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We study a large market model of dynamic matching with no monetary transfers
and a continuum of agents who have to be assigned items at each date. When the
social planner can only elicit ordinal agents’ preferences, we prove that under a
mild regularity assumption, incentive compatible and ordinally efficient alloca-
tion rules coincide with spot mechanisms. The latter specify “virtual prices” for
items at each date and, for each agent, randomly select a budget of virtual money
at the beginning of time. When the social planner can elicit cardinal preferences,
we prove that under a similar regularity assumption, incentive compatible and
Pareto efficient mechanisms coincide with spot menu of random budgets mecha-
nisms. These are similar to spot mechanisms except that, at the beginning of time,
each agent chooses within a menu, a distribution over budget of virtual money.
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1. Introduction

In many contexts, agents have to be assigned streams of items when no monetary trans-
fers are allowed. Some examples include the assignment of civil servants—such as
teachers—to positions along their career trajectories, the allocation of courses to stu-
dents from semester to semester, the assignment of spaces in college dorms during uni-
versity years, the allocation of organs to hospitals waiting for transplants for their sick
patients, etc. However, the literature does not provide much guideline on how to de-
sign allocation rules in these dynamic contexts.1 While the class of possible allocation
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1There have been a number of attempts to define optimal mechanisms in these dynamic contexts. Most
of them rely on repeated games structures where preferences are drawn independently and identically dis-
tributed (i.i.d.) over time and are separable. This rules out many of the applications we have in mind. See
the related literature section below.
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rules can potentially be quite large, we show how efficiency and incentive compatibil-
ity requirements narrow it down to fairly simple rules that conform well with prevalent
practices.

Typically, in the aforementioned situations, a real money market is not allowed, so a
“virtual money” market is a natural option.2 In practice, agents are often given a bud-
get of virtual money that they can spend at regular intervals of time on items with a
high price or can use it to buy cheap items and save money for future use. Hence, the
assignment proceeds simply by having a sequence of spot markets.

One example is the course allocation at Columbia Business School (CBS). Until re-
cently, at CBS, lifetime budgets were given upfront and carried over from semester
to semester.3 A student could spend her budget equally in each semester, spend
most of it on courses in the first semester, or save it for future use.4 The prices on
courses were set to clear supply and demand for each course. Eventually, the price
for a stream of courses simply corresponds to the sum of prices of each course in
the stream. Another example is the assignment of teachers to public schools, as is
done in France.5 Teachers are initially endowed a budget that depends on their char-
acteristics and is used all along their career.6 Each year, each teacher can decide
to use her budget to transfer to another school, i.e., to “buy” a position in another
school. Teachers can use their budget to buy a position in overdemanded schools if
they can afford it. For some underdemanded, mainly disadvantaged schools, prices
are actually negative, i.e., teachers would receive a bonus if they go to these schools
(and stay there for several years). They could then accumulate more tokens to ob-
tain a future assignment at schools that they desire. Here again, the price of a stream
of schools along the career trajectory of a teacher is simply the sum of the prices of
each school.7 Thus, by construction, spot markets have a special linear pricing struc-
ture.

One can imagine many other allocation rules. For instance, upon arriving, one
could ask an agent her preferences over streams of items and given the reported pref-
erences, allocate the agent a sequence of items from then on. Indeed, in the context

2For studies on static matching problems with virtual money, see, for instance, Hylland and Zeckhauser
(1979), Budish (2011), Budish, Cachon, Kessler, and Othman (2017), or He, Miralles, Pycia, and Yan (2018).

3The Wharton School of Business uses a bidding system for courses as well. However, the mechanism
used is different: unused budgets from one semester do not carry over to subsequent semesters (see Budish
et al. (2017)).

4A full description of the allocation process used until recently is given in the “Guide to Bidding” of CBS
from 2016. We note though that CBS is now using a different mechanism; see course-match registration
(https://students.business.columbia.edu/records-registration/course-match-registration).

5See Combe, Tercieux, and Terrier (2022) for institutional details on the French teacher assignment
scheme.

6The initial budget depends on the number of kids, marital situation, and medical condition.
7Dynamic assignment schemes with point systems can also be found in other applications. For instance,

to incentivize voluntary participation by hospitals in kidney exchange platforms, point systems rewarding
hospitals based on their marginal contribution to the platform have been recently adopted by the National
Kidney Registry kidney exchange platform (see Agarwal, Ashlagi, Azevedo, Featherstone, and Karaduman
(2019)). In addition, the elite French school Ecole Normale Supérieure has been using a point system for
the assignment of students to dorms over the years of study.

https://students.business.columbia.edu/records-registration/course-match-registration
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of course allocation, based on students’ (reported) preferences, a university could de-
cide every year to use an allocation rule to assign students to sequences of courses
over the full year spanning several semesters. Similarly, teachers who recently grad-
uated could be presented sequences of schools over the following years. With virtual
money, one could directly price these streams of items. Since this approach does not
impose any linear structure on prices, it may be more permissive than using spot mar-
kets, i.e., the allocation rules obtained in this way may not be obtained through spot
markets.

We use a large matching market setting with a continuum of agents introduced by
Ashlagi and Shi (2016). However, we study a dynamic market where agents are assigned
items sequentially, while Ashlagi and Shi (2016) consider static environments. In our
framework, agents are present from date 1 through T (the finite horizon), and at each
of these dates, they have to be assigned items that perish at the end of the current pe-
riod. We first consider the case where the mechanism designer can only elicit ordinal
preferences over the sequences of items. We show that under a mild regularity assump-
tion, the class of incentive compatible and ordinally efficient allocation rules coincides
with the class of spot mechanisms. A spot mechanism works as follows. It specifies
virtual prices for items at each date. At the beginning of time, for each agent, it ran-
domly selects a budget of virtual money according to some distribution. Then, at each
date, an item is affordable for this agent if her remaining budget is above the virtual
price for this item. At this date, the agent is allocated the item of her choice among
affordable options. The agent pays the price of the assigned item and the budget is
adjusted accordingly. Together with our prior observation that spot mechanisms im-
pose a linear structure on prices, our result shows, perhaps surprisingly, that this linear
structure is what is needed when one requires incentive compatibility and ordinal effi-
ciency.

We then consider the case where the mechanism designer can elicit cardinal pref-
erences. Under a similar regularity assumption, we show a corresponding result: the
class of incentive compatible and Pareto efficient mechanisms coincides with a class of
mechanisms that we call spot menu of random budget (MRB) mechanisms. A spot MRB
mechanism is similar to a spot mechanism: it sets prices for each object at each date and
will initially draw a budget for each agent. The main difference is that at the beginning
of time, each agent is offered a menu of distributions. The distribution chosen in the
menu will be used to randomly select an initial budget of virtual money. Then, similarly
to spot mechanisms, each agent uses her budget to buy objects at each date.

Our theoretical results provide insights into the types of mechanisms used in prac-
tice. As we already underlined, spot mechanisms are used in real-world markets. Of
course, since under spot mechanisms, at a given date, agents do not have to express
their preferences on what items they are willing to consume at future dates, these mech-
anisms may be seen as offering simplicity in agents’ decision making or accommodating
shocks in preferences that may occur in the future. However, given the special structure
of pricing underlying these mechanisms, one may wonder about the losses induced by
this special structure. Our main result shows that the loss may be small in markets with a
fairly large number of agents. Further, while the optimality of spot mechanisms accords
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well with their use in practice, it is interesting to note that in some contexts, the dynamic
allocation of items is implemented by market mechanisms that differ from spot mech-
anisms. For instance, as we already mentioned, the Wharton School of Business uses
a bidding system for courses where unused budgets from one semester do not carry
over to subsequent semesters. We show by means of examples that such mechanisms
precluding transfers of budget from one period to the other are inefficient (and, hence,
cannot be replicated by spot mechanisms).8 More generally, our results shed light on
the lack of efficiency of the alternative assignment schemes.

These results also provide a path toward setting up the prices and the budgets in ap-
plications where spot markets are in use and where a social planner has a clear objective
to optimize. For instance, for the assignment of teachers to public schools in France,
one of the main objectives of the administrator/social planner is to ensure that enough
experienced teachers are assigned to disadvantaged schools. Maximizing the number
of experienced teachers in disadvantaged schools subject to incentive (and efficiency)
constraints can then be solved by optimizing over spot mechanisms only. The question
then boils down to choices of spot prices for schools and (distribution of) budgets for
teachers.

Related literature

Several works have considered market-like mechanisms with token money. The seminal
article is Hylland and Zeckhauser (1979), which defines competitive equilibrium with
equal income in an environment with fake money. In this context, agents buy proba-
bility shares of items, and prices clear the market. Budish (2011) defines a related con-
cept in combinatorial assignment problems such as course allocation. In a continuum
model, Che and Kojima (2010) show that the allocation of the random priority mecha-
nism (or random serial dictatorship) can be obtained by setting prices for each object
and drawing the budget of fake money of each agent from a uniform distribution that,
following Ashlagi and Shi (2016), we name lottery-plus-cutoffs mechanisms.9 Impor-
tantly, the authors show that random priority is equivalent to the probabilistic serial
mechanism of Bogomolnaia and Moulin (2001). Liu and Pycia (2016) and Ashlagi and
Shi (2016) prove that the equivalence with random priority extends to large classes of
mechanisms. In particular, Ashlagi and Shi (2016) characterize incentive compatible
and efficient allocation rules with a continuum of agents when the designer can only
elicit ordinal preferences (under the same regularity assumption as ours).10 They show
that the class of incentive compatible and ordinally efficient mechanisms coincides with

8While this is a source of inefficiencies, Budish et al. (2017) argue that allowing the transfer of budgets
increases decision complexity, since students have to think about how much of their budget they want to
reserve for future use.

9Che and Kojima (2010) have a “temporal” interpretation of the random priority mechanism to facilitate
its comparison with the probabilistic serial mechanism, but it is formally equivalent to our description.

10Miralles and Pycia (2020) establish a second welfare theorem in assignment problems without trans-
fers.
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the class of lottery-plus-cutoffs mechanisms.11 However, all these articles study static
settings, whereas we consider a dynamic environment. In particular, we show that the
characterization by Ashlagi and Shi (2016) does not extend to our dynamic setup.12

There is an extensive literature on dynamic mechanism design problems. Most of
the literature focuses on settings in which monetary transfers are allowed (see Berge-
mann and Said (2011) for a survey). There is a small body of literature on dynamic
mechanisms without transfers. Jackson and Sonnenschein (2007) study a general frame-
work for resource allocation in a finite horizon model without discounting in which
agents learn all private information at time 0.13 They assume that agents’ preferences
are additively separable and independently distributed across time and agents. The de-
signer’s goal is to achieve ex ante Pareto efficient outcomes. To achieve this goal, they
build a budget-based mechanism in which each agent announces his preferences and
announcements of agents are “budgeted” so that the distribution of preferences an-
nounced over the different dates must mirror the underlying distribution of preferences.
Hence, the mechanism links the different periods to enforce incentives. Related ideas
have been developed and applied to infinite horizon models with discounting where a
designer has to repeatedly allocate a single resource to one of multiple agents, whose
values are private and i.i.d. across agents and periods (e.g., Guo, Conitzer, and Reeves
(2009) and Santiago, Gurkan, and Sun (2019)).14 The proposed mechanisms share some
similarities with our spot mechanisms; in particular, they are based on artificial cur-
rencies. For instance, in Jackson and Sonnenschein (2007), each preference ordering is
associated with a budget of token money, and announcing a preference ordering has a
price that is taken from the associated preference-specific budget.15 Beyond this type of

11Lottery-plus-cutoffs mechanisms can be implemented using the standard deferred-acceptance mech-
anism with random priorities. Shi (2022) defines a large class of mechanisms, which includes lottery-plus-
cutoffs mechanisms. He provides conditions under which one can implement these mechanisms using
either deferred-acceptance, top trading cycle, or serial dictatorship.

12Instead, to prove our characterization, we introduce a generalization of their class of lottery-plus-
cutoffs mechanisms that we call generalized lottery-plus-cutoffs (GLC) mechanisms. GLC mechanisms
also define prices over sequences of items in our case, but draw the budgets according to a general (pos-
sibly non-uniform) distribution. Spot mechanisms can be seen as GLC mechanisms where the prices of
sequences have a linear structure. We detail the exact connection in Section 4.2.

13Jackson and Sonnenschein (2007) are actually more general: they consider a decision problem that is
linked with a large number of independent copies of itself. One possible interpretation is that the same
problem is repeated a large number of times.

14These works combine techniques from repeated games (Abreu, Pearce, and Stacchetti (1990), Fuden-
berg, Levine, and Maskin (1994)) with some of the ideas in Jackson and Sonnenschein (2007) to show how
one can approach efficient outcomes when the discount rate is high enough.

15In some related works, the budget may not be preference-specific and may endow agents with just a
single artificial currency budget. For instance, in Guo, Conitzer, and Reeves (2009), agents have a budget
of token money. If they have a high valuation for the item today, they can pay the other agent a certain
amount of token money to increase their likelihood of obtaining the item today. In turn, the other agent
can use the additional tokens later on to increase his likelihood of obtaining the item whenever he will
have a high valuation for the item. In a finite horizon model, at the cost of satisfying incentive constraints
approximately, Gorokh, Banerjee, and Iyer (2017) offer mechanisms that endow agents with a budget of
artificial currency, and organize a static monetary mechanism in each period with payments in the artificial
currency.
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similarities, our environments differ in important dimensions. The environments these
authors consider correspond to a large repetition of independent problems (which is re-
flected in the assumption that preferences are drawn i.i.d. over time and are separable).
This is the cornerstone to ensure that one can link the problems to incentivize agents
to report truthfully their preferences when implementing an ex ante efficient allocation.
In contrast, our results do not rely at all on any separability or i.i.d. assumptions, and
we cannot rely on Jackson and Sonnenschein’s (2007) linkage principle. Dropping the
separability and i.i.d. assumptions considerably enlarges the set of applications.16

Our results also relate to the growing literature on dynamic matching. Bloch and
Houy (2012) and Kurino (2014) analyze a dynamic version of the housing market with
overlapping generations. In their models, the housing side is fixed at the beginning of
time and infinitely durable. In dynamic matching infinite horizon stochastic models,
Akbarpour, Li, and Gharan (2020), Baccara, Lee, and Yariv (2020), Anderson, Ashlagi,
Gamarnik, and Kanoria (2017), and Ashlagi, Burq, Jaillet, and Manshadi (2019) study the
trade-off between matching agents immediately or matching them later so as to benefit
from market thickening.17

Last, our analysis is also related to the literature on combinatorial auctions. Indeed,
as we already mentioned, spot mechanisms impose a linear structure on prices, and
characterize the efficient and incentive compatible mechanisms. For assignment prob-
lems with transfers, Kelso and Crawford (1982) show the existence of market-clearing
prices (which by definition assume linearity of pricing) provided that agents’ preferences
satisfy the so-called gross substitutes condition. Hence, under the latter condition, lin-
ear pricing allows one to implement efficient allocations (which is generically unique).
More generally, Bikhchandani and Mamer (1997) and Bikhchandani and Ostroy (2002)
show that for an economy with transfers, for such a result to hold true, duality for the
integer-valued assignment problem must hold. In particular, with divisible items, the
existence of market-clearing prices is ensured. In contrast, first, our result holds without
restricting the preferences of the agents and, notably, without imposing any substitute

16For instance, coming back to our leading examples, students have different sets of choices of courses
across semesters, and teachers’ preferences on the schools they want to attend today may depend on the
school they were assigned to yesterday (for example, because they decided to move near their current
school). More generally, preferences over courses or schools in these applications are likely to be persis-
tent across time. Hence, these applications typically violate the assumptions in Jackson and Sonnenschein
(2007).

