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The classic third degree price discrimination (3PD) model requires the knowledge
of the distribution of buyer valuations and the covariate to set the price condi-
tioned on the covariate. In terms of generating revenue, the classic result shows
that 3PD is at least as good as uniform pricing. What if the seller has to set a price
based only on a sample of observations from the underlying distribution? Is it still
obvious that the seller should engage in 3PD? This paper sheds light on these fun-
damental questions. In particular, the comparison of the revenue performance
between 3PD and uniform pricing is ambiguous overall when prices are set based
on samples. This finding is in the nature of statistical learning under uncertainty:
a curse of dimensionality, but also other small sample complications.
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1. Introduction

In the past few decades, the advances in the theory of mechanism design have been
followed by a tremendous interest in its practical applications. At the same time, classic
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theoretical models typically make strong assumptions about the designer’s knowledge of
the environment, which may lead the optimal mechanism to be sensitive to the details
of the environment (which is sometimes referred to as the Wilson critique).1

Third degree price discrimination (3PD) requires an observable covariate value asso-
ciated with the buyer valuation. To set the price conditioned on the covariate, the clas-
sic pricing model requires the knowledge of the distribution of buyer valuations and the
covariate. In terms of generating revenue, the classic result shows that 3PD is at least as
good as uniform pricing. What if the seller has only partial information about those dis-
tributions? Is it still obvious that the seller should engage in 3PD? On the one hand, set-
ting the optimal price for each observed value of the covariate may not “extrapolate” well
to the unobserved covariate values, and yield a lower expected revenue than a uniform
price. But on the other hand, too little discrimination underutilizes the information
contained in the covariate about buyer valuations. This paper is concerned with how
much information the seller will need to make 3PD generate more revenue. Suppose
a unit demand buyer with a privately-known valuation Y and a one-dimensional con-
tinuous covariate X drawn from a joint distribution FY ,X that is unknown to the seller.
The continuous covariateX can be a single index or score that summarizes the relevant
characteristics for pricing and marketing. Hartmann, Nair, and Narayanan (2011) pro-
vide examples where marketing firms use a one-dimensional continuous score function
of customer characteristics, past response histories, and features of the zip code, and
casinos use a one-dimensional continuous score referred to as the average daily win.

While our seller is ignorant of FY ,X , he/she does have access to a random sample
of i.i.d. {Yi,Xi}ni=1 drawn from FY ,X . A natural strategy is to choose prices that opti-
mize against the empirical distribution of {Yi,Xi}ni=1. TheK-markets empirical revenue
maximization (ERM) divides the covariate space intoK equal-length segments, and the
optimal price based on the conditional empirical distribution for each segment is cal-
culated. We show that when K = �(n1/4 ), the K-markets ERM strategy generates an
expected revenue converging to that of the true distribution 3PD optimum at the rate
O(n−1/2 ). The 1-market ERM strategy is simply the (uniform) ERM strategy, which we
show generates a revenue converging to that of the true-distribution uniform optimum
at the rate O(n−2/3 ). The K-markets ERM is just one possible strategy and one may
wonder if a more sophisticated strategy might provide faster convergence rates. In a
sense, the answer is no. We show that these rates are asymptotically unimprovable for
the worst case distributions of (Y ,X ) subject to some mild smoothness conditions. In
other words, to guarantee a revenue deficiency of δ uniformly over a class of distribu-
tions, the necessary condition for the sample size is that n=�(δ−2 ) in the 3PD problem
and n=�(δ−3/2 ) in the uniform pricing problem.

For sufficiently small δ, theK-markets ERM and the uniform ERM strategies are op-
timal on the growth requirements of the sample size, respectively; that is, n = �(δ−2 )
in the 3PD problem and n = �(δ−3/2 ) in the uniform pricing problem. To show this
optimality result, we establish a lower bound for the revenue deficiency in any data-
based pricing strategy relative to the true-distribution optimal strategy in the worst case

1In some cases, this leads to extreme or unrealistic results as in, for example, Crémer and McLean (1988).
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(by considering the supremum over a class of joint distributions, FY ,X , subject to some
mild smoothness assumptions). In particular, data-based uniform pricing strategies are
algorithms that depend on {Yi}ni=1 only, and the true-distribution optimal strategy cor-
responds to the optimal uniform pricing strategy derived from FY . Similarly, data-based
3PD strategies are algorithms that depend on {Yi,Xi}ni=1, and the true-distribution opti-
mal strategy corresponds to the optimal 3PD strategy derived from FY ,X . We show that
the minimax revenue deficiency is�(n−2/3 ) and�(n−1/2 ) in the uniform and 3PD cases,
respectively.

Our results highlight the following economic trade-off. When the seller has the ac-
cess to a sample of i.i.d. {Yi,Xi}ni=1, she can choose the K-markets ERM strategy that
exploits both {Xi}ni=1 and {Yi}ni=1, or the uniform ERM strategy that ignores {Xi}ni=1 and
exploits only {Yi}ni=1. Inherently, the former is an algorithm trying to learn the FY ,X-
optimal pricing function p(·) while the latter is an algorithm trying to learn the FY -
optimal (constant) pricing function. As a result of the curse from the extra dimensional-
ity, the former is more demanding in the sample size than the latter. However, in terms
of generating revenue, the true-distribution optimal 3PD strategy is at least as good as
the true-distribution optimal uniform pricing strategy. This trade-off suggests that, even
if X contains useful information about Y , the K-markets ERM strategy based on a ran-
dom sample can be revenue inferior to the uniform ERM strategy when the sample size
n is not large enough, and vice versa.

To verify these potential implications, we conduct several numerical studies. In par-
ticular, we calculate the revenues of theK-markets ERM and the uniform ERM strategies
based on a real-world data set from eBay auctions and two simulated data sets. Our nu-
merical results illustrate the aforementioned trade-off. When the sample size is small,
the uniform ERM strategy can generate higher expected revenue than the K-markets
ERM strategy. As the sample size grows, the K-markets ERM strategy (the uniform
ERM strategy) gets closer to the true-distribution optimal 3PD strategy (resp., the true-
distribution optimal uniform pricing strategy). The slower rate of convergence in the
revenue from the K-markets ERM strategy (in contrast to the faster rate of convergence
in the revenue from the uniform ERM strategy) is dominated by the benefit of price dis-
crimination (based on FY ,X ) over uniform pricing (based on FY ). Consequently, the rev-
enue of the K-markets ERM strategy overtakes that of the uniform ERM strategy when
the sample size becomes sufficiently large and X contains sufficient information about
Y .

The key takeaways from this paper are summarized here. First, no sample-based
3PD strategy is able to escape from the curse of dimensionality, shown by our informa-
tion theoretic lower bounds. Second, absent uncertainty regarding the underlying prob-
ability laws, third-degree price discrimination is at least as good as uniform pricing in
generating revenue. In contrast, the comparison of the revenue performance between
the K-markets ERM and the uniform ERM strategies is ambiguous overall. This finding
is in the nature of statistical learning under uncertainty: a curse of dimensionality, but
also other small sample complications.2 Empirical revenue maximization is not free of

2Specifically, there exists a distribution FY where the revenue of the uniform ERM strategy is worse with
two observations than with one; see Babaioff, Gonczarowski, Mansour, and Moran (2018). We illustrate in
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these issues. Ultimately, this paper poses a challenging open question of whether there
exist some n < n̄ <∞ such that for any n ∈ [n, n̄] and distribution in the class defined in
this paper, theK-markets ERM strategy (for anyK > 1) is always revenue-inferior to the
uniform ERM strategy.

1.1 Related literature

Complexity measures and information theoretic lower bounds Information theoretic
lower bounds and sample complexity are important notions in machine learning. Both
aim to characterize learnability, i.e., how easy it is to learn an unknown object of interest
(in our context, the true-distribution optimal 3PD strategy) from data where the uncer-
tainty arises. Sample complexity derives the rate at which the sample size needs to grow
to guarantee a desired learning accuracy. Information theoretic lower bound derives
a lower bound as a function of the sample size on the learning error (in our context,
the revenue deficiency) in the worst case. Sample complexity and information theo-
retic lower bounds are intrinsically tied to the complexity or size of the underlying func-
tion class of interest. Vapnik–Chervonenkis (VC) dimensions, shattering dimensions,
and metric entropy (such as the cardinality of packing sets) are popular measures of
complexity in machine learning. There have been a number of innovative applications
of VC dimensions or shattering dimensions in economic theory and algorithmic eco-
nomics. Together with the Probably Approximately Correct (PAC) framework, they are
used to study the complexity of the classes of demand and utility functions (Beigman
and Vohra (2006), Balcan, Daniely, Mehta, Urner, and Vazirani (2014)), k-demand buyer’s
valuation (Zhang and Conitzer (2020)), theories of choices (Basu and Echenique (2020)),
preference functions (Chambers, Echenique, and Lambert (2021, 2023)), as well as the
resulting learnability from data. VC dimension is useful for deriving sample complex-
ity bounds concerning discrete function sets and finite-dimensional vector spaces, and
shattering dimension is useful for certain real functions.

From the theory of machine learning, when a class has infinite VC or shattering di-
mensions, this class is not PAC learnable. For example, a collection of sinusoids have
subgraphs with infinite VC dimension. The max-min expected utility model with at
least three states of the world has infinite VC dimension (Basu and Echenique (2020)).
The class of demand functions has infinite shattering dimension (Beigman and Vohra
(2006)). Nonetheless, the notion of “learnability” can be generalized using a different
type of complexity analysis that gives rise to our information theoretic lower bound in
the 3PD problem. This type of analysis is built upon the notion of packing sets, along
with tools from information theory. In particular, packing sets are useful for studying
classes with an infinite number of elements (see Kolmogorov and Tikhomirov (1959)
and Wainwright (2019)). This is the case for our 3PD problem as we try to learn an opti-
mal pricing function of the covariate (an infinitely-dimensional parameter) and bound
the deficiency in the expected revenue, which concerns the entire pricing function at all
covariate values.

Section 6 that this seemingly counter-intuitive result highlights the difficulty of establishing general com-
parative results with very small sample size and sheds some light on the comparison of the revenue perfor-
mance of the K-markets ERM strategy withK = 1 vs. K = 2 in the case of n= 2.
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Prior-independent mechanism design Most of the classic monopoly pricing literature
assumes a known distribution of valuations (and covariates).3 More recently, some pa-
pers (e.g., those surveyed in Carroll (2019)) studied “prior”-independent mechanism de-
sign.4 The main focus of that literature is on deriving a robustly optimal mechanism in
the absence of both “prior” and data. In particular, Bergemann and Schlag (2008, 2011)
derive the minimax-regret uniform pricing strategy in closed form; that is, the strategy
that guarantees the smallest deficiency in revenue relative to the known distribution
case. Like Bergemann and Schlag (2008, 2011), we study the revenue deficiencies, but in
contrast, we assume the availability of data and focus on the (inevitable) information-
theoretic limitations of any data-based pricing strategies and the achievability of the
limitation.

This paper is inspired by the literature that studies approximately optimal “prior”-
independent mechanism design, in particular monopoly pricing with a single buyer.5

This literature assumes that the seller has access to a random sample of i.i.d. {Yi}ni=1
drawn from FY and proposes variants of the uniform ERM strategy to derive the rev-
enue guarantee in relation to that from the true-distribution optimal uniform pricing
strategy. There are two types of analyses in this literature. The first one focuses on the
guarantees for the specific case of n = 1 or n = 2 (Babaioff et al. (2018), Allouah, Ba-
hamou, and Besbes (2023)). The second one (e.g., Huang, Mansour, and Roughgarden
(2018)) establishes “sample complexity bounds” such that the uniform ERM variants
achieve a (1 − ε) fraction guarantee when the sample size grows at a rate depending on
ε, and also derives the rate at which the sample size needs to grow (as a function of ε) for
any data-based uniform pricing strategies to obtain a given (1 − ε) fraction guarantee.
Allouah, Bahamou, and Besbes (2022) involve both types of analyses.

In this paper, we ask the related question, how fast the revenue deficiency decays as
a function of n, and provide an answer using information-theoretic lower bounds (in-
dependent of algorithms) and upper bounds with respect to specific algorithms in the
worst case scenarios.6 The main difference with the majority of the data-based liter-
ature is that, we study third-degree price discrimination (3PD) with a continuous co-
variate and compare the revenue performance of data-based 3PD and uniform pricing
strategies.

To understand why the 3PD problem in our context is more challenging than the
uniform pricing problem, note that fundamentally the latter tries to learn the constant

3See also Segal (2003) for a study of optimal multiunit auctions where the seller has a probabilistic belief
about the valuation distribution of the i.i.d. buyers.

4Here, “prior” distribution refers to the seller’s prior belief about buyers’ valuations and is often taken to
be the true distribution.

5There is a less related literature that studies optimal auctions; see, e.g., Cole and Roughgarden (2014),
Dhangwatnotai, Roughgarden, and Yan (2015), Fu, Immorlica, Lucier, and Strack (2015), Guo, Huang, and
Zhang (2019), Fu, Haghpanah, Hartline, and Kleinberg (2021).

6A large literature studies data-based auctions by focusing on guarantees for revenue deficiencies (in-
stead of fractions), such as how the revenues from the data-based strategies converge in probability to the
true-distribution benchmark, e.g., Baliga and Vohra (2003), Goldberg, Hartline, Karlin, Saks, and Wright
(2006), Gonçalves and Furtado (2024). This line of work does not consider the optimal rates of convergence
or optimal sample size requirements.
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optimal pricing function (a scalar parameter) while the former tries to learn an opti-
mal pricing function of the covariate (an infinitely-dimensional parameter), where the
deficiency in the expected revenue concerns the entire pricing function at all covariate
values. Our framework allows us to tackle several challenging aspects of the 3PD prob-
lem, which might be difficult to analyze with the toolkit in the existing pricing literature.
We describe one example below.

