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This paper studies a dynamic quantile model for intertemporal decisions under
uncertainty, in which the decision maker maximizes the 7-quantile of the stream
of future utilities, for = € (0, 1). We present two sets of contributions. First, we
generalize existing results in directions that are important for applications. In
particular, the sets of choices and random shocks are general metric spaces, ei-
ther connected or finite. Moreover, the future state is not exclusively determined
by the agent’s choice, but can also be influenced by shocks. Under these gener-
alizations, we establish the principle of optimality, show that the corresponding
dynamic problem yields a value function, and under suitable assumptions, this
value function is concave and differentiable. Additionally, we derive the corre-
sponding Euler equation. Second, we illustrate the usefulness of this approach
by studying two prominent dynamic economics models. The first deals with in-
tertemporal consumption with one asset. We obtain closed-form expressions for
the value function, the optimal asset allocation and consumption, as well as for
the consumption path. These closed-form solutions allow us to obtain useful
comparative statics that shed light on how consumption and savings respond to
increase in risk aversion, impatience, and interest rates. For the second model, we
discuss a quantile-based version of the job-search model with uncertainty.
Keyworps. Quantile preferences, dynamic programming, recursive model, in-
tertemporal consumption, job search with unemployment.

JEL crassiFicaTION. C61, D1, E2.

Luciano de Castro: decastro.luciano@gmail.com

Antonio E Galvao: agalvao@msu.edu

Daniel Nunes: dsnunes.rjOgmail.com

The authors are grateful to seminar participants at the University of Arizona, FGV-EPGE, and SAET 2022 for
helpful comments and discussions. Luciano de Castro acknowledges the support of the National Council

for Scientific and Technological Development—CNPq. All the remaining errors are ours.

© 2025 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE5454


https://econtheory.org/
mailto:decastro.luciano@gmail.com
mailto:agalvao@msu.edu
mailto:dsnunes.rj@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE5454

354 de Castro, Galvao, and Nunes Theoretical Economics 20 (2025)

1. INTRODUCTION

Dynamic programming is a basic tool for intertemporal economic analysis that allows
economists to examine a wide variety of problems. This framework has been exten-
sively used because it is sufficiently rich to model problems involving sequential deci-
sion making over time and under uncertainty. See, among others, Stokey, Lucas, and
Prescott (1989), Rust (1996), Ljungqvist and Sargent (2012), and Sargent and Stachurski
(2023).

Many applications of intertemporal maximization use the standard recursive ex-
pected utility (EU). These models have been workhorses in several economic fields. EU
is simple and amenable to theoretical modeling. The assumption of maximization of
average utility, the average being a simple measure of centrality, has intuitive appeal as
a behavioral postulate. Nevertheless, the usual EU framework has been subjected to a
number of criticisms, including in its dynamic version.! An expanding literature con-
siders alternative recursive models. We refer the reader to Epstein and Zin (1989, 1991),
Weil (1990), Grant, Kajii, and Polak (2000), Epstein and Schneider (2003), Hansen and
Sargent (2004), Maccheroni, Marinacci, and Rustichini (2006), Klibanoff, Marinacci, and
Mukerji (2009), Marinacci and Montrucchio (2010), Strzalecki (2013), Bommier, Kochov,
and Le Grand (2017), Sarver (2018), and Dejarnette, Dillenberger, Gottlieb, and Ortoleva
(2020) among others.

Recently, de Castro and Galvao (2019) suggested a new alternative to the EU recur-
sive model. In their model, the economic agent chooses the alternative that leads to
the highest r-quantile of the stream of future utilities for a fixed 7 € (0, 1). The dynamic
quantile preferences for intertemporal decisions are represented by an additively sep-
arable quantile model with standard discounting. The associated recursive equation is
characterized by the sum of the current period utility function and the discounted value
of the certainty equivalent, which is obtained from a quantile operator. This intertem-
poral model is tractable and simple to interpret, since the value function and Euler equa-
tion are transparent, and easy to calculate (analytically or numerically). This framework
allows the separation of the risk attitude from the intertemporal substitution, which is
not possible with EU, while maintaining important features of the standard model, such
as dynamic consistency and monotonicity.? Static quantile preferences were first stud-
ied by Manski (1988) and axiomatized by Chambers (2009), Rostek (2010), and de Castro
and Galvao (2022). There are several recent applications of quantile preferences mod-
els; see, e.g., Bhattacharya (2009), Giovannetti (2013), Barunik and Cech (2021), Long,
Sethuraman, and Xue (2021), and Chen, Dolado, and Gonzalo (2021), de Castro, Galvao,
Montes-Rojas, and Olmo (2022b), Barunik and Nevrla (forthcoming). From an exper-
imental point of view, de Castro, Galvao, Noussair, and Qiao (2022c) find that the be-
havior of between 30% and 50% of the individuals can be better described with quantile

1For example, it has been well documented in the literature that it is not possible to separate the in-
tertemporal substitution from the risk attitude parameters when using standard dynamic models based
on the EU (see, e.g., Hall (1988)). The framework proposed by Kreps and Porteus (1978) to study temporal
resolution of uncertainty was one of the first efforts to go beyond EU in the dynamic setting.

2In the quantile model, the risk attitude is captured by 7. Therefore, the model allows a separation of risk
attitude (governed by 7) and the elasticity of intertemporal substitution, which is exclusively determined
by the utility function; see Section 2 for details.
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preferences rather than the standard EU. Moreover, de Castro, Galvao, Kim, Montes-
Rojas, and Olmo (2022a) provide experimental evidence that when individuals selecting
a portfolio are able to clearly assess the differences in the lotteries’ payoff distributions,
their portfolio choices are closer to the optimal decision of a quantile maximizer than of
a mean-variance maximizer.

The first main contribution of this paper is to generalize the quantile dynamic pro-
gramming model. We extend existing results in important directions that are useful for
practical applications. First, the sets of choices and random shocks are now general
metric spaces, either connected or finite. This generalization substantially broadens the
scope of economic applications. Moreover, we relax the assumption that the future state
variable is exclusively determined by the agent’s choice. Now the future state can also be
influenced by shocks, and the choice variable is completely separate from the state vari-
able, with the agent choosing a contingent action plan, which could also be influenced
by the shock. This allows, for instance, to study the case in which the wealth in the cur-
rent state is influenced by the random returns and not directly chosen from a previous
investment decision.

Under these generalizations, we show that theoretical properties of the dynamic
quantile model remain valid. In particular, we first establish the validity of the prin-
ciple of optimality. Second, we show that the optimization problem leads to a contrac-
tion, which therefore has a unique fixed point. This fixed point is the value function of
the problem and satisfies the Bellman equation. Third, under suitable assumptions, we
prove that the value function is concave and differentiable, thus establishing the quan-
tile analog of the envelope theorem. Fourth, using these results, we derive the corre-
sponding Euler equation for the infinite horizon problem. These extensions are non-
trivial.3

The second main contribution of this paper is to provide examples to illustrate the
usefulness of the recursive quantile framework, exploring its economic and empirical
implications. In particular, we revisit two important models. First, we illustrate the
methods with a simple intertemporal consumption model with a single asset (see, e.g.,
Ljungqvist and Sargent (2012)), where the economic agent decides on how much to con-
sume and save by maximizing a quantile recursive function subject to a linear budget
constraint. Following a large body of literature, we specify an isoelastic utility function
and derive several properties of the model. The quantile model is characterized by three
parameters: the discount factor, the risk attitude, and the elasticity of intertemporal sub-
stitution. We solve the dynamic problem and obtain the Euler equation. Interestingly,
we are able to obtain closed-form expressions for the fixed-point value function, and
the optimal consumption and asset allocation. These closed-form solutions allow us to
do comparative statics with respect to the parameters of the model and establish how
consumption and savings decisions are influenced by changes in the risk attitude, im-
patience, or intertemporal substitution of decision makers, or by interest rate changes.

3The main difficult in establishing our results is related to the continuity of the quantile operator. This
continuity is specially delicate when the variables are not required to have continuous densities. See dis-
cussion in Section 3.4.
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In the second example, we discuss a quantile-based version of the job-search model
discussed in McCall (1970). In a labor market characterized by uncertainty and costly
information, both employers and employees will be searching. The analysis is directed
to the employee’s job-searching strategy. This model illustrates the use of the quan-
tile framework when the decision variable is discrete and one of the shocks—namely
keeping or losing the job—is also discrete.* We establish a characterization of the value
function as a function of the wage, as well as the optimal wage.

The remaining of the paper is organized as follows. Section 2 describes the dynamic
economic model and introduces the dynamic programming approach for determining
the optimal solution of the recursive quantile model. We begin the discussion motivat-
ing the quantile model with a review of a dynamic model of intertemporal consumption
without uncertainty. Section 3 presents the main theoretical results. Section 4 illustrates
the empirical usefulness of the the new approach by providing different examples of
the dynamic quantile model. Finally, Section 5 concludes. We relegate all proofs to the
Appendix.

2. AN INTRODUCTION TO QUANTILE PREFERENCES

This section introduces the dynamic programming approach for determining the opti-
mal solution of the recursive quantile model, which was introduced by de Castro and
Galvao (2019). The objective is to write a recursive problem and solve the infinite hori-
zon sequence problem, subject to a given constraint.

We begin by briefly revisiting the definition of quantiles. Given two random vari-
ables, W and Z, let F(w|Z =z) = Fy|z—(w) =Pr(W < w|Z = z) denote the conditional
cumulative distribution function (c.d.f.) of W given Z. If the function w - Fiy|z—,(w)
is strictly increasing and continuous in its support, its inverse is the quantile of W given
Z,ie,Q:[W|Z=2z]= FI;/}Z:Z(T), for 7 € (0, 1).° This case is illustrated in Figure 1(a). If
w — Fiy|z—.(w) is not invertible, we can still define the quantile as one of its generalized
inverses. Following the standard practice, we define the quantile as the left-continuous
version of the generalized inverse:

Q- W|Z=zl=inflweR:Pr[W <w|Z=z] >7}. (1)

For simplicity, in the rest of the paper we will denote Q,[W|Z = z] by Q,[W|z] or
Q- [w|z].

Before we define quantile preferences both in the static and dynamic settings, it is
useful to consider a simple investment problem without uncertainty: at date ¢, a con-
sumer that had invested x; in the previous period, receives interests R, risk-free. The
consumer then needs to decide how much to consume in period ¢, ¢;, enjoying util-
ity U(c¢;) and how much to invest for future period, x;y;. Thus, x/y; = xR — ¢; or
¢t = xtR — x¢41. The consumer’s problem is

o
t
max ZB U(xR —x41),
{xl}t:():xl >0 =0
4The model also contemplates a continuous shock, determining the distribution of new wages.
5In this paper, we will not consider the cases in which 7 € {0, 1}.
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FiGure 1. c.d.f. (F) and quantile (Q) functions when (a) F is continuous and strictly increasing
in its support [xg, x1]; and (b) F is not invertible.

where B € (0, 1) is the discount factor. This model can be conveniently written in recur-
sive form. For this, let v(x;) denote the present value of all future optimal consumption,
given that the initial wealth is x;. The recursive problem is

v(x;) = max {U(XtR—xtH) +/3U(xt+1)}' 2)
xr41€[0,x¢R]
It is easy to see that the concavity of U determines the consumption and investment
decision by the consumer. In fact, if U is the isoelastic utility U(c) = ¢'~7/(1 — y) for
v > 0, vy # 1, the elasticity of intertemporal substitution (EIS) is equal to 1/.

Now, we would like to consider uncertainty, where the interest rate is represented by
the random shock z;. Itis convenient to adapt the recursive form of the risk-free problem
(2) by considering a certainty equivalent of the continuation utility, represented by value
function v(x;, z;) that depends in how much was invested in the previous period, x;, and
the current shock z,. If, as usual, we adopt expectation as the certainty equivalent, then
the recursive problem becomes

v(xr, z) = max {U(x;z — Xr41) + BE[v(Xs41, zev1] 2]}, (3)
Xt+1€[0,z4x¢]

where E; is the conditional expectation with respect to the information at time ¢. Note
that now the utility function U (-) in (3) determines both the risk attitude and the EIS. For
the isoelastic function mentioned above, a single parameter, y, determines both the EIS
and the coefficient of relative risk aversion (CRRA). This creates a conceptual problem,
since risk attitude and intertemporal substitution are distinct economic concepts that
should be mutually independent.

This problem has been recognized a long time ago; see, for instance, Hall (1978,
1988). The preferred approach to deal with it has been to consider Epstein and Zin
(1989)’s preferences. In this paper, we take a different route, by considering dynamic
quantile preferences, that are defined by substituting the certainty equivalent expecta-
tion E[-] in (3) by a quantile operator Q;[-]. That is, we consider the following recursive
problem:

v(x,z) = max  {U(xz — xr41) + BQr[v(xey1, zep1l2e]} 4)
Xt+1€[0, 2 x¢]
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With this change, U determines exclusively the intertemporal substitution, exactly as
it does in the case without uncertainty. The risk attitude in the quantile model is not
influenced by U. To understand this claim, let us consider quantile preferences in the
static case.®

Recall that an expected utility maximizer with utility U : R — R prefers lottery X to
Y if E[U(X)] = E[U(Y)]. Thus, it seems natural to define quantile preferences by simply
substituting the expectation by the quantile operator in this comparison, i.e.,

XY < Q;[uX)]=Q[uM)]. (5)

However, quantiles enjoy the following property: for any continuous and increasing
function f: R — R, f(Q,[X]) = Q,[f(X)].” If U : R — R is strictly increasing and con-
tinuous, as usual, then we can take its inverse and apply to (5), to obtain

X>Y < UNQUX])=zUTQUM)]) = QIX1=Q,Y].

Therefore, the utility function plays absolutely no role in the static quantile preference
“defined” by (5). In particular, we could change a concave U by a convex U and obtain
the same preference, that depends only on the quantile of the random variables them-
selves. However, this does not mean that U does not play a role in dynamic quantile
preferences. On the contrary, in a dynamic setting U has exactly the same role that it
had in the risk-free model: to define the intertemporal substitution. In fact, once uncer-
tainty is resolved, the dynamic quantile preference model reduces to the risk-free model
(2).

The discussion so far leads to an important question: if the concavity of the utility
function does not play a role in the risk attitude for quantile preferences, what does?®
The answer, first observed by Manski (1988), is quite simple: 7 itself. To see this, consider
Mendelson (1987)’s concept of “quantile-preserving spreads,” that is an adaptation of
the famous Rothschild and Stiglitz (1970)’s mean-preserving spreads. The idea is that
Y is a quantile preserving spread of X if it is more likely to have both worse and better
outcomes than X. Formally, Mendelson (1987) defines the following.

DEFINITION 2.1 (Quantile-preserving spread). We say that Y is a 7-quantile-preserving
spread of X if Q;[Y] = Q,[X] = ¢ and the following holds: (i) t < ¢ = Fy(t) > Fx(¢);
and (ii) t > ¢ = Fy(¢t) < Fx(¢). Y is a quantile-preserving spread of X if itis a 7-
quantile-preserving spread of X for some 7 € (0, 1).

6Quantile preferences were first introduced by Manski (1988). Rostek (2010) and Chambers (2009) pro-
vide axioms for the static case, and de Castro and Galvao (2022) formally axiomatize both the static and
dynamic quantile preferences. Giovannetti (2013) studies a two-period economy for an intertemporal con-
sumption model under quantile utility maximization. de Castro and Galvao (2019) establish the properties
of a general dynamically consistent quantile preferences model.

"This property holds for expectation only if f is linear. For quantiles, it is sufficient that f is non-
decreasing and left-continuous; see de Castro and Galvao (2019, Lemma A.2, p. 1927).

8 Appendix B discusses the relationship of risk attitudes in EU and quantile preferences.
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QT[Y] = Qf[X]

FIGURE 2. Y is a 7-quantile-preserving spread of X.

Figure 2 illustrates the c.d.f.’s of random variables Y and X when Y is a 7-quantile-
preserving spread of X.? Notice that this definition captures the notion that Y is riskier
than X, since it puts weight in more extreme values than X. Manski (1988) uses a differ-
ent terminology for the same concept referring to the property of “single crossing from
below”: Fx crosses Fy from below when Y is a quantile-preserving spread of X.

Note that if Q;[Y] = ¢ and X is equal to g with probability 1, then Y is a 7-quantile-
preserving spread of X. In other words, any risk asset Y with 7-quantile ¢ is a quantile-
preserving spread of any riskless asset X with value gq.

Figure 2 suggests that the choice of a 7-quantile maximizer or 7-decision maker (-
DM) depends on whether 7 is below or above the quantile 7 where the two c.d.f.’s cross.
That is, when 7 < 7 as in Figure 2, a 7-DM prefers the safer asset X: Q,[X] > Q,[Y]. On
the other hand, if 7’ > 7, a 7-DM prefers the riskier asset Y: Q,[X] < Q,[Y].

The following result formalizes the relationship between risk and the quantile 7 for
the simple static case.

ProprosITION 2.2 (Manski, 1988). Let Y be a T-quantile-preserving spread of X for 7 €
(0,1). Then: (i) <7 = Q,[X]> Q.[Y], i.e, a T-DM prefers the asset X if 7 is low; and
(i) 7> 7 = Q;[X]<Q;[Y], i.e, aT-DM prefers asset Y if 7 is high.