17 More tangentially related to our work, the literature on online resource allocation and online fair di-
vision studies the problem of allocating indivisible items arriving over time over a fixed time horizon to
a set of agents. The agents’ valuations for the item arriving at a given date are known only after the item
arrives and are unknown until then. One main question is how the offline setting where items are all avail-
able upfront compares with the online setting where items arrive one at a time (e.g., Karp, Vazirani, and
Vazirani (1990)). Other works deal with how much envy can be generated in the online context and how it
conflicts with efficiency (e.g., Benade, Kazachkov, Procaccia, and Psomas (2018), Zeng and Psomas (2020),
and Bogomolnaia, Moulin, and Sandomirskiy (2022)). A difficulty in this literature is how to deal with an
uncertain future. One common view is that an adversary selects a distribution of values from which each
agent’s values are drawn. Results vary depending on the class of distributions that the adversary can select
from. In our model, we assume that the distribution of the agents’ preferences is known to the designer,
and our continuum model rules out uncertainty.
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condition. Second, of course, in our setting with a continuum of agents, indivisibilities
are ruled out. One may thus naturally wonder if our assumption that there is a con-
tinuum of agents buys us our result. As it turns out, in our economy with no transfers,
the continuum assumption is not essential—as discussed in Section 7—for our result to
hold true. Further, in this section, we provide an example of an economy with a con-
tinuum of agents (and violating our regularity assumption), where linear pricing is with
loss of generality.

Outline

We begin with an example to illustrate the main concepts and results. Then we intro-
duce a benchmark dynamic allocation problem where each agent is assigned a single
object in every period. Although this simple model does not capture a variety of the
environments described above, it allows for a clear exposition of main ideas. In Sec-
tion 4, we then proceed to formally define ordinal mechanisms (i.e., mechanisms where
agents only report their ordinal preferences) and state our main result in the context of
the benchmark model. We also provide the intuition and sketch the proof of the main
result. In Section 5, we extend the analysis to cardinal mechanisms. Section 6 introduces
the general framework that encompasses our benchmark model and can be applied to
many other settings, including, for instance, the allocation of bundles of objects. In
particular, it subsumes the dynamic course allocation application discussed in the In-
troduction. Section 7 concludes with discussions of the model and future research. All
proofs are provided in the Appendix.

2. Motivating example

Consider a stylized example of a course allocation problem illustrating our main result.
Every semester, a business school offers two courses: mathematics (M) and finance (F).
To graduate, a student must complete two semesters, taking one course per semester.
We denote a course sequence by a two-tuple (ab), where a ∈ {M , F } is the course taken
in the first semester and b ∈ {M , F } is the course taken in the second semester. For sim-
plicity, we assume that a student can take any combination of the courses over her cur-
riculum. In total, there are four course sequences: (MM ), (MF ), (FM ), and (FF ).18

We suppose that there is a unit mass of students with arbitrary ordinal preferences over
course sequences. We want to assign each student a course sequence depending on her
preference. An assignment can be random, meaning that a student can draw a course
sequence from a probability distribution. Moreover, it must depend only on the prefer-
ences and not the identities of students; thus, any two students with the same preference
face the same distribution.

Motivated by the examples in the Introduction, we begin our investigation with the
idea of a virtual money market. There are multiple ways to design it in a dynamic en-
vironment. For example, one can give each student two separate budgets of artificial

18For instance, (MM ) can be a specialization in mathematics. The general framework introduced in
Section 6 allows bundles of courses at each semester and arbitrary constraints on the acceptable course
sequences.
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Table 1. Allocations for separate budgets over semesters

Course Sequence Allocation for A Allocation for B

(FF) 0 0
(MF) 3/9 1/9
(FM) 4/9 6/9
(MM) 2/9 2/9

currency, one for every semester. Alternatively, we can give a single budget transferable
across semesters. In addition to budgets, another design dimension is the prices for
courses. Should there be a separate price for each course every semester? Alternatively,
should there be a price for each course sequence? Next, we illustrate how these design
choices contribute to the efficiency of the allocation mechanisms and pin down which
design works best.

First, consider a mechanism similar to the “course match” mechanism in the Whar-
ton Business School where each student receives, for every semester, a separate bud-
get that is not transferable across semesters. We allow the budgets to be randomly
drawn and independent across students and semesters. Suppose that each budget is
drawn uniformly from the unit interval. Furthermore, let the (spot) prices of courses be
p1
M = 0, p1

F = 1/3, p2
M = 0, and p2

F = 2/3, where the superscript denotes the semester.
When entering the program, each student receives two budget realizations and then
optimally uses each budget to buy a course for the corresponding semester. In Ta-
ble 1, we provide the resulting (ex ante) allocations for student A with ordinal pref-
erences (MF ) � (FM ) � (FF ) � (MM ) and for student B with ordinal preferences
(FM ) � (MF ) � (FF ) � (MM ).

Note that student A obtains (FM ) with a positive probability. It happens when her
budget at semester 1 is in [1/3, 1] and her budget at semester 2 is in [0, 2/3). Indeed,
in that case, student A cannot afford her most preferred sequence (MF ) since the price
of finance at semester 2 is p2

F = 2/3, which is above her budget for that semester, but
she can afford her second most preferred sequence (FM ). Similarly, student B obtains
(MF ) when her budget at semester 1 is in [0, 1/3) and her budget at semester 2 is in
[2/3, 1]. However, if these students were to trade the probabilities of course sequences
(FM ) and (MF ), the same mass of each course would be allocated in every semester,
while the students would improve their allocations.19 Hence, our first mechanism fails
to produce an efficient allocation.

Given that there is no uncertainty over the future preferences or courses, one could
argue that our problem is essentially static. Thus, it is natural to treat course sequences
as objects and have a single transferable budget drawn when entering the program.
Specifically, suppose that each budget is uniform on a unit interval and that instead
of assigning a price to each separate course at each semester, we directly price each

19By “improving,” we mean in a first-order stochastic dominance sense: for each k, students have a
weakly higher probability of receiving one of their top k course sequences (and for some k, this probability
is strictly higher).
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Table 2. Allocations with a single budget and no spot prices.

Course Sequence Allocation 1 Allocation 2

(MM ) 0 1/3
(FF ) 1/3 2/3
(FM ) 1/3 0
(MF ) 1/3 0

Table 3. Allocations with a single budget and spot prices.

Course Sequence Probability

(FF ) 0
(MF ) 1/3
(FM ) 1/3
(MM ) 1/3

course sequence in the following way: pMF = 0, pFM = 1/3, pFF = 2/3, and pMM = 1.
Note that unlike in the previous mechanism, these prices cannot be decomposed as
the sums of spot prices across semesters.20 At the start of the program, each student
receives a single budget realization and optimally spends her budget to buy a course
sequence. Allocation 1 in Table 2 specifies an allocation of a student with preferences

(MM ) � (FF ) � (FM ) � (MF ). This allocation is not efficient. Indeed, the distribution
of allocation 2 assigns the same mass of each course in every semester, and the student
is better off with this distribution. Hence, this second mechanism is also inefficient.

Finally, consider a spot mechanism combining a single transferable budget and spot
prices. Fix a uniform budget distribution and spot prices p1

M = 0, p1
F = 1/3, p2

M = 0,
and p2

F = 2/3. As an example, we derive an allocation of a student with ordinal pref-
erences (FF ) � (MF ) � (FM ) � (MM ). If the realized budget is in [1/3, 2/3), then the
student will opt for finance in the first semester and then spend her budget on mathe-
matics in the second semester, thus obtaining course sequence (FM ). The probability
of such realization is 1/3 and, hence, the probability of (FM ) is 1/3. Similarly, we obtain
probabilities in Table 3 for each course sequence. It turns out that the allocation rule
induced by this mechanism is efficient. Our main result is that such spot mechanisms
actually characterize the entire set of incentive compatible and efficient allocation rules
in the dynamic environment. In particular, any incentive compatible and efficient al-
location rule can be implemented by an appropriate choice of budget distribution and
spot prices, and any budget distribution and spot prices induce an incentive compatible
and efficient allocation rule.

20There is no vector of spot prices (p1
M , p1

F , p2
M , p2

F ) such that pab = p1
a + p2

b for each (ab) ∈ {M , F }2.
Indeed, if such spot prices existed, we would have pFF +pMM = pFM +pMF , which is not true.
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3. The dynamic allocation problem

Consider a dynamic version of the allocation problem introduced by Ashlagi and Shi
(2016).21 There is a continuum of agents, a sequence of T dates, and, at each date t, a
finite set of object typesOt . Every date, each agent must be allocated exactly one object,
and the set of pure allocations is given by O = O1 × · · · × OT . We allow individuals to
receive random allocations, which are elements of the probability simplex

�=
{

q ∈R
|O| : q ≥ 0,

∑
o∈O

qo = 1
}

,

where qo ≥ 0 is the probability of pure allocation o ∈ O.
The problem of the social planner is to design a mechanism that allocates objects

by taking into account the preferences of agents. We separately study the two types of
mechanisms corresponding to the elicited preferences being either ordinal or cardinal.
We begin with ordinal mechanisms because all the applications mentioned in the Intro-
duction involve ordinal preferences and the main argument for the proof in the cardinal
case heavily relies on the proof construction in the ordinal case. We extend our results
to cardinal preferences in Section 5.22

4. Ordinal mechanisms

In this section, we assume that the social planner elicits only ordinal preferences over
O. Suppose that the preferences are strict, and let π denote such an ordinal preference,
i.e., a permutation of O, and let � denote the set of all such preferences. Hence, we
allow for arbitrary complementarities in preferences between objects consumed by an
agent on different dates. For h= 1, � � � , |O|, we let π(h) be the element of O on the hth
place in an agent’s ranking according to the preference π. Let F be a commonly known
probability distribution over the ordinal preferences, so that F(π ) is the mass of agents
with preferences π. We say that F has full support if F(π )> 0 for every π ∈�.

A social planner allocates objects available at each date among agents, taking into
account their reported ordinal preferences. A mechanism (or an allocation rule) x is a
mapping from the set of ordinal preferences to a set of random allocations, x : �→ �.
Given mechanism x, we denote a corresponding random allocation of an agent with

21This is a special case of the general model defined in Section 6. This model can accommodate the
case where agents are allocated bundles of objects at each date as well as general constraints on the set of
available bundles.

22To implement a random allocation, one must find a corresponding lottery over pure allocations. The
Birkhoff–von Neumann theorem states that this is possible in the static one-to-one environment, but when
agents are allocated distributions over bundles (or as in our model, over sequences of items), the theo-
rem no longer holds (e.g., Nguyen, Peivandi, and Vohra (2016)). However, in a model with a continuum of
agents, this is irrelevant simply because the probability share of getting a certain allocation could be treated
as a share of agents getting that allocation.
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preference profile π by x(π ) ∈ �.23, 24 We say that a mechanism is incentive compatible
(IC) if, for any π, π ′ and eachm= 1, � � � , |O|, we have

m∑
k=1

xπ(k)(π ) ≥
m∑
k=1

xπ(k)
(
π ′). (4.1)

In other words, a mechanism is incentive compatible if the random allocation obtained
by reporting each agent’s true preferences first-order stochastically dominates for this
agent each random allocation that can be obtained by reporting some other prefer-
ences.25 Another requirement that we impose is that it must be impossible for agents to
improve their random allocations in the sense of the first-order stochastic dominance
by trading their allocation probabilities. Given date t and object i ∈Ot , let Sit be the set
of pure allocations with object i at date t, i.e., Sit = {o ∈ O : ot = i}. We say that a mecha-
nism x is ordinally efficient (OE) if there is no other mechanism x′ such that the following
conditions hold:

(i) For each date t and object type i ∈Ot , we have
∑
π∈�

∑
o∈Sit

x′
o(π )F(π ) =

∑
π∈�

∑
o∈Sit

xo(π )F(π ).

(ii) For each m = 1, � � � , |O| and for each π, we have
∑m
h=1 x

′
π(h)(π ) ≥ ∑m

h=1 xπ(h)(π ),
with a strict inequality for somem and π such that F(π )> 0.

The first condition requires that at every date, the mass of allocated objects of every
type is the same in x and x′. The second condition requires that for each agent, the
random allocation associated with x′ first-order stochastically dominates for this agent
the random allocation associated with x. We denote the set of all IC and OE mechanisms
by Me

IC.26

Our goal is to characterize the set of IC and OE mechanisms. Incidentally, we will
show that these mechanisms are similar to assignment schemes that are used in practice
(e.g., for course allocation at universities and for the assignment of teachers to schools
in France).

23Our definition of a mechanism assumes that agents are treated symmetrically, i.e., agents with the
same reported ordinal preferences will receive the same random allocation. In particular, the social plan-
ner cannot discriminate based on the observed characteristics of agents. However, it is easy to enrich our
environment to allow for the observed characteristics of agents. As in Ashlagi and Shi (2016), we would
index mechanisms by these observed “types” and focus on mechanisms that treat agents of the same type
symmetrically and that are ordinally efficient within types. It is straightforward to extend our results to this
richer environment.

24Note that with a continuum of agents and a full support distribution, there is formally no difference
between a mechanism and an assignment of random allocations to agents.

25Since the model is ordinal, we use a definition purely based on ordinal preferences. As is well known,
this is equivalent to requiring that each agent maximizes his expected utility by reporting his true prefer-
ences π for all cardinal representations of π.

26Whereas we do not explicitly introduce object capacities in the model, they appear implicitly in condi-
tion (i) of the definition of OE. Indeed, each allocation rule induces a utilization of capacity. Such allocation
is OE if the utilized capacities cannot be reassigned in a way that makes agents better off. We provide a
detailed discussion of this in Section 7.
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4.1 Spot mechanisms and main characterization

The mechanisms used in practice and described in the Introduction share a common
feature: they give a budget of artificial currency to each agent early on and allocate the
objects on the spot, i.e., they let agents manage their budget over time to buy some
available objects at each date. To capture this feature, we introduce the following defi-
nition. Fix a budget distribution with a continuous cumulative distribution function G
over [0, 1] and, for each date t = 1, � � � , T , prices pt = (pti )i∈Ot with pti ≥ 0 for each object
i ∈ Ot available at this date.27 A mechanism x is a spot mechanism if it can be obtained
when each agent amakes dynamically optimal choices in the following procedure.

• Date 1. Agent a independently draws a budget according to distribution G. Let
b1
a be the realized budget of agent a. Then a picks an object among the affordable

ones, i.e., in {i ∈ O1 : p1
i ≤ b1

a}. If a chooses object i ∈ O1, the budget is adjusted to
b2
a := b1

a −p1
i .