Somewhat related, Devanur, Huang, and Psomas (2016) study sample complexity of
optimal pricing with “side information.” In their “signals model” (Sections 5.1 and 5.3),
there is a covariate (signal)X ∈ [0, 1], and the seller can condition the data-based reserve
price on the covariate. For the single-buyer case (which would correspond to our 3PD
problem), they derive upper and lower sample complexity bounds. Importantly, they
assume that the true joint distribution FY ,X has the following property: larger values of
X are associated with larger values of Y in the sense of first-order stochastic dominance
of conditional distributions. In contrast, our 3PD setup imposes no assumptions about
the relationship between the covariateX and the valuationY ; meanwhile, our proposed
K-markets ERM strategy learns the relationship from the data. Moreover, ourK-markets
ERM strategy attains the optimal rate of convergence in revenue deficiency (as described
before), while the upper and lower bounds in Devanur, Huang, and Psomas (2016) have
different rates, and hence, the optimal sample size requirement is unclear.

2. Setup

The seller is selling an item to a buyer. Let Y ∈ [0, 1] be the valuation (i.e., willingness
to pay) of the buyer, and X the covariate (such as a characteristic) associated with the
buyer. The joint distribution of (Y ,X ) is denoted by FY ,X . We assume that X is sup-
ported on a bounded interval, and without loss of generality, we take the interval to be
[0, 1].7

Given a covariate value, the seller wants to set a price according to a mapping from
the covariate to a set of prices. We use D to denote the set of all pricing functions:

D ≡ {p : [0, 1] → [0, 1], measurable
}

.

For a generic pricing strategy p ∈ D, the price depends on the covariate value x. This
scheme falls in the realm of third-degree price discrimination (3PD). Uniform pricing
can be viewed as a special case where the price is the same for all covariate values. We
use U to denote the set of all uniform pricing functions:

U ≡ {p ∈ D : p is a constant function}.

7The assumption that Y ,X ∈ [0, 1] is made merely for simplicity. First of all, our results in Sections 3 and
4 hold for general bounded supports. Second, the precise knowledge of the support boundaries is unnec-
essary because they can be readily estimated using extremum order statistics. The estimator converges at
a superconsistent rate of n−1 (see, e.g., Hirano and Porter (2003)), significantly faster than the convergence
of revenue deficiency that we show in Section 3. Therefore, in our analysis, the estimation error resulting
from the unknown support is negligible. We are grateful to a referee for raising this discussion.
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To lighten the notation, we express p ∈ U as a scalar rather than a function for the uni-
form pricing problem.

Let FY |X be the conditional CDF and fX the marginal density function. Given a price
y ∈ [0, 1] and a covariate value x ∈ [0, 1], there are 1 −FY |X(p|x) buyers whose valuation
is above the price. The revenue generated from these buyers is

r(y, x, FY ,X ) ≡ (1 − FY |X(y|x)
)
y, (1)

and the expected revenue for a pricing function p is

R(p, FY ,X ) ≡
∫ 1

0
r
(
p(x), x, FY ,X

)
fX(x)dx.

In various places of the rest of the paper, we will slightly abuse the notation and denote
r(p, x) ≡ r(p(x), x) when p is a pricing function and also write r(y, x) = r(y, x, FY ,X )
for brevity when FY ,X is clear from the context. In the special case where the pricing
strategy is uniform (i.e., p ∈ U ), the revenue only depends on the marginal distribution
FY :

R(p, FY ,X ) = pP(Y ≥ p) = p(1 − FY (p)
)
, p ∈ U .

The true-distribution optimal 3PD strategy p∗
D is the one that maximizes the revenue:

R
(
p∗
D, FY ,X

)= sup
p∈D

∫ 1

0
r
(
p(x), x, FY ,X

)
fX(x)dx.

In a similar fashion, we denote p∗
U as the true-distribution optimal uniform pricing

strategy such that

R
(
p∗
U , FY

)=R(p∗
U , FY ,X

)= sup
p∈U

p
(
1 − FY (p)

)
.

Note that p∗
D depends on FY ,X and p∗

U depends on FY .
In terms of generating revenue, the classic pricing theory shows that 3PD is at least

as good as uniform pricing when the joint distribution FY ,X is known to the seller. In
this case, we can solve analytically or numerically for the optimal pricing strategies p∗

D
and p∗

U . Since U is contained in D, p∗
D must achieve a (weakly) better revenue than p∗

U .
Intuitively, when Y is correlated withX , p∗

D utilizes the information inX .
Now suppose that the seller knows neither FY ,X nor FY , but instead observes a ran-

dom sample of data ≡ {(Yi,Xi ), 1 ≤ i ≤ n} drawn from FY ,X , or dataY ≡ {Yi, 1 ≤ i ≤ n}
from FY , and wants to construct a pricing strategy based on the sample. The following
assumption is used throughout this paper.

Assumption 1. data and dataY consist of i.i.d. draws from FY ,X and FY , respectively.

The following assumption is used to establish the results concerning our 3PD prob-
lem. Instead of a single known joint distribution FY ,X , there is a class F of unknown
distributions, which are deemed possible and our data-based pricing strategies can be
evaluated within this class. The functions in F satisfy several smoothness and regularity
conditions stated below.
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Assumption 2. Any distribution function in the set F satisfies the following conditions:

(i) (Lipschitz continuity) There existsC0 ∈ (0, ∞) such that, for any y, y ′, x ∈ [0, 1], the
conditional density fY |X satisfies

∣∣fY |X(y|x) − fY |X
(
y ′|x)∣∣≤ C0

∣∣y − y ′∣∣.
(ii) (Strong concavity) There exists C∗ > 0 such that the revenue function r(y, x) ≡

y(1 − FY |X(y|x)) is strictly concave with the second-order derivative

−2fY |X(y|x) − y ∂
∂y
fY |X(y|x) ≤ −C∗, a.e. (2)

(iii) (Interior solution) For each x ∈ [0, 1], the optimal price is an interior solution; that
is, p∗

D(x; FY ,X ) ∈ (0, 1).

(iv) (Differentiability) The conditional distribution function fY |X(y|x) is continuously
differentiable in (x, y ) in a neighborhood of the curve {(x, p∗

D(x; FY ,X )) : x ∈
[0, 1]}.

(v) (Boundedness) The functions

∣∣∣∣2fY |X(y|x) + y ∂
∂y
fY |X (y|x)

∣∣∣∣ and (3)

∣∣∣∣ ∂∂xFY |X(y|x) + y ∂
∂x
fY |X(y|x)

∣∣∣∣ (4)

are bounded from above by C ∈ (0, ∞) a.e.

(vi) (Marginal density) The marginal density fX is bounded from above by C
′ ∈ (0, ∞)

and bounded away from zero; that is, fX ≥ C > 0.

Part (i) requires the conditional density function to be sufficiently smooth. The par-
tial derivative ∂

∂y fY |X(y|x) is well-defined almost everywhere because fY |X is Lipschitz
continuous, and hence, absolutely continuous. Part (iii) ensures that the first-order con-
dition holds for the optimal price. Part (iv) ensures that the optimal pricing function
p∗
D(x; FY ,X ) is sufficiently smooth in x. Part (v) requires the partial derivatives of the

revenue to be bounded. Part (vi) ensures that the covariate does not take vanishing or
dominating values.

Under part (ii), the optimal price is well-defined. Part (ii) is a standard assumption
in the optimal auctions/pricing literature also known as regularity (Myerson (1981)),
which is a so-called “strong concavity” condition from machine learning theory. It is
well known that any distribution F with the monotone hazard rate satisfies regularity.

Analogously, the following assumption is used to establish the results for the uniform
pricing problem, which concerns a class FU of unknown marginal distributions that are
deemed possible.
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Assumption 3. Let FU be the set of marginal distributions such that any FY ∈ FU satis-
fies parts (i), (ii), and (v)(3) of Assumption 2 with fY |X(y|x) replaced by fY (y ). Moreover,
the optimal price is an interior solution; that is, p∗

U (FY ) ∈ (0, 1). The distribution func-
tion fY (y ) is continuously differentiable in y in a neighborhood of p∗

U (FY ).

Remark. By defining FU in the way above, note that the marginal distribution associ-
ated with any joint distribution satisfying (i), (ii), and (v)(3) of Assumption 2 satisfies the
counterpart conditions in Assumption 3.

Notation For functions f (n) and g(n), we write f (n) � g(n) to mean that f (n) =
�(g(n)). Similarly, we write f (n) � g(n) to mean that f (n) = O(g(n)). The notation
f (n) 
 g(n) means that f (n) = �(g(n)); that is, f (n) = �(g(n)) and f (n) = O(g(n)).
As a general rule for this paper, the various c and C constants denote positive uni-
versal constants that are independent of the sample size n, and may vary from place
to place. For functions f and g, the unweighted L2 norm (L2 as the short form)
‖f − g‖2 ≡ (

∫ 1
0 [f (x) − g(x)]2 dx)

1
2 .

3. The K-markets ERM strategy

In this section, we propose the K-markets ERM strategy, and compare its revenue
with that of the true-distribution optimal 3PD strategy. In particular, we provide up-
per bounds for the pointwise and expected revenue deficiency as a function of n. We
also compare the revenue of the 1-market (uniform) ERM strategy with that of the true-
distribution uniform optimum, and provide an upper bound on the revenue deficiency.

3.1 Price discrimination

We propose the “K-markets” ERM strategy for the data-based 3PD problem with a con-
tinuous covariate:

1. Divide the individuals into K(≡Kn ) markets by splitting the covariate space [0, 1]
into K equally spaced intervals

Ik ≡ [(k− 1)/K, k/K
]
, k= 1, � � � ,K.

2. For each market Ik, based on the empirical distribution of {Yi : Xi ∈ Ik},

F̂k(y ) = 1
nk

∑
i : Xi∈Ik

1{Yi ≤ y,Xi ∈ Ik} (5)

where nk is the cardinality of {i : Xi ∈ Ik}, solve for the optimal price p̂D,k as follows:

p̂D,k ≡ argmax
p∈[0,1]

p
(
1 − F̂k(p)

)
.

The resulting pricing function is a piecewise function

p̂D(x; data) = p̂D,k, x ∈ Ik.
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If the kth market does not contain any observation, then simply choose p̂D,k to be
any arbitrary number in [0, 1]. Doing so has no impact on the asymptotic guar-
antee implied by the following theorem. For practical implementation, the de-
sired choice may change from context to context, depending on the seller’s specific
knowledge about a buyer, and the related analysis would be beyond the scope of
this paper.

Theorem 1. Suppose Assumptions 1 and 2 hold. There exists a positive universal con-
stant c1 ∈ (0, ∞) such that the following results hold:8

(i) At a given covariate value x0, the revenue generated by theK-markets ERM strategy
p̂D satisfies

sup
FY ,X∈F

(
r
(
p∗
D, x0

)−EFY ,X

[
r
(
p̂D(data), x0

)])

� 1/K2 + (K/n)2/3 + exp
(

− nc2
1

8K2 + logK
)

, x0 ∈ Ik,

where the expectation EFY ,X is taken with respect to data ∼ FY ,X and K satisfies
c1
K ≤ 1

2 ; moreover,

(K/n)2/3 + 1/K2 
 n−1/2 whenK 
 n1/4,

in which case,

sup
FY ,X∈F

(
r
(
p∗
D, x0

)−EFY ,X

[
r
(
p̂D(data), x0

)])
� n−1/2.

(ii) The expected revenue generated by theK-markets ERM strategy p̂D satisfies

sup
FY ,X∈F

(
R
(
p∗
D, FY ,X

)−EFY ,X

[
R
(
p̂D(data), FY ,X

)])

� 1/K2 + (K/n)2/3 + exp
(

− nc2
1

8K2 + logK
)

where the expectation EFY ,X is taken with respect to data ∼ FY ,X and K satisfies
c1
K ≤ 1

2 ; moreover,

(K/n)2/3 + 1/K2 
 n−1/2 whenK 
 n1/4,

in which case,

sup
FY ,X∈F

(
R
(
p∗
D, FY ,X

)−EFY ,X

[
R
(
p̂D(data), FY ,X

)])
� n−1/2.

8For example, the constant c1 = 1 whenX ∼U[0, 1].
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Remark. The term exp(− nc2
1

8K2 + logK) is technical and comes from a binomial tail bound
on nk in (5); see (22) and the following derivation in the appendix for more detail. Sup-

pose 8K2 = n1−cc2
1 with c ∈ (0, 1) so that

nc2
1

8K2 = nc (e.g., c = 1
2 , which gives K 
 n1/4 as in

the theorem above). Then there exists some positive universal constant c0 ∈ (0, ∞) such
that

exp
(

− nc2
1

8K2 + logK
)

= exp
(−c0n

c
)

as n→ ∞.

In this case, note that exp(−c0n
c ) = o((K/n)2/3 ) and the term exp(− nc2

1
8K2 + logK) can be

dropped from the bounds in Theorem 1.

Note that having an upper bound on the supremum of the revenue deficiency imme-
diately implies that this upper bound holds for every distribution FY ,X ∈ F . Moreover,
the revenue of theK-markets ERM strategy is guaranteed to have a convergence rate no
greater than the provided upper bound, in particular n−1/2 whenK 
 n1/4.

The interpretation of our results is as follows. The deficiency in revenues comes
from two sources. The first part (K/n)2/3 is related to the “variance,” which is due to the
randomness of the sample, making F̂k(·) different from its expectation. The second part
1/K2 is related to the approximation error due to the fact that we set the same price for
all covariate values in the market Ik. Note that more discrimination (largerK) increases
the “variance” but reduces the approximation error, and selecting K 
 n1/4 minimizes
the upper bound on revenue deficiency.

To show (K/n)2/3, we use a peeling argument and other tools from empirical process
theory (Alexander (1987), van der Vaart and Wellner (1996), van de Geer (2000)). Even
though this toolkit is widely used in mathematical statistics and theoretical machine
learning, to our knowledge, it has not been introduced to the data-based pricing litera-
ture. Showing 1/K2 requires controlling |p̃k−p∗

D(x0 )|, where p̃k ≡ argmaxp∈[0,1]pP(Y >
p,X ∈ Ik ) and x0 ∈ Ik. Using the implicit function theorem, we show that (i) p∗

D(x) is
Lipschitz continuous on [0, 1], and (ii) p̃k is a weighted average of p∗

D(x), x ∈ Ik. These
facts imply that |p̃k −p∗

D(x0 )|s � 1/Ks for any fixed s ≥ 1.

3.2 Uniform pricing

Based on the empirical distribution of {Yi}ni=1,

F̂(y ) = 1
n

n∑
i=1

1{Yi ≤ y},

the uniform ERM strategy simply solves for the optimal price p̂U as follows:

p̂U (dataY ) ≡ argmax
p∈[0,1]

p
(
1 − F̂(p)

)
.