A relevant question is whether it is possible to reduce quantile preferences to ex-
pected utility with special subjective beliefs. If we restrict the set of alternatives (random
prospects) from which the decision maker has to choose, and focus on a parametrized
class of utility functions, it is possible to define a map of risk attitude between quantile
preferences and expected utility. For example, suppose that we restrict our attention to
log-normal variables X, i.e., In(X) ~ A (u, o), the certainty equivalent of an expected
utility maximizer, with isoelastic utility function U(x) = x!=7/(1 — y), vy # 1, will be a
function of u, o, and vy, while the certainty equivalent of a r-quantile maximizer will
be a function of u, ¢, and 7. By equating these certainty equivalents, we obtain a map
between the downside risk aversion parameter 7 and the risk aversion parameter y for
those class of assets. Appendix B shows that this map depends only on o, i.e., by fixing

9Mendelson (1987) formalizes other four conditions and shows that they are all equivalent to the above
definition; see the paper for further discussion and intuition.
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the standard deviation o, there is a one-to-one map between the risk attitude parame-
ters 7 and y. However, the pairs of corresponding = and y will change if we change o
Moreover, a completely new map may be obtained for different classes of random vari-
ables. Besides exploring this construction, Appendix B shows that quantile preferences
in general cannot be reduced to expected utility preferences even with special priors,
and also that quantile preferences do not belong to the general class of preferences con-
sidered by Epstein and Zin (1989).

3. THEORETICAL RESULTS

This section generalizes existing results for dynamic quantile models and provides the-
oretical foundations for the applications discussed in Section 4 below. Such generaliza-
tions are important for potential applications of dynamic economic models, thus sub-
stantially enlarging the scope of applicability of the recursive quantile model.

We begin by establishing the principle of optimality, and then the existence of the
value function associated to the dynamic programming problem for the quantile pref-
erences. We also present results on monotonicity, concavity, and differentiability of the
value function. Finally, we derive the Euler equation. Derivations for dynamic consis-
tency are similar to those contained in de Castro and Galvao (2019), and are omitted.

3.1 States, decisions, shocks, and notation

Let X denote the state space, ) be the set of possible actions the decision maker (DM)
may take, and Z, the range of the shocks (random variables) in the model. We require
these sets to be metric spaces. Let x; € X denote the state in period ¢, and z; € Z the
shock after the end of period ¢ — 1, both of which are known by the DM at the beginning
of period ¢. In each period ¢, the DM chooses a feasible action y; from a constraint subset
I'(xy ze) C Y.

In the model above, the resolution of uncertainty at period ¢ occurs after the DM
chooses an action so the next period’s state x,.1 may be affected by the shock z;41, as
discussed in Stokey, Lucas, and Prescott (1989, p. 240). This influence is described by
a law of motion function ¢ from X x ) x Z to X that determines the next period state
variable x;; as function of the current state x;, the choice y;, and the shock z;; realized
at the beginning of period ¢ + 1, i.e.,

X1 = (X, Yir Ze41)- (6)

It is common in the literature to write the law of motion in equation (6) as simply a
function of x;, y;, and z;41; see, e.g., Stokey, Lucas, and Prescott (1989, p. 256). In most
models, this is even simpler and we could write ¢ (x;, yr, zr4+1) = Yr.

Let 2/ = Z x --- x Z (t-times, for t e N), Z° = Z x Z x --- and N? = N U {0}. Given
z€ 2%, z=(z1, z2,...), we denote (z;, z;+1,...) by sz and (z, zi41, ..., z¢) by 1zp. A
similar notation can be used for x € X*° and y € Y*°.

The random shocks will follow a time-invariant (stationary) Markov process. The set
of random shocks Z is a (subset of a) metric space, assumed to be either connected or
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finite. Some results require Z to be Euclidean, i.e., Z C R¥. Stationary Markov processes
are modeled by a Markov kernel K : Z x 3 — [0, 1], where 3, is the Borel o-algebra of
the metric space Z.!1° This means that the probability that Z’ € 4 C Z given Z = z is
Pr(Z' € A|Z = z) = K(z, A). The expectation of a function 4 : Z — R is E[h(w)|z] =
[z h(2)k(z, d2).

We now introduce the concept of the quantile martingale process. This class of pro-
cesses will be especially useful later to investigate particular examples of the model with
closed-form solutions. Recall that for a standard martingale process, the best predictor
of the expectation of the future value of the shock is its expectation. We adapt this notion
for quantiles as follows.

DEerINITION 3.1. We say that Z is a 7-quantile martingale if
QrlZi1|Zs = z4] = zt. ()

This means that the best 7th conditional quantile predictor of the random variable
Z;4+1 is the current value z;. A simple and useful example of quantile martingale process
is given by the following.

ExamPpLE 3.2. Let Z,11 = Z; + ¢;, where ¢, satisfies Q;[e;|Z; = z;] = 0. Then (7) holds,
since Q-[Z41|Zi=z1=Q:[Zi +ei|Zi =zl =z + Qrled| Zi = 2] = 24 + 0 = z;. O

3.2 The recursive problem

Given the current state x; and current shock z;, I'(x;, z;) denotes the set of possible
choices y;, i.e., the feasibility constraint set. Given x;, z;, and y; € I'(xy, z¢), u(xy, yr, z¢)
denotes the instantaneous utility obtained in period ¢. The next period x,;; is defined
by afunction ¢ : X x Y x Z — X of the current state x;, the choice y; and the next period
shock z,,1, i.e.,

X1 = (X0, Yry Ze41)-

In our model, the uncertainty with respect to the future realizations of z; are eval-
uated by a quantile. In the dynamic quantile model, the intertemporal choices can be
represented by the maximization of a value function v: X x Z — R that satisfies the
recursive equation:

v(x,z)= sup {u(x,y, z)+ BQ:[v(d(x,y, Z), Z)|z]}, (8)

yel'(x,z)

where z’ indicates the next period shock.
Note that this is similar to the usual dynamic programming problem, in which the
expectation operator E[] is in place of Q,[]. See de Castro and Galvao (2019) for a

10Recall that a mapping K : Z x 3 — [0, 1] is a Markov kernel if for each z € Z, the set function K(z, -) :
3, — [0, 1] is a probability measure and, for each S € 3, the mapping K (-, S) — [0, 1] is Z-measurable. See
Aliprantis and Border (2006, Definition 19.11, p. 630).
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construction of this recursive model from dated preferences. Section 3.5 below proves
uniqueness of the solution to problem (8), under assumptions that will be discussed
there and in Section 3.4. However, before we establish these results, it is useful to study
the infinite horizon problem, which deals with a sequence of plans. We introduce the
relevant notation and definitions in Section 3.3. A reader that is content to focus only on
the recursive problem (8) will be able to skip it, since the rest of the paper is independent
of these developments.

3.3 Infinite horizon problem and the principle of optimality

In this section, we define the infinite horizon problem and establish the principle of
optimality, analogous to Stokey, Lucas, and Prescott (1989, Section 9.1) and that gener-
alizes de Castro and Galvao (2019, Proposition 3.17). That is, we show that optimizing
period by period, as in the recursive problem (8), yields the same result as choosing the
best plan for the infinite horizon problem. This requires to formally define plans and
the value function evaluated at those plans. Hence, we need to introduce some notation
that is specific to this section and will not be used in the rest of the paper. There will be
no loss to a reader that decides to skip this subsection.

At period ¢, the DM has learned the realization of the finite sequence of shocks z’ =
(z1,-.., z1) € Z" and can make a choice based upon this knowledge. This leads us to the
following.

DEerFINITION 3.3. Aplan /4 is a profile & = (h;);cn Where, for each t € N, £, is a measurable
function from X x Z’ to ). The set of plans is denoted by H.

The interpretation of the above definition is that a plan 4,(x,, z') represents the
choice that the individual makes at time ¢ upon observing the current state x; and the
sequence of previous shocks z’. The following notation will simplify statements below.

DEeFINITION 3.4. Given a plan & = (h;);eny € H, x € X and realization z° = (z1,...) €
Z, its associated sequence of states and choices is the sequence (xﬁ’, yth) feN € X x Y*
defined recursively by xi‘ =x and, for r > 1, by

v =h,(xf, 2, )
Xl = (vl ). (10)

Similarly, given h € H, (x,z') € X x Z', the t-sequence associated to (x,z') is
(xI, y!)i_, € X' x V" defined recursively by (9) and (10).

Since the elements of the sequence depend on x and z°°, we may write them as
xﬁ’(x, z*°) and yth(x, z*°). However, for simplicity and whenever convenient, we will
write only x7, x"(-), x(x, -), or even x” (x, z') to emphasize that x* depends on the initial
state x and on the sequence of shocks z°°, up to time ¢. Notice that (xf’);‘zl is arandom
variable (function of z*°) for each (4, xg, zg) and it is not known (realized) before time
t=n.
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DEFrINITION 3.5. A plan £ is feasible from (x, z) € X x Z if h,(xf’, ) e I‘(xf‘, z;) for every
t e Nand z*® € Z* such that xi’ =xandz; =z.

We denote by H (x, z) the set of feasible plans from (x, z) e X x Z. Let H denote
the set of all feasible plans from some point, i.e., H =, ,)exxz H(x, z). We will give
sufficient conditions for H (x, z) # #. Before that, we need to introduce some additional
notation. For each & € H and n € N U {0}, define the function §*”: ¥ x Z"1 - R by

n
Sh’"(x, z"“) = Z B’u(xﬁ’ﬂ, ythH, Zi41). (11
=0

It is sometimes convenient to abuse notation and write $’*" as a function of X x Z®
instead of X x 2" i.e., $""(x, z°) instead of $""(x, z"*1).

For a measurable S : Z*° — R, let Q[S]z’] denote the conditional quantile given z’.
Define Q![S|z] as Q,[S|z] and, recursively, Q**1[S|z] = Q*[Q,[S|z"*]|z], i.e.,!!

Qﬁ[slzl = QT[ : ‘QT[QT[S|Zn]|Zn_1] U |Z]

The Appendix discusses some properties of this operator that are essentially the same of
the standard quantile operator.'? For n € N and & € H, define

V*'h, x, z)= Q?[Sh’"(x, ')|Z]-

The following assumption adapts Stokey, Lucas, and Prescott (1989, Assumption 9.2)
to our setting.

AssuMPTION 0. The feasibility correspondence I' : X x Z — Y is nonempty-valued, its
graph is measurable, and it has at least a measurable selection. Moreover, for all x € X,
ze€ Z,and h € H, there exists the limit

V(h, x, z) Enli)ngoV"(h,x,z). (12)

Assumption 0 is implied by our other assumptions introduced below. It is a very
weak requirement, that allows us to define the value function, but will not be used out-
side this subsection. This assumption enables us to state our first result, which estab-
lishes that the set of feasible plans departing from (x, z) € X x Z at time ¢ is nonempty.

LEMMA 3.6. Let Assumption 0 hold. Forany x € X and z € Z, H(x, z) # 0.

HSince the “law of iterated expectations” does not have an analogue for quantiles, the iterative quan-
tiles defining Q”[-|-] do not collapse to a single quantile as they would do for expectations; see the further
discussion in de Castro and Galvao (2019).

12proposition 6.3 of de Castro, Costa, Galvao, and Zubelli (2023) gives sufficient conditions for the exis-
tence of the limit Q2°[S|z] = lim,,—. o Q?[S|z]. In particular, if S is in £, Q2°[S|z] exists. However, we are
interested in another type of limit that we discuss next.
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Now, we can define v* : X x Z — R, the value function of infinite horizon problem:

v(x,z)= sup V(h, x, z). (13)
heH(x,z)

Our objective is to establish the principle of optimality, that roughly states that solv-
ing the infinite horizon problem choosing plans as in (13) is essentially equivalent to
solving the functional equation (8), in which the problem step by step, in a recursive
fashion. To formalize this result, we need a few more definitions. The most important
of those is the transversality condition. Recall that the standard transversality condition
requires that the product of 8” and the integral of v up to time n converges to zero for all
plans and initial states; cf. equation (7) in Stokey, Lucas, and Prescott (1989, p. 246). Our
analogue is that lim,_, o 8"Q;[v(-)|z"] = 0. This is formalized as follows.

DEFINITION 3.7. We say that a function v: X x Z — R satisfies the conditional quantile
transversality condition (CQTC) if for any 4 € H, (x, z) € X x Z, and € > 0, there exists
ne such that n > ne implies that for all z" = (zy, ..., z,) € 2", with z; = z,

—e < B"Q:[v(d(x", ¥, zut1), 2as1)|2"] <€ (14)

Notice that the above condition does not require v to be integrable, as the standard
transversality condition does. Indeed, the quantile can even be uniformly bounded,
which would imply (14), for a nonintegrable v, for which the transversality condition
would not hold. When we assume additional structure, we can offer an alternative
transversality condition. See Definition A.16 in Appendix A.8.1.

For afunctionv: X x Z — R, let G, : X x Z — Y be the correspondence defined by

Gy(x,2)={yel(x, 2):v(x,2) = u(x, y, 2) + BQ:[v(d(x, y, '), Z)|z]}. (15)

Of course, this correspondence may have empty values in general. We say thataplan 4 €

H is obtained from G, if there exists a sequence of selections g; : X x Z — ) such that

forallt e Nandall (x, z) € X x Z, g;(x, z) € Gy(x, z) and h,(x, z') = g,(h,_1(x, 2™ 1), z,).
We are now ready to state our principle of optimality.'3

THEOREM 3.8 (Principle of optimality). Let Assumption 0 hold. Suppose that a function
v: X x Z — R satisfies (8) and (14). Suppose that G, is nonempty and has a measurable
selection. Then v =v* and any plan h obtained from G, attains the supremum in (13).

In the rest of the paper, we will introduce stronger assumptions that would imply not
only Assumption 0, but also the existence of functions satisfying the functional equation
(8) and (14). The significance of the above result is that it suggests a partial uniqueness
result for the value function: even if our stronger assumptions introduced below do not
hold but only the much weaker Assumption 0, there will be just one function that satis-
fies both the functional equation (8) and the CQTC (14).

138ee Stokey, Lucas, and Prescott (1989, Theorem 9.2).
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3.4 Basic assumption on random shocks

Now we state the main assumptions concerning the shocks, used for establishing the
results. The following basic assumption is assumed throughout the paper.

AssumpTION 1 (Markov). Z is a metric space, which is either connected or finite, and the
process is Markov, with transition function K : Z x 3, — [0, 1] satisfying the following:

(i) for each z € Z and m € (0, 1), there exists compact Z' C Z such that K(z, Z') >
1—;
(ii) for each compact A C Z, the function z € Z +— K(z, A) € [0, 1] is continuous;

(iii) foreach A €3 open and nonempty, K(z, A) > 0 forallz € Z.

Assumption 1 is adopted in all results of this paper, even if it is not explicitly men-
tioned. Note that Assumption 1 allows an unbounded multidimensional Markov pro-
cess. Condition (i) is equivalent to the requirement that, for each z € Z, K(z,-) is a
tight measure, i.e., K(z, A) = sup{K(z, C) : Cis compact, C C A} for all 4 € 3. When
Z is compact, this condition is trivially satisfied by choosing Z’ = Z. Condition (ii) is a
continuity property for Markov kernels that is satisfied for the most familiar processes.
Condition (iii) is just the requirement that open subsets of Z have positive measure. We
need to impose this condition to rule out discontinuities in the quantile. The property
that quantiles are continuous is necessary to establish the continuity of the value func-
tion and, therefore, fundamental to many of the results in this paper.!* Obviously, the
continuity of the value function is also a desirable feature in itself.

Establishing the continuity of the quantile operator is the most delicate step in the
proof. This is complicated by the fact that we allow discrete random shocks. Some of the
problems that may arise when allowing discrete and continuous variables are illustrated
by de Castro and Galvao (2022); see their Example 3.11 and Remark 3.12.

The following example shows that Assumption 1(iii) is necessary for the continuity
of quantiles.

ExaMPpPLE 3.9. Let Z =0, 1]. Define

2(1—-2) ifwe [0, i] U |:§ 1],

47
f(ll),Z): . 1 3
2z 1fwe(—,—)
4" 4

Thus, for all z € [0, 1], f(z) = folf(w, Z)dw = 2072 4 Z 4 2022 — 1 and we ob-

tain f(w|z) = % = f(w, z). Consider K : Z x 3 — [0, 1] defined by K(z, A) =

/ 1 f(w|z) dw. This Markov kernel satisfies Assumption 1(i) and (ii), but not (iii). Indeed,

14The continuity of the value function requires, as an intermediary step, that the map (x, y, z) —
Q-[v(¢(x, y, w), w)|z] is continuous for continuous and bounded v; see Proposition A.4 in the Appendix.
This result obviously requires that quantiles are continuous, i.e., z — Q.[w]|z] is continuous.
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the interval A = (%, %) is open, but K (0, A) = 0. We will show that this leads to a failure
of continuity of the quantile at z =0 for 7 = % We have

, 1

2(1_Z)a 1fa€|:07 Z};

1- 1 13

Priw < a|z]=K(z, {fwe Z:w<a}) = Tz—l—Zz(a—Z) ifae (5]
1 3 3

¥+2(1—z)(a—1) ifae(.1]

Thus, for 7 = %, we have Q. [w]|z] = % if z# 0, but Q,[w|0] = %. O

Example 3.9 can be modified to justify also the requirement of Assumption 1 that Z
is either connected or finite. Indeed, all conditions of Assumption 1 are satisfied in the
following example, but for the fact that Z is not connected.

ExampLE 3.10. Let Z=10, ;]U[3, 1], and 7 = }. Define

. 1
4—-2z if(w,z2)e O’Z x |0,

’

N

_ 3
fw,2)=3V4127 if(w,2)e Z’l x |0,

’

4 otherwise.