• Date t ≥ 2. Agent a picks an object among the affordable ones, i.e., in {i ∈ Ot : pti ≤
bta}. If a chooses object i ∈Ot , the budget is adjusted to bt+1

a := bta −pti .
We make two assumptions to guarantee that for each budget realization, the proce-

dure is well defined, inducing a pure allocation of objects: (i) the object prices and the
budget distribution are such that there is an affordable pure allocation for each bud-
get realization, i.e., mino∈O

∑
t=1, ���,T p

t
ot

≤ inf{z : G(z) > 0}; (ii) each agent must choose
an object at each date, i.e., the choices where an agent remains unassigned at some
dates are not feasible. Given the previous points, dynamic optimality implies that the
sequence of choices of agent a corresponds to his most preferred vector o = (ot )t=1, ���,T

in O such that
∑
t=1, ���,T p

t
ot

≤ b1
a. Note that, given our assumption of strict preferences,

for each agent a, there is a unique such o.28 Integrating over all possible realizations of
budgets given the distribution G, we obtain a corresponding allocation rule x. We let
Gsm denote the set of spot mechanisms.

Note that the definition captures, in particular, the course allocation procedure used
at CBS except for the fact that we have not allowed situations where bundles of objects
are allocated at each date t. Section 6 presents an extension of our model that captures
this aspect as well. It also resembles the procedure of assigning teachers to schools in
France described in the Introduction. For an illustration of spot mechanisms, we refer
the reader to Section 2 with our motivating example (our last mechanism).

The main result of this section is that spot mechanisms characterize the entire set of
incentive compatible and ordinally efficient allocation rules in dynamic environments.

Theorem 1. Suppose that the distribution F has full support. A mechanism x is incentive
compatible and ordinally efficient if and only if it is a spot mechanism, i.e., Me

IC = Gsm.

27The requirement that the distribution has a continuous cumulative distribution function is only
needed for the results presented in Section 7 when we relax the full support assumption.

28If the agent were to choose sequentially, then a simple backward induction argument together with the
strict preferences assumption would also lead to choosing the same unique allocation.
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In Section 6, we introduce a general framework with bundles that subsumes our cur-
rent model. There we also present Theorem 3, which subsumes Theorem 1, the proof of
which is provided in Appendix B.

We conclude this subsection with a few comments on our main result. As we already
underlined, spot mechanisms are used in real-world markets. However, one can imag-
ine other mechanisms, and, indeed, other types of mechanisms are used in practice.
Our result shows that with a continuum of agents, the restriction to spot mechanisms is
without loss as long as one wants to achieve ordinally efficient and incentive compatible
allocations. Methodologically, this brings some simplification to a designer’s problem
having a social objective to optimize. Indeed, if the objective is ordinally efficient, then
one has to optimize over spot mechanisms, and the question then boils down to the
choices of spot prices for items and the distribution of budgets for agents. In addition,
our results shed some light on the lack of efficiency of alternative assignment schemes,
some of which are used in practice. Indeed, our motivating example in Section 2 illus-
trates two natural modifications of the spot mechanisms that turn out to be inefficient,
i.e., one where separate budgets are drawn independently for each date and one where
prices of pure allocations cannot be decomposed into spot prices. In particular, the ob-
servation that the latter mechanisms are inefficient turns out to be a core element of the
proof of Theorem 1. The following section presents a sketch of this proof.

4.2 Sketch of the proof

Spot mechanisms are a special case of a larger class of mechanisms. Fix a collection
of cutoffs α := (αo )o∈O ∈ [0, 1]|O| and a distribution G over [0, 1]. An allocation rule x
is a generalized lottery-plus-cutoff (GLC) mechanism with parameters L := (α,G) if for
every π and h= 1, � � � , |O|, we have

xπ(h)(π ) = Pr
(
b < min

m=1, ���,h−1
απ(m)

)
− Pr

(
b < min

m=1, ���,h
απ(m)

)
,

where b is the random budget drawn according to G.29 Plainly, under a generalized
lottery-plus-cutoffs allocation rule, each agent a independently draws a budget ba from
distribution G on the unit interval and chooses her favorite pure allocation o among
those with cutoffs below her budget, i.e., in the set {o ∈ O : αo ≤ ba}. We denote a GLC
mechanism with parameters L by xL and denote the set of allocation rules that are GLC
mechanisms by G.

Spot mechanisms are a subclass of GLC mechanisms with a special “linear” structure
of cutoffs. Formally, a spot mechanism is a GLC mechanism with parametersL= (α,G)
such that there exists a sequence of profiles of nonnegative prices p = (pt )t=1, ���,T , where
pt = (pti )i∈Ot for each t = 1, � � � , T , satisfying

αo =
T∑
t=1

ptot

29With a convention that minm=1, ���,h−1 απ(m) = 1 if h= 1.
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for each o = (o1, � � � , oT ) ∈ O. We will say that cutoffs satisfying the above condition are
linear. When the cutoffs α in the definition of a GLC mechanism are not linear, unlike
spot mechanisms, the resulting GLC mechanism cannot be reproduced by allocating
objects on the spot. Thus, one can implement a larger set of allocation rules using GLC
mechanisms. However, as shown in our motivating example in Section 2, GLC mecha-
nisms need not be ordinally efficient.

In a static environment, i.e., when T = 1, Ashlagi and Shi (2016) characterized or-
dinally efficient and incentive compatible allocation rules as lottery-plus-cutoff mech-
anisms. Formally, using our above terminologies, an allocation rule x is a lottery-
plus-cutoffs mechanism if it is a GLC mechanism with parameters L = (α,G), where
G = U[0,1]. Under a lottery-plus-cutoffs allocation rule, each agent a independently
draws a budget ba from the uniform distribution on the unit interval and chooses her
favorite pure allocation o among those in {o ∈ O : αo ≤ ba}. Let GAS be the set of lottery-
plus-cutoffs mechanisms. Ashlagi and Shi’s (2016) (AS) characterization result in the
static case states that whenever the distribution F has full support, an allocation rule
x is ordinally efficient and incentive compatible if and only if it is a lottery-plus-cutoff
mechanism.

As long as we are in a nontrivial dynamic environment, i.e., when T ≥ 2, their result
fails, as made clear in the motivating example presented in Section 2. However, when
T ≥ 2, we can still interpret an allocation o ∈ O as an item in a static environment and
use Ashlagi and Shi (2016)’s “static” notion of ordinal efficiency on these items. Call this
notion the AS ordinal efficiency. This AS ordinal efficiency in our dynamic setting is not
natural. It imposes that there is no alternative allocation rule x′ satisfying, for each o ∈O,

∑
π∈�

x′
o(π )F(π ) =

∑
π∈�

xo(π )F(π )

(where we recall that o = (ot )t is a pure allocation, one for each date) together with con-
dition (ii) in our definition of ordinal efficiency. Typically, reallocation of objects within
a period is not allowed.30 For instance, in our motivating example in Section 2, when
discussing the second mechanism, x′ (i.e., allocation 2) violates the above condition,
while it uses the same mass of each object at each date. Of course, AS ordinal efficiency
is weaker than OE, as stated in the following lemma.

Lemma 1. If an allocation rule x is ordinally efficient, then it is AS-ordinally efficient.

Proof. If x is not AS-ordinally efficient, then one can find another allocation x′ such
that Condition (ii) of ordinal efficiency is satisfied, and for each o ∈ O,

∑
π∈�

x′
o(π )F(π ) =

∑
π∈�

xo(π )F(π ).

Fix an object i ∈ Ot . Clearly, summing the above equalities over all o ∈ Sit gives us Con-
dition (i) in the definition of ordinal efficiency. Thus, we conclude that x is not ordinally
efficient.

30Of course, as mentioned, in a static environment where T = 1, both notions coincide.
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Equipped with Lemma 1, we obtain that in our dynamic environment with T ≥ 2,
one direction of the characterization by Ashlagi and Shi (2016) holds.

Proposition 1. Suppose that the distribution F has full support. An allocation rule is
incentive compatible and ordinally efficient only if it is a lottery-plus-cutoffs mechanism.
Formally, Me

IC ⊂ GAS.

As will be explained below, our main result (Theorem 1) can be proved using Propo-
sition 1 together with the following result.

Proposition 2. Suppose that the distribution F has full support. Fix an ordinally effi-
cient lottery-plus-cutoffs mechanism xL with L = (α,U[0,1] ). Then there exists a linear
collection of cutoffs ᾱ that has the same strict order as α, i.e., (αo <αo′ ) ⇒ (ᾱo < ᾱo′ ).

The cornerstone of the proof of Proposition 2 is the following result from the theory
of linear inequalities.31

Lemma 2 (Carver 1921). For an arbitrary matrix A, Ax< 0 is feasible if and only if y = 0
is the only solution for y ≥ 0 and ATy = 0.

To understand how we apply Lemma 2, consider Example 1 below.

Example 1. There are two dates and two objects. Consider an allocation rule x in-
duced by a lottery-plus-cutoffs mechanism with strict cutoffs (α11, α12, α21, α22 ) such
that α12 < α21 < α22 < α11 < 1. Note that these cutoffs are not linear. Indeed, if they
were, it would imply that α11 +α22 = α12 +α21, which is not possible given the above or-
dering of cutoffs. Further, these cutoffs are nonlinear in a stronger sense. In the sequel,
say that (α11, α12, α21, α22 ) has a strict linear order if there is a linear collection of cut-
offs with the same strict ordering. One can show that (α11, α12, α21, α22 ) does not have
a strict linear order.32 Below, we use Lemma 2 to show how the lack of strict linear order
implies that x is not ordinally efficient.

We begin by arguing that the existence of a strict linear order for the vector of cutoffs
(α11, α12, α21, α22 ) in our example is equivalent to a certain system of linear inequalities
being feasible. First, if vector (α11, α12, α21, α22 ) has a strict linear order, then by defi-
nition, there is a vector of nonnegative prices p = (p1

1, p1
2, p2

1, p2
2 )T such that αij > αi′j′

implies p1
i + p2

j > p
1
i′ + p2

j′ . Hence, if our cutoffs have a strict linear order, then the
following system of strict inequalities is feasible:

p1
1 +p2

1 >p
1
2 +p2

2

p1
2 +p2

2 >p
1
2 +p2

1

p1
2 +p2

1 >p
1
1 +p2

2.

31See Chapter 7 of Schrijver (1986).
32To see that there is no linear collection of cutoffs ᾱ with the same strict ordering as (α11, α12, α21, α22 ),

proceed by contradiction and assume there is such a collection ᾱ. Then, denoting p for the associated
sequence of profiles of prices, we would have that (a) ᾱ12 < ᾱ22 implies p1

1 < p
1
2 while (b) ᾱ21 < ᾱ11 would

imply p1
2 <p

1
1, a contradiction.
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We can rewrite the above system in matrix form as Ap< 0, where

A =
⎛
⎜⎝

−1 1 −1 1
0 0 1 −1
1 −1 −1 1

⎞
⎟⎠ .

Second, if our cutoffs (α11, α12, α21, α22 ) have no strict linear order, then we show
that Ap< 0 is not feasible. Indeed, if there is a vector p such that Ap< 0, then one could
define new linear cutoffs α̃ by setting α̃ij = p1

i + p2
j for all i and j.33 By construction of

A, the new cutoffs are in the same order as (α11, α12, α21, α22 ), which is a contradiction
to the assumption that cutoffs have no strict linear order. Therefore, the existence of a
strict linear order for the cutoffs is indeed equivalent to the feasibility of Ap< 0.

Given that our cutoffs have no strict linear order, Ap < 0 is not feasible. Hence,
Lemma 2 guarantees that there exists y ≥ 0, y 
= 0 such that ATy = 0. In particular, for
any ε > 0, y = (ε, 2ε, ε) is such a solution of ATy = 0. It turns out that we can use y to
specify a sequence of bilateral mass transfers that can improve upon a random alloca-
tion q for some agents while keeping the mass of allocated objects of every type constant
in every date. In particular, let y1 = ε be the probability mass to be transferred from (22)
to (11), let y2 = 2ε be the probability mass to be transferred from (21) to (22), and let
y3 = ε be the probability mass to be transferred from (12) to (21). Then ATy = 0 implies
that if we were to start at any random allocation and could implement these three trans-
fers, the mass of each object at each date must remain the same. For example, consider
object 1 at date 1. When we transfer ε from (22) to (11), the mass of the object increases
by ε. Its mass does not change when we transfer 2ε from (21) to (22), and its mass de-
creases by ε when we transfer ε from (12) to (21). So, in total, its mass has not changed
after implementing the transfers. Formally, the change of the mass of object i at date t is
captured by the negative of the dot product of the corresponding row of AT and y. Now,
to show that allocation rule x is not ordinally efficient, consider an agent whose ordinal
preferences are the same as the order of cutoffs, i.e., (12) ≺ (21) ≺ (22) ≺ (11). By the
full support assumption, there is a positive mass of such agents. Because the cutoffs are
strict, such an agent is assigned a strictly positive probability of each pure allocation.
Hence, for sufficiently small ε > 0, we can implement the above sequence of bilateral
mass transfers. Moreover, each bilateral transfer moves the probability from a lower to a
higher ranked pure allocation according to this agent’s preferences (See Figure 1 for an
illustration). Hence, after implementing transfers y, she obtains a dominating (in first-
order stochastic dominance) random assignment, while keeping the mass of each ob-
ject assigned at each date constant. Therefore, the random allocation x is not ordinally
efficient. ♦

33Note that the vector p is not guaranteed to be nonnegative although this is required by our definition
of spot mechanism. Moreover, the cutoffs induced by p may not belong to the unit interval as also required
(if these prices are associated with cutoffs of a GLC mechanism). However, as shown in Lemma 4 in the
Appendix, a simple normalization of the vector p (where we add a sufficiently large number to prices to
ensure positivity and then multiply prices by a sufficiently small number to ensure that they lie in the unit
interval) ensures that both properties hold.
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Figure 1. Improving mass transfers for an agent with ordinal preferences
(12) ≺ (21) ≺ (22) ≺ (11).

The above example illustrates why cutoffs with a strict linear order are needed for

a lottery-plus-cutoff mechanism to be ordinally efficient as stated in Proposition 2.34

Then we can use Proposition 1 to deduce that if x ∈ Me
IC, then it is induced by a lottery-

plus-cutoffs mechanism, i.e., there exists a collection of cutoffs α such that x = xL with

L= (α,U[0,1] ). From Proposition 2, we can deduce that there exists a collection of prices

p = (pt )t=1, ���,T , where pt = (pti )i∈Ot for each t = 1, � � � , T and where the collection of

linear cutoffs ᾱ induced by p has the same strict order as the collection α, i.e., (αo <

αo′ ) ⇒ (ᾱo < ᾱo′ ).35

However, the GLC mechanism with parameters (ᾱ,U[0,1] ) does not generate the

same allocation rule as x. This is because the linear collection of cutoffs ᾱ has the same

strict ordering as α, but need not have the same values. However, using a properly de-

fined distribution G, we can show that the GLC mechanism L′ := (ᾱ,G) is such that

xL
′ = x so that the “only if part” of Theorem 1 obtains. While we believe this part of the

theorem is surprising, the “if part” of Theorem 1 is a bit more expected, and its proof,

which also uses Lemma 2, is relegated to Appendix B.