We have the following result as a corollary of Theorem 1.
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Corollary 1. Let Assumptions 1 and 3 hold. The revenue generated by p̂U satisfies

sup
FY∈FU

(
R
(
p∗
U , FY

)−EFY

[
R
(
p̂U (dataY ), FY

)])
� n−2/3

where the expectation EFY is taken with respect to dataY ∼ FY .

The 3PD ERM problem with a continuous covariate is more delicate than the uni-
form ERM problem. The latter does not involve a (continuous) covariate, and hence,
incurs no approximation error. Contrasting Corollary 1 with Theorem 1, one can see
that the only source of revenue deficiency in the uniform ERM strategy comes from the
“variance.”

3.3 Welfare analysis

From the perspective of a policy maker, it is also of interest to study the welfare under
the specific pricing strategies in Sections 3.1 and 3.2. In this section, we derive the rate
at which the welfare generated by these data-based pricing strategies converges to the
welfare generated by their respective true-distribution optimal strategies.

We assume that there is no production cost for the seller, and there is no utility for the
seller if the item is not sold. These assumptions are typically imposed in a benchmark
model in the auction and pricing literature. For any pricing strategy p ∈ D, its welfare
can be written as

W (p, FY ,X ) ≡ EFY ,X

[
Y1
{
Y >p(X )

}]
.

Theorem 2. (i) Let Assumptions 1 and 2 hold. Take K 
 n1/4 in the “K-markets” ERM
strategy. Then

sup
FY ,X∈F

EFY ,X

∣∣W (p̂D(data), FY ,X
)−W (p∗

D, FY ,X
)∣∣� n−1/4.

(ii) Let Assumptions 1 and 3 hold. Then

sup
FY∈FU

EFY

∣∣W (p̂U (dataY ), FY
)−W (p∗

U , FY
)∣∣� n−1/3.

4. Information-theoretic limitation of data-based pricing

The revenue deficiency in the K-markets ERM strategy and uniform ERM strategy in

Section 3 is O(n− 2
2+2 ) and O(n− 2

2+1 ), respectively. Note the “2” and “1” in the second
terms of the denominators of the exponents in these upper bounds, where the “2 − 1 =
1” difference is a result of the extra dimension from the covariateX in the 3PD problem.
Without any lower bounds, the upper bounds alone are unable to confirm that the curse
of the extra dimensionality necessarily exists and is unimprovable.

In this section, we establish lower bounds to show that no 3PD strategy is able to
escape the curse of the extra dimensionality and hence theK-markets ERM strategy is not
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an exception. Our lower bounds also conclude the optimality of the convergence rates
n−1/2 and n−2/3 from Section 3 within the respective realms of 3PD and uniform pricing.
Therefore, the dependence of the extra dimension due toX in our 3PD problem cannot
be improved. As discussed in the Introduction, rate optimality speaks to the optimality
or efficiency of the growth requirement of the sample size.

For the lower bounds, it makes little sense to consider a framework recommending
the data-based pricing strategies that are only good for a single distribution. For any
fixed joint distribution FY ,X , there is always a trivial data-based pricing strategy: simply
ignore the data and select the optimal pricing scheme given FY ,X . For this particular
distribution, the revenue deficiency is zero. However, such a pricing strategy may per-
form poorly under other distributions of (Y ,X ). One solution to circumvent this issue
is to compute the worst revenue deficiency over the class F of possible distributions.

To be specific, we consider the minimax difference in the revenues at a given covari-
ate value x0 for 3PD,

RD
n (x0; F ) ≡ inf

p̌D∈Ď
sup

FY ,X∈F

(
r
(
p∗
D, x0, FY ,X

)−EFY ,X

[
r
(
p̌D(data), x0, FY ,X

)])
,

and the minimax difference in the expected revenues for 3PD,

RD
n (F ) ≡ inf

p̌D∈Ď
sup

FY ,X∈F

(
R
(
p∗
D, FY ,X

)−EFY ,X

[
R
(
p̌D(data), FY ,X

)])
,

where the expectation EFY ,X is taken with respect to data ∼ FY ,X andR(·, ·) is defined in
Section 2. In the definitions above, p̌D(data) is a pricing function in D and p̌D(x0; data)
corresponds to its value at a covariate x0 ∈ [0, 1]; moreover, Ď is the set of all data-based
3PD functions p̌D.

Similarly, for uniform pricing, we consider

RU
n

(
FU
)≡ inf

p̌U∈Ǔ
sup

FY∈FU

(
R
(
p∗
U , FY

)−EFY

[
R
(
p̌U (dataY ), FY

)])
,

where the expectation EFY is taken with respect to dataY ∼ FY . In the definition above,
p̌U (dataY ) is a uniform pricing function in U and p̌U (x0; dataY ) corresponds to its value
at a covariate x0 ∈ [0, 1]; moreover, Ǔ is the set of all data-based uniform pricing func-
tions p̌U .

In what follows, we derive a lower bound for RD
n (x0; F ), RD

n (F ), and RU
n (FU ), re-

spectively. These lower bounds are algorithm independent and reveal the fundamental
information-theoretic limitation of data-based pricing strategies.

4.1 Price discrimination

The first theorem presents a lower bound for the revenue difference at a given covariate
value x0, between any data-based 3PD strategy and the true-distribution optimal 3PD
strategy under the worst-case distribution by taking the supremum over F .
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Theorem 3 (Lower bounds for 3PD, deficiency in pointwise revenue). Let Assumption 1
hold. For any F satisfying Assumption 2 with C∗ ∈ (0, 2) in (2), the minimax difference in
the revenues at a given covariate value x0 is bounded from below as

RD
n (x0; F ) � n−1/2, x0 ∈ (0, 1),

if x0n
1/4 ≥ c′ and (1 − x0 )n1/4 ≥ c′′ for some positive universal constants c′ and c′′ (inde-

pendent of n and x0).

The second theorem presents a lower bound for the difference in expected revenues
between any data-based 3PD strategy and the true-distribution optimal 3PD strategy
under the worst-case distribution by taking the supremum over F .

Theorem 4 (Lower bounds for 3PD, deficiency in expected revenue). Let Assumption 1
hold. For any F satisfying Assumption 2 with C∗ ∈ (0, 2) in (2), the minimax difference in
the expected revenues is bounded from below as

RD
n (F ) � n−1/2.

Remark. By requiring C∗ ∈ (0, 2) in the theorems above, we allow r(y, x) associated
with an fY |X to have a second derivative bounded from above by a number smaller than
or equal to −2. To motivate the use of C∗ ∈ (0, 2), suppose fY |X = fY (i.e., the valua-
tion and covariate are independent of each other) and fY is the uniform distribution on
[0, 1], U[0, 1]. In this case, the revenue function equals R(y ) = y(1 − y ), which is twice-
differentiable with second-order derivativeR′′(y ) = −2 for any y ∈ [0, 1]. In our proof for
the lower bounds, U[0, 1] is used as the benchmark distribution.

Theorems 3 and 4 state that there is an inevitable deficiency,�(n−1/2 ), in the revenue
from any data-based 3PD strategy relative to the revenue from the true-distribution op-
timal 3PD strategy in the worst case by taking the supremum over F .

Recalling Theorem 1 on the convergence rate O(n−1/2 ) of the revenue from the K-
markets ERM strategy, despite its simplicity, Theorems 3 and 4 imply that the revenue
from this strategy achieves the optimal rate of convergence (as a function of n) to the rev-
enue from the true-distribution optimal 3PD strategy uniformly over F . In other words,
more sophisticated pricing strategies (e.g., with partitioning the covariate space based
on observed frequencies) cannot improve upon the K-markets ERM algorithm asymp-
totically.

To prove the lower bounds, we convert the problem into a classification task that
tries to distinguish between distributions that are sufficiently close to each other but
yield significantly different optimal prices. This technique was used in Huang, Man-
sour, and Roughgarden (2018); there the bound concerns data-based uniform pricing
strategies, which only require constructing two distributions and simpler techniques.
To establish the lower bound in Theorem 4, two distributions are far from being enough.
The reason is that, unlike the uniform pricing problem where the optimal pricing func-
tion is a scalar parameter, the 3PD problem tries to learn an optimal pricing function of
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the covariate (an infinitely-dimensional parameter) and the deficiency in the expected
revenue concerns the entire pricing function at all covariate values. The notion of pack-
ing sets in Kolmogorov and Tikhomirov (1959) and the Gilbert–Varshamov bound from
coding theory are useful ingredients for proving Theorem 4. The most intricate part of
the proof involves carefully constructing M conditional densities (where M grows with
n) and bounding the separation between the optimal prices associated with these densi-
ties. The desired set of optimal prices in our proof is a packing set where the separation
between elements is �(n−1/4 ) with respect to the unweighted L2 norm, and the cardi-
nality of this set is �(2n

1/4
).

4.2 Uniform pricing

We have the following theorem for uniform pricing.

Theorem 5. Let Assumption 1 hold. For any FU satisfying the conditions in Assump-
tion 3 with C∗ ∈ (0, 2) in (2), the minimax difference in the revenues is bounded from
below as

RU
n

(
FU
)
� n−2/3.

Theorem 5 states that there is an inevitable deficiency, �(n−2/3 ), in the revenue
from any data-based uniform pricing strategy relative to the revenue from the true-
distribution optimal uniform pricing strategy by taking the supremum over FU .

Recalling Corollary 1 on the convergence rate O(n−2/3 ) of the 1-market ERM strat-
egy, despite its simplicity, Theorem 5 implies that the revenue from this algorithm
achieves the optimal rate of convergence (as a function of n) to the revenue from the
true-distribution optimal uniform pricing strategy uniformly over FU .

4.3 Sketches of the proofs

To facilitate understanding, we start with a preliminary of the proof for Theorem 3 before
laying out the preliminaries for Theorems 4 and 5.

4.3.1 Preliminary of the proof for Theorem 3 For Theorem 3, we first show that the min-
imax difference in price at a given covariate value x0 is bounded from below as follows:

inf
p̌D∈Ď

sup
FY ,X∈F

EFY ,X

∣∣p̌D(x0; data) −p∗
D(x0; FY ,X )

∣∣� n−1/4, x0 ∈ (0, 1). (6)

Using Taylor expansion type of arguments and condition (2), we can relate the revenue
difference to the minimax squared difference in price at x0:

RD
n (x0; F ) � inf

p̌D∈Ď
sup

FY ,X∈F
EFY ,X

[∣∣p̌D(x0; data) −p∗
D(x0; FY ,X )

∣∣2]

≥ inf
p̌D∈Ď

sup
FY ,X∈F

{
EFY ,X

[∣∣p̌D(x0; data) −p∗
D(x0; FY ,X )

∣∣]}2

where the last line follows from the Jensen’s inequality.



318 Xie, Zhu, and Shishkin Theoretical Economics 20 (2025)

The derivation of the lower bound (6) can be reduced to a binary classification prob-
lem. In a binary classification problem, we have two distributions F1

Y ,X , F2
Y ,X ∈ F whose

optimal prices are separated by some number 2ε; that is,

∣∣p∗
D

(
x0; Fj

′
Y ,X

)−p∗
D

(
x0; FjY ,X

)∣∣≥ 2ε, j, j′ ∈ {1, 2}. (7)

A binary classification rule uses the data to decide whether the true distribution is F1
Y ,X

or F2
Y ,X . To relate the binary classification problem to the pricing problem, note that,

given any pricing function p̌D, we can use it to distinguish between F1
Y ,X and F2

Y ,X in
the following way. Define the binary classification rule

ψ(data) = arg min
j∈{1,2}

∣∣p∗
D

(
x0; FjY ,X

)− p̌D(x0; data)
∣∣.

We claim that when the underlying distribution is FjY ,X the decision rule ψ is correct if

∣∣p∗
D

(
x0; FjY ,X

)− p̌D(x0; data)
∣∣< ε. (8)

To see this, note that by the triangle inequality, (7) and (8) guarantee that

∣∣p∗
D

(
x0; Fj

′
Y ,X

)− p̌D(x0; data)
∣∣

≥ ∣∣p∗
D

(
x0; Fj

′
Y ,X

)−p∗
D

(
x0; FjY ,X

)∣∣− ∣∣p∗
D

(
x0; FjY ,X

)− p̌D(x0; data)
∣∣

> 2ε− ε= ε, where j′ 
= j, j, j′ ∈ {1, 2}.

This implies that

P
F
j
Y ,X

(
ψ(data) 
= j)≤ P

F
j
Y ,X

(∣∣p∗
D

(
x0; FjY ,X

)− p̌D(x0; data)
∣∣≥ ε), j = 1, 2.

Therefore, we can upper bound the average probability of mistakes in the binary classi-
fication problem as

1
2
PF1

Y ,X

(
ψ(data) 
= 1

)+ 1
2
PF2

Y ,X

(
ψ(data) 
= 2

)

≤ 1
2
PF1

Y ,X

(∣∣p∗
D

(
x0; F1

Y ,X

)− p̌D(x0; data)
∣∣≥ ε)

+ 1
2
PF2

Y ,X

(∣∣p∗
D

(
x0; F2

Y ,X

)− p̌D(x0; data)
∣∣≥ ε)

≤ sup
FY ,X∈F

PFY ,X

(∣∣p∗
D(x0; FY ,X ) − p̌D(x0; data)

∣∣≥ ε).
By the Markov inequality, we have

sup
FY ,X∈F

E
∣∣p̌D(x0; data) −p∗

D(x0; FY ,X )
∣∣

≥ ε sup
FY ,X∈F

P
(∣∣p̌D(x0; data) −p∗

D(x0; FY ,X )
∣∣≥ ε)
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≥ ε
(

1
2
PF1

Y ,X

(
ψ(data) 
= 1

)+ 1
2
PF2

Y ,X

(
ψ(data) 
= 2

))
.