Then f(w, z) > 0forall (w, z) € Z x Z and f(z) =2, Vz € Z, which implies that f(w|z) =
% f(w, z). Defining the Markov kernel as before, Assumption 1 is satisfied, but for the
fact that Z is not connected. We have

) 1
(2-2)a ifae O,Z ,
2—z 3
it 3
JINOAS 1
, 1

Priw <alz]=K(z,{we Z:w<a}) =

)

1
4 4’
2— 3 3
TZ+(2+Z)<Q—Z lfaE(Z

L _, »*=0. Since r = %, Q- lw|z*] = %, while

Consider a sequence z, = -,

3 z 3
QT[w|zn]:Z+ 2+"Zn >3 when n — oco.
Thus, z — Q;[w|z] is not continuous at z* = 0. O

It is worth noting that Assumption 1 extends the setting in de Castro and Galvao
(2019) by allowing the set of random shocks Z to be a (connected or finite) metric space,
instead of a convex subset of an Euclidean space. We also impose some less stringent
assumptions on the distribution of the shocks, which generalize the setting of de Castro
and Galvao (2019). These extensions are some of the major theoretical contributions of
the current paper.
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3.5 Existence of the value function

We prove the existence of the value function through a contraction fixed-point theo-
rem. The first step is to the define the contraction operator. Let C denote the space of
bounded and continuous functions v: X x Z — R. For 7 € (0, 1), and v € C, define M(v)
by

M(v)(x,2) = sup u(x,y,2) +BQ:[v(¢(x, y, w), w)lz], (16)

yel'(x,z)

where B € (0,1) and I': X x Z — ) is the feasibility correspondence. The functional in
(16) is similar to the usual dynamic programming problem with the expectation oper-
ator E[-] instead of Q[-]. We show below that M" has a fixed point, which is the value
function of the dynamic programming problem and that the supremum is achieved, i.e.,
the the policy correspondence Y : X x Z — ) defined by

Y(x, z) = {y €'(x, z) : y achieves the supremum in (16)} (17)
has nonempty values. For this, we need the following.

AssumpTION 2 (Continuity). The discount rate 8 € (0, 1) and the following hold:
(i) X and ) are metric spaces;
(i) u:X xY x Z— Riscontinuous and bounded;
(iii) ¢ : X x Y x Z — X is continuous;

(iv) The correspondence I' : X x Z = ) is continuous, with nonempty, compact val-
15
ues.

Note that in Assumption 2(i), the state space X is not required to be Euclidean nor
convex, as in de Castro and Galvao (2019). This allows X to be infinite-dimensional or
finite. The same is true for the action space ). In fact, since now we do not assume
that the choice is the next period state as de Castro and Galvao (2019) do, it is possible
that ) # X and the richness on ) does matter. Property (ii) is the standard continuity
assumption of the utility function, which is extended to the transition function ¢ in (iii)
and to the feasibility correspondence in (iv). Conditions (ii), (iii), and (iv) guarantee that
an optimal choice always exist.

Together, Assumptions 1 and 2 generalize the existing setting in the literature. The
following result establishes that under those assumptions, M is a 8-contractioninC, i.e.,
M(v) € C for any v € C, and ||[M(v) — M(v')| < B|lv — V|| for any v, v/ € C.

THEOREM 3.11. Under Assumptions 1 and 2, M is a B-contraction in C. Thus, it has a
unique fixed-pointv: X x Z — R € C. Moreover, the policy correspondenceY : X x Z — Y
is upper semicontinuous with nonempty and compact values.

15Since at this point convexity is not required, we may have I" finite-valued, representing the case where
only finitely many options are available to the DM at each period.
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The unique fixed point of the problem will be the value function of the problem. The
proof of this result is not a routine application of similar theorems from the expected
utility case, since continuity of quantiles is not immediate. We explore the Markov tran-
sition properties required in Assumption 1 to establish that the quantile functional is
continuous; see Proposition A.4 in the Appendix for details. As we have shown with
counterexamples after Assumption 1, this result may fail if the requirements in that as-
sumption are not met.

REMARK 3.12. Theorem 3.11 and all the other results of this paper still hold if we relax
Assumption 1 by allowing Z to be disconnected, provided that we work with a subset of
continuous functions v : X x Z — R such that w — v(x, w) has a connected image, for all
x € X. Notice that the image of this function is connected if v is continuous and Z is con-
nected.'® Section 4.2 illustrates this approach. See also comments before Lemma A.9 in
the Appendix.

Below we derive some sharper properties of the value function, namely monotonic-
ity, concavity and differentiability, as well as single-valuedness of the policy correspon-
dence.

3.6 Monotonicity

In this section, we establish monotonicity of the value function with respect to the x and
z variables. This section imposes only that the metric spaces X and ) are Euclidean, so
monotonicity has a natural meaning. We start with an assumption necessary to prove
strict increasingness of the value function with respect to the state variable x.!”

AssumPTION 3 (Monotonicity in x). The following holds: (i) X C R?; (ii)) Y C R™; (iii) u
and ¢ are nondecreasing in x; and (iv) for every z € Z and x < x', I'(x, z) CT'(¥/, 2).

From the next result and all that follow, by » we mean the unique fixed point of M in
C, guaranteed to exist by Theorem 3.11.

THEOREM 3.13. Under Assumptions 1, 2, and 3, v is nondecreasing in x. If u is also strictly
increasingin x, o is v.

It is also possible to establish increasingness of the value function also with respect
to the shocks z. For this, we need to require monotonicity of «, ¢, and I" with respect to
z. This is content of the following.

16Example 3.10 obtains discontinuity for the quantile by using the function v(x, w) = w, which has the
disconnected image Z =10, }]U[3, 1].

17As it is well known, there are two related notions of strict increasingness for a function 4 : R? — R: (i)
x! > x0, but x! # x° implies #(x!) > h(x°); and the weaker notion that (ii) x} > x? fori =1, ..., p implies
h(x') > h(x°). Theorem 3.13 holds with any definition, provided that they are applied consistently in the
assumption and in the result.

1
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AssumMPTION 4 (Monotonicity in z). Both u and ¢ are nondecreasing in z and, for every
xeX,andz<z7,T'(x,z)CTI'(x, Z).

For establishing monotonicity with respect to shocks, we also need the following
assumption. It assumes that Z is a subset of an Euclidean space R¥, for which that z =
(z1,..,zk) <2 =(z},..., z;) means z; < z; foralli=1, ..., k.

AsSUMPTION 5. Z C RK and for any weakly increasing function h: Z — Rand z, 7 € Z
such that z < 7/, E[h(w)|z] < E[h(w)|Z].

Assumption 5 is just a requirement that the conditional distribution K(z’, -) first-
order stochastically dominates K(z, -) whenever z’ > z. It implies, in particular, an
analogous inequality for quantiles, i.e., under the above conditions we also have
Q;[h(w)|z] < Q-[h(w)|Zz']; see Lemma A.12 in the Appendix. We have the following re-
sult.

THEOREM 3.14. Under Assumptions 1, 2, 3, 4, and 5, v is nondecreasing in x and z. If u is
also strictly increasing in z, so is v.

It should be noted that Theorem 3.14 holds not only for very general Euclidean X
and ), which may be even discrete, but also for any Z c R¥ satisfying Assumptions 1
and 5, which allow multidimensional shocks. In the next section, where we establish
concavity, more restrictions will be imposed over the sets X', ), and Z.

3.7 Concavity

In this section, we establish concavity of the value function. Moreover, we show that the
policy correspondence is convex-valued. For establishing this, we naturally need to re-
quire the spaces to be convex and the functions to be concave. Moreover, the feasibility
constraint set also needs to satisfy a convexity requirement. This is the content of the
following.

AssumPTION 6 (Convexity and concavity). The following holds: (i) X and Y are convex;
(ii) u and ¢ are concave in (x, y); and (iii) forall z € Z and all x, x' ¢ X, y € I'(x, z), and
y el'(xX, z) imply

Oy+ (1 —0)y el[6x+ (1—60)x',z] foralloel0,1].

Notice that Assumption 6(iii) implies that I'(x, z) is a convex set for each (x, z) € X’ x
Z. In addition to the standard convexity and concavity requirements of Assumption 6, to
deal with the continuous shock scenario, we need to work with unidimensional shocks,
as required by the following.

ASSUMPTION 7. Z CR.
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We need to restrict the dimension of the Markov process to k = 1 for using comono-
tonicity arguments, that guarantee that the quantile of sums of random variables is the
sum of quantiles. This property fails in general. The next result establishes concavity of
the value function.

THEOREM 3.15. Let Assumptions 1-7 hold. Then v is concavein x andY : X x Z — Y is
convex-valued. If, additionally, u is strictly concave in (x, y), then v is strictly concave in
x and Y has convex values. Whenever v is strictly concave, Y is single-valued and contin-
uous.

3.8 Differentiability

This section presents results for differentiability of the value function with respect to the
state variable x. In this case, two different approaches are needed depending on whether
the choice space, ), is convex or discrete. Nevertheless, both cases rely on the following
common basic assumption.

AssUMPTION 8. The function u is C in x and ¢ does not depend on x.

The second part of Assumption 8 imposes that the next period state can depend on
the choice y and the observed shock z, but not on the current state x. The set of actions
I'(x, z) available to the DM may depend on x. The requirement is that in no other way
the current state x can affect the next period state after an action y is picked and a shock
z is realized. It is important to note that Assumption 8 is also required in the expected
utility context; see Stokey, Lucas, and Prescott (1989, p. 270, item ).!® In any case, this
condition is satisfied in many practical applications.

Now, we present a result on the differentiability of v for convex ,'® which follows
the classical Benveniste and Scheinkman (1979)’s argument.

THEOREM 3.16. Let Assumptions 1-8 hold and assume that x € X C R? is interior. Then
v is differentiablein x and fori=1, ..., p,

&
L 2) = u v 2), 18
g i(x z) i(x v, 2) (18)

where y* € Y(x, z) is a maximizer of (16) for v.

Although the standard result presented above requires convexity of ), we are able
develop different arguments (not based on concavity) to establish differentiability of the
value function even if Y is finite, and hence, not convex. This is the content of the fol-
lowing.

18Blume, Easley, and O’Hara (1982) assume that the shock z; is an argument of the law of motion ¢, but z;
isnot in I" or the instantaneous utility function. Nevertheless, they apply different techniques to show that
optimal plans can be obtained by an application of the implicit function theorem to first-order conditions.

19Notice that convexity of ) is required by Assumption 6.
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THEOREM 3.17. Assume that the choice set Y is finite. Let Assumptions 1, 2, and 8 hold.
Fix x € X C R?, z € Z. Assume that x € X is an interior point where the optimal cor-
respondence Y (x, z) C I'(x, z) is lower hemicontinuous.?® Then v is differentiable in x,
and

s
(9_x1_(x7 Z)—&Xi (xry )Z)y

where y* € Y(x, z) is a maximizer of (16) for v.

Notice that Theorem 3.17 requires less assumptions than Theorem 3.16, but it re-
stricts to finite choice sets and requires lower hemicontinuity of the optimal correspon-
dence.

3.9 Euler equation

The final step is to characterize the solutions of the quantile recursive problem through
the Euler equation. As before, let v be the unique fixed point of M in C, guaranteed to
exist by Theorem 3.11. By Theorem 3.16, if ¢ does not depend on x, v is differentiable
in its first coordinate, satisfying ;—; (x,2) = g—;‘i(x, y*, z). Given that we have shown the
differentiability of value function, we are able to apply the standard technique to obtain
the Euler equation, as formalized in the following theorem.

Below, we will assume that Assumption 8 holds, so that ¢ does not depend on x. Us-
ing again v as the fixed point of M, we can define v: X x Z — Rby v(y, z) = v(¢(y, 2), 2).

THEOREM 3.18 (Euler equation). Let Assumptions 1-8 hold. Let (xy, s, zt)ten be a se-
quence of states, optimal decisions, and shocks, such that (x;, y;) are interior for all t. If
Z > %(xt, Vir 2¢) - j—;f(yt_l, z,) is strictly increasing, thenVneNandi=1, ..., m:

u du J
— (X1, Y, 2¢) + BQT[&(XHL Ye+l Ze41) - —qb()’t; Zt41) Zt:| =0. (19)

i Y

In (19), g—;‘i represents the derivative of u with respect to the ith coordinate of its
second variable (y) (i.e., an unidimensional value) and g—; represents the derivative of u
with respect to its first variable (x) (i.e., a p-dimensional vector). Since ¢ takes value on

X CR?, g—;f stands for the p-dimensional derivative vector of ¢ with respect to the ith
coordinate of y. We could also rewrite (19) as follows:

p

u du o
— (X6, Y1, 2) + BQ~ Z — (X410, Ye+1, ZH—I)—](yty Zt41)
ay; st 07Xj aIy;

Zt:| = 0, (20)

where ¢; stands for the jth component of ¢.

20Recall that this means that for every sequence x, — x, and every y* € Y(x, z), there exists some se-
quence {y,},en such that y, € Y(x,, z) for every n € N and y, — y*.
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Theorem 3.18 provides the Euler equation, that is the optimality conditions for the
quantile dynamic programming problem. This result is the generalization of the tra-
ditional expected utility to the quantile preferences. The Euler equation in (19) is dis-
played as an implicit function, nevertheless for any particular application, and given
utility function, one is able to solve it explicitly as a conditional quantile function.

When ¢(y, z) = y and we identify X = ), as in the model where the shock occurs
before the DM chooses his action, so in practice it is the same as considering his choice
being directly the next period state, (19) simplifies to

th| =0.

The proof of Theorem 3.18 relies on a result about the differentiability inside the
quantile function. Indeed, if % is differentiable and the derivative g—; (y, Z) is integrable,
then

Ju u
— (X6, Yir 20) + BQr| — (X141, Yi+1, Zt41)
9Yi Ix;

d oh Jd oh

in general. However, de Castro and Galvao (2019) establish conditions under which the
commutability of the two operations holds. See their paper for details.

4. APPLICATIONS

In this section, we discuss two well-known economic models that can be adapted to
quantile preferences. The analysis of these canonical models are useful to illustrate the
recursive quantile model, as well as the new theoretical results in this paper.

4.1 Intertemporal consumption

In a seminal work, Modigliani and Brumberg (1954) investigated intertemporal con-
sumption and life cycle. This framework has been used as a standard economic ap-
proach to the study of consumption behavior and served as basis for a very large litera-
ture and subsequent models of intertemporal consumption (see, e.g., Deaton (1992)).

This first example uses a consumption-based model to illustrate the dynamic quan-
tile preferences methods. We establish results as an explicit formula for the value func-
tion, the optimal consumption and asset hold, as well as their corresponding paths. We
also compare the results with the case without uncertainty, and make a parallel with the
permanent income hypothesis.

Consider the following economy. At the beginning of period ¢, the DM has x, € X C
R units of the risky asset, with return z; € Z C R ;. With wealth x,z; at the beginning of
period ¢, the DM decides y; = (ct, x;+1), which includes the amount consumed in period
t, ¢;, and next period’s state, x;;1. Therefore, the next period units of the risky asset x;;
is given by the law of motion ¢ : X x Y x Z — X introduced in equation (6), as follows:

Xe41 = (X0, Vi, Zev1) = (%1, (¢r, Xe41), Ze41)-
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The transformation that defines the recursive equation is the following:

M) (xs, z:) = max {U(er) + BQe[0(x111, ze41) 2]} 21)
(e, xp41)€l(xs,2¢)
where B € (0, 1) is the discount factor, 7 € (0, 1) is the risk attitude, I' : X x Z —» ) =
X x X is the feasibility correspondence and U : R; — R defines the utility function, that
is related to the function u: X x Y x Z — R of Section 3 by the following:

u(xs, Yo, ze) = u(xs, (¢, X141), 20) = U cr). (22)

We impose the following assumption.

AssumpTION 9. The following holds: (i) X = [0, X] for some X > 0; (ii) Z = [z, Z], with
Z>2z>0; (i) U:X—>RisC? U >0, U" <0; (iv) : X x Y x Z— X is defined by
d(x,y,z2)=¢(x, (¢, ), z)=x;and W T : X x Z—->Y=X x X is given by I'(x, z) =
{(e, xXYeX xX:c+x' <xz}.

Assumption 9 encompass many useful specifications for applications. Although it
restricts the domain to be [0, X] instead of the usual R, or R, ., this limitation does not
create significant issues; see discussion after Corollary 4.2 below. It should be noted
that Assumption 9 allows all commonly used utility functions, such as the isoelastic and
exponential that are explicitly discussed below.

Now, we use the results from Section 3 above to show that the transformation de-
fined by (21) possesses a fixed point, which is a value function satisfying the recursive
equation and previous properties.

THEOREM 4.1. Let Assumptions 1 and 9 hold. There exists a unique continuous and
bounded function v : X x Z — R satisfying the recursive equation (21). This function
is increasing in x.

If Assumption 5 also holds and if the optimal point in (21) is interior to Y, then v is
differentiable in x, strictly increasing in x and z, strictly concave in x and satisfies, for an
optimal path {(c;, x,)}2, that is interior, with ¢, = X,z; — X141,

Jv _
a(xm 2)=U'(xzt — xe41) 20 = (X020 — X131) V24 (23)

Moreover, for this optimal interior path, the following Euler equation holds:*!
—U'(c)) + Q7 [BU' (cr41)zi41|2:] = 0. (24)

Theorem 4.1 follows from results in Section 3, although some of the previous as-
sumptions are not strictly satisfied. See the proof in the Appendix for details.

The Euler equation for the intertemporal consumption model (24) has a very simple
intertemporal substitution interpretation. The marginal rate of substitution between

21To obtain this Euler equation, we change the setup above. See details in the proof of this theorem in
the Appendix.



374 de Castro, Galvao, and Nunes Theoretical Economics 20 (2025)

consumption in two periods must be equal to the marginal rate of transformation. Sup-
pose the DM decreases the consumption by dc, at time ¢, invests dc; in the asset, and
consumes the proceeds at time ¢ + 1. The decrease in utility at time ¢ is U’(¢;). The
increase in utility at time ¢ + 1 is uncertain because of the shock, but viewed at ¢, it is
evaluated as the 7-quantile Q[BU’(¢;+1)zr+1|2]. The future uncertainty is solved using
the 7-quantile.

Next, we specialize the utility function to the isoelastic and exponential utility cases.
We will see that in those specific cases, we can obtain closed-form solutions for the value
function.

