state θ∗ ∈ � and some se-
quence δn → 1 and σn ∈ BNEδn such that for all n, U1(σn, θ∗; δn ) ≥ u∗

1(θ∗ ) + ε. By Theo-
rem 3,

ν0
(
θ∗)(u∗

1

(
θ∗) + ε) + lim sup

n→∞

∑
θ �=θ∗

ν0(θ)U1
(
σn, θ; δn

)
<

∑
θ∈�

ν0(θ)u∗
1(θ) + νε.

Together with Theorem 1, we have

∑
θ �=θ∗

ν0(θ)u∗
1(θ) ≤ lim sup

n→∞

∑
θ �=θ∗

ν0(θ)U1
(
σn, θ; δn

) ≤
∑
θ �=θ∗

ν0(θ)u∗
1(θ) − (

ν0
(
θ∗) − ν)ε,

but this is a contradiction.

Appendix H: Proving Proposition 1

Let us first define the set

N̂R(p) := {
λ ∈ �(A1 ×�) :

(
λ(·|θ)

)
θ∈� ∈ NR(p), marg�λ= p}

,

N̂R :=
⋃

p∈�(�)

N̂R(p).
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Notice that V (p) = supλ∈N̂R(p)W
0(λ). Analogously, we can define for any ε > 0,

V ε(p) = sup
λ∈N̂R(p)

W ε(λ).

Finally, define also for every ε≥ 0,

�ε(a2 ) := {
λ ∈ N̂R : a2 ∈ Bε2(λ)

}
.

We begin with some lemmas.

Lemma 12. Let ε > 0. Then there exists some ρ > 0 such that for all λ ∈ �(A1 ×�),

E
[∥∥q(·|y, λ) − marg�λ

∥∥2]
< ρ⇒ inf

λ̂∈N̂R
‖λ− λ̂‖< ε.

See Lemma V.3.6 in Mertens, Sorin, and Zamir (2014) for the proof.

Lemma 13. Let ε > 0. Then there exists some ρ > 0 such that for all λ, λ̂ ∈ �(A1 ×�),

‖λ− λ̂‖< ρ⇒W 0(λ) ≤W ε(λ̂) + ε.

Proof. Let ε > 0. First choose ρ′ > 0 sufficiently small such that

‖λ− λ̂‖< ρ′ ⇒ max
a2∈A2

∣∣u2(a2, λ) − u2(a2, λ̂)
∣∣ ≤ ε.

Then there exists some ρ ∈ (0, ρ′ ) such that ‖λ− λ̂‖ ≤ ρ =⇒ B0
2(λ) ⊆ Bε2(λ̂). Therefore,

whenever ‖λ− λ̂‖ ≤ ρ,

W 0(λ) = max
a2∈B0

2(λ)
u1(a2, λ) ≤ max

a2∈Bε2(λ̂)
u1(a2, λ) ≤ max

a2∈Bε2(λ̂)
u1(a2, λ̂) + ε=W ε(λ̂) + ε.

Lemma 14. For every ε > 0, there exists some ρ > 0 such that for all a2 ∈A2,

λ ∈�ρ(a2 ) ⇒ inf
λ′∈�0(a2 )

∥∥λ− λ′∥∥< ε.

Proof. Suppose otherwise. Then for some a2 ∈ A2 and ε > 0, there exists some se-
quence ρn → 0 and λn ∈�ρn(a2 ) such that

inf
λ′∈�0(a2 )

∥∥λn − λ′∥∥ ≥ ε. (3)

By Bolzano–Weierstrass, without loss of generality, by replacing the original sequence
with an appropriate subsequence, we can assume this sequence to be convergent to
some limit λ. However, note that since λn → λ and λn ∈ �ρn(a2 ) for all n, λ ∈ �0(a2 ).
This contradicts (3).

Lemma 15. For every ε > 0, there exists some ρ∗ > 0 such that for all λ ∈ N̂R and all ρ <
ρ∗,

W ρ(λ) ≤ cavV (marg�λ) + ε.
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Proof. First, because cavV and u1(·, a2 ) are Lipschitz continuous for all a2 ∈A2, there
exists some ε′ > 0 such that whenever ‖λ− λ′‖< ε′, then∣∣cavV (marg�λ) − cavV

(
marg�λ

′)∣∣, max
a2∈A2

∣∣u1(a2, λ) − u1
(
a2, λ′)∣∣< ε/2.

By the previous lemma, let ρ > 0 be such that for all a2 ∈A2,

λ ∈�ρ(a2 ) ⇒ inf
λ′∈�0(a2 )

∥∥λ− λ′∥∥< ε′.

Recall that

W ρ(λ) = max
a2∈Bρ2 (λ)

u1(a2, λ).

Let aρ2(λ) ∈ Bρ2 (λ) be the solution to the above maximization problem. Thus, for every
λ ∈ N̂R, λ ∈�ρ(aρ2(λ)). Therefore, for all λ ∈ N̂R, there exists some λ′(λ) ∈�0(aρ2(λ)) with
‖λ− λ′(λ)‖ ≤ ε′.

Then for any λ ∈ N̂R,

W ρ(λ) = u1
(
a
ρ
2(λ), λ

) ≤ max
a2∈B0

2(λ′(λ))
u1(a2, λ)

≤W 0(λ′(λ)
) + ε/2

≤ cavV
(
marg�λ

′(λ)
)

) + ε/2 ≤ cavV (marg�λ) + ε.

We can now prove Proposition 1.

Proof of Proposition 1. By Lemma 15, there exists some ρ∗ ∈ (0, ε/3) such that for
all λ̂ ∈ N̂R,

W ρ∗
(λ̂) ≤ cavV (marg�λ̂) + ε/3.

By Lemma 13 and Lipschitz continuity of cavV , there exists some ρ′ > 0 such that∥∥λ− λ′∥∥< ρ′ ⇒W 0(λ) ≤W ρ∗(
λ′) + ρ∗,

∣∣cavV (marg�λ) − cavV
(
marg�λ

′)∣∣< ε/3.

By Lemma 12, there exists ρ > 0 such that for all λ for which E[‖q(·|y, λ) − marg�λ‖2]<
ρ, there exists λ̂(λ) ∈ N̂R such that ‖λ̂(λ) − λ‖< ρ′.

Thus, for any λ in which E[‖q(·|y, λ) − marg�λ‖2]< ρ, we have

W 0(λ) ≤W ρ∗(
λ̂(λ)

) + ρ∗ ≤ cavV (marg�
(
λ̂(λ)

) + 2ε/3 ≤ cavV (marg�(λ) + ε.
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