Finally, we take the infimum over all pricing strategies on the left-hand side (LHS), and
the infimum over the induced set of binary decisions on the right-hand side (RHS). This
leads to

inf
p̌D∈Ď

sup
FY ,X∈F

E
∣∣p̌D(x0; data) −p∗

D(x0; FY ,X )
∣∣

≥ ε inf
ψ

(
1
2
PF1

Y ,X

(
ψ(data) 
= 1

)+ 1
2
PF2

Y ,X

(
ψ(data) 
= 2

))
. (9)

The RHS of the above inequality consists of two parts: (1) ε, related to the separation
between two optimal prices, and (2) the average probability of making a mistake in dis-
tinguishing the two distributions. To obtain a meaningful bound, we want to find two
distributions F1

Y ,X and F2
Y ,X that are close to each other (hard to distinguish) but their

optimal prices are sufficiently separated. We leave the details of the construction of such
distributions to the proof of Theorem 3 given in Appendix B.

4.3.2 Preliminary of the proof for Theorem 4 For Theorem 4, we first show that the min-
imax (unweighted) L2-distance in price is bounded from below as follows:

inf
p̌D∈Ď

sup
FY ,X∈F

E
∥∥p̌D(data) −p∗

D(FY ,X )
∥∥2

2 � n
−1/2

where

∥∥p̌D(data) −p∗
D(FY ,X )

∥∥2
2 =

∫ 1

0

∣∣p̌D(x; data) −p∗
D(x; FY ,X )

∣∣2 dx.

Using Taylor expansion type of arguments and condition (2), we can relate the difference
in the expected revenues to the minimax (unweighted) L2-distance in price:

RD
n (F ) � inf

p̌D∈Ď
sup

FY ,X∈F
EFY ,X

∥∥p̌D(data) −p∗
D(FY ,X )

∥∥2
2

where the expectation EFY ,X is taken with respect to data ∼ FY ,X .
The object above concerns the entire pricing function p∗

D(·; FY ,X ). As a result,
bounding the RHS of the above inequality is more complicated than the previous one
(6). In particular, we consider a multiple classification problem that tries to distinguish
among M distributions, where M is a function of the sample size n. Similar as before,
we want the optimal prices of theseM distributions to be sufficiently separated. Similar
derivations show that the lower bound of the revenue problem can be reduced to that of
a multiple classification problem:

inf
p̌D∈Ď

sup
FY ,X∈F

EFY ,X

∥∥p̌D(data) −p∗
D(FY ,X )

∥∥2
2 ≥ ε2 inf

ψ

1
M

M∑
j=1

P
F
j
Y ,X

(
ψ(data) 
= j), (10)
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where the infimum infψ is taken over the set of all multiple decisions (with M choices).
To proceed, we apply the Fano’s inequality from information theory (Cover and Thomas
(2005)). Fano’s inequality gives a lower bound on the average probability of mistakes:9

1
M

M∑
j=1

P
F
j
Y ,X

(
ψ(data) 
= j)≥ 1 −

M∑
j,j′=1

KL
(
F
j
Y ,X‖Fj′Y ,X

)
/M2 + log 2

logM
, (11)

where KL(·‖·) denotes the Kullback–Leibler (KL) divergence between two distributions:

KL(F1‖F2 ) ≡
∫
f1(y, x) log

f1(y, x)
f2(y, x)

dy dx.

To obtain a sharp bound based on the multiple classification problem, we want to find
a set of distributions (where the cardinality M of the set is large enough) that are close
enough to each other (small enough pairwise KL divergence) but their optimal prices
are sufficiently separated. We leave the detailed proof to Appendix B. Our proof is
based on a delicate construction of conditional densities along with an application of
the Gilbert–Varshamov lemma from coding theory. Specifically, we use the distribution
Y ,X ∼ U[0, 1] with X independent of Y as the benchmark distribution and construct
its perturbed versions with some correlation.

4.3.3 Preliminary of the proof for Theorem 5 Relative to the proofs in the case of 3PD,
the proofs for the price- and revenue-deficiency lower bounds in uniform pricing are
simpler. We first show that the minimax difference in price is bounded from below as
follows:

inf
p̌U∈Ǔ

sup
FY∈FU

EFY

∣∣p̌U (dataY ) −p∗
U

∣∣� n−1/3. (12)

As previously, we can relate the revenue difference to the minimax squared difference in
price:

RU
n

(
FU
)
� inf
p̌U∈Ǔ

sup
FY∈FU

EFY

[∣∣p̌U (dataY ) −p∗
U

∣∣2]

≥ inf
p̌U∈Ǔ

sup
FY∈FU

{
EFY

[∣∣p̌U (dataY ) −p∗
U

∣∣]}2

where the last line follows from the Jensen’s inequlity. The derivation of (12) only re-
quires constructing two distributions, similar to the approach discussed in Section 4.3.1.

5. Numerical evidence

Sections 3 and 4 establish that the K-markets ERM strategy achieves the optimal rates
of convergence in revenue uniformly over a class of distributions. In this section, we

9We do not present the Fano’s inequality in its standard form as in Cover and Thomas (2005). Instead, we
use a version from Wainwright (2019) that is more convenient for our purposes.
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turn to specific distributions and study the revenue performance of ourK-markets ERM
strategies in these cases. We present numerical evidence that supports the implications
of our theoretical results. Specifically, we calculate the revenues of the pricing strategies
proposed in Section 3 using real-world and simulated data. We describe the data in
detail below.

Data For the empirical study, we use an eBay auction data set (Jank and Shmueli
(2010)). Because eBay uses a sealed-bid second-price auction format, the bid of each
participant can serve as a proxy for an individual valuation of the object. In particular,
we use the data on 194 7-day auctions for the new Palm Pilot M515 PDAs.10 The data has
3832 observations at the bid level, and each observation includes an auction id, a bid
amount, a bidder id, and a bidder rating. Some bidders appear in the data set several
times because either they revised their bid during an auction or participated in several
auctions. To be consistent with our assumption of independent sampling, we analyze
the data at the bidder level and use the highest bid of each bidder across all auctions
she participated in as the one representing her valuation. This leaves 1203 observations
from which we draw samples of various sizes. ForYi, we use the bid (as described above)
of bidder i normalized to [0, 1]. For Xi in the 3PD case, we use bidder i’s rating on eBay,
which indicates the number of times sellers left feedback after a transaction with i.

For the simulation study, we let the marginal distribution of X be uniform on [0, 1]
and the CDF of Y conditional onX = x be

FY |X(y|x) = yx+1. (13)

Implementation For each type of data, we calculate (a Monte-Carlo approximation of)
the expected revenue generated by the uniform ERM and theK-markets ERM strategies
for various sample sizes as follows. First, fix n and K. Then draw a sample {Yi,Xi}ni=1
and, for each k= 1, � � � ,K, let

marketk ≡ {Yi : Xi ∈ Ik}, F̂k(t ) ≡ |Yi ∈ marketk : Yi ≤ t|
|marketk| .

Then the empirical optimal price in the kth market is given by

p̂D,k ≡ argmax
y∈[0,1]

y
(
1 − F̂k(y )

)= argmax
y∈marketk

y
(
1 − F̂k(y )

)
,

where the second equality holds because F̂k is a step function. Note that the uniform
ERM strategy simply corresponds to the 1-market ERM strategy. When K > 1 and a
drawn sample results in empty markets that contain no observations, we set the prices
in those markets to one. Finally, we compute the revenue deficiency for the uniform
ERM andK-markets ERM strategies (underK 
 n1/4).

10Jank and Shmueli (2010) also provide data on Cartier wristwatches, Swarovski beads, and Xbox game
consoles, but each of these data sets may pool various configurations or models of these products cate-
gories. Thus, we choose the data on the Palm Pilot M515 to minimize such variations.
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Figure 1. Revenue under uniform andK-markets ERM strategies.

Numerical findings Figure 1 plots the expected revenue generated by the K-markets
ERM strategy forK ∈ {1, � � � , 5} as a function of the sample size n (withK = 1 correspond-
ing to the uniform ERM strategy). To facilitate the exposition, we use a logarithmic scale
for the n-axis. For both types of data, one can see that for sufficiently small n, the K-
markets revenue is decreasing in K. As n grows, the performance of higher K improves
faster than that of lowerK, and for sufficiently large n, theK-markets revenue overtakes
that with any lower K. This finding can be explained by the bound (K/n)2/3 + 1/K2

in Theorem 1(ii), which implies that higher K (more discrimination) approximates the
revenue generated by the FY ,X-optimum better but incurs a larger “variance.” When the
sample size is small, a lowerK can indeed be more beneficial.

Figure 1 also suggests that, even if X contains useful information about Y , the uni-
form ERM strategy may be revenue superior to anyK(> 1)-markets ERM strategy when
n is sufficiently small. Recall from Theorem 1 that the bound (K/n)2/3 + 1/K2 is min-
imized at K = n1/4, which gives n−1/2, the optimal rate of convergence to the revenue
generated by the FY ,X-optimal 3PD strategy. This convergence rate is slower than n−2/3,
the optimal rate of convergence to the revenue generated by the FY -optimal uniform
pricing strategy (cf. Corollary 1). The slower convergence of the rate-optimalK-markets
ERM strategy can potentially dominate the revenue gain from price discrimination over
without discrimination for small n. Figure 2 illustrates the difference in the conver-
gence rates of the uniform ERM and the K-markets ERM strategies to their respective
theoretical benchmarks. In particular, we set K = 1

5�n1/4� for the simulation study and
K = max{1, �2n1/4 − 7�} for the empirical study. As predicted by the rate n−1/2 in Theo-
rem 1 and the rate n−2/3 in Corollary 1, the revenue from the uniform ERM strategy is
converging to the revenue from the FY -optimal uniform pricing strategy faster than the
K-markets revenue to the revenue from the FY ,X-optimal 3PD strategy.
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Figure 2. Data-based revenue deficiency under uniform and K-markets ERM strategies (with
K 
 n1/4).

Figure 3 exhibits the revenue under theK-markets ERM strategy forK = 1, � � � , 5 and

n= 2, � � � , 105, in the case whereX and Y are uniform on [0, 1] and independent of each

other. Not surprisingly, there is no benefit from price discrimination for revenue.

Figure 3. Uniform andK-markets revenue for the case ofX and Y uniform on [0, 1] and inde-
pendent of each other.
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6. Discussions

Recall that p∗
D is the true-distribution optimal 3PD strategy and p̂D is the K-markets

ERM strategy with K =�(n1/4 ) giving the best trade-off between the “variance” and ap-
proximation error as shown in Theorem 1; p∗

U is the true-distribution optimal uniform
pricing strategy and p̂U is the uniform ERM strategy. We can decompose the difference
between the expected revenues generated respectively from p̂D and p̂U as follows:

E
[
R(p̂D )

]−E
[
R(p̂U )

]= −{R(p∗
D

)−E
[
R(p̂D )

]}
︸ ︷︷ ︸

A1

+R(p∗
D

)−R(p∗
U

)
︸ ︷︷ ︸

A2

+R(p∗
U

)−E
[
R(p̂U )

]
︸ ︷︷ ︸

A3

.

The first term A1 = �(n−1/2 ) under a worst-case distribution FY ,X ∈ F , and the third
term A3 =O(n−2/3 ) under FY , the marginal of FY ,X . The second term A2 =�(1) when
X contains sufficient information about the valuation Y . Then a sufficient condition
for p̂D to be revenue superior to p̂U is that n→ ∞. In theory, this claim can be proved
with the upper bounds in Section 3 and a different construction in the derivations of the
lower bounds. Particularly, this new construction would first find a density fY ,X such
that the revenue generated by the corresponding fY ,X-optimal 3PD strategy is well sep-
arated from the revenue generated by the optimal uniform pricing strategy associated
with fY , and then build a large enough class of perturbed versions of fY ,X ; finally, we
would bound the separation between the optimal prices associated with these densi-
ties, in a similar fashion as what is done in Appendix B. In the paper, to make the analy-
sis tractable, we choose the distribution Y ,X ∼U[0, 1] with X independent of Y as the
benchmark distribution and construct its perturbed versions with some correlation.

A challenging open question is, can the condition on n be weakened to some finite
number and if so, when? To answer this question, we would have to derive the universal
constants in our bounds in meaningful forms. Unfortunately, due to the complexity of
our problem, this exercise is infeasible under the existing techniques from mathematical
statistics, probability theory, and information theory.

Our results suggest that it is more beneficial to engage in sample-based uniform
pricing when X is independent of Y .11 The fundamental reason lies in the proofs for
Theorems 3 and 4: unless n = ∞, no strategies that exploit {(Yi,Xi ), 1 ≤ i ≤ n} are able
to distinguish with certainty the distribution Y ,X ∼ U[0, 1] with X independent of Y
from its perturbed versions with some correlation (see the detailed constructions in Ap-
pendix B). The curse of dimensionality from exploiting the covariate X makes the con-
vergence of 3PD strategies based on {(Yi,Xi ), 1 ≤ i≤ n} slower than that of the uniform
pricing strategies based on {Yi, 1 ≤ i≤ n}.

Our upper and lower bounds together suggest the following possibility: even when
the covariateX contains useful information about the valuation Y , theK-markets ERM
strategy can be revenue inferior to the uniform ERM strategy in finite samples, due to
the curse of dimensionality and slower convergence of theK-markets ERM strategy to its
true-distribution optimal counterpart (and hence, a more stringent growth requirement
of the sample size). Indeed, the numerical evidence in Section 5 confirms this possibility.
But such an implication should be taken with caution in small samples.

11The information of independence is unknown to the seller. She can statistically test for the indepen-
dence of Y andX from the data but any such tests would suffer from Type I and Type II errors.
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Small sample complication Given the pattern observed in our numerical studies, one
might conjecture the following: there exists some n̄ > 1 such that when n < n̄, the uni-
form ERM is always revenue-superior to the K-markets ERM (with K > 1). In what fol-
lows, we explain why this conjecture may not hold.

Specifically, in our language, Babaioff et al. (2018) construct a distribution FY such
that the uniform ERM revenue under n = 2 is strictly smaller than the uniform ERM
revenue under n = 1. This seemingly counterintuitive result highlights the difficulty of
establishing general comparative results with very small sample size. We now argue that
this construction also sheds some light on the comparison of the revenue performance
of theK-markets ERM strategy withK = 1 vs. K = 2 in the case of n= 2.

To make this connection, we take X to be uniform on [0, 1] and independent of Y ,
and assume that in the case K = 2, when one of the markets is empty, the price for this
market is set at the same level as for the other market. Then, if K = 2 and both mar-
kets are nonempty, the revenue in each market equals the 1-market ERM revenue under
n= 1. Otherwise, if both observations are in the same market, then the revenue equals
the 1-market ERM revenue under n = 2. Therefore, the expected 2-markets ERM rev-
enue with n= 2 is the average of the 1-market ERM revenue under n= 1 and n= 2, and
hence, strictly higher than the 1-market ERM revenue with n = 2 for a distribution FY
exhibiting the property discussed in Babaioff et al. (2018).