4.1.1 Isoelastic utility function In this section, we specify U : ¥ — R to be the isoelastic
utility function, for y € (0, 1),22

1—y

Ue) = <

,  ve(0,1). (25)
1-vy

In the Appendix, we discuss the cases of y > 1. Now, we specialize the conclusions of
Theorem 4.1.

CoROLLARY 4.2. Let Assumptions 1, 5, and 9 hold, with U given by (25). Then there exists
a unique continuous and bounded function v : X x Z — R satisfying the recursive equa-
tion (21), i.e.,, v = M(v). Moreover, if the optimal choice is interior, v is differentiable in x,
strictly increasing in z, strictly concave in x, satisfies (23) and the following Euler equation

holds:
c -y
Q: |:B <—t+l ) Ztt1
Ct

The Euler equation (26) provides an equilibrium condition for consumption. Em-
pirically, together with instrumental variables quantile regression methods—as in, for
instance, de Castro, Galvao, Kaplan, and Liu (2019)—it could be used to estimate the
parameters characterizing the preferences for intertemporal substitution in the model.

Although Corollary 4.2 restricts the domain of the utility function in (25) to [0, X],
we develop below results for the usual unbounded domain R,. Indeed, Theorem 4.3
offers a closed-form expression for the value function » in R;. This theorem does not
state uniqueness for v because involved functions are not bounded and the contraction
argument does not apply. However, Theorem 4.4 establishes that this value function
v is indeed the unique fixed point among all functions satisfying the functional equa-
tion (21) that also satisfy the conditional quantile transversality condition introduced in
Section 3.3.

We focus here in the case y € (0, 1), which is simpler to state. The results for y =1
and y > 1 are developed separately in the Appendix; see, respectively, Theorems A.24
and A.30.

z{| =1. (26)

22The case y > 1 is studied in the Appendix.
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AssumpTION 10. The following holds: (i) U is given by (25), for y € (0, 1); (ii) X = Ry;
(iii) Z C Ry is a closed interval; (iv) ¢ : X x Y x Z — X is defined by ¢(x,y,z) =
d(x, (¢, x),2)=x; WT: X xZ->Y=XxXisgivenby'(x,z) ={(c,x') e X x X:
¢+ x' < xz}; (vi) there exists z > 0 such that 0 < Q,[w|z] < Z, for for all z € Z;* and (vii)
Bzl=Y < 1.

The following functions are useful in the statement below. Let r; (z) be defined
recursively by r; o(z) =1, and

rr,5(2) =17 5-1(Qrwlz]) - Q- [wl|z] fors>1. 27)

Given this, define the functions:

1-y
5

R(z)

R(2)= B [rns(2)] (28)
s=1

Assumption 10 guarantees that R is well-defined.?* Observe that both functions R(z)
and S(z) depend on all three parameters B, 7, and y. We have the following.

THEOREM 4.3. Let Assumptions 1, 5, and 10 hold. Let v : X x Z — R be given by

B(x, z) = ﬁ ()77 [1+R(2)]". (29)

Then v is a fixed point of the transformation M defined in (21). Moreover, the optimal
policy function y*: X x Z — Y =X x X is given by

Y, 2)=(c, X')=([1-S(2)] - xz, S(2) - x2), (30)
and for an optimal consumption path {c,}{° | associated with shocks {z;}7°,

C’C—tl = zi01-R(z0) - [1 = S(zi)]. 31)

Notice that the value function in (29) is characterized by three parameters: the dis-
count factor (B), the risk attitude (7), and the parameter in the utility function (y). The
discount factor characterizes consumer’s impatience. It is used to discount future pay-
ments of intertemporal utility functions, and allows to obtain the present value of future
consumption. The risk attitude parameter—given by the quantile 7, as discussed in Sec-
tion 2—describes consumer’s reluctance to substitute consumption across states of the
world under uncertainty and is meaningful even in an atemporal setting. The elastic-
ity of intertemporal substitution (EIS), i.e., the elasticity of consumption growth with

23Notice that Z does not need to be bounded and may include zero. This condition only requires that
the quantile Q.[w|z] is strictly positive and bounded by z forall z € Z.

s 1-
24 By Assumption 10(vi), 77 5(z) < zr, s_1(z). Therefore, r; s(z) < z. This implies that 87 [rm(z)]Ty <
1-y

11— 1
(B> Y )*. By Assumption 10(vii), 87z ¥ < 1. This implies that the infinite sum defining R(z) converges.
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respect to marginal utility growth, is just 1/v in this dynamic quantile model.?> As dis-
cussed in Section 2, an important feature of the recursive quantile model is that it allows
for the complete separation of the risk and EIS parameters, while maintaining important
properties as dynamic consistency and monotonicity.

The main contribution of Theorem 4.3 is to provide explicit solutions for the value
function and the optimal savings (investment) and consumption for each given state
and random shock, in equations (29) and (30). In addition, equation (31) derives a re-
cursive equation for the optimal path for the consumption, that allows to obtain explicit
expressions for the growth of consumption as function of random shocks. These expres-
sions may be very useful in theoretical and empirical analysis.

We observe that, in contrast with the results shown in Theorem 4.3 for the quantile
model, it is difficult to obtain closed-form expressions in the standard recursive EU case
for general Markov shock processes.?® For this reason, it has been standard in the lit-
erature (see, e.g., Adda and Cooper (2003)) to use numerical methods to solve dynamic
programming problems under the EU model.

Notice that in Theorem 4.3 we refrain from stating uniqueness of v because the
transformation may fail to be a contraction.?” The following theorem establishes the
desired uniqueness result using another argument, namely the principle of optimality
(Theorem 3.8) that uses the conditional quantile transversality condition (CQTC); see
Definition 3.7.

THEOREM 4.4 (Uniqueness of the value function). Let Assumptions 1, 5, and 10 hold. Let
v: R4 x Z — R be the function defined by (29). Suppose thatv: X x Z — R is a fixed point
of M defined by (21) that satisfies the CQTC. Then v = v.

In fact, in Appendix A.8.1, we state a more general result than Theorem 4.4, by intro-
ducing another transversality condition that may be easier to verify. There, we also show
how a mild condition would imply CQTC.?® In any case, Theorem 4.4 shows that func-
tion v defined by (29) is essentially the only function that satisfies the functional equa-
tion for this isoelastic model, even with unbounded domain. Notice we have reached
this conclusion without using the standard contractions arguments that are usually re-
stricted to bounded functions.

In the rest of this section, we explore particularizations of this model, to obtain sim-
pler expressions for the value function v. We will consider conditions that are stronger

25Under time separable utility, the EIS is also the percent change in consumption growth per percent

increase in the net interest rate.
1-y
=
1 1
point of the operator T(L(z)) = z!~Y{1 + B (E[L(w)|z])7}”. However, the fact that E[-] does not commute
with increasing functions makes it hard to find a simple closed form for L. Thus, a numerical approach

26In the EU case, the solution is also separable in the form v(x, z) =

L(z), where L(z) is the fixed

seems unavoidable for the EU version of this model. In contrast, for quantiles we have (Q,[L(w)|z])% =
QT[(L(w))% |z] and the exponent % will cancel with the exponent y coming from the iteration.
27Remember, in particular, that the usual argument for establishing that M is a contraction requires that
this transformation is restricted to bounded functions.
28See Remark A.23.
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than the general Markov assumption. For instance, if we assume that the shocks are
independent and identically distributed (i.i.d.), we can specialize the above results as
follows.

ExamPpLE 4.5 (The i.i.d. case). If the shocks are independent, then Q,[w|z] becomes a
constant, Q,[w], such that (27) reduces to r; ;(z) = r; s = (Q-[w])*. Similarly, let ag r , =

BY(Q.[w]) 7 . Then

o0 s 1; IS
R =Y B [rs(2)] 7 =Y ah .=,
s=1 =1 — a,;,m,

since 0 < ag r,, < 1 by Assumption 10(vi, vii). Therefore, S(z) = ag,,. With this, the
above results simplify to x,11 = ag r,yX:z1, ¢, = (1 — ag,7,y) X121, €141 = g, 7,yC1 2141, and

_ (1—-ag,r,y)"" _
D(Xey 20) = L2 (xe2) 7. O

If we interpret the shocks z; as coming from productivity determined by human cap-
ital, the last expressions in Example 4.5 above capture the essence of the standard per-
manent income hypothesis (PIH) discussed in Hall (1988): current consumption is de-
termined by a combination of current nonhuman wealth x, and human capital wealth
z;. The fraction of total wealth consumed today further depends on ag, . 4, which is a
function of all parameters of the model. Also, notice that the uncertainty is resolved us-
ing the quantile operator, which is inside ag r,,. An increase in the risk attitude has the
same effect as increase in the discount factor making the current consumption decrease.
When y < 1, an increase in y (decrease in EIS) also decreases current consumption.

Another case of interest is when the shocks are 7-quantile martingales (see Defini-
tion 3.1).

ExAMPLE 4.6 (t-quantile martingales). Assume that z follows a 7-quantile martingale
process; see Definition 3.1 and equation (7). Then Q,[w]|z] = z for all z, and

r;s(z) =2 foralls>1.

Therefore, Theorem 4.3 implies that the value function is explicitly given by

0o Y .,
(“)1_{2(3*2%)5} - ) )
s=0

ﬁ(x,z):l_y

with optimal consumption ¢*(x, z) = (1 — 3%2177)“ and optimal savings (Bz)%x. No-
tice that the general formulas for the value function and the optimal assets and con-
sumption depend on all parameters of the model. These expressions are explicitly de-
pendent on B and v, but they are functions of = implicitly, because we assumed that the
process is a T-quantile martingale process, which means that for a given risk attitude ,
the uncertainty is solved as Q;[w|z] = z. O

These expressions give us the opportunity to compare them with with those for the
model without uncertainty, where it is also possible to obtain closed-form solutions.
This is the subject of the next section.
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4.1.2 Comparison with the riskless case 'We will see now how the closed-form expres-
sions obtained in Theorem 4.3 for the quantile model generalize similar expressions for
a model without risk. To see this, it is sufficient to consider the case in equation (21),
where the set of shocks reduces to a singleton, i.e., Z = {R} so that the budget constraint
¢ =Xz — X141 becomes ¢; = x;R — x;4+1. Notice that the familiar “cake eating problem”
is a special case, in which R = 1. If we consider R < 1, in general this problem is called

“ice cream eating problem” since a fraction 1 — R > 0 of the “ice cream” “melts” each
period and is no longer available for consumption.
Consider a recursive model without uncertainty as
v(x))= max U(xR—xi41)+ Bo(xi41). (33)

xr41€[0,x/R]
The first-order condition (Euler equation) for this problem leads to U'(c¢;) =
BRU'(ci+1). Assume that U is the isoelastic utility function in (25), and let ag , =

1 1-
B?RTY. If we denote the optimal savings (next period assets) by x* and optimal con-
sumption by ¢*, we have the following closed-form expressions:

1— —y
by = L798Y) T pyey, (34)
I—vy
x*=agy- xR, (35)
c*=(1—-agy) xR, (36)
Ci+1=14ag,yCiR. (37)

Equations (34)—(37) are parallel to those in Theorem 4.3 and Examples 4.5 and 4.6.
We observe that the equations for both cases, with and without uncertainty, have similar
functional forms. However, in the case with uncertainty, the quantile operator appears
in the expressions to account for the uncertainty. This is interesting since it shows that
the quantile model is able to capture important features of the model without risk, but
at the same time allows for studying risk and risk attitudes. Notice also that the optimal
savings (x*) and consumption (c*) are expressed as shares of the available resources,
namely xz in the uncertain case and xR in the risk-free case. Nevertheless, in the pres-
ence of uncertainty, these values are influenced by the risk attitude parameter r and the
quantile operator. Thus, a small increment in x impacts y* and ¢* similarly in both mod-
els, but differences between the models depend on the quantile 7. Another interesting
point regards the consumption path, where consumption at time ¢ + 1 is a share of the
previous consumption in both models. Notice that ag , = B%RITy above corresponds
to ag,r,y = B% (QT[w])lTy of Example 4.5, where 7 plays an explicit role. However, the
two models will not be equivalent even if Q,[w] = R, which implies that ag y = ag r y.
Indeed, in the model with uncertainty of Example 4.5, we have ¢, 1 = ag, +,y¢;z:41, while
¢i4+1 = ag,yc.R in the model without risk. Notice that z,,; is a random element and may
take values different from Q,[w] or R.

Itis also interesting to see that equation (37) shows that the parameter characterizing
the utility function is the EIS. Recall that the EIS is defined as EIS = dIn(c¢y1/¢:)/d In(R).
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Taking the logarithm of (37), we obtain

ln(ct—H) = lln(,B) + l In(R).
Ct Y Y

Taking the derivative with respect to In(R), we obtain E1S =1/v.

4.1.3 Comparative statics As previously observed, expressions (29), (30), and (31) show
that the value function and the optimal saving and consumption decisions are functions
of the three parameters characterizing the model, the discount factor 8, the EIS 1/, and
the risk attitude (quantile) 7. These closed-form solutions allow us to obtain compara-
tive statics results as established by the following.

THEOREM 4.7. Let the assumptions of Theorem 4.3 hold, with the appropriate modifica-
tions to allow y > 1.%9 Then we have the following:

1. Ifthe DM becomes more impatient, i.e., the discount factor B decreases, then the DM
consumes more (and saves less).3°

2. Ifthe elasticity of intertemporal substitution (EIS= % ) increases and Bz < 1, then the
DM consumes more (and saves less).3!

3. Ifthe DM becomes more risk averse, i.e., the risk attitude parameter T decreases, then
the DM consumes more (and saves less) if y € (0, 1); and if v > 1, then the DM con-
sumes less (and saves more). Moreover, if y = 1, consumption and savings decisions
are not affected by the risk attitude.

4. If the distribution of returns increases, i.e., the T-quantile Q.[w|z] of future returns
increases for all z € Z, then the DM consumes less (and saves more) if y € (0, 1); and
if y > 1, the DM consumes more (and saves less). Moreover, if y = 1, consumption
and savings decisions are not affected by these changes.

Theorem 4.7 sheds light on the impact of changes of the parameters of the model on
intertemporal consumption and savings decisions. First, it confirms the intuitive result
that an increase in impatience makes the DM to consume more and save less. Second,
it clarifies the impact of changes in EIS. Recall that the EIS measures the sensitivity of
consumption growth to changes in the interest rate (the return of investment oppor-
tunities). As the EIS increases, the DM becomes more sensitive to changes in invest-
ment opportunities, and hence, consumes more and saves less, provided that the gains
from investment are not too high. Third, we note the very interesting result concern-
ing changes in the risk attitude. When the DM becomes more risk averse (7 decreases),
changes in consumption and savings depend on the EIS (1/y). When the EIS is larger

29The precise conditions for the cases y = 1 and y > 1 are given, respectively, in the statements of Theo-
rems A.24 and A.30 in the Appendix.

30We refer to consumption and savings as fractions of available assets xz.

31See Assumption 10 for a definition of Z for the case y € (0, 1) and Theorem A.30 in the Appendix, for
vy > 1. Since item 2 deals with changes in v, it is not meaningful to consider y = 1.
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than 1, the DM is sensitive to investment opportunities, and an increase in risk aversion
leads to larger consumption and smaller investment. Finally, Theorem 4.7 shows that
the consumption and savings decisions react differently to changes in the rate of return,
depending on the EIS: for high EIS—y € (0, 1)—an increase in interest rates leads to less
consumption and more savings. If the EIS is low—y > 1—the same change leads to op-
posite behavior. These implications are empirically testable and may shed light, among
other things, on the debate whether the EIS is larger or smaller than 1; see, for instance,
Thimme (2017).

4.1.4 Exponential utility and the permanent income hypothesis Now, we can consider
the exponential utility, U(c) = —%/ exp(—yc), for y > 0.3 Under the conditions of Theo-
rem 4.1, we can obtain the following Euler equation for an interior optimal path {c/}{2,
in this case:

1 1
Qrlcr1]zd = py In(Qrlzi41|2z/]) + ¢ + Y In . (38)

The model in equation (38) is very similar to the well-known permanent income
hypothesis (PIH) model in Hall (1978, 1988) and Flavin (1981) for the conditional expec-
tations. Indeed, Hall (1988, equation (1), p. 341) writes the following equation resulting
from an EU model and lognormal returns:

1
Elcry1]|zd = py In(Elzy1]2:]) + ¢ + &, (39)

adapting his notation to ours.

Generally the PIH predicts that consumption depends on permanent income, which
is the annuity value of lifetime resources. If rational expectations are also assumed, to-
gether with a constant rate of return, the PIH implies that consumption follows a ran-
dom walk, so that only consumption in the previous period contains information which
can predict current consumption. Therefore, the DM adjusts current consumption im-
mediately to the point where consumption is not expected to change, smoothing the
consumption path.

If one assumes that z; = z for all ¢, as it is common the literature (see, e.g., Flavin
(1981)), then equation (38) becomes a quantile (regression) version of the unit root
model for the conditional average widely analyzed in the literature. Thus, the quantile
model predicts a T-quantile martingale (see Definition 3.1). This conjecture could be
empirically tested by using quantile regression unit root tests, as for example in Koenker
and Xiao (2004), using data on consumption.

We notice similarities and differences between equations (38) and (39). First, con-
ditional expectations in (39) are substituted by conditional quantiles in (38). Second,
notice that these two models produce different empirical implications. For the quantile
case, the model implies existence of an unit root for the 7-quantile of the conditional

32This function is also usually known as the Constant Absolute Risk Aversion (CARA) function, as the
isoelastic function discussed in Sections 4.1.1 and A.8.2 is known as Constant Relative Risk Aversion (CRRA)
function. Both terms are not appropriate for quantile preferences since, as we have explained in Section 2,
the utility functions do not have any implications for risk attitude, but for intertemporal substitution.
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quantile function of ¢,41. On the other hand, the EU implies a unit root for the con-
ditional average. While both models predict unit root behavior of the time series of
consumption, these predictions are not nested, since the r-quantile does not need to
coincide with the conditional mean.