Remark 1 (Linear cutoffs and uniform budget distribution). One cannot use a uniform

distribution together with linear cutoffs to generate all the incentive compatible and or-

dinally efficient rules (contrary to the static case studied in Ashlagi and Shi (2016)). To

illustrate this, Example 5 in Appendix A provides an ordinally efficient allocation that

cannot be implemented by a lottery-plus-cutoffs mechanism (i.e., with a uniform distri-

bution over budgets) with linear cutoffs.

34The argument presented in Example 1 only works with a collection α of strict cutoffs where (o 
= o′ ) ⇒
(αo 
= αo′ ). It is easy to construct examples with an ordinally efficient random allocation that can only be
implemented by a lottery-plus-cutoffs mechanism with non-strict cutoffs. In that case, one has to properly
build the resulting probability masses to be transferred, and an important part of the proof is devoted to
this construction.

35Cutoffs ᾱ induced by p means that ᾱo = ∑T
t=1p

t
ot

for each o = (o1, � � � , oT ) ∈ O.
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5. Cardinal mechanisms

We have studied a dynamic allocation problem where a social planner can only elicit
the ordinal preferences of agents. In this section, we extend the analysis to the case
where the planner can elicit a complete cardinal preference profile. Our results here
are twofold. First, we introduce a new cardinal allocation mechanism tailored to the
dynamic environment. Second, we use this mechanism to prove the main result, which
resembles the spot market characterization in the ordinal case.

Consider the dynamic allocation problem from Section 3. In contrast to the previous
section, here we let agents have cardinal preferences over a set of pure allocations O rep-
resented by utility vector u, with each coordinate denoting the utility from consuming
a corresponding pure allocation. We let U denote the set of all utility vectors inducing
strict ordinal preferences and assume that these utility vectors are distributed according
to a continuous probability measure F . For a measurable subset A ⊂ U , we let F(A)
denote the mass of agents with utility vectors inA.

We follow Ashlagi and Shi (2016) and impose a full relative support assumption on
the distribution F . So as to state this condition, let D := {u ∈ U : u · 1 = 0}. One could
understand this regularity condition as imposing that, a priori, an agent’s relative pref-
erence could, with positive probability, take any direction inD.

To formally define our regularity assumption, let us define D̃ := {u ∈ D : ‖u‖ = 1},
where ‖ · ‖ is the Euclidean norm. Sets U , D, and D̃ are all endowed with standard
topologies.36 Let C be the collection of cones in D.37 We endow C with the following
topology: C′ ⊂ C is open if C′ ∩ D̃ is open in D̃. Following Ashlagi and Shi (2016), we say
that distribution F has full relative support if for any open coneC in C, F(Proj−1

D (C ))> 0,
where ProjD(·) stands for the projection of U intoD.

Remark 2. The full relative support assumption is stronger than the full support as-
sumption introduced in the ordinal setting. Again, at an intuitive level, it ensures that
F puts positive mass on any direction in D. For instance, this assumption implies that,
for a given pure allocation o, the vector of utilities where agents assign a high (predeter-
mined) level of relative utility to o must have a positive mass.38 The interpretation here
is that each pure allocation o can, with positive probability, be a “superstar,” i.e., much

36The set R|O| is endowed with the topology induced by the Euclidean norm, andD is endowed with the

relative topology, i.e., a set is open in D if it is the intersection of an open set in R
|O| with D. We endow D̃

with the relative topology, i.e., a set is open in D̃ if it is the intersection of an open set in D with D̃.
37Recall that a cone is a set C such that for all λ > 0, x ∈ C =⇒ λx ∈C.
38To make this observation precise, let us fix any c > 1. Given a vector of utilities u, let us denote u′ :=

(uo −
∑
uo

|O| )o as the normalized vector of utilities. Note that given the values of utilities for |O| − 1 items,
the last value is pinned down by the normalization. Without loss of generality, let us assume that this last
item is item |O|. The full relative support assumption implies that the measure of the set of utilities u
for which, once normalized, |u′

o| > c|u′
õ| for all õ 
= o, |O| is positive. To see why this is true, consider the

cone Co = {u ∈ D : |uo| > c|uõ| for all õ 
= o, |O|}. Cone Co is an open cone. Indeed, O = {u ∈ R
|O| : |uo| >

c|uõ| for all õ 
= o, |O|} is open in R
|O|. Hence, O ∩D∩ D̃= Co ∩ D̃ is open in D̃, which implies that Co is an

open cone in C. Thus, F(Proj−1
D (Co ))> 0. This corresponds exactly to the set of utilities u for which, once

normalized, |u′
o|> c|u′

õ| for all õ 
= o, |O|.
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better than any other pure allocation. This assumption is satisfied in standard multino-
mial discrete choice models where the distribution of utilities has unbounded support
(e.g., the standard logit, the mixed logit, and the probit models), but it may be violated
when the distribution over utilities has a bounded support (e.g., Lee (2016) or Che and
Tercieux (2019)).

An allocation rule x is a mapping from utility vectors to random allocations, x :U →
�. An allocation rule x is incentive compatible if for each u ∈U , reporting the true pref-
erences maximizes the expected utility:

u ∈arg max
u′∈U

u · x
(
u′).

An allocation rule x is Pareto efficient if there is no other allocation rule x′ such that the
following statements hold:

(a) For each date t and object type i ∈Ot , we have
∫
U

∑
o∈Sit

x′
o(u)dF =

∫
U

∑
o∈Sit

xo(u)dF .

(b) For each u ∈ U , we have u · x′(u) ≥ u · x(u) and there is a set A ⊂ U such that
F(A)> 0 and the inequality is strict for each u ∈A

Condition (a) is the analogue of Condition (i) in the definition of ordinal efficiency: the
mass of allocated objects at each date remains the same. Condition (b) states that x′
delivers a weakly higher expected utility to every agent and a strictly higher one for a
positive mass of agents. In what follows, we introduce a new cardinal mechanism that
can be decentralized through a sequence of spot markets, and we use it to characterize
the set of incentive compatible and Pareto efficient allocation rules.

A GLC mechanism is an ordinal mechanism and so it is not flexible enough to dif-
ferentiate cardinal preferences: if ordinal preferences of two agents coincide, then they
receive the same allocation. Therefore, we modify a GLC mechanism so as to obtain
a mechanism that is responsive to the cardinal preferences of agents. Whereas a GLC
mechanism has a single distribution from which each agent independently draws a bud-
get of artificial currency, we now allow agents to choose from a menu of such distribu-
tions. We begin with a collection of cutoffs α := (αo )o∈O ∈ [0, 1]|O| and a collection of
distributions G := (Gj )j∈J over [0, 1].39 Then a random allocation can be constructed by
drawing from an agent’s ex ante favorite distribution and then choosing the agent’s most
preferred affordable allocation given her budget realization. For an agent with utility
vector u ∈ U , let xG(u) be the expected utility-maximizing random allocation induced
by budget distributionG, that is,

xGu(h)(u) = Ĝ
(

min
m=1, ���,h−1

αu(m)

)
− Ĝ

(
min

m=1, ���,h
αu(m)

)

39In this section, we allow distributions to be discrete to simplify the exposition.
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for each h = 1, � � � , |O|, where u(h) ∈ O is a an allocation on hth place in a preference
ranking according to utility vector u; Ĝ(z) is a probability that a random budget drawn
according to a distribution with cumulative distribution function (c.d.f.) G is strictly
below z. An allocation rule x is a menu of random budgets (MRB) mechanism with pa-
rameters L := (α, G ) if, for every utility vector u, there is distributionGj(u) ∈ G such that
x(u) = xGj(u) (u) and

Gj(u) ∈ arg max
G∈G

xG(u) · u.

Note that agents with identical ordinal but different cardinal preferences can choose
different budget distributions and, hence, receive different random allocations.

Similar to the case of a GLC mechanism, we can introduce a spot version of a MRB
mechanism. Fix a sequence of profiles of nonnegative prices p = (pt )t=1, ���,T , wherept =
(pti )i∈Ot for each t = 1, � � � , T and a collection of distributions G := (Gj )j∈J over [0, 1]. A
mechanism x is a spot MRB mechanism if it can be obtained when each agent a makes
dynamically optimal choices in the following procedure.

• Date 1. Each agent chooses a distribution from collection G and independently
draws a budget from it. Let b1

a be the realized budget of each agent a. Each agent
must pick an object among the feasible ones, i.e., in {i ∈ O1 : p1

i ≤ b1
a}. If a chooses

object i ∈O1, the budget is adjusted to b2
a := b1

a −p1
i .

• Date t ≥ 2. Each agent picks an object among the feasible ones, i.e., in {i ∈Ot : pti ≤
bta}. If agent a chooses object i ∈Ot , the budget is adjusted to bt+1

a := bta −pti .
As in Section 4, we make two assumptions: (i) the object prices and the budget dis-

tributions in G are such that there is an affordable pure allocation for each budget real-
ization, i.e., mino∈O

∑
t=1, ���,T p

t
ot

≤ inf{z : G(z)> 0} for each G ∈ G; (ii) each agent must
choose an object at each date. Under these assumptions, spot mechanisms always in-
duce a random allocation (each agent is assigned an object in each date). Clearly, spot
MRB mechanisms constitute MRB mechanisms with linear cutoffs. Formally,L := (α, G )
is a spot MRB mechanism if there exists a sequence of nonnegative profiles of prices
p = (pt )t=1, ���,T , where pt = (pti )i∈Ot for each t satisfying αo = ∑T

t=1p
t
ot

for each o ∈ O.
The possibility of the spot market implementation of a MRB mechanism is in

contrast to the standard competitive equilibrium with equal income (CEEI) approach
adopted in Ashlagi and Shi (2016). An allocation rule x is a CEEI with prices α ∈]0, ∞]|O|

if for any u, x(u) ∈ argmaxq∈�{u · q : α · q ≤ 1}.40 We assume that at least one price is
induced at random allocation (each agent is assigned an object in each date). Thus,
given a profile of prices, agents use a budget of one unit of artificial currency to buy
probability shares of pure allocations. A CEEI approach does not fit our dynamic frame-
work because each agent must choose the entire dynamic allocation at the very first
date. Nevertheless, it turns out that there is a connection between the two mechanisms.
Each CEEI can be implemented as a MRB mechanism, as the following static example
illustrates.

40We refer to the word “prices” in two different ways. The first refers to prices of each object at each date
(pti above) when defining a spot MRB mechanism. The second (αo above) refers to the prices associated to
each pure allocation in the definition of a CEEI.
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Figure 2. Illustration of budget distributions in Example 2.

Example 2. Take a static model with T = 1, and consider an economy where each agent
is endowed with a single unit of artificial currency and there are three objects with prices
of probability shares α̂1 = 0, α̂2 = 0.5, and α̂3 = 2. In the CEEI, an agent chooses an
allocation in the probability simplex that maximizes her expected utility subject to a
budget constraint. We shall construct a MRB mechanism that induces the same allo-
cation rule as the CEEI above. First, let a collection of cutoffs for the MRB mechanism
be given by the above prices, which are normalized to lie inside the unit interval by di-
viding each price by the highest price, i.e., α1 = 0, α2 = 0.25, and α3 = 1. Second, for
each random allocation that is a part of the CEEI, we associate a distribution of a ran-
dom budget. In particular, for such an allocation x, let the corresponding distribution
Gx assign probability xi to αi for i = 1, 2, 3. For instance, in each panel of Figure 2, the
four allocations (1/2, 0, 1/2), (1, 0, 0), (0, 1, 0), and (0, 2/3, 1/3), corresponding to the
vertices of the shaded budget set, give rise to four budget distributions, (1/2, 0, 1/2),
(1, 0, 0), (0, 1, 0), and (0, 2/3, 1/3), respectively, where the first number in each of the
latter 3-tuples is the probability that the budget is equal to α1, the second number, that
it is equal to α2, and the third number, that it is equal to α3. Consider the random al-
locations that can be obtained by an agent who draws a random budget from each of
these distributions and optimally chooses his pure allocation given budget realization.
We illustrate them by the black dots in Figure 2. For instance, an agent who chooses
the random budget distribution (0, 1, 0) gets 0.25 units of artificial currency with prob-
ability 1. In that case, he can buy either object 1 or 2 under the resulting MRB. Hence,
depending on his preferences, the agent will choose one of these two pure allocations
represented by the bottom two black allocations in Figure 2(b). Similarly, an agent who
chooses the budget distribution (1/2, 0, 1/2) obtains a null budget with probability 1/2.
In that case, he can only buy object 1 under the resulting MRB. With probability 1/2, he
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receives a budget of 1 and can buy any of the available objects. The random allocation
induced by his optimal choices (integrating over all possible realizations of the budget)
correspond to one of the three black dots in Figure 2(c). For instance, if the agent prefers
2 over 1 over 3, his optimal choices will generate random allocation (1/2, 1/2, 0). Notice
that the random allocations that can be generated by the choice of a random budget
distribution all lie inside the CEEI budget set represented by the gray region in Figure 2.
Hence, if an agent receives an allocation in the CEEI, then this agent weakly prefers the
random budget distribution generated by this allocation to any distribution generated
by another allocation and obtains this allocation in the MRB mechanisms with the above
menu of budgets and prices. Hence, this MRB mechanism induces the same allocation
rule as the CEEI. ♦

The following result generalizes the observation in the example.

Proposition 3. If x is CEEI, then x is a MRB mechanism.

Proof. Suppose x is a CEEI with prices α̂= (α̂o )o∈O. Let

αo := α̂o

max
o

{α̂o : α̂o 
= ∞} + 1

for each o ∈ O such that α̂o 
= ∞, and α̂o = 1 for each o ∈ O such that α̂o = ∞,41 and
let α = (αo )o∈O. For each u ∈ U and x(u) ∈ �, let Gx(u) be a discrete distribution that
assigns probability xo(u) to the budget value αo for each o, and let G = (Gx(u) )u∈U be a
collection of such distributions. We show that x is a MRB mechanism with L= (α, G ).

Fix a discrete distribution of a random budget G. By choosing some affordable allo-
cation at each realization of a random budget, we induce some ex ante distribution over
allocations. Define a feasible choice rule to be a function that chooses an affordable
pure allocation for each realization of a random budget. Formally, a feasible choice rule
is a function ψ : [0, 1] → O such that αψ(z) ≤ z for any z ∈ [0, 1]. Then, given distribution
G, let the set of random allocations that can be induced by some feasible choice rule be

B(G) =
{

y ∈ � : there exists feasible ψ such that yo =
∑

z:ψ(z)=o

PG(z) for each o ∈ O
}

,

where PG(z) is the probability of realization z givenG.
Now, if an agent with utility u optimally chooses an affordable bundle for each real-

ization of the random budget Gx(u), then by construction of Gx(u), the induced ex ante
distribution is x(u). Hence, x(u) ∈ B(Gx(u) ). Next, we show that if y ∈ B(Gx(u) ), then
random allocation y also belongs to the original budget set in the CEEI mechanism with
the collection of prices α̂, i.e.,

∑
o yoα̂o ≤ 1. Therefore, when choosing from a collec-

tion of random budgets G, it is optimal for an agent with utility u to choose distribution
Gx(u).

41Note that a probability share of each pure allocation with infinite price is zero for all agents.
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Suppose y ∈ B(Gx(u) ) and let ψ be a feasible choice rule that induces y. We have

∑
o

α̂oyo =
∑

o

α̂o
∑

o′:ψ(αo′ )=o

xo′(u)

=
∑

o

∑
o′:ψ(αo′ )=o

α̂ψ(αo′ )xo′(u).