More formally, let RK,n denote the expected revenue of theK-markets ERM strategy
with a sample of size n. Then

R2,2 = Edatan=2∼FY ,X

[
R
(
p̂D(data), FY ,X

)]

= 1
2
Edatan=2∼FY ,X |I1=∅ or I2=∅

[
R
(
p̂D(data), FY ,X

)]

+ 1
2
Edatan=2∼FY ,X |I1 
=∅ and I2 
=∅

[
R
(
p̂D(data), FY ,X

)]

= 1
2
R1,2 + 1

2
R1,1.

Therefore, R1,1 >R1,2 implies R2,2 >R1,2.
Finally, we add the caveat that the construction in Babaioff et al. (2018) is based on

an atomless approximation of the censored equal-revenue distribution FY (y ) = 1 − 1/y,
y ∈ [1, ∞), which has a discontinuous density. However, it is straightforward to verify
that the same property holds for the equal-revenue distribution truncated at any y > 4,
which has a Lipschitz continuous and differentiable density. Moreover, the equal rev-
enue distribution truncated at y and translated to the left by t > 1/y (so that the support
is [1 − t, y − t]) also has a Lipschitz continuous and differentiable density, the interior
optimal price (in line with our assumptions), and satisfies the Babaioff et al. (2018) prop-
erty, e.g., for y = 4, t = 1/2.

An open problem To conclude, we would like to propose a challenging open problem:
Do there exist some 3 ≤ n < n̄ <∞ such that for any n ∈ [n, n̄] and distribution in F , the
K-markets ERM strategy (for any K > 1) is always revenue-inferior to the uniform ERM
strategy?
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Appendix A: Proofs for upper bounds

To facilitate the presentation, we first give the proof for Corollary 1.

Proof of Corollary 1. Denote κ′ ≡ infp∈[0,1] |R′′(p)|/2 > 0. By Taylor expansion, for
any p,

R
(
p∗
U

)−R(p) ≥ κ′(p−p∗
U

)2
.

Denote R̂(p) ≡ p(1 − F̂(p)). Combining the inequality above with the basic inequality
(i.e., R̂(p̂U ) ≥ R̂(p∗

U )), we have

κ′(p̂U −p∗
U

)2 ≤R(p∗
U

)−R(p̂U ) ≤R(p∗
U

)− R̂(p∗
U

)− (R(p̂U ) − R̂(p̂U )
)
. (14)

For δ ∈ (0, p∗
U ], define

Gδ ≡ {y �→ p1{y ≥ p} −p∗
U1
{
y ≥ p∗} : p ∈ [p∗

U − δ, p∗
U + δ]}

and

Gδ(y ) ≡

⎧⎪⎪⎨
⎪⎪⎩

0, if y < p∗
U − δ,

p∗
U , if p∗

U − δ≤ y ≤ p∗
U + δ,

δ, if y > p∗
U + δ.

ThenGδ is an envelope function of the class Gδ. The L2(P )-norm ofGδ is bounded by

‖Gδ‖L2(P ) = ((p∗
U

)2
P
(
Y ∈ [p∗

U − δ, p∗
U + δ])+ δ2

P
(
Y >p∗

U + δ))1/2 ≤ C√
δ.

As we argue in the proof of Lemma 6, Gδ is a VC-subgraph class, so we have

E sup
g∈Gδ

∣∣∣∣∣
1
n

n∑
i=1

g(Yi ) −Eg(Yi )

∣∣∣∣∣≤ C
√
δ/n. (15)

We derive the convergence rate of p̂−p∗ via a peeling argument. Consider the following
decomposition:

P
(
n1/3

∣∣p̂U −p∗
U

∣∣>M)= ∞∑
j=M+1

P(n1/3
∣∣p̂U −p∗

U

∣∣ ∈ (j − 1, j]).

For any j ≥M + 1, we have

{∣∣p̂U −p∗
U

∣∣ ∈ ((j − 1)n−1/3, jn−1/3]
}

= {∣∣p̂U −p∗
U

∣∣> (j − 1)n−1/3,
∣∣p̂U −p∗

U

∣∣≤ jn−1/3}
⊂ {R(p∗

U

)− R̂(p∗
U

)− (R(p̂U ) − R̂(p̂U )
)≥ κ′(j − 1)2n−2/3,

∣∣p̂U −p∗
U

∣∣≤ jn−1/3}
⊂ {�j,n ≥ κ′(j − 1)2n−2/3},
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where the third line follows from (14), and �j,n in the last line is defined as

�j,n ≡ sup
g∈G

jn−1/3

∣∣∣∣∣
1
n

n∑
i=1

g(Yi ) −Eg(Yi )

∣∣∣∣∣.

Therefore,

P(
∣∣p̂U −p∗

U

∣∣ ∈ ((j − 1)n−1/3, jn−1/3]
)≤ P

(
�j,n ≥ κ′(j − 1)2n−2/3).

To bound the probability on the RHS of the above inequality, we use the concentration
inequality given by Theorem 7.3 in Bousquet (2003), which is a version of Talagrand’s
(1996) inequality. The concentration inequality states that for all t > 0,

P
(
�j,n ≥ E�j,n +

√
2t
(
σ2 + 2E�j,n

)
/n+ t/(3n)

)≤ exp(−ct ),

for some universal constant c > 0, where

σ2 ≡ sup
g∈G

jn−1/3

Eg(Y1 )2 ≤ ‖Gjn−1/3‖2
L2

≤ Cjn−1/3.

From (15), we have

E�j,n ≤ C
√
jn−1/3/n= C√jn−2/3.

By setting t = κ′j2, we have

E�j,n +
√

2t
(
σ2 + 2E�j,n

)
/n+ t/(3n)

≤ C√jn−2/3 +
√

2κ′j2
(
Cjn−1/3 + 2C

√
jn−2/3

)
/n+ κ′j2/(3n)

≤ C ′j3/2n−2/3 ≤ C∗(j − 1)2n−2/3,

when j is large enough. Then we have

P
(
�j,n ≥ C∗(j − 1)2n−2/3)≤ P

(
�j,n ≥ Cjn−2/3)≤ exp

(−cκ′j2), for j large.

To summarize, we have shown that

P
(
n1/3

∣∣p̂U −p∗
U

∣∣>M)≤ ∞∑
j=M+1

exp
(−C1j

2)≤ C3 exp
(−C2M

2).

By integrating the tail probability, we have

E
∣∣p̂U −p∗

U

∣∣s � n−s/3. (16)

For revenue, we use the second-order Taylor expansion and obtain that

E
[
R
(
p∗
U

)−R(p̂U )
]≤ sup

p

∣∣R′′(p)
∣∣E(p̂U −p∗

U

)2 � n−2/3.
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Proof of Theorem 1. We introduce some notation. Let R̃k(p) denote the revenue col-
lected from the kth market by charging price p; that is,

R̃k(p) ≡ pP(Y >p,X ∈ Ik )

= p
∫ 1

p

∫
Ik

fY |X(y|x)fX(x)dxdy.

Denote p̃k ≡ argmaxp∈[0,1] R̃k(p) as the maximizer of R̃k. The first- and second-order

derivatives of R̃k are respectively

R̃′
k(p) =

∫ 1

p

∫
Ik

fY |X(y|x)fX(x)dxdy −p
∫
Ik

fY |X(p|x)fX(x)dx,

R̃′′
k(p) =

∫
Ik

(
−2fY |X(p|x) −p ∂

∂y
fY |X(p|x)

)
fX(x)dx.

By the Lipschitz continuity assumption, the second-order derivative R̃′′
k(p) exists for al-

most all p ∈ [0, 1]. Recall that

−2fY |X(p|x) −p ∂
∂y
fY |X(p|x) ≤ −C∗,

and fX is bounded away from zero. Denote 2κ′′ ≡ C∗ infx∈[0,1] fX(x). Then

R̃′′
k(p) ≤ −2κ′′

∫
Ik

dx= −2κ′′/K

for almost all p ∈ [0, 1]. By Lemma 1, we have

R̃k(p̃k ) − R̃k(p) = ∣∣R̃k(p̃k ) − R̃k(p)
∣∣≥ κ′′

K
(p̃k −p)2, p ∈ [0, 1]. (17)

Note that p̃k is not the true optimal price under FY ,X . We need to relate it to the true
optimal price. Let k(x0 ) be such that x0 ∈ Ik. Then by the triangle inequality, we can
decompose the pricing difference into estimation error and approximation error:

E
∣∣p̂D(x0; data) −p∗

D(x0 )
∣∣= E

∣∣p̂k(x0 ) −p∗
D(x0 )

∣∣
≤ E|p̂k(x0 ) − p̃k(x0 )|︸ ︷︷ ︸

Estimation error

+ ∣∣p̃k(x0 ) −p∗
D(x0 )

∣∣︸ ︷︷ ︸
Approximation error

. (18)

Estimation error . Denote R̂k as the empirical counterpart of R̃k; that is,

R̂k(p) ≡ p

nk

∑
i∈{j:Xj∈Ik}

1{Yi > p,Xi ∈ Ik}.

Recall that p̂k is the maximizer of R̂k. The basic inequality (i.e., R̂k(p̂k ) ≥ R̂k(p̃k )) gives
that

R̃k(p̃k ) − R̃k(p̂) = R̃k(p̃k ) − R̃k(p̂) − R̂k(p̃k ) + R̂k(p̃k )
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≤ R̃k(p̃k ) − R̃k(p̂) − R̂k(p̃k ) + R̂k(p̂k ). (19)

Combining (17) and (19) yield

κ′′

K
(p̃k − p̂k )2 ≤ R̃k(p̃k ) − R̂k(p̃k ) − (R̃k(p̂) − R̂k(p̂k )

)
. (20)

In each Ik (k= 1, � � � ,K), the optimal price is the same.
In what follows, s = 1 or s = 2. Conditioning on Xi where i falls in the kth market,

the proof for Corollary 1, in particular, (16) yields

E
[|p̂k − p̃k|s|Xi, i ∈ {j :Xj ∈ Ik}

]
� (1/nk )s/3. (21)

By Assumption 2(vi), the ith observation falls into the kth market with probabilty c1
K and

other markets with probability K−c1
K . Let us consider the event Aq = {nk > qn} where

q ∈ (0, c1
K ). IfK is large enough such that c1

K ≤ 1
2 , the classic binomial tail bound yields

P(Aq )> 1 − exp
(−nKL(q‖c1/K)

)
(22)

where

KL(q‖c1/K) := q log
qK

c1
+ (1 − q) log

(1 − q)K
K − c1

.

Therefore, we have

E
[|p̂k − p̃k|s|Xi, i ∈ {j :Xj ∈ Ik}

]
� (qn)−s/3, for a given k,

with probability at least 1 − exp(−nKL(q‖c1/K)). With a union bound, we also have

E
[|p̂k − p̃k|s|Xi, i ∈ {j :Xj ∈ Ik}

]
� (qn)−s/3, for all k, (23)

with probability at least 1 − exp(−nKL(q‖c1/K) + logK).
Furthermore, we have

KL(q‖c1/K) ≥ 1
2

(
c1

K
− q
)2

. (24)

We show a more general result

KL(q‖α) =: gq(α) ≥ (α− q)2

2

for any q ∈ (0, α). Because gq(·) is twice differentiable and gq(q) = 0, a second-order
Taylor expansion gives

gq(α) = g′
q(q)(α− q) + g′′

q(t )

2
(α− q)2

where t ∈ [q, α] and g′
q(t ) = −q

t + 1−q
1−t . Note that g′

q(q) = 0. Moreover, given t ∈ (0, 1)
such that 1

t2
≥ 1 and 1

(1−t )2 ≥ 1, we have

g′′
q(t ) = q

t2
+ 1 − q

(1 − t )2 ≥ 1.



330 Xie, Zhu, and Shishkin Theoretical Economics 20 (2025)

As a consequence of (23) and (24), we have

E
[|p̂k − p̃k|s|Xi, i ∈ {j :Xj ∈ Ik}

]
� (qn)−s/3, for all k, (25)

with probability at least 1 − exp(−n( c1
K − q)2/2 + logK). Taking q= c1

2K , (25) gives

E
[|p̂k − p̃k|s|Xi, i ∈ {j :Xj ∈ Ik}

]
� (K/n)s/3, for all k, (26)

with probability at least 1 − exp(− nc2
1

8K2 + logK).
In view of (21), (23), (25), and (26), the source of uncertainty from the conditioning

is solely from the statistics nk. Using this fact, (26) as well as the fact that p̂k and p̃k are
bounded, we have

E
[|p̂k − p̃k|s

] = E

[
|p̂k − p̃k|s1

{
nk >

nc1

2K

}]
+E

[
|p̂k − p̃k|s1

{
nk ≤ nc1

2K

}]

� (K/n)s/3 + exp
(

− nc2
1

8K2 + logK
)

.

Approximation error . The second term |p̃k(x0 ) −p∗
D(x0 )| in (18) is deterministic and

can be controlled by using the smoothness conditions. By definition, p∗
D(x0 ) satisfies

the first-order condition

0 = ∂

∂p
r
(
p∗
D(x), x

)
.

By the differentiability condition of F , ∂
∂pr(p, x) is continuously differentiable in (p, x)

in a neighborhood of (p∗
D(x), x). By the strong concavity, ∂2

∂p2 r(p
∗
D(x), x) is nonzero.

Then by the implicit function theorem, the function p∗
D(x) is well-defined (uniquely

determined by the first-order condition) and is differentiable. Its derivative is given as
follows:

d

dx
p∗
D(x) = −

∂2

∂p∂x
r
(
p∗
D(x), x

)
∂2

∂p2 r
(
p∗
D(x), x

) .