4.2 Search with unemployment

We now present a quantile-based version of the job-search model discussed in McCall
(1970); see also Lippman and McCall (1976a, 1976b). In a labor market characterized by
uncertainty and costly information, both employers and employees will be searching.
The analysis presented here is directed to the employee’s job-searching strategy.33

The worker begins each period ¢ with a wage offer w; and has to decide if she accepts
the offer and works at that wage (y; = 1) or refuses the offer (y; = 0) and searches for a
new one. Hence, the decision variable y; takes discrete values in {0, 1}. If she decides
to search, she earns nothing during the period ¢, and a new wage offer w11 € [0, w] will
be her best option for the next period, when she will be making another choice between
searching or working. This new wage offer w;; is modeled as a continuous shock. If the
worker chooses to work at period ¢, there is a chance that she looses her job (e;+1 = 0)
in the next period ¢ + 1, or keeps it (e;+1 = 1), and thus maintains the same wage x; as
in the previous period, where x; denotes the effectively earned wage at period ¢. Hence,
the random variable determining whether the worker keeps or looses the job (e;), which
can be interpreted as employer’s decision, is a discrete shock. The next period state x;11
given by (6) satisfies the following law of motion:3*

Xi11= (X1, Yir €141, Weg1) = €1 X ye + (1 — y)weq. (40)

We assume that the worker cannot lend nor borrow, so consumption will equal earnings
x; at each period ¢. The variable z is a vector z; = (e, w;) representing the shocks con-
cerning the employer’s decision ¢; of keeping the worker and the wage offer w, resulting
from the search. Thus, the DM’s problem can be represented by

O(xs, ze) = sup {y:U(xe) 4+ BQ[0(d(xs, yir 2e41), 2e41)|2¢]} (41)
yi€{0,1}

where U : [0, w] — R denotes the utility over consumption, satisfying U (0) = 0.
We impose the following.

AssumpTION 11 (Independence and i.i.d.). The sequences w; and e, are i.i.d., inde-
pendent of each other, and w; has a continuous distribution with support [0, w], with
Q.[w] > 0.

Observe that if y, = 1, then x;11 = e;+1x; and if y; =0, x;41 = wy41. Since the shocks
are independent by Assumption 11, then the future state does not depend on the current

33An interesting extension of this model would encompass unemployment benefit. We leave it for future
research.
34Observe that this ¢ does not satisfy Assumption 8 since it depends on x;.
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value of the shocks z; = (e;, w;). Moreover, for any of the choices y; € {0, 1}, the value
function does not depend on the current value of shocks. Therefore, we can write the
value function (41) as a function only of x,, i.e.,

0(x;) =max{BQ[v(wi11)], U(x,) + BQ-[D(ers1x)]}. (42)

value for y,=0 value for y;=1

The characterization of the value function requires a few definitions. Observe that
Q:le] € {0, 1} and Q,[w] € [0, w] are values determined by the primitives of the model.
Let us define the following constant:

1+ BQ-[e]
A= MU(QT[M). (43)
1-B8
It is easy to see that A(1 — B) < U(Q[w]). Thus, if U is continuous and strictly increas-
ing, we can define uniquely x* by

U(x*)=(1-pB)A. (44)
We have the following.

THEOREM 4.8. Let Assumption 11 hold, B € (0, 1), and assume that U : [0, w] — R is
strictly increasing and continuous, with U(0) = 0. Then there exists a unique continu-
ous and bounded value function v satisfying (41), and this v is strictly increasing in x;,
does not depend on z; and is given by

A ifx < x*,

v(x)= B ) N

1+ mQT[e] Ux)+(1-Qsle])BA ifx > x*.

Moreover, it is optimal to accept the offer (y* = 1) if x > x* and it is optimal to search
(y*=0) ifx < x*.

(45)

The solution in Theorem 4.8 is interesting and intuitive, being similar to the one ob-
tainable for the expected utility model.3° Indeed, equation (44) is the same as equation
(3) in Stokey, Lucas, and Prescott (1989, p. 306). However, the expressions for 4 and v(x)
are different. Compare equations (2) and (4) in Stokey, Lucas, and Prescott (1989, p. 306)
with (43) and (45), respectively.

The DM has an optimal benchmark salary x* given by (44), which depends on both
Q:[e] and Q,[w]. Whenever a wage offer is below this level, the worker rejects the offer
and searches for a new one. If, on the contrary, the DM receives an offer greater than
x*, the offer is accepted. It is worth noticing that this critical wage x* is increasing in ,
as shown in expression (43). Since the parameter 7 captures the risk attitude of the DM,
larger values of —meaning that the agent is more risk lover—are associated with larger

35See Stokey, Lucas, and Prescott (1989, Section 10.7).
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wages x*. Therefore, a risk loving DM will have a relatively higher benchmark wage level
x*, and hence, will be more likely to engage in searching for a better salary, whereas a
more risk averse DM is more likely to accept a given wage offer, since the benchmark x*
is lower. We note that the quantile search model generates different implications from
that for the EU, since the solution depends on both Q;[e] and Q,[w]. These quantile
values are, in general, different from the expectation of their corresponding distribu-
tions. Potential coincidence depends on the skewness of these distributions, and the
particular risk attitude parameter 7.

5. CONCLUSION

This paper studies dynamic quantile preferences introduced by de Castro and Galvao
(2019). In this model, an agent maximizes the stream of future r-quantile utilities. We
are able to generalize and sharpen their results in many directions that are relevant for
economic applications. In particular, we allow the shocks to be in a finite set or in a
general connected metric space. Also, the future state is not directly chosen, but can be
affected by shocks. These features allow to deal with applications that were not covered
by de Castro and Galvao (2019)’s results. We show that the recursive quantile preferences
model yields a value function, using a fixed-point argument. We also obtain desirable
properties of the value function. In addition, we derive the corresponding Euler equa-
tion. These results are illustrated for two models: an intertemporal consumption and
savings problem, and a search with unemployment model.

APPENDIX A: APPENDIX

This Appendix collects all the formal proofs of the results in the main text. Before we
proceed to the proofs, we review a few useful properties of quantiles.3¢

A.1 Preliminaries

In this Appendix, we state and prove a number of results about quantiles, most of
which are well known. Quantiles are monotonic in the following sense: if X first-order
stochastically dominates Y then Q,[X] > Q,[Y]. If X is risk-free, i.e., X = x with prob-
ability one for some x, then Q,[X] = x. Quantiles are also translation-invariant, i.e.,
Q:la + X] = a + Q,;[X], Va € R; and scale-invariant, i.e., Q;[aX] = aQ,;[X], Va € R,.
On the other hand, quantiles do not share many of the convenient properties of expec-
tations. For instance, Q,[—X] = —Q;_,[X], provided the c.d.f. of X is invertible.3” We
highlight three other important properties that fail for quantiles and would be important
for our results. First, in general, quantiles are not linear: Q,[X + Y] # Q;[X] + Q;[Y]
in general; but see Proposition A.2 below. Second, quantiles do not satisfy an ana-
logue of the law of iterated expectations: if 3¢ C 3 are two o-algebras, then, in gen-
eral, Q;[Q;[X|21]|20] # Q-[X|Z0]. Third, in general, it is not possible to interchange

36See de Castro and Galvao (2019) for proofs of the stated properties and other results.
37See Lemma A.27 below for a more general statement.
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a differentiation and a quantile operator, as it is for expectations, i.e., (9?; [h(x, Z)] #
QT[%(x, Z)]. Despite these shortcomings, we are able to overcome the difficulties to
obtain our results.

We proceed to state some properties that will be used repeatedly below, beginning

with the following:38
Pr{X < Q:[X]] = 7 < Pr[X < Q:[X]] = Fx(Q;[X]). (46)

Let O be a set (of parameters) and g: ® x Z x Z — R be a measurable function. We
denote by Q[g(#, -)|z] the quantile function associated with g, i.e.,

Q-[g(0, )|z] =infla e R:Pr[(g(6, W) <a)|Z=z] >1}. 47)

The following result is a generalization of de Castro and Galvao (2019, Lemma A.2) to
the case in which Z can be discrete, not only finite but also countable. Since the proofis
identical, we omit it.

LEmMmA A.1. Assume that Z C R is closed and g : ©® x Z — R is nondecreasing and left-
continuous in Z, where closedness and left-continuity are relative to the usual topology
onR. Then

Q-[g(6, )|z] = g(6, Q-[w]z]). (48)

Although this paper focus attention on Z connected or finite, our results can be ex-
tended for countable Z. In this setup, it is usual to endow Z with the discrete topology.
Since this topology is trivial, every function is continuous with respect to it. But for the
purpose of this lemma, more structure is needed for the case in which Z is countable,
by requiring continuity with respect to the usual topology of R. To see this assumption
is needed, we provide the following counterexample. Let Z ={1 — 1/n; n € N} U {1, 2}.
Then Z is discrete and closed in the usual R-topology. Consider the probabilities

Plel'NdPZIPZZI
NZ=1-- = Sarl’ ne an r[Z=1]= r[=]=1-

Instead of considering functions continuous with respect to the usual topology, as-
sume only continuity with respect to the discrete topology on Z. Let g be given by

g(l—1/n)=(1-1/n); g(1)=2andg(2)=3.

For 7 =1/2, one has Q;[g(Z)] = 1 while g(Q,[Z]) = g(1) =2.
The next result is just a generalization of de Castro and Galvao (2019, Proposition
A4).

ProPOSITION A.2. Given random variables X and Y, assume that there are continuous
and increasing functions h and g such that X = h(Z) and Y = g(Z). Then

QT[X + Y] = QT[X] + QT[Y] (49)

38See de Castro and Galvao (2019, Lemma A.1, p. 1926).
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andif X,Y >0,

Proor. The property (49) is well known; a proof can be found in de Castro and Galvao
(2019, Proposition A.4). To see that (50) also holds, observe that we can apply the mono-
tonic function In to the positive random variables X and Y, and use (48) and (49) for the
comonotonic variables In(X) and In(Y"), to obtain

In(Q-[X - Y1) = Q-[In(X - Y)] = Q-[In(X) + In(Y) ] = Q;[In(X)] + Q-[In(Y)]
=In(Q;[X]) +In(Q-[Y]) = In(Q;[X]- Q[Y]).

Applying the exponential function to the terms on the left and on the right of the above
equation, we obtain (50). O

We conclude with a useful property of convergence.

LEMMA A.3. Left f, : X CR? — R be a sequence of functions converging uniformly to a
function f : X — R. Then

nli)n;o QT[fn(X)] = QT[f(X)]

Proor oF LEMmA A.3. Let e > 0. Since f, — f uniformly, there exists some N € N such
that

—S O < fal0) < f0) + 5

for all x e X whenever n > N. Taking quantiles imply
—€+ QT[f(X)] < _g + QT[f(X)] = QT|:_§ +f(X):| = Qr[fn(X)]

< Q{f(X) + 5} = Q. [f(0]+5

< QT[f(X)]+€y
o)
|Q:[/n(X)] = Q:[f(X)]| <6,
if n > N. Thus, the result follows. O

A.2 Proofs of Section 3.3

Proor oF LEMMA 3.6. By Stokey, Lucas, and Prescott (1989, Theorem 7.6), I' has a
measurable selection. Therefore, the argument in Stokey, Lucas, and Prescott (1989,
Lemma 9.1) establishes the result. O
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ProoF oF THEOREM 3.8. Under Assumption 0, v* is well-defined by (13). Let v: X x
Z — R be a function satisfying the assumptions of Theorem 3.8. We need to show that:

A) vix,z2)>V(h,x,z),forall (x,z) e X x Zand h € H(x, z); and
(B) v(x, z) =lim,_. V (A", x, z), for a sequence of plans {#"} obtained from G,,.

To see (A), assume that it is false, i.e., there exists (x1,z1) e X x Z, he H,and e > 0
such that v(xy, z1) +2€e < V' (h, x1, z1). From (12), there exists n; such that n > n; implies
that

V' L(h, x1, 21) — € > v(x1, 21). (51)
From (8), and using (9) and (10),

v(x1,z1) = sup {u(x1, y1, 21) + BQ-[v(b(x1, y1, 22), 22)|21]}

nel(xy,z1)

> QT[u(xl» y{z) Zl) + Bv(d)(-xl) y{l’ ZZ)v ZZ)|ZI]

We can use again (8) to obtain that v(x1, z1) is not smaller than

QT[Sh'O(xl, ) +B  sup  {u(x, y2, 22) + BQ-[v(d (x5, y2, 23), 23)|22]}|21]
y2€l(x4,22)

> Q:[Q-[S"0(x1, 1) + Bu(xh, ¥}, z2) + Bv(o(x%, ¥4, z3), 23)|2°]|z1]
= QA[S™ " (x1, 2%) + BPu(¢ (x5, 3, 23), 23) |21

Proceeding in this fashion, we obtain

v(x1, z1) = QPSP (x, 2) + B (b (X0, ¥2, znt1), zns1)|21]
= QI QA [S" (x1, 2") + B (b (x1) Y, zni1)s Zni1)|2"]|21]
= QI [SP Y (x1, 2) + B"Q: [v(d (x), ¥, zns1), zug1)|2"]|21]-
From the transversality condition, there exists ny > n; such that n > ny implies (14).
Therefore,
v(xy, 21) = QPUSM T (xy, 27) + BQ:[u( (2, ¥E, zni1), znir)|2"]121] (52)
= QTSP (o, 2") —elz1]
=V" Y (h, x, z)—¢,
but this contradicts (51). The contradiction establishes (A).
From (A), we conclude that v(x, z) > SUPjep(x,z) V (h, x, ). For a contradiction, as-

sume that (B) is false, i.e., there exists € > 0 and (x1, z1) € X x Z, such that v(x1, z1) —
2€ > SUPjepy(xy,z) V (X1, 21). Let h be any plan obtained from G,, which exists because
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of the stated assumptions on G,. Then v(x1, z1) — 2¢ > V' (h, x1, z1). From (12), there
exists n; such that n > n; implies that

v(x1, 21) > V" L(h, x1, 21) + e (53)

We can repeat the developments above after (51), where all inequalities hold with equal-
ity since 4 is obtained from G. In this fashion, we obtain

v(xy, z1) = QPSP (xy, 2) + B Q- [v(d (x, ¥, zn1) 1) 12]|21], (B4
From CQTC, there exists ny > n; such that n > ny implies (14). Therefore,
v(x1, 21) QPSP (x1, ) + el ] =V (h, x, 2) + €

but this contradicts (53). The contradiction establishes (B) and concludes the proof.
Notice that this also establishes the last claim. Indeed, if there exists a plan / ob-

tained from G, such that v(x1, z1) > V' (h, x1, z1), the above arguments would lead to

the same contradiction. This concludes the proof. O

A.3 Proofs of Section 3.5

Proor oF THEOREM 3.11. This will be established through a series of lemmas and the
next proposition. In the following proofs, we denote by w the next period shock, given
that the current shock is z.

ProposiTiON A4. IfveC, themap (x, Yy, z) = Q;[v(d(x, y, w), w)|z] is continuous.

The proof of Proposition A.4 is divided in a series of lemmas. Before presenting them,
we need to make a simple observation and introduce some notation. Observe that, since
¢ is continuous, by setting y' = (x, y) and v'(y’, w) = v(d(x, y, w), w), it suffices to prove
that (y/, z) = Q.[v'(y, w)|z] is continuous. We proceed in this direction, simply writing
y and v instead of y’ and v/, respectively.

Now consider a sequence (y", z") — (y*, z*). Let K: Z x 2 — [0, 1] be the transi-
tion function representing the Markov process of the shocks Z, where X is the Borel
o-algebra. Let

m"(a)=Pr({we Z:v(y", w) <a}|z")=K(", {we Z:v(y", w) < a})
and
m*(a) =Pr({we Z:v(y*, w) <a}|z*) =K(z*, {we Z:v(y*, w) < a}).

Let o" = inf{a € R : m"(a) > 7} = Q;[v()", -)|z"] and «* = inf{a € R : m*(a) > 7} =
Q- [v(y*, -)|z*]. We want to show that o — «*.39 We will proceed in two main steps,
first showing that a = liminf, " > o* and then showing that @ = limsup,, & < «*.*° This
will establish the result.

39Notice that we do not claim that m"(a) — m*(«a), as in equation (50) of de Castro and Galvao (2019),

and the proof does not depend on this convergence.
40Since v is bounded, it is not possible that a” — oo or —oo, i.e., @, @ € R are well-defined.



388 de Castro, Galvao, and Nunes Theoretical Economics 20 (2025)

LEMmMA A.5. Suppose that o — &. Given €, 6 > 0, there exists ne,s € N and a compact
Z' C Z such that n > n.,s implies that

K(z5{weZ :v(y",w)<a+e})+6>1 and (55)
K(zZ" {weZ vy, w)<a—e})+8>K(z5 {we Z:v(y*, w) <& —¢€}). (56)

Prookr. By Assumption 1(i), given € > 0, there exists Z’ C Z compact such that

£ / 6
K(z 'Z\Z)<Z' (57)
Using (57) and Assumption 1(ii), there exists n1 € N such that if n > ny,%!
|K(z", 2\2') - K(z*, 2\Z')| < Z
n 4 * ! 8 8

= K("2\2) <K(" 2\2) + 5 <. (58)

Let D be a compact set containing the sequence {y"},cn and, of course, its limit y*.
Then, since v is continuous, it is uniformly continuous in the compact D x Z’. Hence,
there exists ny > n; such that if » > ny then

lo(y", w) —v(y*, w)| < g, vwe Z' and |a—a"|< g (59)

Now, let w € 2’ be such that v(y", w) < &”. By (69), v(y*, w) <v(y",w)+ 5 <a" + 5 <
a+e. Thus, ifn>ny, {we Z :v(y", w) <a"} C{we Z' :v(y*, w) < a+ e}. Defining
E={we Z :v(y*, w) < a+ €}, which is compact, we conclude that

K(z", {we Z:v(y", w) <a"}) <K(", E) + K(", 2\2'). (60)

Since the expression on the left above is greater than or equal to = by (46), we can use
(58) to conclude that 7 < K(z", E) + g. Again by Assumption 1(ii), there exists n3 > ny
such that n > n3 implies K (2", E) < K(z*, E) + g. Therefore, we have proved (55).