Note the above sum consists of terms α̂ψ(αo′ )xo′(u), and each term enters the sum only
once. Hence, we can rewrite it as the sum of all these terms:

∑
o

∑
o′:ψ(αo′ )=o

α̂ψ(αo′ )xo′(u) =
∑

o′
α̂ψ(αo′ )xo′(u)

≤
∑

o′
α̂o′xo′(u)

≤ 1.

Here, the first inequality follows from ψ being a feasible choice rule, i.e., αψ(αo′ ) ≤ αo′ ,
and the fact that αo′ is just a scaling of α̂o′ . The final inequality follows from x(u) being
CEEI.

Hence, if the prices in CEEI are linear, then from the above argument, it follows that
CEEI can be decentralized using a spot MRB mechanism. Our main result in this section
is a cardinal version of Theorem 1.

Theorem 2. Suppose that distribution F is continuous and has full relative support. A
mechanism x is incentive compatible and Pareto efficient if and only if it is a spot MRB
mechanism.

In the next section, we generalize the cardinal model to the environment with bun-
dles. In this general environment, Theorem 2 is subsumed by Theorem 4 whose proof is
given in Appendix C.

6. The general framework

Throughout the analysis, we have focused on a simple dynamic environment where
agents are assigned a single object at every date. Although this model describes appli-
cations, such as the assignment of teachers to jobs and students to dormitories, it does
not address all the situations where bundles of objects are allocated. For instance, in
our motivating example of course allocation, students can typically take some number
of electives per semester. Moreover, some courses can be pre- or anti-requisites to other
courses, and students may be required to earn a certain number of credits over the years
to graduate. So as to capture this as well as a variety of other settings, we generalize our
benchmark model and state the two theorems that subsume Theorems 1 and 2.
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The general model

Fix a finite set of generalized object types O. Each agent must be allocated a feasible
(nonempty) bundle of objects. We denote the set of all feasible bundles by B ⊂ 2O and
write i ∈ b to denote that bundle b ∈ B contains object type i ∈O. We impose two restric-
tions on B. First, any two bundles in B must have the same size. Second, each bundle in
B contains at most one object of each type. A set of random allocations is

�=
{

q ∈R
|B| : q ≥ 0,

∑
b∈B

qb = 1
}

.

Ordinal preferences

Agents have ordinal strict preferences over B. As before, π denotes such a preference,
and� is the set of all preferences, whileπ(h) ∈ B is the bundle in hth place in the ranking
according toπ ∈�. Let F be a probability distribution over ordinal preferences of agents
with full support. As before, F(π ) will denote the mass of agents with preferences π. An
allocation rule x is a mapping from a set of ordinal preferences to a set of random allo-
cations, i.e., x : �→ �. Definitions of incentive compatibility and ordinal efficiency are
similarly adapted to the bundle framework. An allocation rule x is incentive compatible
if for any π, π′ ∈� and eachm= 1, � � � , |B|, we have

m∑
k=1

xπ(k)(π ) ≥
m∑
k=1

xπ(k)
(
π ′).

An allocation rule x is ordinally efficient if there is no other allocation rule x′ such that
the following statements hold:

(i) For each object type i ∈O, we have

∑
π∈�

∑
b:i∈b

x′
b(π )F(π ) =

∑
π∈�

∑
b:i∈b

xb(π )F(π ).

(ii) For each m= 1, � � � , |B| and each π ∈�, we have
∑m
h=1 x

′
π(h)(π ) ≥ ∑m

h=1 xπ(h)(π ),
with a strict inequality for somem and π such that F(π )> 0.

We denote the set of incentive compatible and ordinally efficient allocation rules by
Me

IC.
The above model encompasses our benchmark dynamic allocation model with or-

dinal preferences. Recall that the dynamic model begins with a finite set of object types
Ot for each date t. Without loss of generality, we can let types Ot be disjoint sets. The
set of pure allocations was a product O =O1 × · · · ×OT . Now define the corresponding
set of generalized object types to be O = O1 ∪ · · · ∪OT . Moreover, a bundle is feasible if
and only if it contains exactly one object from each Ot . Then the set of pure allocations
O corresponds to the set of admissible bundles.
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Example 3. The generalization allows us to include into our benchmark model the
possibility of allocating bundles and arbitrarily restricting feasible allocations. As
an example, consider a course allocation problem with two semesters and three
courses a, b, and c. Suppose that each course is available in both semesters, but
that course a is a prerequisite for course c and the same course cannot be taken
twice. Moreover, to graduate, each student is required to take two courses. We can
model this situation by letting O = {a1, a2, b1, b2, c1, c2}, where a subscript denotes
a semester at which a course is taken. The corresponding set of feasible bundles is
B= {(a1, b1 ), (a1, b2 ), (a2, b2 ), (b1, a2 ), (a1, c2 )}. ♦

As before, our goal is to characterize all incentive compatible and ordinally efficient
allocation rules. To do so, we now introduce the appropriately modified version of a
GLC mechanism. Fix a collection of cutoffs α := (αb )b∈B ∈ [0, 1]|B| and a distribution
G over [0, 1]. An allocation rule x is a generalized lottery-plus-cutoff (GLC) mechanism
with parameters L := (α,G) if for every π and h= 1, � � � , |B|,

xπ(h)(π ) = Pr
(
b < min

m=1, ���,h−1
απ(m)

)
− Pr

(
b < min

m=1, ���,h
απ(m)

)
,

where b is a random budget drawn according to G. We denote a GLC mechanism
with parameters L = (α,G) by xL. Cutoffs α are linear if there exist object prices
p = (pi )i∈O ∈R

|O| such that

αb =
∑
i∈b
pi

for each b ∈ B. Let GL be the set of all GLC mechanisms with linear cutoffs. Now we are
ready to state our main result.

Theorem 3. Suppose that the distribution F has full support. An allocation rule is in-
centive compatible and ordinally efficient if and only if it is a GLC mechanism with linear
cutoffs, i.e., Me

IC = GL.

As we have already seen, our dynamic framework is embedded into the current one
so that Theorem 1 is a corollary of Theorem 3. The sketch of the proof is similar to the
one we presented in Section 4.2. The actual proof is provided in Appendix B.

Cardinal preferences

The generalization for cardinal preferences is the mirror analogue of the previous sec-
tion. Agents have cardinal preferences over B, and we let u be the utility vector where
each coordinate gives the utility for a bundle in B. The distribution F over cardinal util-
ity vectors can also be easily generalized, and the full relative support definition does
not change from the one given in Section 5. An allocation rule x now maps the set U
of cardinal utility vectors to �, the set of random allocations. The definitions of incen-
tive compatibility and Pareto efficiency can easily be adapted from Section 5. We can
similarly modify the definition of a MRB mechanism with parameters L := (α, G ) to fit
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in this new framework where the collection of cutoffs α is defined for the bundles in B.
Cutoffs α are linear if αb = ∑

i∈b pi for each b ∈ B and some vector of nonnegative prices
p = (pti )i∈O . We now state the generalization of Theorem 2 to the setting with bundles.

Theorem 4. Suppose that the distribution F is continuous and has full relative support.
A mechanism x is incentive compatible and Pareto efficient if and only if it is a MRB mech-
anism with linear cutoffs.

The proof is relegated to Appendix C.

7. Discussions

Capacity constraints

We do not introduce capacities because in many contexts, including our main applica-
tion of course allocation, these are endogenous choice variables rather than hard con-
straints. Indeed, for each course, a university can set a target capacity or a desired max-
imum enrollment, but can potentially enroll more students (see Budish et al. (2017)).
This approach provides a greater flexibility by allowing the designer to set up an opti-
mization problem where capacity utilization is endogenous. As we discuss in the next
subsection (Designer’s problem), our main result helps to substantially simplify such
optimization problems.

A recent literature in school choice also adopts this approach. For example, Ash-
lagi and Shi (2016) emphasize the cost of public school busing when determining the
allocation of students. The budget limit imposes complex constraints on the schools,
e.g., with the enrollment of students coming from areas that require busing, capacity
constraints are tighter. In this context, the exact capacity constraint is also endogenous
to the matching: the administration may be willing to expand enrollment (of students
living relatively far from the school) at a financial cost (public busing cost). For day-
care assignment, Kamada and Kojima (2023) present a similar “budget constraint”: by
law, the number of caregivers is higher for younger children than for older ones; thus, a
daycare capacity depends on the distribution of ages of the accepted children.

Nonetheless, hard capacity constraints can still be included in our model without
changing the main insight that OE and IC mechanisms are spot mechanisms. Consider
our generalized model of Section 6. For each generalized object i ∈ O, let ci be the ca-
pacity of object i. We let c = (ci )i be the vector of capacities. We assume that there is a
null object ∅ ∈O that has infinite capacity (c∅ = ∞), which one can interpret as “staying
unassigned.” We say that an allocation x is feasible for capacities c if, for each object
type i ∈O, ∑

π∈�

∑
b:i∈b

xb(π )F(π ) ≤ ci.

A feasible allocation x is ordinally efficient for capacities c (OEc) if there exists no
other feasible allocation x′ such that for each m = 1, � � � , |B| and for each π, we have∑m
h=1 x

′
π(h)(π ) ≥ ∑m

h=1 xπ(h)(π ), with a strict inequality for some m and π such that
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F(π ) > 0.42 It is immediate to see that, for a feasible allocation, OEc implies OE; thus,
Theorem 3 implies the following corollary.43

Corollary 1. Assume that F is full support. If x is a feasible IC and OEc mechanism,
then it is a spot mechanism.

Designer’s problem

Above, we argued that in many real-life problems, capacities are part of the choice vari-
ables of the designer. Hence, in these contexts, it is natural to think of the designer’s
problem as an optimization problem where capacity utilization is endogenous. Here we
provide an example of the type of optimization/mechanism design problem we have in
mind. As we will explain, our main result in this paper may be useful to simplify such op-
timization problems. While this is illustrated through a specific objective of the designer,
it will be clear that the argument applies beyond this specific objective.44

For a mechanism x, define the capacity utilization by qi,t := ∑
π∈�

∑
o∈Sit xo(π )F(π ).

Based on the above discussion, let Ci,t(qi,t ) denote the cost incurred by the designer for
a capacity utilization qi,t of item i at date t; the total cost simply adds up these costs
across items and dates. For the sake of the example, consider the problem

min
x

∑
π∈�

|B|∑
k=1

kxπ(k)(π )F(π ) +
∑
i,t

Ci,t(qi,t )

subject to

(IC) and (OE).

That is, the designer cares about agents’ welfare (measured by the average ranks of
agents) and capacity utilization cost. The problem has an exponential number of vari-
ables and constraints. Specifically, assuming there are n available objects at each date,
for each of the (nT )! ordinal preference profiles, we need to specify nT probabilities,
hence, nT × (nT )! variables, and O((nT )2 ) complex constraints.

By our main result, the above optimization problem is equivalent to a simpler un-
constrained program of optimizing over the spot mechanisms. In this problem, there are
only Tn+nT variables, which correspond to spot prices and budget distribution.45 Thus,

42This definition is similar to previous definitions of ordinal efficiency except that condition (i) is now
replaced by feasibility.

43Using a technique similar to that in the proof of Theorem 3, one can show that the prices of each good
under the spot mechanism can be set to zero for the goods that are underutilized, i.e., those for which total
allocated mass is strictly less than their capacity.

44For instance, we could have handled objectives similar to those in Ashlagi and Shi (2016), where the
social planner maximizes a linear combination of utilitarian welfare and max-min welfare subject to other
constraints (such as respecting a target budget associated with capacity utilization/public school busing).

45The choice of budget distribution G can be reduced to a choice of nT mass points. Indeed, sort the nT

cutoffs in ascending order. Then each G that puts the same probability mass in between each consecutive
cutoff induces the same allocation.
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our characterization significantly reduces the number of variables and constraints.
While the computational analysis of the resulting problem is beyond the scope of our
paper, our result may be seen as a useful first step in this direction.46

Full support

Our results rely on a full support assumption for the distribution of preferences. Here we
present an example showing that the characterization for ordinal preferences may not
hold if one relaxes the assumption. Furthermore, we provide a natural refinement of OE
that allows us to dispense with the assumption altogether.

Example 4. Assume that there are two dates and two objects to be allocated at every
date, O1 = O2 = {1, 2}. The set of pure allocations is O = {(11), (12), (21), (22)}. Define
the ordinal preference profiles

• π1(11)<π1(12)<π1(21)<π1(22)

• π2(12)<π2(21)<π2(11)<π2(22)

• π3(21)<π3(12)<π3(11)<π3(22)

• π4(22)<π4(12)<π4(21)<π4(11).

Suppose that F(πk )> 0 for k= 1, 2, 3, 4 and F(π ) = 0 for π ∈�\{π1, π2, π3, π4}, so that
the full support assumption is violated. Define the cutoffs for each pure allocation as
α11 = α22 = 0 and α12 = α21 = 1. Clearly, the cutoffs are not linear, as α11 + α22 
= α12 +
α21. With budgets drawn uniformly in [0, 1], a lottery-plus-cutoff mechanism x would
generate the random allocations x(11)(π1 ) = x(11)(π2 ) = x(11)(π3 ) = 1 and x(22)(π4 ) = 1.
As the allocation rule x is a lottery-plus-cutoffs mechanism, it is IC. It is easily checked
that the random allocation is also OE if only agents π1, π2, π3, and π4 are present in the
market. Indeed, both π1 and π4 surely obtain their top choices, and agents π2 and π3

both obtain (11) so that improving mass transfers for either π2 or π3 would “hurt” π4.
Hence, x is an IC and OE mechanism, but it cannot be implemented by a GLC mecha-
nism with linear cutoffs and, hence, with a spot mechanism.47 Finally, note that if one
reverses (11) and (22) in ranking π2—call this new preference ranking π0—then the re-
sulting allocation would not be OE. Hence, if F assigns positive probability to π0 (in
addition to πk for k= 1, 2, 3, 4), the issue is resolved.48 ♦

46To capture the setting where capacities are hard constraints, one can simply let Ci,t be infinite when
qi,t is above a certain capacity constraint and 0 otherwise. Hence, our characterization result can be used
even in a context where there are hard capacity constraints.

47Indeed, to reproduce the random allocation x, we would need that allocations (12) and (21) have
strictly lower cutoffs than, respectively, (11) and (22). One can check that this cannot be achieved by linear
prices since the ordering is similar to that in Example 1.

48Example 4 demonstrates that our results are not merely the consequence of a duality argument implied
by the assumption of a continuum of agents. This is an important difference with respect to the literature
on linear pricing in combinatorial auctions, as we discussed in the Introduction.
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However, spot mechanisms can be seen as “robust” mechanisms once we relax the
full support assumption. To see this, we refine OE and IC to get a full characterization
without the full support assumption.

We say x is robustly OE and IC at F if for all sequences49 Fn → F , there exists a se-
quence {xn} such that xn → x, and xn is OE and IC at Fn for each n.50, 51 To motivate the
definition, consider the perspective of an analyst who does not know the precise distri-
bution of preferences F . Then, to be confident in the mechanism x, the analyst would
want an allocation “close” to it to be OE and IC under the actual preference distribution.
That is, the analyst would want x to be robustly OE and IC. With this definition, we have
the following proposition, the proof of which is relegated to Appendix D.