By the strong concavity, the absolute value of ∂2

∂p2 r(p, x) is bounded away from zero;

also, the function | ∂∂xFY |X(y|x) + y ∂∂xfY |X(y|x)| is bounded above by C̄. This implies
that p∗

D(x) is Lipschitz continuous on [0, 1]. We useL1 to denote the Lipschitz constant.
By applying Taylor expansion to the first-order condition of p̃k, we have

0 =
∫
Ik

∂

∂p
r(p̃k, x)fX(x)dx

=
∫
Ik

∂

∂p
r
(
p∗
D(x), x

)
︸ ︷︷ ︸

=0

fX(x)dx+
∫
Ik

∂2

∂p2 r
(
p̄(x), x

)(
p̃k −p∗

D(x)
)
fX(x)dx,
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for some p̄(x) between p̃k and p∗
D(x). Rearranging terms shows that p̃k is a weighted

average of p∗
D(x), x ∈ Ik; that is,

p̃k =

∫
Ik

∂2

∂p2 r
(
p̄(x), x

)
p∗
D(x)fX (x)dx

∫
Ik

∂2

∂p2 r
(
p̄(x), x

)
fX(x)dx

.

Since p∗
D(x) is Lipschitz continuous, the triangle inequality implies that

∣∣p̃k −p∗
D(x0 )

∣∣s ≤Ls1/Ks, for any fixed s ≥ 1.

Therefore, we obtain the following upper bound:

E
∣∣p̂D(x0; data) −p∗

D(x0 )
∣∣2 � 1/K2 + (K/n)2/3 + exp

(
− nc2

1

8K2 + logK
)

.

By choosingK 
 n−1/4, the above bound becomes n−1/4.
In addition, Lemma 1(iii) gives that

E
[
r
(
p∗
D, x0

)− r(p̂D(data), x0
)]

� E
[∣∣p̂D(x0; data) −p∗

D(x0 )
∣∣2]

� 1/K2 + (K/n)2/3 + exp
(

− nc2
1

8K2 + logK
)

.

This proves part (i) of the theorem.
For part (ii), we want to bound the expected revenue difference. Consider the fol-

lowing decomposition:

R
(
p∗
D, FY ,X

)−R(p̂D(data), FY ,X
)

≤R(p∗
D, FY ,X

)−R(p̃, FY ,X ) + ∣∣R(p̃, FY ,X ) −R(p̂D(data), FY ,X
)∣∣.

The first term on the RHS is deterministic and can be bounded by using Lemma 1(iii) as
follows:

∣∣R(p∗
D, FY ,X

)−R(p̃, FY ,X )
∣∣

≤
∫ 1

0

∣∣r(p∗
D(x), x

)− r(p̃(x), x
)∣∣fX(x)dx

=
K∑
k=1

∫
Ik

∣∣r(p∗
D(x), x

)− r(p̃k, x)
∣∣fX(x)dx

≤
K∑
k=1

∫
Ik

1
2

∣∣∣∣2fY |X(y|x) + y ∂
∂y
fY |X(y|x)

∣∣∣∣ sup
y,x

∣∣p∗
D(x) − p̃k

∣∣2fX(x)dx

� 1/K2.
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where we have used the first-order condition of p∗
D. For the second term, we have

R(p̃, FY ,X ) −R(p̂D(data), FY ,X
)= K∑

k=1

R̃k(p̃k ) − R̃k(p̂k ).

This is because both p̂(data) and p̃ are constant within each Ik. Their revenues on Ik
are reduced to R̃k. Note that for every k, R̃′

k(p̃k ) = 0, and

∣∣R̃′′
k(p)

∣∣≤
∫
Ik

∣∣∣∣2fY |X(y|x) + y ∂
∂y
fY |X(y|x)

∣∣∣∣fX(x)dx

≤ 1
K

sup
y,x

(∣∣∣∣2fY |X(y|x) + y ∂
∂y
fY |X(y|x)

∣∣∣∣fX(x)

)
.

Then Lemma 1(iii) gives that

R̃k(p̃k ) − R̃k(p̂k ) � 1/K(p̃k − p̂k )2.

Hence, we have

E
∣∣R(p̃, FY ,X ) −R(p̂D(data), FY ,X

)∣∣≤ K∑
k=1

E
∣∣R̃k(p̃k ) − R̃k(p̂k )

∣∣

� (K/n)2/3 + exp
(

− nc2
1

8K2 + logK
)

.

To summarize, we have shown that

R
(
p∗
D, FY ,X

)−R(p̂D(data), FY ,X
)
� 1/K2 + (K/n)2/3 + exp

(
− nc2

1

8K2 + logK
)

.

By choosing K 
 n−1/4, the above bound becomes n−1/2. This proves part (ii) of the
theorem.

Proof of Theorem 2. For part (i), notice that the welfare can be written as a double
integral

W (p, FY ,X ) =
∫ 1

0

∫ p(x)

0
yfY |X(y|x)dyfX(x)dx.

The function yfY |X(y|x) is nonnegative and bounded for y, x ∈ [0, 1]. Then by the inte-
gral mean value theorem, we have

E
∣∣W (p̂D(data), FY ,X

)−W (p∗
D, FY ,X

)∣∣
= E

∣∣∣∣
∫ 1

0

∫ p̂D(x;data)

p∗
D(x)

yfY |X(y|x)dyfX(x)dx

∣∣∣∣
≤ sup

y,x

∣∣yfY |X (y|x)
∣∣E
∫ 1

0

∣∣p̂D(x; data) −p∗
D(x)

∣∣fX(x)dx.
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The integral on the last line can be decomposed based on theK markets:

E

∫ 1

0

∣∣p̂D(x; data) −p∗
D(x)

∣∣fX(x)dx

≤
K∑
k=1

∫
Ik

[
E
∣∣p̂D(x; data) − p̃k

∣∣+ ∣∣p̃k −p∗
D(x)

∣∣]fX(x)dx

=
K∑
k=1

E|p̂k − p̃k|/K +
K∑
k=1

∫
Ik

∣∣p̃k −p∗
D(x)

∣∣fX(x)dx

� (K/n)1/3 + 1/K + exp
(

− nc2
1

8K2 + logK
)


 n−1/4,

where the last line follows from the proof of Theorem 1.
For part (ii), since p∗

U is a scalar, the welfare can be simplified to

W
(
p∗
U , FY

)=
∫ p∗

U

0
yfY (y )dy.

Then we have

E
∣∣W (p̂U (dataY ), FY

)−W (p∗
U , FY

)∣∣= E

∣∣∣∣
∫ p̂U (dataY )

p∗
U

yfY (y )dy

∣∣∣∣
≤ sup

y

∣∣yfY (y )
∣∣E∣∣p̂U (dataY ) −p∗

U

∣∣
� n−1/3,

where we have used Corollary 1 along with the fact that yfY (y ) is nonnegative and
bounded for y ∈ [0, 1].

Appendix B: Proofs for lower bounds

Proof of Theorem 3. For Theorem 3, we use Lemma 4 to prove the lower bound. De-
fine

ωD(ε) ≡ sup
F1,F2∈F

{∣∣p∗
D(x0; F1 ) −p∗

D(x0; F2 )
∣∣ : H(F1‖F2 ) ≤ ε}.

By Lemma 4, we have

inf
p̌D∈Ď

sup
FY ,X∈F

EFY ,X

∣∣p̌D(x0; data) −p∗
D(x0 )

∣∣≥ 1
8
ωD
(
1/(2

√
n)
)
.

Therefore, we only need to find a lower bound for ωD. Based on the explanation in
Section 4.3.1, we want to construct two distributions that are hard to distinguish but
their optimal prices are well separated. We start by defining two perturbation functions.
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Figure 4. Perturbation functions φY and φX .

Let φY be defined as

φY (t ) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t + 1, t ∈ [−1, 0],

−t + 1, t ∈ [0, 2],

t − 3, t ∈ [2, 3],

0, otherwise.

(27)

Notice that φY is Lipschitz continuous on R. Let φX be defined as

φX(t ) ≡

⎧⎪⎪⎨
⎪⎪⎩
e−(4t−1)2/(1−(4t−1)2 ), t ∈ (0, 1/2),

−e−(4t−3)2/(1−(4t−3)2 ), t ∈ (1/2, 1),

0, otherwise.

Notice that φX is infinitely differentiable on R. We plot the two perturbation functions
in Figure 4.

Now we construct the two distributions. Let δ ∈ (0, 1/4) be a small number (that
depends on n) to be specified later. Let a be any number in the interval (0, 4 − 2C∗ ).
Define the two conditional density functions of Y givenX as

f1(y|x) ≡ 1,

f2(y|x) ≡ 1 + aδφY
(
y − 1/2
δ

)
φX

(
x− x0

δ
+ 1/4

)
. (28)

We let the marginal distribution fX(x) of X be the uniform distribution on [0, 1]. Note
that f1(y|x), f2(y|x), f1(y, x) = f1(y|x)fX(x), and f2(y, x) = f2(y|x)fX(x) are nonnega-
tive everywhere, with integrals over their respective entire spaces all equaling to 1.

The first task is to verify that the two distributions are indeed in the class Fκ. For
C∗ ∈ (0, 2), the first distribution is in F by Lemma 2 and the fact that Y is independent
of X . Given any x ∈ [0, 1], we can treat the whole term aφX((x − x0 )/δ + 1/4) as the
coefficient b in Lemma 3. Then the results of Lemma 3 applies since |φX | ≤ 1. In par-
ticular, the revenue function at x is twice-differentiable a.e., the absolute value of the
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second-order partial derivative with respect to y is bounded, and is also bounded from
below by C∗. The optimal price is an interior solution and is in the interior of a region
on which the revenue function is twice differentiable. Lastly, the absolute value of the
partial derivative of f2(y|x) with respect to x is bounded. This ensures that the quantity
| ∂∂xFY |X(y|x) + y ∂∂xfY |X(y|x)| is bounded.

Next, we want to derive the Hellinger distance between the two joint densities

f1(y, x) = 1,

f2(y, x) = 1 + aδφY
(
y − 1/2
δ

)
φX

(
x− x0

δ
+ 1/4

)
.

Let�(t ) ≡ √
1 + t. Its second-order derivate is bounded when |t|< 1/2; that is,

sup
|t|<1/2

∣∣�′′(t )
∣∣<C.

We useH to denote the Hellinger distance:

H(f1‖f2 )2 ≡
∫ 1

0

(√
f1(y ) −√f2(y )

)2
dy.

The Hellinger distance can be bounded as

H2(f1‖f2 )/2 = 1 −
∫ 1

0

∫ 1

0
�

(
aδφY

(
y − 1/2
δ

)
φX

(
x− x0

δ
+ 1/4

))
dy dx

=
∫ 1

0

∫ 1

0
�(0) −�

(
aδφY

(
y − 1/2
δ

)
φX

(
x− x0

δ
+ 1/4

))
dy dx

≤ −a�′(0)δ
∫ 1

0

∫ 1

0
φY

(
y − 1/2
δ

)
φX

(
x− x0

δ
+ 1/4

)
dy dx

+ a2Cδ2
∫ 1

0

∫ 1

0
φ2
Y

(
y − 1/2
δ

)
φ2
X

(
x− x0

δ
+ 1/4

)
dy dx,

where we have applied the second-order Taylor expansion to obtain the last inequality.
By the change of variables u= (y− 1/2)/δ and v= (x−x0 )/δ+ 1/4, for sufficiently small
δ ∈ (0, 1/2],

∫ 1

0

∫ 1

0
φY

(
y − 1/2
δ

)
φX

(
x− x0

δ
+ 1/4

)
dy dx= δ2

∫ 1

−1
φY (u)du

∫ 1

0
φX(v)dv= 0, (29)

and∫ 1

0

∫ 1

0
φ2
Y

(
y − 1/2
δ

)
φ2
X

(
x− x0

δ
+ 1/4

)
dy dx= δ2

∫ 1

−1
φ2
Y (u)du

∫ 1

0
φ2
X(v)dv≤ Cδ2.

Therefore, the Hellinger distance is bounded as

H2(f1‖f2 ) � δ4.
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Now we take δ such that δ4 
 1/n. Note that (29) holds when δ > 0 is small enough such
that δ ∈ (0, 1/2], 1/4 − x0/δ ≤ 0, and (1 − x0 )/δ+ 1/4 ≥ 1; that is, when x0n

1/4 ≥ c′ and
(1 − x0 )n1/4 ≥ c′′ for positive universal constants c′ and c′′ (independent of n and x0).
This ensures thatH2(f1‖f2 ) � 1/n. Then from Lemma 4, we know that

inf
p̌D∈Ď

sup
FY ,X∈F

EFY ,X

∣∣p̌D(x0; data) −p∗
D(x0 )

∣∣� n−1/4, x0 ∈ (0, 1).

For bounding the revenue, recall that the revenue achieved at the price p and covariate
value x0 is r(p, x0 ) = maxp p(1 − FY |X(p|x0 )). By Lemma 1, we have

r
(
p∗
D(x0 )

)− r(p̌D(x0; data)
)≥ C∗

2

∣∣p∗
D(x0 ) − p̌D(x0; data)

∣∣2.

As a result, we have

inf
p̌D∈Ď

sup
FY ,X∈F

E
[
r
(
p∗
D, x0

)− r(p̌D(data), x0
)]

≥ inf
p̌D∈Ď

sup
FY ,X∈F

E

[
C∗

2

∣∣p∗
D(x0 ) − p̌D(x0; data)

∣∣2]

≥ inf
p̌D∈Ď

sup
FY ,X∈F

C∗

2

{
E
[∣∣p∗

D(x0 ) − p̌D(x0; data)
∣∣]}2 � n−1/2.

This proves Theorem 3.

Proof of Theorem 4. To prove Theorem 4, we follow the explanation in Section 4.3.2
and use the Fano’s inequality to bound the probability of mistakes in the multiple clas-
sification problem. Before solving the revenue problem, we first study the lower bound
for the L2-distance of pricing functions. For two pricing functions p1 and p2, we define
the (unweighted) L2-distance as

‖p1 −p2‖2 ≡
(∫ 1

0

∣∣p1(x) −p2(x)
∣∣2 dx

)1/2

.

In part (i), we defined the perturbation on the X dimension at a fixed point x0. Now we
want to define a large set of perturbed distributions. Each of these distributions is per-
turbed in a small interval on theX dimension. Letm≥ 8 be a large number (depending
on n) that we specify later. Let α ∈ {0, 1}m be a vector of lengthm; that is,

α≡ (α1, � � � , αm ), where αj ∈ {0, 1}, j = 1, � � � ,m.