To see (56), define F = {w € Z’: v(y*, w) < a — €}. This set is compact. Observe that

K(z* {we Z:v(y*, w) <& —e€}) <K(z* F) + K(z*, 2\Z'). 61)
Again by Assumption 1(ii), there exists n4 > n3 such that n > ny implies
)
K(z*,F) <K(Z", F)+ > (62)
Combining (61) with (57) and (62), we obtain (56). Finally, let n¢, s = n4. O

LEmMA A.6. Let Assumption 1 hold. Then ¢ =liminf, o > o*.

41Since K (z, 2\2') =1 — K(z, Z') for any z € Z, Assumption 1(ii) implies K (z", Z2\2') — K(z*, Z2\2').
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Proor. We will show that & > a* by contradiction. So, assume that ¢ < «*. This means
that there exists € > 0 and a subsequence 7, such that &/ — a, with a + € < &*. Since
o* =inf{a € R: m*(a) > 7}, m*(a + €) < 7. Choose n > 0 such that

T—n>m*(a+e)=K(z5 {we Z:v(y", w) <a+e}).
Given this n > 0, Lemma A.5 implies that there exists a compact Z’ ¢ Z such that
m*(a+e€)=K(z5 {we 2 1 v(y", w) <a+e})>7—n,
i.e., 7—n>m*(a+ €) > 7 — n,which is a contradiction that establishes the result. O
Letus denote by E* the set {w € Z : v(y*, w) < «*}. Since v is continuous, E* is closed.
LEMMA A.7. Let a =limsup, o”. If K(z*, E*) > 7, then a < o*.

Proor. For a contradiction, assume that there exists e > 0 such that @ — € > o*. Let
{a"/}jen be a subsequence converging to a. Let 6 > 0 be such that K(z*, E*) > 74 24. By
Lemma A.5, there exists j; € N and a compact 2’ C Z such that j > j; implies that

K(z", {we 2 v(y", w) <a—e€}) >K(z5 {we Z:v(y", w) <a—¢€}) - 5.
Since a —e€ > o*, K(z*, {w e Z:v(y*, w) <a—e}) > K(z*, E*) > 7+ 28. Thus, ifj > jj,
K(",{we Z:v(y", w)<a—¢€}) >7+34.

Since &'V = infla e R: K(z",{w e Z:v(y",w) <a}) > 7}, then o’V <a —eforall j > jj.
However, this contradicts "/ — &, and concludes the proof. O

Now, we have to deal with the case in which
K(z* E")=K(* {we Z:v(y", w) <a*}) =1 (63)

We deal with this case by considering first the case in which Z is finite and then the case
in which Z is connected.

LEMMA A.8. Let Assumption 1 hold, in the specific case in which Z is finite. If (63) holds,
then & =limsup, o' < a*.

Proor. For a contradiction, assume that for some € > 0, @ — € > a*. Given that Z is
a finite metric space, it is endowed with the discrete topology. Since z" — z*, we may
assume, without loss of generality, that there exists a subsequence such that z"/ = z* for
all j e N and o'/ — a. There exists j; € N such that for all j > j;, |@" — &| < 5. Since
a—e>a* forallj>jj,

rEca—Soam (64)
a <o 2<O[ 2<Ol.
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Since &'V =infla e R: K(Z', {w e Z :v(y'V, w) <a}) > 7}, forall j > j,
. _ €
K(z*,{weZ:v(y”/,w)fa—ED<T. (65)

Fix a compact D containing {y"},cn. Again, since v continuous and Z is finite, v is uni-
formly continuous on D x Z. Hence, there exists j» > j; such that Vw € Z and j > jo,

(v, w) (", w)| < 3.
Thus, if j > j» and w € Z is such that v(y*, w) < a*, we have
v(y", w) — g <v(y*, w) <a¥,
so, by (64), for all j > j»,
v(y", w) <a*+§ <&—%<a"!’.

Therefore, for all j > jo,

E*:{weZ:v(y*,w)sa*}c{weZ:v(y”i,w)sEu—

}.
=

a contradiction. Thus, the result is established. O

N m

Using this, (63) and (65), we have t, for j > j»,

TZK(Z*’E*) fK(Z*, {wEZZv(y"f,w) <a-—

N m

Now, we consider (63) for the case in which Z is connected. In fact, we will establish
the result for a condition that is implied but it is slightly more general than the require-
ment that Z is connected, namely the assumption that the image of w — v(y*, w) is
connected, i.e., it is an interval. Since v is continuous, the condition that Z is connected
implies this property. Lemma A.9 below establishes the relevant result, assuming only
this condition on the v.

LemMmA A.9. Let Assumption 1 hold, v € C, and assume that v(y*, Z) is an interval. If (63)
holds, then o = limsup, " < a*.

Proor. For a contradiction, assume that & > «*. Fix 6 > 0 such that o* + 26 < a. Let
n; be a subsequence such that «"/ — @. Thus, there exists j; € N such that j > j; im-
plies ¢’ > @ — 6 > o™ + 8. We claim that the set B={w € Z: a* < v(y*, w) < a — 6} is
nonempty. To see this, suppose that B = ¢. Since 7 € (0, 1), (63) implies that

0<1-7=K(z" {we Z:v(y*, w) > a*}) =K(*, {we Z:v(y*, w) > a— 8}).

Therefore, there exists w; € {w € Z : v(y*, w) > & — 8}. Again by (63), there exists wg €
{we Z:v(y*, w) < a*}. Therefore, v(y*, wp) < a* < a— 8 <v(y*, wy). Since v(y*, Z) is an
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interval, [a*, & — 6] C v(y*, Z), which contradicts B = . Thus, there exists w» such that
a* <v*(w2) <a— 6. Let € € (0, 8] be such that v*(wy) € (a* + €, @ — €).

Since wy € {w € Z : a* + € < v(y*, w) < @ — €}, and v is continuous, this set is
nonempty and open. Assumption 1(iii) guarantees that there exists n > 0 such that
51 < 7 and

K(z {fwe Z:a" +e<v(y*,w) <a—e€})>5n. (66)

Assumption 1(i) enables us to find a compact Z’ C Z such that
K(z*, Z\Z’) <. (67)

Let C={we Z :a"+ € <v(y*, w) <a— €}. Notice that C c 2’ is compact, since v is
continuous. From (66) and (67),

K(z5,C) = K(z*, {we Z:a" +e<v(y",w) <a—¢€}) - K(z*, 2\Z') > 4n.  (68)
Let D C X be a compact containing the sequence {y"},cn and, naturally, its limit y*.
Thus, v is uniformly continuous in D x Z’ and there exists j» > ji, such that for all w € 2’

and j > ja,
[o(y, w) = v(y*, w)| < 5 and (69)

€

o —ali| < —. 70
’a a | <3 (70)

Now notice that, if w € Z’ and o* + € < v(y*, w), (69) implies that for all j > jy,

v(ynj,w)>v(y*,w)_EZa*+e_E=a*+E_ (71)
2 2 2
Notice also that, if w € 2’ and v(y*, w) < & — ¢, (69) implies that
v(y", w) <v(y, W)+ Sa—e+ s =a—s. (72)

Hence, (71), (72), and the fact that @ — €/2 < ', from (70), imply that for j > j»,
C={wezZ':a*+e<v(y",w)<a—¢€}C {weZ:a*—i—g<v(y"j,w)<a".f}. (73)

Since K(z*, C) > 4m by (68) and K (", C) — K(z*, C), there exists j;3 > j» such that for
allj > jg,

K(Z”f, C) > 27.
Therefore, from the definition of m™/, for all j > js,
m”f<a* + g) +27 <K<z”f, {we Z:io(y", w) <a* + g}) + K (2", C)

<K(z",{weZ:v(y",w) <a"}) <7,
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where we have used (73) to obtain the penultimate inequality, while the last inequality
holds from the definition of &"/ and (46). Thus, we have established that for all j > js,

m"f<a*+ %) <T—27. (74)

On the other hand, if j > js and w € Z’ is such that v(y*, w) < «*, then from (69),

v(y", w) <v(y*, w) + % <a*+ g,

ie.,
{lwe 2" :v(y*, w) <a*} C {w eZ vy, w)<a*+ %} (75)
From the definition of a*, (46), and (67), we have for all j > j3,
T<K(zE*)<K(zE*NZ)+K(z* 2\Z') <K(z, E*NZ) + 7. (76)

By Assumption 1(ii), K (z", E*NZ’') - K(z*, E*N Z’). Therefore, there exists j; > j3 such
that j > j, implies, using (76), that

K(Z",E*NZ')>K(z* E*NZ')—n>71-2n. (77)

Hence, for each j > ju,

m”z( ) (z , {Z eZ:v(y, w) <a*+ %}) by definition
K(z , {z eZ vy, w)<a*+ g}) by set inclusion

K(z",{ze€ Z :v(y", w) <a*}) by (75)

=K(z",E*NZ2’) by definition

>7—27n by (77).

However, this contradicts (74), concluding the proof. O

ProOF OF ProPOSITION A.4. Observe that K(z*, {z € Z: v(y*, w) < a*}) € [7, 1], by (46)
and the fact that K(z*, -) is a probability. The case Z finite is established by Lemmas A.6,
A.7, and A.8 and the case Z connected is proved by Lemmas A.6, A.7, and A.9. O

LeMMA A.10. For each v € C the supremum in (16) is attained and M(v) € C. Moreover,
the optimal correspondenceY : X x Z = Y defined by

Y(x, z) =arg I;l(ax )Qf[u(x, ¥, 2) + Bo(d(x, y, w), w)|z] (78)
yel'(x,z

is upper semicontinuous with nonempty compact values.
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Proor. The proof repeats the proof of de Castro and Galvao (2019, Lemma A.6). O

We conclude the proof of Theorem 3.11 by showing that M satisfies Blackwell’s suf-
ficient conditions for a contraction.

LeMmmA A.11. M satisfies the following conditions:
(a) Foranyv,v' €C, v <V implies M(v) < M(').
(b) Foranya>0andx € X, M(v+ a)(x) <M(v)(x) + Ba, with B € (0, 1).
Then |M(v) — M(V)| < Bllv — V|, i.e., M is a contraction with modulus B. Therefore, M
has a unique fixed-point v € C.
Prookr. To see (a), letv, v' € C, v < v’ and define g as
g(x, y, z,w) = u(x, y, z) + Bu(¢(x, y, w), w) (79)

and analogously for g’. It is clear that g < g’. Then, by de Castro and Galvao (2019,
Lemma A.1(vi)), Q;[g(-)|z] < Q-[g'(-)|z], which implies (a).
To verify (b), since a is a constant,

Q-[v(¢(x, y, w), w) + alz] = Qz [v((x, y, w), w)|z] +a.

Thus, M(v 4+ a) = M(v) + Ba, i.e., (b) is satisfied with equality. By a standard argument,
(a) and (b) imply that M is a contraction and the result follows. O

A.4 Proofs of Section 3.6

Proor or THEOREM 3.13. We will present the proof for the case with strict increasing-
ness. For nondecreasing functions, the same argument works with weak inequalities
where strict inequalities appear below. Let ¢’ C C be the set of the bounded and contin-
uous functions v: X x £ — R, which are nondecreasing in x. It is easy to see that C’ is
a closed subset of C. Let C” C C’ be the set of strictly increasing functions x. If we show
that M(C") C C”, then the fixed point of M will be strictly increasing in x.

Let v € C' and consider xg, x; € X, x9 < x1. Fori =0, 1, let y; € I'(x;, z) attain the
maximum, i.e.,

M(v)(xi, 2) = u(xi, yir 2) + BQ:[v(d(xi, yir w), w)]|z],
By Assumption 3, I'(xg, z) C I'(x1, 2), s0 yp € I'(x1, z). Therefore,
Mu(xg, z) = u(xq, Yo, z) + BQ-[v((x0, yo, w), w)|z]

< u(x1, o0, 2) + BQ:[v(d(x1, Yo, w), w)|z]

=< MU(X}, Z)r

where in the first inequality we used that u is strictly increasing in x, both v and ¢ are
weakly increasing in x, and the fact that quantiles is a monotonic operator, i.e., for any
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g, h functions such that g < &, Q;[g(Z)] < Q:[h(Z)]; see de Castro and Galvao (2019,
Lemma A.1(vi)). In the last inequality, we have used the optimality of M. This shows that
Moy is strictly increasing in x when v € C’, i.e.,, M7 (C") c C”, since v € C’ was arbitrary. O

To establish Theorem 3.14, we need the following two lemmas, which rely on its as-
sumptions.

LEMMA A.12. Ifh: Z — Ris weakly increasing and z < z/, then Q. [h(w)|z] < Q;[h(w)|Z'].
Proor. From Assumption 5, if # : Z — R is weakly increasing and z < 7/,
El-lweznw)<al2] < E[-lweznm)<al?]:
Thus,
Pr([A(W) < a]|z) =Ellyweznm<m] 2] = E[Lwez:now)<ay|Z’] = Pr([R(W) < w]|Z'). (80)
If we define H(w|z) = Pr([h(W) < w]|Z = z), then (80) can be written as
H(w|z) > H(wl|Z).

Observe that Q;[h(w)|z] = inf{fa € R : H(a|z) > 7}, and whenever z < z/, H(w|z') <
H(w|z), for all w. Therefore, if z < z/, then

laeR:H(alz) =7} D {aeR:H(a|Z) = 7},
which implies that
Q-[h(w)|z] =infla e R: H(a|z) > 7} <infla e R: H(a|Z') > 7} = Q;[h(w)|Z'],
as we wanted to show. O

LEMMA A.13. Ifu and v are weakly increasing in x and z, then M(v) is weakly increasing
in z. If u is strictly increasing in z, so is M(v).

ProOOF. Let z1, z2 € Z, with z; < z2. For i =1, 2, let y; € I'(x, z;) realize the maximum,
ie.,

M (v)(x, z;) = u(x, yi, z;) + BQ-[v(b(x, yi, w), w)|z].
If u is strictly increasing in z, we have
M(v)(x, z1) = u(x, y1, 21) + BQ;[v(¢(x, y1, w), w)|z1]
< u(x, y1, z2) + BQ-[v(d(x, y1, w), w)|z1].

If u is just weakly increasing, the above remains true with weak inequality (and the same
is true below; for simplicity, we focus only in the case of strict inequality). By Assump-
tion 4, ¢ is weakly increasing in z. Since v is weakly increasing in x and z, the function
h(w) =v(d(x, y1, w), w) is weakly increasing in w. Lemma A.12 implies that

QT[U(Q’)(X! 1, U)), w)lzl] < QT[U(d)(x) Y1, 'I,U), w)|22])
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which gives
M(v)(x, z1) < u(x, y1, z2) + BQ-[v(¢(x, y1, w), w)|z2].

From Assumption 4, I'(x, z1) C I'(x, z2), i.e., y1 € I'(x, z2). Optimality thus implies
that

u(x, y1, z2) + BQ:[v( (x, y1, w), w)|z2] < ulx, y2, 22) + BQ-[v(P(x, y2, w), w)|z2]
= M(v)(x, z2).

Therefore, Ml(v) (x, z1) < M(v)(x, z2), which shows strict increasingness in z. O

Proor oF THEOREM 3.14. That v is increasing with respect to x was already proved in
Theorem 3.13. The argument for the similar property with respect to z is analogous:
Let C' c C be the set of the bounded and continuous functions v : X x Z — R, which
are nondecreasing in z; C’ is again a closed subset of C. Let C” C C’ be the set of strictly
increasing functions z. Lemma A.13 shows that M(C’) C C" if u is strictly increasing in z
and M(C’) c €’ if u is only weakly increasing. Thus, the fixed-point of M has the stated
properties, which concludes the proof. O

A.5 Proofs of Section 3.7

PrROOF oF THEOREM 3.15. As we have done in the proof of Theorem 3.13, we will
present the arguments just for the strict concavity case. For weak concavity, the same
argument works with weak inequalities where strict inequalities appear below. We orga-
nize the proofin a series of lemmas. It is convenient to introduce the following notation.
Let C' c C be the set of the bounded and continuous functions v: X x Z — R, which are
concave in x and nondecreasing in both x and z. It is easy to see that C’ is a closed sub-
set of C. Let C” C C’ be the set of strictly concave functions in x and strictly increasing in
both x and z. If we show that M(C’) c C”, then the fixed point of M will be strictly con-
cave in x, as well as strictly increasing in both x and z (see, for instance, Stokey, Lucas,
and Prescott (1989, Corollary 1, p. 52)).

LEmMA A.14. Under the assumptions of Theorem 3.15, M(C') € C'. If u is strictly concave,
M(C’) is also strictly concave.