Proposition 4. Mechanism x is robustly OE and IC at F if and only if it is a spot mech-
anism.

Continuum

Our assumption of a continuum set of agents plays two roles in our environment. First, it
is well known that ordinal efficiency and incentive compatibility (and equal treatment of
equals) are incompatible in finite environments (see Bogomolnaia and Moulin (2001)).
However, as shown in Che and Kojima (2010), there are incentive compatible mecha-
nisms (respecting an equal treatment of equals) under which inefficiencies vanish when
the market is large. These mechanisms are ordinally efficient in a continuum economy.
Thus, the assumption of a continuum set of agents allows us to circumvent these impos-
sibility results and to characterize ordinally efficient and incentive compatible allocation
rules. Of course, these mechanisms may be inefficient in finite markets, but as argued
in Che and Kojima (2010), inefficiencies vanish when the market grows large. Second,
the continuum assumption allows us to avoid the standard issue in assignment prob-
lems with bundles that feasible fractional allocations may not correspond to lotteries
over feasible integral allocations. Indeed, the Birkhoff–von Neumann theorem may fail
in this environment (see Budish (2011) and Nguyen, Peivandi, and Vohra (2016) for a
discussion of this issue). This issue does not arise in an economy with a continuum set
of agents. The use of a continuum of agents to simplify the analysis of matching prob-
lems is not new (see, for instance, Azevedo and Leshno (2016); Arnosti and Shi (2020)).
These models can usually be seen as the appropriate limit of a large finite problem.

Incentive compatibility

Theorems 3 and 4 both impose an efficiency notion (respectively, ordinal and cardinal)
and IC. If one drops IC and only requires efficiency, then none of these theorems holds.

49We endow the space of real numbers with a standard topology (e.g., induced by the Euclidean norm):
the space of distributions is endowed with the topology of weak convergence and the product spaces are
endowed with the product topology.

50We say that x is OE at F if our notion of OE holds under probability distribution F . We say that it
satisfies IC at F if condition (4.1) for IC holds for any π that receives strictly positive mass under F .

51In this definition, one can replace “for all sequences Fn → F” by “for some sequences of full-support
distributions Fn → F”; the next proposition still holds.
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For instance, consider an economy with T = 1 and at least three objects. Let us consider
an allocation rule that assigns to all preference rankings π but one their favorite pure
allocation. Call π0 the only preference ranking not obtaining its favorite pure allocation.
Clearly, this allocation is ordinally efficient: whenever we try to improve the situation
of π0, some other agents will be worse off. Further, the allocation rule is not incentive
compatible, since π0, by swapping two objects in his or her ranking that differ from
his or her top choice, will be guaranteed to get his or her top choice object. Hence,
this allocation rule cannot be achieved by a generalized lottery-plus-cutoff mechanism
(since these rules are incentive compatible).52

Preference uncertainty

We assumed that the preferences of the agents over dynamic allocations are fixed at time
zero. This implies that agents perfectly know their preferences when choosing an object
at a given date under a spot mechanism. In particular, we do not allow agents to experi-
ence any unexpected shocks in their preferences over time. While it is reasonable for our
main motivating example of course assignment, it can be less so for applications such
as teacher assignment, where the time horizon is longer. However, at an informal level,
these shocks in preferences should reinforce the value of spot mechanisms. Indeed, spot
mechanisms are also attractive because agents do not commit to future assignments
and can “re-optimize” over time in case of preference shocks. Hence, an environment
where preference shocks occur over time may make spot mechanisms even better. We
find this an interesting perspective that we leave for future research.

Appendix A: Example 5

In Example 5 below, we exhibit a random assignment that is OE and cannot be repli-
cated by a lottery-plus-cutoff mechanism with linear cutoffs. This, in particular, implies
that we need to allow non-uniform distributions of budgets in the definition of spot
mechanisms to achieve all OE and IC allocation rules.

Example 5. Let T = 2 andO1 =O2 = {1, 2}, and consider the following spot mechanism
where p1

1 = 0.6, p1
2 = 0, p2

1 = 0.4 and p2
2 = 0. The cutoffs are summarized as follows:

Allocation Cutoff
(11) 1
(12) 0.6
(21) 0.4
(22) 0

52While this example is fairly straightforward, it makes clear that our results are conceptually different
from second welfare theorems. The latter do not impose any incentive compatibility constraints. In partic-
ular, this shows that Theorem 4 on cardinal mechanisms is conceptually different from the second welfare
theorem of Miralles and Pycia (2020), who showed that in a finite market, efficient allocations with bundles
can be implemented by competitive equilibria with linear prices.
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Distribution G over possible budgets in [0, 1] is assumed to satisfy P(z = 1) = 0.2,
P(z = 0.6) = 0.2, P(z = 0.4) = 0.1, and P(z = 0) = 0.5. By Theorem 1, this random alloca-
tion is ordinally efficient. Now we claim that this random allocation cannot be replicated
by a lottery-plus-cutoff mechanism with linear cutoffs. First, to replicate this allocation,
it is clear that the order of cutoffs must remain the same, i.e., α11 > α12 > α21 > α22.
Given that, by definition of a lottery-plus-cutoff mechanism, the distribution over bud-
gets in [0, 1] must be uniform, we must have the following cutoffs to replicate the previ-
ous random allocation calculated with distributionG:

Allocation Cutoff
(11) 0.8
(12) 0.6
(21) 0.5
(22) 0

However, it is easily checked that these cutoffs are nonlinear.53 To recap, we need to
use spot mechanisms with non-uniform distributions to reproduce the above OE ran-
dom allocation rule. ♦

Appendix B: Proving Theorem 3

The proof relies on the following result from the theory of linear inequalities.

Lemma 3 (Carver, 1921). For an arbitrary matrix A, Ax< 0 is feasible if and only if y = 0
is the only solution for y ≥ 0 and ATy = 0.

To apply the lemma, we need some additional notation and preliminary results.
First, we discuss how the feasibility of linear system of inequalities relates to our no-

tion of a GLC mechanism with linear cutoffs. We begin by describing bundles by vectors.
Each feasible bundle b ∈ B is assigned a row vector db with |O| columns, one column for
each generalized object. For each object i ∈ O, we let dbi = 1 if i ∈ b, and dbi = 0 other-
wise. It is useful to describe the differences in a composition between bundles b and b′
by another row vector ab,b′ given by

ab,b′ = db − db′ .

Hence, each vector ab,b′ is composed only of 1s, −1s, and 0s:

• If i ∈ b and i /∈ b′, then the row of ab,b′ corresponding to object i is equal to 1.

• If i /∈ b and i ∈ b′, then the row of ab,b′ corresponding to object i is equal to −1.

• If i either belongs or does not belong to both bundles, then the row of ab,b′ corre-
sponding to object i is equal to 0.

53To see that these cutoffs are nonlinear, we need to argue that there is no vector p = (p1
1, p1

2, p2
1, p2

2 )T

such that αij = p1
i + p2

j for all i, j = 1, 2. Note that these equalities for ij = 11, 12 imply that p2
1 − p2

2 = 0.2,

while equalities for ij = 21, 22 imply that p2
1 −p2

2 = 0.5.
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For any order ≤ on the set of feasible bundles B, we associate a matrix A that cap-
tures the differences in a composition between each pair of strictly ordered bundles. In
particular, let matrix A contain as a row the vector ab,b′ as described above if and only if
b < b′. Each column of A corresponds to a generalized object. Let ai be the column of
A corresponding to object i. The following property of matrix A is instrumental for the
proof.

Lemma 4. For cutoffs α, let A be the matrix associated with the total order on bundles
induced by these cutoffs, i.e., b < b′ ⇔ αb < αb′ . Then there exist linear cutoffs ᾱ such that
for each b, b′ ∈ B, αb < αb′ ⇒ ᾱb < ᾱb′ if and only if there exists a vector p such that Ap< 0.

Proof. Let ᾱ be linear cutoffs such that for each b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ , and
let p be the nonnegative prices inducing these cutoffs. Using our previous notations of
vectors, it means that ᾱb = db · p for each b ∈ B.54 The difference between cutoffs for
any two bundles b and b′ is ᾱb − ᾱb′ = ab,b′ · p. So, in particular, ab,b′ · p< 0 means that
bundle b has a lower cutoff than b′. Hence, Ap< 0 because matrix A contains a row ab,b′
if and only if αb < αb′ .

Now suppose that there exists a vector p such that Ap< 0. Note that this vector can
be arbitrary; in particular, having negative coordinates. We begin by showing that there
exists a nonnegative price vector p′ such that Ap′ < 0 and the linear cutoffs induced by p′
belong to the unit interval as in the definition of the GLC mechanism, i.e., ᾱb ≤ 1 for each
b ∈ B. Note that each vector ab,b′ is composed of an equal number of 1s and −1s because
we have assumed that the bundles are of equal size. Hence A1 = 0, where 1 is the unit
vector. Therefore, for a sufficiently large c > 0, p′′ = p + c · 1 is a nonnegative price vector
such that Ap′′ < 0. Moreover, for a sufficiently small k > 0, p′ = k · p′′ is such that the
linear cutoffs ᾱ induced by p′ belong to the unit interval. Finally, by construction of A,
we have that for each b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ .

Second, we relate the existence of a nonnegative solution of a system of linear equa-
tions to the notion of ordinal efficiency. This requires restating the definition of ordinal
efficiency in terms of probability mass transfers. Fix a random allocation q, a prefer-
ence ordering π, and a pair of bundles b and b′. Recall that qb stands for the probability
of getting bundle b. We say that τb,b′(π ) ∈ R is a bilateral transfer from b to b′ for π
at q, or simply a bilateral transfer, if 0 < τb,b′(π ) ≤ qb and qb′ + τb,b′(π ) ≤ 1. A bilat-
eral transfer τb,b′(π ) is improving if π−1(b′ )< π−1(b). In words, an improving bilateral
transfer τb,b′(π ) specifies the probability mass is to be moved from a lower ranked bun-
dle b to a higher ranked bundle b′. Now fix two random allocations q′ and q. We say
that q′ can be derived from q by an improving bilateral transfer for π if there are bun-
dles b and b′ such that qb′′ = q′

b′′ for all bundles b′′ ∈ B\{b, b′}, and qb > 0 and, moreover,
τb,b′(π ) := qb−q′

b = q′
b′ −qb′ > 0 is an improving bilateral transfer from b to b′ for π at q.

The following lemma applies the characterization of first-order stochastic dominance in
terms of improving bilateral transfers to our framework.55

54We let the coordinates of p and ab,b′ be ordered in such a way that vector operations make sense.
55See, for instance, Østerdal (2010).
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Lemma 5. Fix a preference ordering π and two random allocations q and q′. The random
allocation q′ 
= q first-order stochastically dominates q for preferences π if and only if q′
can be derived from q by a finite sequence of improving bilateral transfers. Formally, there
exists a sequence (q1, � � � , qn ) of random allocations such that q1 = q and qn = q′, and for
k= 1, � � � , n− 1, qk+1 can be derived from qk by an improving bilateral transfer for π.

In light of Lemma 5, we can restate the second condition in the definition of ordinal
efficiency. Specifically, for each preference π such that x(π ) 
= x′(π ), we are required to
find a sequence of improving bilateral transfers to go from random allocation x(π ) to
random allocation x′(π ).

Lemma 6. A random allocation x is ordinally efficient if and only if there is no other ran-
dom allocation x′ such that the following statements hold:

(i) For each object type i ∈O, we have
∑
π∈�

∑
b:i∈b

x′
b(π )F(π ) =

∑
π∈�

∑
b:i∈b

xb(π )F(π ).

(ii) For each π ∈ � such that x(π ) 
= x′(π ), random allocation x′(π ) can be derived
from x(π ) by a sequence of improving bilateral transfers for π.

Now consider a vector y whose coordinates are the same as those of the rows of
matrix A. We view each yb,b′ as a probability mass to be transferred from a bundle bwith
a lower cutoff to a bundle b′ with a higher cutoff.

Lemma 7. Implementing the transfers in y does not change the allocated mass of each
object if and only if ATy = 0.

Proof. Consider a column vector y, each coordinate of which, yb,b′ ∈R, corresponds to
a row ab,b′ of A. So y specifies a set of probability mass transfers from lower to strictly
higher bundles in the order of cutoffs. Now take a row i of matrix AT . Each coordinate
of this row corresponds to some pair of bundles b and b′. For example, suppose b′ has
object i, while b does not. Then the corresponding coordinate of row i is equal to −1.
Imagine transferring mass yb,b′ from b to b′. Then the total allocated mass of object i
changes by yb,b′ . Therefore, the negative of the dot product of row i of AT and the vector
y, −(ai )Ty, gives the total change in the allocated mass of object i resulting from the
transfers defined by the vector y. Accordingly, −ATy is a vector that captures the change
in the allocated mass of each object. In particular, if ATy = 0, then transfers y simply
redistribute the masses of objects across bundles.

Finally, we are ready to apply Lemma 3 to prove the following key technical result
needed for the proof of Theorem 3.

Proposition 5. Suppose that the distribution F has full support. Let xL be an ordinally
efficient GLC mechanism with L= (α,U[0,1] ). Then there exist linear cutoffs ᾱ such that
for all b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ .
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Proof. Let A be the matrix associated with the total order on bundles induced by cut-
offs α. By Lemma 4, it suffices to show that there exists a vector p such that Ap< 0. For
the sake of contradiction, suppose that such a vector does not exist. Then, by Lemma 3,
there exists y such that y ≥ 0,y 
= 0 and ATy = 0. Next we show that y can be used to
construct improving bilateral transfers for some preference profiles.

Let �α be the set of preference profiles whose ranking over bundles is consistent
with the strict rankings induced by cutoffs α. Those are the preferences π such that
for any b, b′ ∈ B with αb < αb′ , then π−1(b′ ) < π−1(b). Below, we define a function f
that, for each coordinate yb,b′ > 0 of y, chooses a preference profile f (b, b′ ) ∈ �α such
that xb(f (b, b′ )) > 0. This ensures that agents with preferences in f (b, b′ ) have a posi-
tive mass of b to transfer under an improving bilateral transfer from b to b′. Note that,
by definition, profile f (b, b′ ) prefers bundle b′ to b. For each b ∈ B, denote the set of
bundles with a cutoff equal to αb by I(b) = {b′′ 
= b : αb′′ = αb}. Consider two cases:

• First, suppose I(b) = ∅. Then let f (b, b′ ) be any π ∈ �α. Indeed, for all such π,
we must have xb(π ) > 0 because a GLC mechanism with L = (α,U[0,1] ) picks the
budget of each agent uniformly from the unit interval. Hence, there is a positive
probability for the event E = {αb ≤ z < α̂b}, where α̂b = min{αb′′ : αb′′ > αb} is well
defined since αb is not the highest cutoff. Indeed, recall that y contains coordinate
yb,b′ only when A contains row ab,b′ , which is true if and only if αb < αb′ .

• Second, suppose I(b) 
= ∅. Then, by the full support assumption, there exists a pref-
erence profile πb ∈ �α that ranks b ahead of each b′′ ∈ I(b). Hence, for the same
reason as before, we must have xb(πb )> 0. So we define f (b, b′ ) = πb.