We construct a set of conditional density functions indexed by α:

f αY |X(y|x) ≡ 1 + a

m

m∑
j=1

αjφY
(
m(y − 1/2)

)
φX
(
mx− (j − 1)

)
.

The marginal distribution ofX is taken to be the uniform distribution on [0, 1], i.e., fX ≡
1[0,1]. We denote the joint distribution by fαY ,X ≡ fαY |XfX .
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We briefly describe this construction of the conditional density. The unit interval
[0, 1] is divided equally intom subintervals:

Ij ≡ [(j − 1)/m, j/m
]
, j = 1, � � � ,m.

For x ∈ Ij , if αj = 0, then the conditional density is 1. If αj = 1, then the conditional
density

fαY |X(y|x) ≡ 1 + a

m
φY
(
m(y − 1/2)

)
φX
(
mx− (j − 1)

)
, x ∈ Ij .

By treating 1/m as the scalar δ in part (i), we can see that, form large enough, each fαY ,X
belongs to the set Fκ.

From the set {fαY ,X : α ∈ {0, 1}m}, we want to pick out a large enough subset of dis-
tributions whose optimal price functions are well separated. For this purpose, we use
the Gilbert–Varshamov bound (Lemma 2.9, Chapter 2, Tsybakov (2009)). The Gilbert–
Varshamov bound states that form≥ 8, there exists a subset A ⊂ {0, 1}m with cardinality
M ≡ |A| ≥ 2m/8, and the pairwise rescaled Hamming distance between elements in this
set is greater than 1/8. That is,

1
m

m∑
j=1

1
{
αj 
= α′

j

}≥ 1
8

, for any α, α′ ∈ A.

Applying the Gilbert–Varshamov bound, we can show that for α, α′ ∈ A, the optimal
pricing functions of fαY ,X and fα

′
Y ,X are well separated. Let pα be the pricing function

associated with fαY ,X ; that is,

pα(x) ≡ argmax
p∈[0,1]

p
(
1 − FαY |X(p|x)

)
,

where FαY |X(y|x) is the corresponding conditional cumulative distribution function.

Note that α, α′ ∈ A differ in at least m/8 positions. This means that fαY |X and fα
′

Y |X differ
inm/8 intervals. Suppose that Ij is such an interval, where αj = 0 and α′

j = 1. We restrict
our attention to a subset of this interval:

Ĩj ≡
[

1
6m

+ j − 1
m

,
1

3m
+ j − 1

m

]
⊂ Ij .

When x ∈ Ĩj , we have

mx− (j − 1) ∈ [1/6, 1/3] =⇒ φX
(
mx− (j − 1)

) ∈ [φX(0), φX(1/2)
]
. (30)

By Lemma 3 (where b= aφX(mx− (j− 1))> 0, δ= 1/m), the choice a ∈ (0, 4 − 2κ), and
the fact (30), if we fix x ∈ Ĩj , then pα(x) = 1/2 while

pα′(x) ≤ 1/2 − c

m
φX
(
mx− (j − 1)

)≤ 1/2 − cφX(1/6)
m

, x ∈ Ĩj ,
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where c > 0 is a universal constant that does not depend on n.12 This implies that

∣∣pα(x) −pα′(x)
∣∣� 1

m
, x ∈ Ĩj .

Therefore, on the interval Ij , the separation between pα and pα′ is lower bounded as

∫
Ij

∣∣pα(x) −pα′(x)
∣∣2 dx�

∫
Ĩj

1/m2 dx= 1
6m

× 1

m2 � 1/m3.

By the Gilbert–Varshamov bound, there are at least m/8 such intervals. Therefore, we
can lower bound the total separation by

‖p1 −p2‖2 �
(
m/8 × 1/m3)1/2 � 1/m.

Next, we want to compute the KL divergence between fαY ,X and fα
′

Y ,X . Note that the
term φX(mx− (j − 1)) is nonzero only when x ∈ Ij . The KL divergence can therefore be
treated as a sum ofm integrals:

KL
(
f αY ,X‖fα′

Y ,X

)=
∫ 1

0

∫ 1

0
fαY ,X(y, x) log

fαY ,X

fα
′

Y ,X

dy dx=
m∑
j=1

Ej ,

where

Ej ≡
∫
Ij

∫ 1

0

(
1 + a

m
αjφY

(
m(y − 1/2)

)
φX
(
mx− (j − 1)

))

× log
1 + a

m
αjφY

(
m(y − 1/2)

)
φX
(
mx− (j − 1)

)
1 + a

m
α′
jφY

(
m(y − 1/2)

)
φX
(
mx− (j − 1)

) dy dx.

Notice that when αj = αj′ , Ej = 0. Therefore, we only need to consider the j’s where
αj 
= α′

j . Denote�1(t ) = − log(1 + t ) and�2(t ) = (1 + t ) log(1 + t ). Then we can write Ej
as

Ej =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ij

∫ 1

0
�1

(
a

m
φY
(
m(y − 1/2)

)
φX
(
mx− (j − 1)

))
dy dx, if αj = 0, α′

j = 1,

∫
Ij

∫ 1

0
�2

(
a

m
φY
(
m(y − 1/2)

)
φX
(
mx− (j − 1)

))
dy dx, if αj = 1, α′

j = 0.

By the second-order Taylor expansion at zero, we have

�1(t ) = −t + 1

2
(
1 + t ′)2 t

2,

12For example, c can be equal to a/8 according to Lemma 3.
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for some t ′ between 0 and t. When |t| ≤ 1/4,13 we have

�1(t ) ≤ −t +Ct2,

for some universal constant C > 0. Similarly, we can show that

�2(t ) ≤ t +Ct2.

Applying these inequalities to Ej , we have

Ej ≤ ±
∫
Ij

∫ 1

0

a

m
φY
(
m(y − 1/2)

)
φX
(
mx− (j − 1)

)
dy dx

+C
∫
Ij

∫ 1

0

a2

m2φ
2
Y

(
m(y − 1/2)

)
φ2
X

(
mx− (j − 1)

)
dy dx.

Similar to the derivation in part (i), we know that the first term on the RHS is zero. For
the second term, we can apply change of variables u=m(y − 1/2) and v=mx− (j − 1)
and obtain that ∫

Ij

∫ 1

0
φ2
Y

(
m(y − 1/2)

)
φ2
X

(
mx− (j − 1)

)
dy dx

= 1

m2

∫ 1

0
φ2
X(v)dv

∫ 3

−1
φ2
Y (u)du≤ C ′

m2

for some universal constant C ′ > 0. Putting the results results together, we know that
Ej ≤ C

m4 for all j. Since there arem intervals, we can bound the KL divergence by

KL
(
fαY ,X‖fα′

Y ,X

)= m∑
j=1

Ej �
1

m3 .

This is the KL distance for a single observation. For the entire data set with n i.i.d. ob-
servations, the KL divergence is upper bounded by Cn/m3.

Lastly, we can summarize our results into the Fano inequality presented in Lemma 5.
We have

inf
p̌D∈Ď

sup
FY ,X∈F

E
∥∥p̌D(data) −p∗

D

∥∥2
2 ≥ C1

m2

(
1 − C2n/m

3 + log 2

log 2m/8

)

≥ C1

m2

(
1 − C2n/m

3 + log 2
C3m

)
.

By choosing m = c0n
1/4 for a sufficiently large universal constant c0 > 0, we can make

the factor (1 − C2n/m
3+log 2

C3m
) stay above, say, 1/2. Then we have

inf
p̌D∈Ď

sup
FY ,X∈F

E
∥∥p̌D(data) −p∗

D

∥∥2
2 �

1

m2 
 n−1/2.

13Later we show thatm is chosen to be c0n
1/4 where c0 > 0 is a universal constant. As a result, |t| ≤ 1/4 is

guaranteed as long as c0 is sufficiently large.
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So far we have derived the lower bound for the L2-distance of pricing. Moving onto
the revenue problem, recall that the revenue achieved at the price p and covariate value
x is r(p, x) = maxp p(1 − FY |X(p|x)). By Lemma 1, we have

r
(
p∗
D, x

)− r(p̌D(data), x
)≥ C∗

2

∣∣p∗
D(x) − p̌D(x; data)

∣∣2.

Since fX is bounded away from zero, we have

inf
p̌D∈Ď

sup
FY ,X∈F

E
[
R
(
p∗
D

)−R(p̌D )
]

= inf
p̌D∈Ď

sup
FY ,X∈F

E

[∫ 1

0

(
r
(
p∗
D, x

)− r(p̌D, x)
)
fX(x)dx

]

≥ inf
p̌D∈Ď

sup
FY ,X∈F

E

[
C∗

2

(
inf

x∈[0,1]
fX(x)

)∫ 1

0

∣∣p∗
D(x) − p̌D(x; data)

∣∣2 dx
]
� n−1/2.

Proof of Theorem 5. We use Lemma 4 to prove the lower bound for Theorem 5. De-
fine

ωU (ε) ≡ sup
F1,F2∈FU

{∣∣p∗
U (F1 ) −p∗

U (F2 )
∣∣ :H(F1‖F2 ) ≤ ε}.

Then by Lemma 4, we have

inf
p̌U∈Ǔ

sup
FY∈FU

EFY

∣∣p̌U (dataY ) −p∗
U

∣∣≥ 1
8
ωU
(
1/(2

√
n)
)
.

Therefore, we only need to find a lower bound forωU . The proof proceeds in three steps.
In the first step, we construct two distributions and compute the separation between
their optimal prices. The second step bounds the Hellinger distance between these two
distributions. The third step summarizes.

Step 1. We construct two distribution functions. The first distribution is the uniform
distribution on the unit interval [0, 1]. We denote this density function as

f1(y ) = 1[0,1](y ).

The distribution function is F1(y ) = y on the support [0, 1]. The revenue function under
this distribution is R1(p) = p(1 −p). The optimal price is

p1 = argmax
p∈[0,1]

R1(p) = argmax
p∈[0,1]

p−p2 = 1/2.

The second distribution function is a small twist of the uniform distribution. We use the
same perturbation function φY defined in (27).
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Figure 5. Density functions f1 and f2.

We apply a small perturbation to the uniform density. Let δ > 0 be a small number
(that depends on n) specified later. Let a ∈ (0, 4 − 2C∗ ). The formula of the density f2 is
given by

f2(y ) ≡ 1 + aδφY
(
y − 1/2
δ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y ∈ [0, 1/2 − δ),

ay + 1 − a

2
+ aδ, if y ∈ [1/2 − δ, 1/2),

−ay + 1 + a

2
+ aδ, if y ∈ [1/2, 1/2 + 2δ),

ay + 1 − a

2
− 3aδ, if y ∈ [1/2 + 2δ, 1/2 + 3δ),

1, if y ∈ [1/2 + 3δ, 1].

We compare the two densities f1 and f2 in Figure 5.
Denote the optimal price under f2 by p2. By Lemma 3(ii), we have

|p2 −p1| ≥ aδ/8

when δ is sufficiently small.
Step 2. We want to bound the Hellinger distance H(F1‖F2 ). Define the function

�(t ) = √
1 + t. Its second-order derivative is bounded when |t|< 1/2; that is,

sup
|t|<1/2

∣∣�′′(t )
∣∣≤

√
2

2
.

Since f1(y ) = 1, we have

H(F1‖F2 )2/2 = 1 −
∫ 1

0
�

(
aδφY

(
y − 1/2
δ

))
dy

=
∫ 1

0
�(0) −�

(
aδφY

(
y − 1/2
δ

))
dy.
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By the second-order Taylor expansion, we have

�(0) −�
(
aδφY

(
y − 1/2
δ

))

≤ −�′(0)aδφY

(
y − 1/2
δ

)
+

√
2

4
a2δ2φ2

Y

(
y − 1/2
δ

)
.

By the construction of φY , we have

∫ 1

0
φY

(
y − 1/2
δ

)
dy = 0.

By the change of variables u= (y − 1/2)/δ, we have

∫ 1

0
φ2
Y

(
y − 1/2
δ

)
dy = δ

∫
R

φ2
Y (u)du≤ 4δ

∫ 0

−1
(x+ 1)2 dx= 4

3
δ.

Combining these results together, we obtain a bound on the Hellinger distance

H(F1‖F2 )2 ≤ 2
√

2
3
a2δ3.

Step 3. By setting δ = c′0(3/8
√

2)1/3a−2/3n−1/3 for c′0 ∈ (0, 1), we can ensure that
H(F1‖F2 ) ≤ 1/(2

√
n). Previously, we assumed that aδ≤ 1/2 for the second-order Taylor

expansion. This is true if c′0 is chosen to be sufficiently small. In this case, the separation
between p1 and p2 is lower bounded as below:

|p1 −p2| ≥ aδ/8 = c′0
16

(
3√
2

)1/3(a
n

)1/3

.

By Lemma 4, we have

inf
p̌U∈Ǔ

sup
FY∈FU

E
∣∣p̌U (dataY ) −p∗

U

∣∣≥ c′0
16

(
3√
2

)1/3(a
n

)1/3

.

Lastly, we want to lower bound the revenue. By Lemma 1, we have

RU
n

(
FU
)= inf

p̌U∈Ǔ
sup

FY∈FU

E
∣∣R(p̌U (dataY ), FY

)−R(p∗
U , FY

)∣∣

≥ inf
p̌U∈Ǔ

sup
FY∈FU

E

[
C∗

2

∣∣p̌U (dataY ) −p∗
U

∣∣2]

≥ inf
p̌U∈Ǔ

sup
FY∈FU

C∗

2

{
E
[∣∣p̌U (dataY ) −p∗

U

∣∣]}2

�
(

1
n

)2/3

.
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Appendix C: Auxiliary lemmas

Lemma 1. Let f be a function on [0, 1]. Assume that f is differentiable and its derivative
f ′ is Lipschitz continuous. Let z∗ be a point in [0, 1] such that f ′(z∗ ) = 0.

(i) The derivative f ′ is a.e. differentiable on [0, 1].

(ii) Assume that there exists κ1 > 0 such that f ′′(z) ≤ −κ1 for almost all z ∈ [0, 1].
Then, for any z ∈ [0, 1], we have

∣∣f (z) − f (z∗)∣∣≥ κ1

2

(
z− z∗)2.

(iii) Assume that there exists κ2 > 0 such that |f ′′(z)| ≤ κ2 for almost all z ∈ [0, 1]. Then,
for any z ∈ [0, 1], we have

∣∣f (z) − f (z∗)∣∣≤ κ2

2

(
z− z∗)2.