Proor. As commented above, we will prove the result just with strict conditions; the
weak conditions follow by using weak inequalities. Let « € (0, 1), v € ¢’ and consider
X0, x1 € X, x9 # x1. Fori=0, 1, let y; € I'(x;, z) attain the maximum, i.e.,

M(v) (x;, 2) = u(xi, yir 2) + BQ:[v( (x, yi» w), w)|z].
Let x4 = axo + (1 — @)x; and y, = ayp + (1 — a)y;. Hence,

aMv(xg, z) + (1 — @)Mu(x1, 2) = a{u(xo, yo, 2) + BQ-[v($(x0, y0), w), w)|z]}
+ (1 — a){u(x1, y1, 2) + BQ:[v(d(x1, y1, w), w)|z]}
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< U(Xar Yar 2) + B{Qz[av (b (x0, yo, w), w)|z]
+ Q- [(1 — a)v(b(x1, y1, w), w)|z]}
= U(Xa» Yar 2) + BQ:[av(d(x0, yo, ), w)
+ (1 —a)v(d(x1, y1, w), w)|z]
< u(Xa) Yar 2) + BQT[U((b(xar Ya, W), U))lZ]
< Mu(xq, 2), (81)
where the first inequality is due to the strict concavity of u in the first two variables. The
equality in (81) is justified by Proposition A.2; since v is increasing in both variables and
¢ is increasing in the last variable, v(¢(x, y, w), w) is both increasing and continuous
on w, so comonotonicity applies. The second inequality follows from concavity in x of
v and in (x, y) of ¢, as well as the fact that quantiles preserve order; see de Castro and

Galvao (2019, Lemma A.1(vi)). The last inequality follows from Assumption 6 and the
definition of M(v). This proves that Muv is strictly concave in x when v € C'. O

We conclude the proof of Theorem 3.15 by showing that the policy correspondence
(78) is single-valued and continuous.*?

Lemma A.15. Ifu is strictly concave on y and v is concave in x or v is strictly concave in x,
then the optimal correspondence Y (x, z) is single-valued.

Proor. For an absurd, assume that there were y # y" in Y (x, z), i.e.,

(x, 2) = u(x, y, 2) + BQ:[0(¢ (x, y, w), w)|z] = u(x, ', z) + BQ:[v((x, ', w), w)|z].
Let y, =ay+ (1 — a)y’. By Assumption 6, y, € I'(x, z). Hence,

v(x, z) =av(x, z) + (1 — a)v(x, 2)
= afu(x, y, 2) + BQ:[0(e (x, y, w), w)|z]}
£ =@ ux s 2) + BQ:[3( (5, w), w)le])
< u(X, Yo, 2) + B{Q:[a¥(d (x, y, w), w)|z] + Q- [(1 = ) B(¢(x, ', w), w)|z]}
= u(X, Yo, 2) + BQ:[ad(¢(x, y, w), w) + (1 — )3($(x, ¥, w), w)|z]
< u(X, Yo, 2) + BQ: [D(d (X, yo» w), w)|2]
=v(x, 2), (82)

where the first inequality is due to the strict concavity of u in the first two variables.
The following equality in (82) is justified by the same argument that established (81) in
Lemma A.14. The second inequality follows from concavity in x of v (by Lemma A.14)
and in (x, y) of ¢, as well as in de Castro and Galvao (2019, Lemma A.1(vi)). The last

42With weak concavity, the inequalities are weak and the proof establishes that Y is convex.
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inequality follows from Assumption 6 and the definition of v. This contradiction proves
that the policy correspondence given by (78) is single-valued. Lemma A.10 shows that
the correspondence is upper semicontinuous. Since it is single-valued, it is continuous
as a function. O

A.6 Proofs of Section 3.8

Proor oF THEOREM 3.16. The prooffollows from an easy adaptation of Benveniste and
Scheinkman (1979)’s argument, as developed by de Castro and Galvao (2019). We will
reproduce the argument here for readers’ convenience.

Let v be the fixed point of M : C — C, which exists by Theorem 3.11. Let y* : X x Z —
Y be a measurable selection of Y : X x Z — Y, i.e,, y*(x,z) € Y(x, z). A measurable
selection exists because of Aliprantis and Border (2006, Theorem 18.19, p. 605). Thus,
for all (x, z),

v(x, 2) = u(x, y*(x, 2), z) + BQ-[v(¢ (x, y*(x, 2), w), w)|z].

Recall that v is concave by Theorem 3.15. Fix x¢ in the interior of X and define

w(x, z) = u(x, y*(xo, 2), 2) + BQ-[v(d(x0, y* (x0, 2), w), w)|z].

From the optimality of v, for a neighborhood of x(, we have w(x, z) < v(x, z), with equal-
ity at x = xo, which implies w(x, z) — w(xg, z) < v(x, z) — v(x0, z). Note that w is concave
and differentiable in x because u is. Thus, any subgradient p of v at xo must satisfy

P (x —xo0) > v(x, z) — v(x0, 2) = w(x, z) — w(xo, 2).

Thus, p is also a subgradient of w. But since w is differentiable, p is unique. Therefore, v
is a concave function with a unique subgradient. Therefore, it is differentiable at xq (cf.
Rockafellar (1970, Theorem 25.1, p. 242)) and its derivative with respect to x is the same
asthatof w, i.e., foreachi=1,..., p,

2= 22 x, 2) = 22 (6, ¥ (x, 2), 2)
—(x,2)=—(x,2) = —(x, y"(x, 2), 2),
Jx; Jx; 9x; Y

as we wanted to show. O

ProoOF OF THEOREM 3.17. Let{h,},cn C R be asequence of real numbers converging to
0. Lete;=(0,...,0,1,0,...,0) C R? be the ith canonical basis vector. Since x € X C R?
is assumed to be interior, we can suppose that the #, are small enough so that x, =
X + hpe; € X for all n € N. Clearly, we have x, — x. Let y* € Y(x, z). Since Y is lower
hemicontinuous at (x, z), there exists y, € Y(x,, z) such that y,, — y*. Since ) is discrete,
this means that y,, = y* for sufficiently high n. Therefore, without loss of generality, we
can assume that y* € Y(x, z) N Y (x,, z) for all n € N. From (16),

v(x + hpej, 2) = u(x + hpei, ¥, 2) + BQ:[v(d (v, 2), 2)|z].

43Recall that x € X ¢ R from Assumption 3.
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Since v(x, z) = u(x, y*, z) + BQ-[v(d(y*, Z/), 2)|z], we obtain

VOx A 2) —v(x,2) u(x + hnej, y*, z) — u(x, y*, z)

nlggo h, n—00 hn
Ju ( )
X,y z
(9 X v
Since {A,} is an arbitrary sequence converging to 0, the proofis complete. O

A.7 Proofs of Section 3.9

Proor oF THEOREM 3.18. Letg(x, y, z) = u(x, y, z) + BQ-[v(¢(y, w), w)|z] and y*(x, z)
be an interior solution of the problem (16). Let v(y, w) = v(¢(y, w), w). Observe that ¥ is
weakly increasing in w, differentiable in its first variable and for 0 < y; — y; < ¢, for some
small € > 0,

(¥ y—i» w) — Dy, y—ir W)

D,
2/ —(a, Y—i» w) da
;i

i

Vi 9v d
/ _(d)(a; }Li» w),w)'—(ﬁ(a»yfi; w)da
y 0% i

Vi du . ' dd '
/y,- 5((1)(04 y-irw), Y (¢ (a, y_i, w), w), w) - a—yl_(a, y—i» w)da,

where we have applied the chain rule in the second equality, and Theorem 3.16 in the
third. Thus, the difference in the first line is weakly increasing in w, because by hypoth-
esis, the integrand in the last line is. Therefore, the assumptions of Proposition 3.19
from de Castro and Galvao (2019) are satisfied and we conclude that ﬁQT [v(y, w)] =

Q[ Lo} 3 (s w)]. Since u is differentiable in y, so is g. Since y*(x, z) is interior, the following
ﬁrst order condition holds:

g Ju
x, vi(x,2),z)= x, v*(x, 2), z) + TI: (x, 2), z:| —0.
oy Y 2) =5, 0y 2) + BQr| (" (x, 2), w)|
Now we apply Theorem 3.16 and its expression: Z—g(x, z) = % (x, y*(x, 2), 2), together
with the chain rule, to conclude that

u

—(x, y*(x, 2), z
67)’1‘( Y )

# 5O T2 (607052, 0), (80" 5,2 ), ) w) - 22 (57, 20, w)lz | =

Now, we have just to put the notation of a sequence. For this, let # = (x;) denote an
optimal path beginning at (xg, zo). Then the above equation can be rewritten, substitut-
ing x for x?, y*(x, z) for yth, d(y*(x, 2), w) for xs41, y*(d(y*(x, 2), w), w) for y[hH, z for z;
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and w for z,41, as

M non " 9
(9—yi(xt DV 2t) + BQT[%( 1 Vi Ze41) - ﬁ_)/i(yt » Zi41) 1z | =0, (83)
which we wanted to establish. O

A.8 Proofs of Section 4.1

We first generalize Assumption 9 to the following.

AssumpTION 12. The following holds: (i) X = [x, X] for some X > x > 0; (ii) Z = [z, Z],
Withz>z>0; (i) U: X >RisC? U >0, U" <0; (iv) p: X x Y x Z— X is defined
by (x,y,2) =d(x,(c, x),z)=x;and W) T: X x Z—>Y=X xXisgivenby'(x, z) =
{(c, x') € X x X:c+ x' <max{xz, 2x}}.4*

PROOF OF THEOREM 4.1 WITH ASSUMPTION 12 IN PLACE OF AsSUMPTION 9. For the
existence of the value function, it is sufficient to check that Assumption 2 holds and
apply Theorem 3.11. Since y = (¢,x) e Y =X x &, U : X — R is C?, X is com-
pact, then u(x, y, z) = u(x, (¢, x'), z) = U(c) is continuous and bounded. The function
d(x,y,2z) = d(x, (c, x'), z) = x' is also continuous and bounded. The correspondence
I': X x Z— Y defined by I'(x, z) = {(¢c, x') € X x X : ¢ + x' < max{xz, 2x}} is continu-
ous, with nonempty, compact values. Then Assumption 2 holds and there exists a value
function that satisfies the functional equation (21).

Assumption 6(i) is satisfied because X and J = X x X are convex. The function
u(x,y, z) = u(x, (¢, x'), z) = U(c) is increasing, but not strictly increasing, in the first
and last variables and it is concave, but not strictly concave in the first two variables.
Also, ¢ : X x Y x Z — X defined by ¢(x, y, z) = ¢(x, (¢, x'), z) = x" is nondecreasing and
concave in all variables. Thus, Assumption 6(ii) is satisfied. Assumption 6(iii) is also
satisfied.

Assumption 7 is trivially satisfied since Z = [z, z] C R. Assumption 8(i) holds since
u(x,y, z) = u(x, (¢, x'), z) = U(c) is constant with x, and thus, C'. Assumption 8(ii)
holds since ¢ : X x Y x Z — X defined by ¢(x, y, z) = ¢(x, (¢, x'), z) = x’ does not de-
pend on x.

Thus, the other claims in Theorem 4.1 follow from Theorems 3.15, 3.16, and 3.18,
although the Euler equation needs some further work. In the above context, the Euler
equation cannot be applied because it refers to interior points, and the optimal choices
of ¢ and the next period x” will not be interior to I'(x, z), but in its boundary. We can
change the definition of ) and I'(x, z) to remedy this. Let Y = X and y = ¥/, i.e., the
DM chooses directly the next state. To keep the boundary limits, consider the function
[: Ry — Ry defined by /(a) = min{max{«, 2x}, 2x}. Thus, if xz € (2x, 2%), I(xz) = xz,
but it is equal to 2x if xz < 2x and to 2% if xz > 2Xx. By the strict monotonicity of U,
¢=1(xz) — x' =1l(xz) — y and we can redefine u(x, y, z) = U(l(xz) — y), d(x,y,2) =y

44The requirement ¢ +x’' < max{xz, 2x} implies that (¢, x') = (x, x) is still in the budget set even if xz < 2x.
This guarantees that I'(x, z) is never empty.
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and I'(x, z) = {y € X : I(xz) — y € X}. For interior points, xz € (2x, 2x), and the Euler
equation (24) is easily obtained. O

PROOF OF COROLLARY 4.2. It follows immediately from Theorem 4.1. O

ProoF oF THEOREM 4.3. We want to show that v: X x Z — R given by (29) is a fixed
pointof M: C — C:

_ - .,
M(D)(x, z) = o max { T + BQ-[v(x, w)|zt]},
where X = [0, 4+00) and I'(x, z) = {(¢, x') € X2 :c+ x’ < xz}}.

Let us analyze this maximization problem. If xz =0, then ¢ = x’ = x = 0 is the only
choice possible, i.e., I'(x, z) = {(0, 0)}. Assume from now on that xz > 0. Since the utility
is strictly increasing, it is not possible that ¢+ x’ < xz, since in this case we could increase
consumption to obtain a higher utility. Therefore, ¢ + x’ = xz. Thus, we can define ¢ = x;’
so that c = x(z — ¢) and ¢ € [0, z]. Substituting (29) into the above expression of M, we
obtain

1=y, _ =7 1—y, l—y
M(v)(x, z) = sup {% + BQT[LwI_V(l +R(w))v|2“
tel0,z] 1-vy 1—v
_ 1=y tlf’}’
=x1"7- su {(Z ZH Jw' Y1+ Rw))’|z }
te[OPz] 1—vy Bl—'yQ[ ( ) |]
Let us define g : Z — R by
q(z)= Qr[wl_y(l + R(w))y|z]. (84)

We are interested in the maximization problem max;¢[o,,; v(¢) where v: [0, z] — R is

_ nl=r 1-y
() = (Zl D gl 0. (85)
-y I—vy

The first-order conditionis v'(¢t) = —(z—¢)~Y +t~YBq(z) = 0, which leads to the optimal,

o quuﬂ%
1+Wﬂﬂﬁ

Notice that t* € (0,z) if z,q(z) > 0. If t € [0,2), then V'(¢t) = —y[(z — )71 +
t=7718q(z)] < 0, which implies that t* given by (86) is optimal. Substituting (86) into
(85), we obtain

(86)

1-y
Y

v(t*) _ 177 i Bq(z) ) Zl_V[BLI(z)]
- _ _ 1. 9_
A—{1+[Ba] " T=7 f14[pg@]7 )
Z1-Y v
C(1-1) b

L=

<=

{1+[Bq(2)]
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Therefore,

(xz)177

M(D)(x, z) = {1+ [Bq(z)]%}

Thus, we conclude that v is a fixed point of M, i.e., v = M(v), if we establish that {1 +
l .
[Bg(2)]"}Y =[14+R(2)], e,

==

R(z) = B7[q(2)]7 = B7{Q.[w! (1 + Rw))"|2]} 7.

Using the commutability with monotonic function (48), this is equivalent to

(87)

R(z) = B%QT[ =2 (1 +R(w))|z]

Recall that R(z) = Y o2, ,B 7z, s(z)] 5 , where r; s(z) is defined recursively by (27), i.e.,
rro(z) =1, and r; 5(2) = rm,l(QT[w|z]) Q:[w]|z] for s > 1. Notice that all r; ((z) are
nondecreasing and continuous in z. Therefore, they are all comonotonic. Moreover,
they are all strictly positive by Assumption 10(vi). From Proposition A.2, we have

Qr[qu',s—l (w)|z] = QT[wlz]rT,S—l(QT[w|Z]) =rrs(2).

Using these properties and expressions, we obtain

BYQ:[w'7 (14 Rw))|z] = B> Qf[w 7 (1+ZB5 rm(w)]lTy)

s=1

d

—QT|:,B7’w Y —|—B“Yw Y ZB rTs(w)]Tyl ]
s=1

1-y

ZQT[B%U) Y ‘*‘Q*r|:2:,8l ers(w)]Tyl ]

1-y

—Brr(2) 7 +ZB [Q:[wrr s(w)|2]} 7

4

i ¥ [rr,5(2)] T

which is just R(z), as we wanted to verify.
Finally, we observe that the optimal savings and consumption decisions are deter-
mined by #* from (86), i.e.,

1
V= xz[Bq(2)] _ xzR(z) _ x2S(2),

1
1+[,8q(z)]“/ 1+ R(z)

where we used using (87) and the definition (28) of S(z). Since c =xz — x’, ¢ =[1 —
S(z)]xz, we obtain (30).
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Finally, given a sequence of shocks {z;}7°,, since ¢; = c(x;, z;) = [1—=8(z/)1x: 21, X141 =
S(z)xze and ¢i1 = ¢(Xr41, Ze41) = [1 + S(2041) 1% 412041, We have

1 [1+S(za)]S(z)xizizim S(zr)
= = 1+S —
Ct [1 —S(Zt)]tht Zr+1[ * (Zt+l)]1 —8(z¢)
which proves (31), since % = R(z;) by simple manipulations. O

A.8.1 Uniqueness of the value function In this section, we will prove a stronger version
of Theorem 4.4. For this, consider the following variant of the transversality condition.

DEFINITION A.16. We say that a function v: X x Z — R satisfies the quantile transver-
sality condition (QTC) if for any optimal plan / € H starting at any (x, z) € X x Z, and
€ > 0, there exists n. such that n > n. implies that

—€< B”Q’Tz[v(q’)(xf’l, v, Zn1), Zns1)|21] < € (88)
We have the following.

THEOREM A.17 (Uniqueness of the value function). Let Assumptions 1, 5, and 10 hold.
Let v : R, x Z — R be the function defined by (29). Suppose thatv: X x Z — R is a fixed
point of Ml defined by (21) and either: (i) the CQTC; see (14) or (ii) v and all optimal plans
are weakly increasing and continuous in all its arguments, and v satisfies QTC. Then v = v.

The proof of Theorem A.17 is organized in many steps. The first one is to argue that
Assumption 0 is satisfied, as Lemma A.18 establishes.

LemmA A.18. Let Assumptions 1, 5, and 10 hold. Then Assumption 0 is satisfied.