Now, for each yb,b′ > 0, pick the preference profile π = f (b, b′ ). By definition of a lottery-
plus-cutoff mechanism, since 0 ≤ αb < αb′ ≤ 1, and because budgets are drawn uni-
formly in [0, 1] and π prefers b′ to b, we have that xb′(π )< 1. For ε > 0, let all the agents
with preferences π transfer a probability mass of (ε/F(π ))yb,b′ from b to b′ at their ran-
dom allocation xL(π ). Note that this is well defined given that, by the full support as-
sumption, F(π )> 0 for all π. Hence, the total mass transferred from b to b′ is εyb,b′ ≥ 0.
Then, clearly, for a small enough ε > 0, these are improving bilateral transfers. More-
over, because ATy = 0, by Lemma 4, these transfers do not change the allocated mass of
each object. Therefore, xL is not ordinally efficient, which is a contradiction. It follows
that there exist linear cutoffs ᾱ such that for each b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ .

We are now in a position to prove Theorem 3.

Proof of Theorem 3. (⇒) Let x be an incentive compatible and ordinally efficient al-
location rule. Our first step is to use Theorem 2 of Ashlagi and Shi (2016) to show that
that there exists a GLC mechanism that defines the same allocation rule as x. This the-
orem applies to a static framework without bundles. However, we can reinterpret each
bundle b ∈ B as a single object and, hence, map our bundle framework back into a sim-
ple static environment. Specifically, interpret the set of feasible bundles B as a set of
objects, so that preferences of agents over bundles can be thought of as preferences over
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objects in a static setting. With this view, the model directly corresponds to the static
case studied by Ashlagi and Shi (2016). Thus, x is a well defined allocation rule in a
static setting. An allocation rule x is AS-ordinally efficient (AS-OE) if there is no other
allocation rule x′ such that the following statements hold:

(i) For each bundle b ∈ B, we have56

∑
π∈�

x′
b(π )F(π ) =

∑
π∈�

xb(π )F(π ).

(ii) For each m= 1, � � � , |B| and each π ∈�, we have
∑m
h=1 x

′
π(h)(π ) ≥ ∑m

h=1 xπ(h)(π ),
with a strict inequality for somem and π such that F(π )> 0.

Using the same argument as in Lemma 1, it is immediate to see that any OE allocation
rule must also be AS-OE. Hence, by Theorem 2 of Ashlagi and Shi (2016), we know that
there exists a GLC mechanism with L̂= (α̂,U[0,1] ) that defines the same allocation rule

as x, i.e., xL̂ = x. Moreover, the corresponding GLC mechanism L = (α,U[0,1] ) in our
initial environment must also define the same allocation rule as x, i.e., xL = x.

Now, by Proposition 5, there exists a collection of linear cutoffs ᾱ such that, for all
b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ . However, using cutoffs ᾱ while keeping the budget
distribution U[0,1] will not generate the same allocation rule. Indeed, Proposition 5 only
ensures that the linear cutoffs ᾱ have the same strict ordering as α. In particular, abso-
lute differences between cutoffs for any pair of bundles may change and bundles that
had the same cutoffs in α may now have different cutoffs in ᾱ. To compensate for such
changes, one has to adjust the budget distribution accordingly. In addition, we have to
make sure that this adjustment can be done using a distribution with a continuous c.d.f.
LetK be the number of distinct values taken by the cutoffs of α. First, index and relabel
these unique values of cutoffs α to order them strictly so that α1 <α2 < · · ·<αK . We par-
tition bundles into equivalence classes: let B1 := {b : 0 ≤ αb ≤ α1} and, for k= 2, � � � ,K,
let Bk := {b : αk−1 < αb ≤ αk}. We also let B≤k := ⋃

k′=1, ���,k Bk′ be the set of all bundles
affordable whenever the budget is equal to αk. Note that under the GLC mechanism
with L= (α,U[0,1] ), the probability of being able to afford exactly all the bundles in B≤k
is αk+1 −αk, where we set αK+1 := 1. Fix a set Bk for some k. Under α, all the bundles in
Bk have the same cutoff αk. Under ᾱ, those bundles may not have the same cutoffs. We
let ᾱ+

k := maxb∈Bk ᾱb, ᾱ−
k := minb∈Bk ᾱb, and Ikk−1 := [ᾱ+

k−1, ᾱ−
k ] for each k ≥ 1, where we

let ᾱ+
0 := 0. By Lemma 5, because cutoffs ᾱ have the same strict ordering as α, we have

that ᾱ+
k−1 < ᾱ

−
k for k ≥ 1 so that all the bundles in Bk−1 have strictly lower cutoffs than

those in Bk under ᾱ. Intuitively, going from cutoffs α to the linear cutoffs ᾱ will create
disjoint intervals of cutoffs [ᾱ−

k , ᾱ+
k ], one for each set Bk.57 Since these intervals are dis-

joints, there are nonempty intervals between each of them, which are the intervals Ikk−1
defined above. To reproduce the allocation of the GLC mechanism with L = (α,U[0,1])

56Remember that this is the key difference with our Condition (i) in the definition of ordinal efficiency.
We impose equal mass for each object within a bundle, while Ashlagi and Shi (2016) impose equal mass for
each bundle.

57Note that these intervals of cutoffs can have a single point whenever ᾱ−
k = ᾱ+

k . It happens in particular
when Bk is a singleton. This is illustrated in Figure 3 with the cutoff value α3.
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using a GLC mechanism with L′ = (ᾱ,G) with a continuous c.d.f. G, we need to (i)
put no probability mass in each interval [ᾱ−

k , ᾱ+
k ], and (ii) ensure that the probability of

affording each bundle B≤k is the same. Note that under (α,U[0,1] ), this probability is
αk+1 − αk, while it is G(ᾱ−

k+1 ) −G(ᾱ+
k ) under the GLC mechanism with L′ = (ᾱ,G). To

do so, let g be the probability density function (p.d.f.) defined as

g(x) =
⎧⎨
⎩

αk

ᾱ−
k − ᾱ+

k−1

if x ∈ Ikk−1

0 otherwise.

With this choice of p.d.f, it is immediate to see that the c.d.f. G is such that G(ᾱ−
k ) =

G(ᾱ+
k ) = αk. Note that doing so ensures that g is a well defined probability density func-

tion. Intuitively, we put no probability mass in the intervals [ᾱ−
k , ᾱ+

k ] and we choose
appropriately scaled uniform distributions for each interval Ikk−1 so that the resulting
distribution is continuous and satisfies the requirements (i) and (ii) above. We illustrate
our construction of the new c.d.f. G in Figure 3.

(⇐) Let xL be an allocation rule defined by a GLC mechanism with parameters
L = (α,G) and linear cutoffs. We show that xL ∈ Me

IC. The incentive compatibility
is straightforward, so we focus on proving ordinal efficiency. For the sake of contra-
diction, suppose xL is not ordinally efficient. Then there exists x′ such that xL and x′
allocate the same mass of each object and, for each π, the random allocation x′(π )

Figure 3. Illustration of the transformed budget distribution. Note: Illustration of the con-
struction of the new budget distribution. In the figure, we assumed that ᾱ−

3 = ᾱ+
3 and we de-

noted ᾱ3 their value. The 45 degree line is the c.d.f. of the uniform distribution for the GLC with
L = (α, U[0,1] ). The piecewise-linear function is the c.d.f. G of the equivalent GLC mechanism
with L′ = (ᾱ,G) that uses linear cutoffs.
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can be derived from xL(π ) via a sequence of improving bilateral transfers (whenever
x′(π ) 
= xL(π )). Given such a sequence for π, let τb,b′(π ) be the total mass transferred
from bundle b to bundle b′.58 We first note that if τb,b′(π ) > 0, then we must have
that αb < αb′ . Indeed, assume that αb′ ≤ αb. By definition of improving transfers, we
must have that π−1(b′ ) < π−1(b) and whenever an agent with preferences π has bud-
get z ≥ αb, both b and b′ can be chosen by this agent so that she always picks b′.
Hence, it implies xLb (π ) = 0, a contradiction to τb,b′(π ) being the sum of the improv-
ing bilateral transfers from b to b′. Now we aggregate the bilateral transfers across all
agents into a column vector y. In particular, for each b, b′ ∈ B such that αb < αb′ , we
let

yb,b′ =
∑
π∈�

τb,b′(π )F(π ).

Hence, yb,b′ is the total mass transferred by all agents from b to b′. Let A be the ma-
trix associated with the total order on bundles induced by cutoffs α. Because xL and
x′ allocate the same mass of each object, by Lemma 4, we have ATy = 0. In addition,
since xL 
= x′, by construction, we have y 
= 0. But then, by Lemma 3, Ap < 0 is not
feasible, a contradiction to α being linear. Therefore, allocation rule xL is ordinally effi-
cient.

Appendix C: Proving Theorem 4

The proof resembles the proof of Theorem 3. In particular, we will use a matrix A associ-
ated with an order over bundles induced by the prices α of a CEEI to prove the existence
of certain linear prices. However, the main difference is that we will not be using all the
strict orderings induced by α.

Let x be an incentive compatible and Pareto efficient allocation rule. First, we
apply the same connection to Ashlagi and Shi (2016) as in the proof of Theorem 3.
Hence, in this new environment, we treat bundles as objects. An allocation rule x is AS-
Pareto efficient if there is no other allocation rule x′ such that the following statements
hold:

(i) For each bundle b ∈ B, we have
∫
U x

′
b(u)dF = ∫

U xb(u)dF .

(ii) For each u ∈ U , we have u · x′(u) ≥ u · x(u) and there is a set A ⊂ U such that
F(A)> 0 and the inequality is strict for each u ∈A.

Similarly to Lemma 1, it is immediate to see that any Pareto efficient allocation rule must
also be AS-Pareto efficient.59 Hence, by Theorem 1 of Ashlagi and Shi (2016), we know
that, with a continuous distribution F with full relative support, the mechanism x is a
CEEI for some prices (αb )b∈B ∈ (0, ∞]|B| . Note that these prices, following the definition
of Ashlagi and Shi (2016), are strictly positive and some of them can be infinite. We let

58By definition of ordinal efficiency, one can ignore the bilateral transfers for agents π with F(π ) = 0.
This implies that this part of the proof (i.e., (⇐)) does not use the full ordinal support assumption.

59Indeed, the allocation x′ in the definition of AS-Pareto efficiency would also be valid if one uses the
definition of Pareto efficiency in Section 5.
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αmax := maxb∈B αb and αmin := minb∈B αb. We start with the following simple observa-
tion.

Lemma 8. If x is CEEI for prices α, then αmin ≤ 1.

Proof. If αb > 1 for each bundle b, then for each q ∈ �, we have α · q> 1. Hence, x(u)
is not affordable for each u, a contradiction.

Now fix new prices α̂ ∈ [0, ∞]|B| . Note that we now allow these prices to be null. We
call an allocation rule x a r-CEEI with prices α̂ if, intuitively, it is a CEEI with budget r
(instead of 1), i.e., arg maxq∈�{u · q : α̂ · q ≤ r}. As before, we can similarly define α̂min.

Lemma 9. If x is a CEEI with prices α ∈ (0, ∞]|B| , then x is an r-CEEI with prices α̂ ∈
[0, ∞]|B| , budget r = 1 − αmin, and α̂min = 0.

Proof. By Lemma 8, we have αmin ≤ 1. Then reducing the budget and all the prices
by αmin does not change the budget set and, hence, x is still a CEEI under the reduced
budget and prices, i.e., an r-CEEI and prices α̂ ∈ [0, ∞]|B| with α̂min = 0 as required.

Fix prices α ∈ [0, ∞]|B| . Let B∞ = {b : αb = ∞}. Note that B∞ is nonempty when
αmax = ∞. We denote the highest finite price by αmax∗ := maxb{αb : αb <∞}, and let bmax∗

be a bundle such that αb = αmax∗ . The following lemma is useful to construct improving
bilateral transfers.

Lemma 10. If x is an r-CEEI with prices α ∈ [0, ∞]|B| and αmin = 0, let the set P ⊂ B2 be
defined as follows:

• Case 1. If αmax∗ ≤ r, let P := B\B∞ ×B∞ with B∞ := {b : αb = ∞}.

• Case 2. If αmax∗ > r and r = 0, let B0 := {b : αb = 0} and P := B0 ×B\B0.

• Case 3. If αmax∗ > r and r > 0, let P := {(b, b′ ) : αb < αb′ }.

Then, for any pair (b, b′ ) ∈ P , the following statements hold:

(a) We have αb < αb′ .

(b) There is an open set f (b, b′ ) ⊂ U such that (i) ub < ub′ and (ii) for some m > 0,
xb(u) ≥m for all u ∈ f (b, b′ ).

Proof. As discussed above, if x is an incentive compatible and Pareto efficient alloca-
tion rule, then, using Lemma 9, it is an r-CEEI with prices α ∈ [0, ∞]|B| such thatαmin = 0.
We follow each case of the lemma.

Case 1: αmax∗ ≤ r. In this case, all bundles with a finite price are affordable. By defi-
nition, for each (b, b′ ) ∈ P , we have αb < αb′ so the first condition of the lemma holds.

For each (b, b′ ) ∈ P , let f (b, b′ ) ⊂U be the set of utility vectors such that

• ub′ = 2M + εb′ with εb′ ∈ (0, ε̄)
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• ub =M + εb with εb ∈ (0, ε̄)

• ub′′ = εb′′ with εb′′ ∈ (0, ε̄) for each b′′ 
= b, b′,

where M and ε̄ are some constants. Clearly, the set f (b, b′ ) is open in U as a product of
open intervals. For M > ε̄, bundle b′ gives the highest utility followed by b, followed by
all other bundles. Note that since (b, b′ ) ∈ B\B∞ ×B∞ and αmax∗ ≤ r, b is always afford-
able under the CEEI, while b′ is not. Since b gives the highest utility among affordable
bundles for u ∈ f (b, b′ ), we have xb(u) = 1 as required.

Case 2: αmax∗ > r and r = 0. In this case, only free bundles are affordable. Since
αmin = 0, the setB0 is nonempty. By construction, we have αb = 0<αb′ for any (b, b′ ) ∈ P
so that the first requirement of the lemma holds.

For each (b, b′ ) ∈ P , we now define the set f (b, b′ ) ⊂U in the same way as in Case 1.
Note that since (b, b′ ) ∈ B0 × B\B0 and r = 0, bundle b is always affordable under the
CEEI, while b′ is not. Since b gives the highest utility among affordable bundles for u ∈
f (b, b′ ), we have xb(u) = 1 as required.

Case 3: αmax∗ > r and r > 0. In this case, note that we can normalize the budget to
one by dividing all the prices by r and obtain the same CEEI. So, in what follows, we
assume that r = 1. Remember that we have at least one free bundle since αmin = 0. By
definition of P , the first requirement of the lemma holds.

Fix constantsM , ε̄, and δ̄. Remember that bmax∗
is a bundle such that αbmax∗ = αmax∗ .

For each (b, b′ ) ∈ P , let f (b, b′ ) be the set of utility vectors such that

• ub′′ = αb′′ + εb′′ with εb′′ ∈ (0, ε̄) for b′′ 
= b, bmax∗
such that αb′′ <∞

• ub′′ =M + εb′′ with ε ∈ (0, ε̄) for b′′ ∈ B∞

• ub = αb + δb + εb with εb ∈ (0, ε̄)

• ubmax∗ = αbmax∗ + δbmax∗ + εbmax∗ with εbmax∗ ∈ (0, ε̄).