Proof of Lemma 1. For part (i), notice that a Lipschitz continuous function is abso-
lutely continuous. By Theorem 3.35 in Chapter 3 of Folland (1999), we know that f ′ is
differentiable a.e. with

f ′(z1 ) − f ′(z2 ) =
∫ z1

z2

f ′′(z)dz.

For part (ii), we can apply the fundamental theorem of calculus twice and obtain that

f (z) − f (z∗)=
∫ z

z∗
f ′(z̃)dz̃

=
∫ z

z∗

(
f ′(z1 ) − f ′(z∗))dz1

=
∫ z

z∗

∫ z1

z∗
f ′′(z2 )dz2 dz1

≤ −κ1

∫ z

z∗

∫ z1

z∗
dz2 dz1,

where in the second line we have used the assumption that f ′(z∗ ) = 0, and in the last
line we have used the assumption that f ′′(z) ≤ −κ1 for almost all z ∈ [0, 1]. The double
integral in the last line is equal to

∫ z

z∗

∫ z1

z∗
dz2 dz1 =

∫ z

z∗

(
z1 − z∗)dz1 =

(
z− z∗)2

2
.

Therefore, we have

∣∣f (z) − f (z∗)∣∣≥ κ1

2

(
z− z∗)2.

Part (iii) can be proved analogously.
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Lemma 2. For the uniform distribution on [0, 1], the revenue function R(y ) = y(1 − y ).
The revenue function is twice-differentiable with second-order derivative R′′(y ) = −2, y ∈
[0, 1]. The optimal price is 1/2.

Proof of Lemma 2. The proof is straightforward.

Lemma 3. Recall the perturbation function φY defined in (27). Consider the following
density function:

f (y ) ≡ 1 + bδφY
(
y − 1/2
δ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y ∈ [0, 1/2 − δ),

by + 1 − b

2
+ bδ, if y ∈ [1/2 − δ, 1/2),

−by + 1 + b

2
+ bδ, if y ∈ [1/2, 1/2 + 2δ),

by + 1 − b

2
− 3bδ, if y ∈ [1/2 + 2δ, 1/2 + 3δ),

1, if y ∈ [1/2 + 3δ, 1],

0, otherwise.

Denote F as the corresponding cumulative distribution function, R(y ) ≡ y(1 − F(y )) the
revenue function, and p∗ ≡ argmaxy∈[0,1]R(y ) the optimal price. If C∗ ∈ (0, 2), |b|< 4 −
2C∗, and δ > 0 is sufficiently small, then the following statements hold:

(i) The density f is Lipschitz continuous.

(ii) The revenue function is twice-differentiable a.e. The second-order derivative is
bounded a.e. and satisfies that

−2f (y ) − yf ′(y ) ≥ −C∗ for almost all y.

(iii) For b > 0, the optimal price p∗ ∈ (1/2 −δ, 1/2 −bδ/8). For b < 0, the optimal price
p∗ ∈ (1/2 − bδ/8, 1/2 + 2δ). For b = 0, the optimal price p∗ = 1/2. In particular,
p∗ is always an interior solution, and f is always differentiable in a neighborhood
of p∗.

Proof of Lemma 3. For reference, we plot in Figure 6 the perturbation function φY
and the perturbed density f . Part (i) is straightforward. The density f is piecewise linear,
and hence, Lipschitz continuous with Lipschitz constant b. To verify the strong concav-
ity in part (ii), note that the corresponding revenue function R is continuously differen-
tiable and twice-differentiable a.e. on the support [0, 1]. Its second-order derivative

R′′(y ) = −2f (y ) − yf ′(y ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−2, if y ∈ [0, 1/2 − δ],

−3by − 2 + b− 2bδ, if y ∈ [1/2 − δ, 1/2],

3by − 2 − b− 2bδ, if y ∈ [1/2, 1/2 + 2δ],

−3by − 2 + b+ 6bδ, if y ∈ [1/2 + 2δ, 1/2 + 3δ],

−2, if y ∈ [1/2 + 3δ, 1].
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Figure 6. Perturbation function and perturbed density.

We can see thatR′′ is piecewise linear, and hence, bounded a.e. We further show thatR′′
is bounded away from zero by κ. On the intervals [0, 1/2 − δ] and [1/2 + 3δ, 1], we have
R′′(y ) = −2<−C∗. We check the remaining three intervals one by one. On the interval
[1/2 − δ, 1/2], the condition |b|< 4 − 2C∗ ensures that

b≥ 0 =⇒ R′′(y ) ≤R′′(1/2 − δ) = −b/2 − 2 + bδ≤ −C∗,

b < 0 =⇒ R′′(y ) ≤R′′(1/2) = −b/2 − 2 − 2bδ≤ −C∗,

when δ is sufficiently small. On the interval [1/2, 1/2 + 2δ], we have

b≥ 0 =⇒ R′′(y ) ≤R′′(1/2 + 2δ) = b/2 − 2 + 4bδ≤ −C∗,

b < 0 =⇒ R′′(y ) ≤R′′(1/2) = b/2 − 2 − 2bδ≤ −C∗,

when δ is sufficiently small. On the interval [1/2 + 2δ, 1/2 + 3δ], we have

b≥ 0 =⇒ R′′(y ) ≤R′′(1/2 + 2δ) = −b/2 − 2<−C∗,

b < 0 =⇒ R′′(y ) ≤R′′(1/2 + 3δ) = −b/2 − 2 − 3bδ <−C∗,

To summarize, we have shown that R′′(y ) ≤ −C∗ a.e. on [0, 1] provided that δ > 0 is
sufficiently small.

For part (iii), we first consider the case b > 0. We only need to consider the interval
[1/2 − δ, 1/2]. The reason will become clear later. The cumulative distribution function

F(y ) = b

2
y2 +

(
1 − b

2
+ bδ

)
δy + b

2
(1/2 − δ)2, y ∈ [1/2 − δ, 1/2].

The revenue function

R(y ) = −b
2
y3 −

(
1 − b

2
+ bδ

)
y2 +

(
1 − b

2
(1/2 − δ)2

)
y, y ∈ [1/2 − δ, 1/2].
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The marginal revenue

R′(y ) = −3b
2
y2 − (2 − b+ 2bδ)y + 1 − b

2
(1/2 − δ)2, y ∈ [1/2 − δ, 1/2].

We evaluate the marginal revenue at two points 1/2 − δ and 1/2 − bδ
8 . When y = 1/2 − δ,

the marginal revenue

R′(1/2 − δ) = δ > 0.

When y = 1/2 − bδ/8, the marginal revenue

R′
(

1/2 − bδ

8

)
≈ b(b− 4)

16
δ < 0,

where we have omitted higher order terms involving δ2. Therefore, R′(1/2 − bδ
8 ) is neg-

ative for sufficiently small δ. Since the marginal revenue R′ is strictly decreasing on
the entire domain [0, 1], we know that the only zero of R′ (which is the optimal price
p∗) is within the region (1/2 − δ, 1/2 − bδ

8 ). Within this region, the revenue is twice-
differentiable everywhere.

Next, we consider the case b < 0. In this case, we only need to study the region
[1/2, 1/2 + 2δ]. The cumulative distribution function

F(y ) = −b
2
y2 +

(
1 + b

2
+ bδ

)
y + b

2
δ2 − b

2
δ− b

8
, y ∈ [1/2, 1/2 + 2δ].

The revenue function

R(y ) = y(1 − F(y )
)

= b

2
y3 −

(
1 + b

2
+ bδ

)
y2 +

(
1 + b

8
− b

2
δ2 + b

2
δ

)
y, y ∈ [1/2, 1/2 + 2δ].

The marginal revenue

R′(y ) = 3b
2
y2 − (2 + b+ 2bδ)y +

(
1 + b

8
− b

2
δ2 + b

2
δ

)
, y ∈ [1/2, 1/2 + 2δ].

We evaluate the marginal revenue at two points 1/2 + δ and 1/2 − bδ
8 . When y = 1/2 + δ,

the marginal revenue

R′(1/2 + δ) ≈ −2δ < 0,

where we have omitted higher order terms involving δ2. When y = 1/2 − bδ/8, the
marginal revenue

R′
(

1/2 − bδ

8

)
≈ b(b+ 4)

16
δ > 0,

where we have omitted higher order terms involving δ2. Since the marginal revenue R′
is strictly decreasing on the entire domain [0, 1], we know that the only zero ofR′ (which
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is the optimal price p∗) is within the region (1/2 − bδ
8 , 1/2 + δ). Within this region, the

revenue is twice-differentiable everywhere.
Lastly, when b = 0, the density function is constant, and Lemma 2 shows that the

optimal price is 1/2. Therefore, regardless of the sign of b, the optimal price is always
an interior solution, and is in the interior of a region on which the revenue function is
twice-differentiable.

Lemma 4. Take x0 ∈ [0, 1]. Recall the following definition of ωD(ε) and ωU (ε):

ωD(ε) ≡ sup
F1,F2∈F

{∣∣p∗
D(x0; F1 ) −p∗

D(x0; F2 )
∣∣ :H(F1‖F2 ) ≤ ε},

ωU (ε) ≡ sup
F1,F2∈FU

{∣∣p∗
U (F1 ) −p∗

U (F2 )
∣∣ :H(F1‖F2 ) ≤ ε}.

Then

inf
p̌D∈Ď

sup
FY ,X∈F

EFY ,X

∣∣p̌D(x0; data) −p∗
D(x0; FY ,X )

∣∣≥ 1
8
ωD
(
1/(2

√
n)
)
,

inf
p̌U∈Ǔ

sup
FY∈FU

EFY

∣∣p̌U (dataY ) −p∗
U (FY )

∣∣≥ 1
8
ωU
(
1/(2

√
n)
)
.

Proof of Lemma 4. By treating p∗
D(x0; ·) and p∗

U (·) as functionals, the desired results
directly follow from Corollary 15.6 (Le Cam for functionals) in Chapter 15 of Wainwright
(2019).

Lemma 5. Let {F
j
Y ,X : 1 ≤ j ≤M } ⊂ F be such that

∥∥p∗
D

(
F
j
Y ,X

)−p∗
D

(
F
j
Y ,X

)∥∥
2 ≥ 2δ, j 
= j′.

Then we have

inf
p̌D∈Ď

sup
FY ,X∈F

E
∥∥p̌D(data) −p∗

D(FY ,X )
∥∥2

2 ≥ δ2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −

M∑
j,j′=1

KL
(
F
j
Y ,X‖Fj′Y ,X

)
/M2 + log 2

logM

⎞
⎟⎟⎟⎟⎟⎟⎠

Proof of Lemma 5. The result follows from Proposition 15.12 (the Fano’s inequality)
and inequality (15.34) (convexity of the KL divergence) in Chapter 15 of Wainwright
(2019), where � is taken to be the square function, ρ the L2-distance, and θ the func-
tional p∗

D.

Lemma 6. Consider the following function class:
{

(y, x) �→ (
p1{y ≥ p} − p̃1{y ≥ p̃}

)
1
{
x ∈ [k/K, (k+ 1)/K)

}
: p ∈ [0, 1]

}
.

For any p̃ ∈ [0, 1], K ≥ 1, and 0 ≤ k ≤ K − 1, the above class is a VC-subgraph with VC-
dimension no greater than 2.



348 Xie, Zhu, and Shishkin Theoretical Economics 20 (2025)

Proof of Lemma 6. By Lemma 2.6.22 in Chapter 2 of van der Vaart and Wellner (1996),
the class

{
(y, x) �→ p1{y ≥ p} : p ∈ [0, 1]

}
is a VC-subgraph with VC-dimention no greater than 2.14 The function (y, x) �→ p̃1{y ≥
p̃} is a fixed function that does not depend on the index p. By the proof Lemma 2.6.18(v)
in van der Vaart and Wellner (1996), the class

{
(y, x) �→ p1{y ≥ p} − p̃1{y ≥ p̃} : p ∈ [0, 1]

}
is a VC-subgraph with VC-dimention no greater than 2. Lastly, we multiply each func-
tion in the class by an indicator 1{x ∈ [k/K, (k + 1)/K)}. This does not increase the
VC-dimension.

Lemma 7. Let Z1, � � � , Zn be an i.i.d. sequence of random variables from distribution P .
Let G be a class of VC-subgraph functions with VC-dimension v and envelope functionG.
Assume that ‖G‖L2(P ) <∞. Then we have

E sup
g∈G

∣∣∣∣∣
1
n

n∑
i=1

g(Zi ) −Eg(Zi )

∣∣∣∣∣≤ 8
√

2
‖G‖L2(P )√

n

(
log(2C ) + log(v) + (log(16) + 3

)
v
)
,

for some universal constant C, where the L2(P ) norm ‖f − g‖L2(P ) ≡ (
∫
X [f (x) −

g(x)]2
P(dx))

1
2 .

Proof of Lemma 7. This is a well-known result in the literature. We include it here for
completeness. Let N(G, L2(Q), τ) denote the covering number of (G, L2(Q)). By Re-
mark 3.5.5 in Chapter 3 of Giné and Nickl (2015), we know that

E sup
g∈G

∣∣∣∣∣
1
n

n∑
i=1

g(Xi ) −Eg(Xi )

∣∣∣∣∣≤ 8
√

2
‖G‖L2(P )√

n

∫ 1

0
sup
Q

√
log 2N

(
G, L2(Q), τ‖G‖L2(Q)

)
dτ,

where the supremum is taken over all discrete probabilities with a finite number of
atoms. By Theorem 2.6.7 in Chapter 2 of van der Vaart and Wellner (1996), we know
that for any probability measureQ,

N
(
G, L2(Q), τ‖G‖L2(Q)

)≤ Cv(16e)v(1/τ)2v,

for some universal constant C. Therefore,
∫ 1

0
sup
Q

√
log 2N

(
G, L2(Q), τ‖G‖L2(Q)

)
dτ ≤ log(2C ) + log(v) + (log(16) + 3

)
v

Then the desired result follows.

14In the original statement of the lemma, the VC dimension is no greater than 3. This is because the
definition of VC dimension in van der Vaart and Wellner (1996) is the smallest number n for which no set of
n points is shattered. The definition we use in this paper is the largest number n that some set of n points is
shattered.
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