In words, utility vectors in f (b, b′ ) assign to each bundle b′′ a utility equal to the bun-
dle’s price αb′′ (or a large constant if this price is infinite) perturbed by some posi-
tive constant. For each bundle b′′ 
= bmax∗

with price αb′′ < ∞, let s(αb′′ ) be the next
strictly highest price, possibly infinite, i.e., s(αb′′ ) := minb′{αb′ : αb′ > αb′′ }. We can
choose positive constants M , δb, δbmax , and ε̄, so that they satisfy the following con-
straints:

(i) For each b′′ such that αb′′ 
= αbmax∗ , we have

αb′′ + δb + ε̄ < s(αb′′ ) (C.1)

andM >αbmax∗ + δbmax∗ + ε̄.

(ii) We have

δb > ε̄. (C.2)
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(iii) If αb > 0 and b 
= bmax∗
, then for each b′′ 
= b, bmax∗

such that αb′′ > 0, we
have

δb
αb
>
δbmax∗ + ε̄
αbmax∗

+
(

1
αb

− 1
αbmax∗

)
ε̄ >

δbmax∗

αbmax∗
>

ε̄

αb′′
. (C.3)

The constraint (C.1) makes sure that the ranking induced by the perturbed utilities is
consistent with the strict ranking induced by prices α. Constraint (C.2) implies that bun-
dle b is the most attractive bundle among all bundles with the same price. Constraint
(C.3) implies that bundles b and bmax∗

deliver the highest utility per unit of artificial
currency among all non-free bundles with finite price, and, roughly speaking, b is suffi-
ciently more attractive than bmax∗

.60 Clearly, the set f (b, b′ ) is open in U as a product of
open intervals in R.

We now show that if u ∈ f (b, b′ ), then xb(u) = m for some m > 0. We begin by
showing that, in the CEEI, there does not exist b′′ 
= b, bmax∗

and u ∈ f (b, b′ ) such that
αb′′ > 0 and xb′′(u) > 0. For the sake of contradiction, suppose such b′′ and u exist.
Consider reducing expenditures of such agents on b′′ by η > 0 and increasing their ex-
penditures on bmax∗

by η so their probability share of b′′ decreases by η/αb′′ and their
probability share of bmax∗

increases by η/αbmax∗ ≤ η/αb′′ . To keep the sum of probabil-
ity shares equal to 1, increase the share of any free bundle by η/αb′′ − (η/bmax∗

). For
a sufficiently small η > 0, such transfer of mass is feasible and increases the utility of
agents with u ∈ f (b, b′ ) by constraint (C.1) above, a contradiction to the allocation being
a CEEI.

First, suppose αb = 0. Then, given the above result, an agent with u ∈ f (b, b′ )
must spend her entire budget on bmax∗

in purchasing a 1/αbmax∗ < 1 probability share
of bmax∗

, and complete the allocation with the free bundle b in purchasing a 1 −
(1/αbmax∗ ) > 0 probability share of b, because δb > ε̄b′′ for each b′′ 
= b such that αb′′ =
0.

Second, suppose αb > 0. Notice that because of constraint (C.3), an agent with
u ∈ f (b, b′ ) must allocate the entire budget between bundles b and bmax∗

, and poten-
tially complete the allocation with a share of a free bundle that delivers the highest util-
ity, denoted by b0. Specifically, she solves the optimization problem

max
0≤z≤1

(αbmax∗ + δbmax∗ + εbmax∗ )
z

αbmax∗
+ (αb + δb + εb )

1 − z
αb

+ εb0

(
1 − z

αbmax∗
− 1 − z

αb

)

subject to

1 − z

αbmax∗
− 1 − z

αb
≥ 0.

Given the constraint (C.3), the objective is linearly decreasing in z. If αb ≥ 1, then the
constraint does not bind and optimally xb(u) = 1/αb, i.e., the entire budget is spent on

60Note that there are positive constants M , δb, δbmax∗ , and ε̄ satisfying (i), (ii), and (iii). Indeed, one can
set δb and ε̄ small enough and M high enough so that (i) holds. With an even smaller ε̄, (ii) holds. Finally,
with ε̄ small again and δbmax∗ small, (iii) holds true. Also note that since we have assumed that αmax∗ <∞,
then αbmax∗ <∞, so that constraint (C.3) is indeed true.
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b. If αb < 1, then the constraint binds, which implies that xb0 (u) = 0, and the budget is
split between bmax∗

and b such that

xb(u) = αbmax∗ (1 − αb )
αbmax∗ − αb .

Summarizing, for each u ∈ f (b, b′ ), we have

xb(u) ≥ min
{

1 − 1
αbmax∗

,
1
αb

,
αbmax∗ (1 − αb )
αbmax∗ − αb

}
:=m> 0

as required.

Last, we show that from the sets f (b, b′ ) as in Lemma 10, we can create an open cone
of preferences with positive mass having the same property. The reader interested in the
proof of Theorem 4 can skip the proof since it mostly relies on topology arguments.

Lemma 11. Fix an r-CEEI x with prices α. If the distribution F has full relative support,
then for each pair (b, b′ ) ∈ P and its associated open set f (b, b′ ) from Lemma 10, there
exists an open cone C(b, b′ ) ∈ C such that F(C(b, b′ )) > 0 and for each u ∈ C(b, b′ ) and
somem> 0, we have xb(u) ≥m.

Proof. Fix a pair (b, b′ ) ∈ P and the associated open set f (b, b′ ) ⊂U from Lemma 10.61

In the sequel, we recall that ProjD stands for the projection from U intoD, i.e.,

ProjD(u) :=
(
ub −

∑
b

ub

|B|
)
b

.

Note that, from Lemma 10, under an r-CEEI, for any u ∈ f (b, b′ ), then xb(u′ ) ≥m > 0.
For any u′ = λu −ξ1 with λ > 0 and ξ ∈R, since the choices are invariant to linear trans-
formations of u, we also have xb(u′ ) ≥m. In words, rescaling and translating the cardinal
utilities will not impact the optimal choice of the agent in a CEEI. Given λ > 0, we de-
note Xλ := {u′ ∈U : u′ = λu for some u ∈ f (b, b′ )}. Note that for any λ > 0, Xλ is open in
U (since the function u �→ λu is a homeomorphism). Now let us consider Z := ⋃

λ>0Xλ.
Note that, as a union of open sets, Z is open inU . Let C := ProjD(Z ). Here again, for any
u ∈ C, we must have xb(u) ≥m, since such u are simple linear transformations of utility
vectors in f (b, b′ ).

We first claim that C is a cone. Take any u′ ∈ C and any λ > 0. We must show that
λu′ ∈ C. Indeed, since u′ ∈ C, we must have that for some u ∈ Z , ProjD(u) = u′. Hence,
ProjD(λu) = λProjD(u) = λu′, where the first equality uses the linearity of ProjD. Since,
by definition of set Z , it must be that λu belongs to Z , ProjD(λu) = λu′ implies that λu′ ∈
ProjD(Z ) = C, as claimed.

Now, we show that C is open in D so as to eventually show that C is open in C. This
comes from the feature that ProjD is an open map together with the fact that Z is open in

61Remember that the sets P and f (b, b′ ) change, depending on the values of the cutoffs α as shown in
the proof of Lemma 10.
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U .62 Finally, we want to show that our cone C is open in C, i.e., C ∩ D̃ is open in D̃. This
is true since, as we just claimed, C is open in D and so C ∩ D̃ is open in D̃ by definition
of the relative topology. Thus, we can set C(b, b′ ) := C. The open cone C(b, b′ ) satisfies
xb(u) ≥m for any u ∈ C(b, b′ ). Since F has full relative support and C(b, b′ ) is open in
D̃, we have F(C(b, b′ ))> 0.

We are now equipped with all the lemmas to prove Theorem 4. Similar to the proof
of Theorem 3, the proof relies on constructing feasible bilateral transfers whenever there
is no solution to a well constructed set of linear inequalities. The proof is divided into
several cases, depending on the value of αmax and αmin. For each of them, we will show
that we can construct a spot MRB that induces the same allocation as the initial CEEI. As
in the proof of Proposition 5, we will construct a matrix A associated to a strict ordering
over bundles in B and consider the system of linear inequalities Ap < 0. We will show
that if such a system has no solution, there exists y such that y ≥ 0, y 
= 0, and ATy =
0, and that such y can be used to construct feasible improving bilateral transfers for a
positive mass of agents (using Lemma 11) so that x is not Pareto efficient.

Proof of Theorem 4. Suppose x is an incentive compatible and Pareto efficient allo-
cation rule. By Lemma 9, x is an r-CEEI with prices α ∈ [0, ∞]|B| such that αmin = 0. Fix
the set P of pairs of bundles as defined in Lemma 10. First, we show that there exist
linear prices ᾱ such that ᾱb < ᾱb′ for each (b, b′ ) ∈ P .

Construct the matrix A as in the proof of Proposition 5 so that each row of A corre-
sponds to a pair of bundles (b, b′ ) ∈ P and each column corresponds to a generalized
object in O. For the sake of contradiction suppose such linear prices ᾱ do not exist.
Then, as in Proposition 5, there exists y such that y ≥ 0, y 
= 0, and ATy = 0, and, in
what follows, we use y to construct improving bilateral transfers for a positive mass of
agents.

For each (b, b′ ) ∈ P , Lemma 11 guarantees that there exists an open cone C(b, b′ )
such that F(C(b, b′ ))> 0, and for each u ∈ C(b, b′ ), we have ub < ub′ and xb(u) ≥m> 0.
For each (b, b′ ) ∈ P , consider a transfer of a probability mass (ε/F(C(b, b′ )))yb,b′ from
b to b′ for agents with u ∈C(b, b′ ) at their random allocation x(u). By construction of
C(b, b′ ), this is an improving bilateral transfer given a sufficiently small ε > 0. Moreover,
because ATy = 0, by Lemma 7, these transfers do not change the allocated mass of each
object. Therefore, x is not Pareto efficient, which is a contradiction. It follows that there
exist linear cutoffs ᾱ such that ᾱb < ᾱb′ for each (b, b′ ) ∈ P . Without loss of generality
assume that maxb ᾱb = 1.

To finish the proof, we construct a spot MRB mechanism that implements r-CEEI x.
By Proposition 3, x is a MRB mechanism L= (α̂, G ), where cutoffs α̂ are the normalized
prices α as in the proof of Proposition 3. Using the linear prices ᾱ, we now construct a
collection of distributions G′ such that the spot MRB mechanism with L′ = (ᾱ, G′ ) im-
plements the allocation rule x. For each distribution Gx(u) ∈ G, let the corresponding

62Projection ProjD is a continuous mapping under our topologies, and it is surjective and linear. By the
open mapping theorem, ProjD is an open mapping, i.e., for any open set O in U , ProjD(O) is open inD.
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distributionG′
x(u) ∈ G′ assign probability xb(u) to ᾱb instead of α̂b. We now consider the

same cases as in Lemma 10.
Case 1: αmax∗ ≤ r. In the r-CEEI, each agent is assigned her favorite bundle

out of those with a finite price. In the spot MRB with L′ = (ᾱ, G′ ), each agent
can also receive the same bundle and cannot receive a positive share of any bun-
dle with an infinite price because those bundles keep having the highest prices un-
der the linear cutoffs ᾱ and the distributions in G′ put probability 1 on the bud-
get strictly below these prices. Hence, the induced allocation rule must be the
same.

Case 2: αmax∗ > r and r = 0. In the r-CEEI, each agent is assigned her favorite free
bundle. Similar to the previous case, each agent can also receive the same bundle in
the spot MRB with L′ = (ᾱ, G′ ). Moreover, she cannot receive a positive share of any
other bundle because those bundles have strictly higher prices than the prices of the
free bundles under the linear cutoffs ᾱ and the distributions in G′ put probability 1 on
the budget strictly below these prices. Hence, the induced allocation rule must be the
same.

Case 3: αmax∗ > r and r > 0. Note that in L′ = (ᾱ, G′ ), for each realization of a ran-
dom budget, the set of affordable bundles is the same as in L for each distribution
because the linear cutoffs ᾱ have the same strict order as prices α. Then we have
that, for each distribution and for each set of bundles, the probability that this set is
affordable is the same in L and L′. Hence, the induced allocation rule must be the
same.

Appendix D: Proving Proposition 4

Recall that a spot mechanism x is characterized by a GLC with parameters (α,G), where
xπ(h)(π ) =G(minm=1, ���,h−1 απ(m) ) −G(minm=1, ���,h απ(m) ) for every π and h= 1, � � � , |O|.
In addition, we know that there exists nonlinear p = (pt )t=1, ���,T , where pt = (pti )i∈Ot for
each t = 1, � � � , T satisfying

αo =
T∑
t=1

ptot

for each o = (o1, � � � , oT ) ∈ O. We say that (α,G, p) corresponds to spot mechanism x.

Lemma 12. Take a sequence xn → x, where, for each n, xn is a spot mechanism. Further,
assume that the corresponding sequence (αn,Gn, pn ) converges to (α,G, p). We must
have that x is a spot mechanism and (α,G, p) corresponds to x.

Proof. Since for each n,

xnπ(h)(π ) =Gn
(

min
m=1, ���,h−1

αnπ(m)

)
−Gn

(
min

m=1, ���,h
αnπ(m)

)

for every π and h= 1, � � � , |O|, the same must hold as well in the limit, i.e.,

xπ(h)(π ) =G
(

min
m=1, ���,h−1

απ(m)

)
−G

(
min

m=1, ���,h
απ(m)

)

for every π and h= 1, � � � , |O|.
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In addition, since for each n, for each t = 1, � � � , T , we have

αno =
T∑
t=1

pt,not

for each o = (o1, � � � , oT ) ∈ O, the same must hold as well in the limit, i.e.,

αo =
T∑
t=1

ptot .

Hence, x is a spot mechanism and (α,G, p) corresponds to x, as claimed.

Proof of Proposition 4. (⇒) Assume that x is robustly OE and IC at F . Pick a se-
quence Fn → F , where Fn has full support. Because x is robustly OE and IC at F , we
know that there is a sequence {xn} such that xn → x, and xn is OE and IC at Fn for
each n. Note that, by Theorem 1, this implies that xn is a spot mechanism for each n.
Let (αn,Gn, pn ) correspond to xn for each n. Note that αn and pn clearly lie in a (se-
quentially) compact set. In addition, the space of probability measures over the com-
pact set [0, 1] is sequentially compact in the topology of weak convergence of measures.
So Gn also lies in a sequentially compact set.63 Thus, taking a subsequence if neces-
sary, we can assume that (αn,Gn, pn ) → (α,G, p). By Lemma 12, x is a spot mecha-
nism.

(⇐) Assume that x is a spot mechanism. By Theorem 1 (and the observation that
Theorem 1(⇐) holds without the full-support assumption; see footnote 58), x is OE
and IC for all distributions F ′. Now fix any sequence of distributions Fn → F and
let xn be the constant sequence equal to x for all n. By the previous observation, xn
is OE and IC at Fn for each n. Trivially, xn → x. Hence, x is robustly OE and IC at
F .
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