Proor. From Assumption 10, I': X x Z - Y = X x X is given by I'(x, z) = {(c, x’) €
X x X :c+x' < xz}. Therefore, I'(x, z) # @ and I" has measurable selections. Recall that

d

n—1
=Q- [ Q7 [Qr [Z Blu(xt 1, vyl zee1) + Bru(xl L v zeg)

t=0

V(h, x, z)

= QZ[Sh'n(x’ )lZ] = Q:'l |:Z Btu(xil+1v yth+]) Zt+l)

t=0

n—1
=Q; |: = Qr |:Z Bt”(xilﬂ’ Yth+1’ Z1) + B"QT[u(xZH, yr}ll+1’ Znt1)|2"]

t=0

0<u(xl, ¥, zns1) = Ulcns1) = ﬁ (89)

From (22) and Assumption 10(i), we have, for y € (0, 1),
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Sincel'(x, z) ={(¢c, X') e X x X :c+x' <xz},cpy1 < xf’lenH < leZnZyH_l, and continuing
in this manner, we obtain ¢,4+1 < x{’zl -++Zy - Zp+1. Moreover,

Bn(xlilzl . Z”)liy

I—vy

BHQT[M(XI}L,—I’ y1il+l’ Zn-i—l)lzn] = (QT[Zn+1|Zn])1_7-

From Assumption 10(vi) and (vii), there exists Z > 0 such that 0 < Q,[w|z] < Z, for all
ze Zand ¢ = Bz'7Y < 1. Substituting ¢ in the above inequality, we obtain

—1(.h 1—y
gt a2 ]
I—vy

n—1
Vn(h’ X, Z) =< QT |: o QT |:Z :Btu(x{:zr]r yth+1r ZH—I) +

t=0

By repeating the same reasoning repeatedly, we conclude that

x)' 7 &y, (xz)!77
V"™"(h, x,2) < l=—
2 = S 2 = a

Notice that, from the fact that each term in the sum of '"*(h, x, z) is nonnegative, as
observed by (89), the sequence V" (4, x, z) is nondecreasing and bounded. Therefore, it
is convergent. This concludes the proof of Assumption 0. O

The following result will be useful below.

LEMMA A.19. Let Assumptions 1, 5, and 10 hold. Assume that f : Z" — R, and g :
zZmtl s R, are weakly increasing and continuous in all arguments. Then

Qi (") + B"Qr[g(z" ) lzn]lzr] = Q7 [ (") ] + B QA8 (2" ) |z1].  (90)

Prook. The function z, — f(z") is weakly increasing. By Assumption 5 and Lem-
ma A.12, z, — Q,[g(z"1)|z,] is also weakly increasing. Therefore, these two functions
are comonotonic and Proposition A.2 implies that

Q:[£(2") + B"Q:[g(z" ") 1zn] 1 20-1]
= Qr[f(zn) |Zn—1] + BnQT[QT[g(Zn+1)|Zn]|zn—1]-

Again by Assumption 5 and Lemma A.12, the functions z,_1 — Q.[f(z")|z,—1] and
Zpn—1 > Qi[g(z’“rl )|zn—1] are weakly increasing, and hence, comonotonic. As before,

QQ[F (") + B Qi [g () za]l2n1 ]|2n2]
= Q:[Q:[f(z")|zn-1]lzn-2] + B"Q:[Q:[Q:[g(z" 1) |zn]|2n-1]|2n—2]-

Proceeding in this way, we obtain (90). O

Given v: X x Z — R, recall from (15) that G, : X x Z — Y denotes the optimal
correspondence and that a plan obtained from G, if there exists a sequence of selec-
tions g; : X x £ — Y suchthatforall t e Nand all (x, z) € X x Z, g:(x, z) € Gy(x, z) and
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he(x,2') = g;(hi—1(x, 2"~ 1), z;). Moreover, a plan is optimal if it is obtained from G,. Re-
call from (9) and (10) that yth = h,(xfl, z') and xf‘H = (b(xﬁ‘, yth, z¢+1). Therefore, we may
define the sequence of optimal states by functions /7 (x, ZIth) = ¢(xﬁ‘, y,h, Zi41) = xﬁﬂrl.

LemmAa A.20. Let Assumptions 1, 5, and 10 hold. Fixv: X x Z — R, and optimal plan h.
If 2"V s v(hY(x, 2"Y), z,41) is weakly increasing and continuous, then

Q:—l_l[sh'n_l(xl’ Zn) + B"QT[U(tﬁ(xﬁ» y/il; Zn+1); Zn+1)|zn]|zl]
= Q[P (xy, 2) |21 ] + B Q[v(b(x2, ¥, 20s1), zus1)|21], @D
where S"" (x, 21 is defined by (11).

ProoF. The assumptions imply that the functions f(z") = §"~1(x, z") and g(z"t!) =
v(hl(x, 2", z,,1) satisfy the assumptions of Lemma A.19. The conclusion follows
from that lemma. O

LemmMA A.21. Let Assumptions 1, 5, and 10 hold. Let v* : Ry x Z — R be defined by (13)
and letv : X x Z — R satisfy QTC and v = M (v) for M defined by (21). Assume further that
2"t s v(hi(x, 2", z,.1) is weakly increasing and continuous for all n. Then v = v*.

Proor. It is sufficient to adapt the proof of Theorem 3.8. We can repeat everything in
that proof up to (52), i.e., there exists n; such that n > n; implies (51) and (52), i.e.,

v(xy, z1) > Q?il[sh’nfl(xl» )+ BnQT[U(d’(xZ’ Y;ilr Zn1), Znt1)]2"]21]
= QU [SP 7 (x1, 2) |21 ] + B "Qv( (2, Y1, zn1)s zns1) |21 ],

where the equality comes from Lemma A.20. By the QTC, we conclude that there ex-
ists np > ny such that n > ny, v(xy, z1) > V"(h, x1, z1) — €, which contradicts (51). The
contradiction establishes (A) in the proof of Theorem 3.8.

The proof of (B) is the same up to equation (54), for an optimal plan & € H, i.e.,

v(x1, z1) = Qﬁ_l[sh’n_l('xl’ Zn) + BnQT[v(d)(xZ’ yg, Zn+1); Zn+1)|Zn]|Zl]
= QISP (xy, 2|21 + B QA [v( (xh, y), zns1)s Znia) |21 ),

where again the equality comes from Lemma A.20. By QTC, we conclude that there ex-
ists np > n1 such that n > ny, v(x1, z1) < V"*(h, x1, z1) + €, but this contradicts (53). The
contradiction establishes (B) and concludes the proof. O

LemMA A.22. The function v: Ry x Z — R, defined by (29), satisfies QTC (88).

1—
Proor. Footnote 24 argues that R(z) converges. Indeed, if we denote ( B%ZTY) by B €
(0, 1), that footnote shows that R(z) <) o2, B* = %. Therefore, for (x, z) € D,

_ 1 1y y 1 1y B 7
v(x,z):m(xz) [1+R(2)] 5m-(xz) 1+ 1p

(xz)t™

== 92
1-yAa-B) ©2)
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Notice that v > 0. Thus, to establish QTC (88), it is sufficient to show that there exists .
such that n > n. and

B Qx [ oA iy zn1)y zu1) |21 <. (93)
By the definition of I', we have x/ 2,1 < x/'z,2,41, and finally,

h
Xpg1 " Znt1 S X121 Zn - Znyl- (94)

Thus, the left hand side of (93) is smaller than

B" TSk _(yx))(ll_i By <21QT [Zz - Qr [anT [zn+1 | 2n] Zn—l] |21])1_7
<o T (50 @[z ] )

where we have used Assumption 10-(vi): there exists z > 0 such that 0 < Q,[w]|z] < Z,
for all z € Z. Proceeding this way, and using Assumption 10-(vii), i.e., £ = BZPV <1,we
obtain

1_
(x1z1)" 77

noynl s h h n
B QT[U((b(xn’ Yno Zn+1); Zn+1)|zl] =< (1 — y)(l —B)y(g) .

From this inequality, it is clear that we can find n. such that for all n > n,, (93) holds. O

Proor oF THEOREM A.17. By Lemma A.22, v satisfies QTC. By Theorem 4.3, v is contin-
uous and increasing in all variables and so is the optimal plan. By Lemma A.21, v = v*.
Let v be a fixed point of M.. If v satisfies CQTC, v = v* by Theorem 3.8. On the other hand,
if v satisfies (ii) of Theorem A.17, then the conditions of Lemma A.21 are met, and v = v*.
In any case, we conclude that v = v, as we wanted to show. O

REMARK A.23. Although we did not prove directly that v satisfies CQTC, a mild addition
to Assumption 10 allows us to establish it; namely it is sufficient to add the requirement
that Z C [0, z] for Zz satisfying Assumption 10(vii). In this case, using (92), (94), and ¢ =
Bz177 < 1, we obtain

L(X1-z1 202, 2) 1Y (x1z1)t7
1-y(1-B)Y ~(1A-y)(1-B)Y

n

'BHQT[v(d)(xZ’ yr;zl’ Zn+1), Zn+1)|Zn] <pB
Since ¢ < 1 and v > 0, this establishes (14).

A.8.2 Log utility function Our results can also be adapted to the case of an isoelastic
utility function with y = 1. Indeed, Corollary 4.2 can be adapted to yield exactly the same
Euler equation (26), with y = 1. Instead of repeating these results, we obtain directly the
closed-form solutions for this case, parallel to Theorem 4.3.
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THEOREM A.24. Let Assumptions 1, 5, and 10 hold, with the following modifications: y =
1, X =(0,0); Z C R4, U(x) =In(x), there exists z > 0 such that 0 < Q. [w|z] < Z,Vz € Z.
Letv: X x Z — R be defined by

00 _
Bx, 2) = g % g, +(2) + lhlx'B N IH[BIZI__B[:Z)I '3]' 95)
where q,s(z) is given recursively by q.,0(z) = z and
qr,s(2) =gz 5-1(Qs[w|z]) fors>1. (96)
Then v is a fixed point of M defined by (21). Moreover, the optimal policy is
yi(x, 2) = (c, ') = ((1 — B)xz, Bxz). 97)

Proor oF THEOREM A.24. First, observe that since Q. [w|z] < Z, g;,0(z) < Zzforallz € Z.
By induction, ¢,,s(z) < z, for all s € N and z € Z. This shows that the infinite sum in (95)
converges. Let v be given by (95). For conciseness, denote InBP1-p)1F) by C. Then

(1-B)?
Muv(x, z) = sup 1In(xz—y)+ BQ i B—Slnq (z') + Iny +Clz
’ yG[OvXZ] s=0 ]' - B ' 1 - B

= sup 1In(xz—y)+B iﬂ—slan,S(QT[z/lz])Jrln—y +C
ye[0,xz] =0 1- B 1- :8
oo Bs { }

= ——Ing,;s(z2)+ BC+ su In(xz—y)+ Inyt, (98)
;1—5 ! P yE[ng] Y 1-p Y

where we used Lemma A.1 in the second equality, since the ¢, ((z) are increasing by
a successive application of Lemma A.12; and in the third equality, we used the recur-
sive relation (96). The first-order condition for the expression in brackets from (98) for
optimal y is

1 B 1

xz—y 1-By’

which leads to the optimal savings policy y = Bxz. Thus, consumption is ¢ = xz — x' =
(1 — B)xz. Substituting these expressions into (98),

M (x, z) = s; f—ﬁ Ingr,s(z) + BC +In[(x2) (1 = B)] + 7 5 In[(x2)B]
B B (1-B)In(1 — B) + BIn(B)
_SglzI_Blan,s(2)+BC+(l+m)ln(xz)+ g
= B In(xz) In[(B)°(1-p)F]
= Ing,,s C
gl_ﬁnq,(zwl_ﬁﬂa + a5
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_|s B In(z) |  In(x) -
—[Zl_ﬁlan,s(z)Jrl_B}L1_B+BC+(1 B)C

s=1

1-8 1-8

=v(x, z).

=3 g+ 2 o
s=0

This concludes the proof. O
Now we note that equation (95) simplifies further when the shocks z are i.i.d.

ExamPLE A.25 (i.i.d.). Assume that the shocks are i.i.d. In this case, ¢, s(z) = Q;[Z] for
all s > 1. Hence, (95) can be written as

_ _ > B Inz Inx ln[(,B)B(l —B)I_B] _Inxz
v(x,z)_sgl:l_BanT[Z]+1_B+1_B+ (1_3)2 =1-3 K,
where
o In[(Q:12))"8P01 - p)'*]
(1-p)?
is a constant. O

Analogously, we can treat the case of 7-quantile martingale process.

ExaMPLE A.26 (T-quantile martingale process). When Z follows a 7-quantile martingale
process (see equation (7)), the recursive functions from (96) are g s(z) = z for all s, so
(95) takes the form

]

_ B Inx In[pP1-p)F]
v(x, z) = Inz+ +
gl—ﬂ 1-8 (1-p)?

Iz (A-Bnx In[Bf(1 - B)'F]

T 1-p% (-2 (1-B)2
_ In{zx""PgP1— )P}
Bl (1-B)? ' 0

A.8.3 The right-continuous quantile To deal with the case in which y > 1, we need
some additional definitions and properties. In particular, we need to define the -
quantile* (or right-continuous quantile) as

Qi[X]=sup{aeR:PrlX <a] <r}.
This definition allows to study Q,[aX] for « < 0. We have the following.

LEMMA A.27. Let X be a random variable and v € (0, 1). Then

Q- [X1=-Qj_,[—X] (99)
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ProOOF OF LEMMA A.27. Recall that whenever 4 C R, inf A = —sup(—A4). Hence,
-Qi_, [-X]= —sup{a eER;P[-X <a]<1- 7'} = inf{—a ER;PIX>—-a]<1-— T}
:inf{aER;P[XZa] < 1—7'} =inf{aeR; 1—-P[X > «a] ZT}
= inf{a eR; PIX <a] > T}.
So, it suffices to prove that
inf{aeR;P[X<a] zT}zinf{aeR;P[Xfa] 27‘}, (100)

since the right-hand side equals Q[ X] by definition.

Let A={a e R;P[X <a]>7}, B={a e R;P[X <a] >7}. Since A C B, we have
inf B < inf A. For a contradiction, suppose that inf B < inf A. Then there would be some
b e Band y € Rsuch thatinfB < b < y < inf A. Therefore,

T<P[X <b] <P[X <yl (101)

On the other hand, y < inf 4 implies that y ¢ A4, so P[X < y] < 7, which contradicts
(101). This establishes (100), thus completing the proof. O

We have the following result concerning interchangeability between quantiles and
monotone functions.

LEmmA A.28. Let €0, 1] and g: R — R be increasing. Then
Q-[g(X)] =g(Q:[X]) ifg is left-continuous (102)
and
Qi [e(X)] =g(QLIX]) ifg is right-continuous. (103)
If, instead, g : R — R is decreasing, then
Q-[g(X)] =g(Qi_,[X]) ifg isright-continuous (104)
and

Qi_,[e(X)] =g(Q-[X]) ifg is left-continuous. (105)

Proor oF LEMMA A.28. Equation (102) is exactly Lemma A.2 from de Castro and Gal-
vao (2019). Now assume that g is increasing and right-continuous. To prove (103),
we show that g(QX[X]) is the supremum of {a € R; P[g(X) < a] > 7}. For this, let
y < g(QiX]). Then

P[g(X) <y] = P[g(X) < g(Q[X1)] = P[X <QilX]] =7,

ie.,

y<g(Qs1X]) implies P[g(X)<y]<r. (106)
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Now, let y > g(Q%[X]). We want to show that Q*[X] < inf{x; g(x) > y} = &, since it
implies that P[g(X) <y] > P[X < a] > 7, i.e., it proves that

y>g(Qi[X]) implies P[g(X)<y]>r. (107)

Let x, be a strictly decreasing sequence converging to . Since x, > &, then g(x,) > y.
Hence, g(Q:[X]) <y <lim,_, g(x,) = g(&), since g is right-continuous. As g is increas-
ing, this implies that Q*[X] < &, thus establishing (107). Since (106) and (107) together
characterize the supremum of {« € R; P[g(X) < a] > 7}, this proves (103). Now, if g is
decreasing and right-continuous, then Q[g(X)] = —Qj__[—g(X)] = g(Qj_.[X]), where
we used Lemma A.27 in the first equality and (103) in the second since —g is increasing
and right-continuous. This proves (104). Finally, if g is decreasing and left-continuous,
then Q7__[g(X)] = —Q;[—g(X)] = g(Q;[X]), where we used Lemma A.27 in the first
equality and (102) in the second, since —g is increasing and left-continuous. This proves
(105) and concludes the proof. O

REMARK A.29. We conclude this subsection by observing that Proposition A.2 and
Lemma A.12 are also valid with Q] __ in place of Q. The proof is similar to the proofs of
those results, substituting Q. by Q7__ and using Lemma A.28.

A.8.4 Closed-form solution for v > 1 Now, we can consider the case y > 1. The fol-
lowing functions are parallel to the ones defined by (27) and (28). Let ry s(2) be defined
recursively by r} ,(z) = 1, and

i () =7t 1(Qi_,[wl|zl) - Qf_,[w|z] fors=>1. (108)

Given this, define the functions:

N @] vy — K@)
R*(2) = ZB (2] and S(z)_1+R*(z). (109)

Convergence of the sum defining R*(z) by Assumption 10(vii). We have the following.

THEOREM A.30. Let Assumptions 1, 5, and 10 hold, with the following modifications: X =
Ry, Z CRyy v > 1, and there exists 2 > 0 such that 0 < Qj__[w|z] < Z, forall z € Z, and
Bz'™Y < 1. Letv: X x Z — R be given by

o(x, z) = ﬁ C(xz)tr. [1+R*(2)]". (110)

Then v is a fixed point of the transformation M defined in (21). Moreover, the optimal
policy function y* : X x Z > Y =X x X is

Vi, z2)=(c, x') = ([1 - 5"(2)] - xz, §%(2) - x2), (111
and for an optimal consumption path {c,}?2 | associated with shocks {z,;}7°,

T =z Rz [1- 8 )] (112)
t
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Proor. The proof is very similar to the proof of Theorem 4.3. For the reader’s conve-

nience, we will repeat here the relevant details and modifications. First, observe that
s 1oy 1 1oy .

rys(z) <zrf _,(z) and r} ((z) < z*. This implies that g7 [r} ((z)] ¥ <(BYz ¥ )°. Since

*
1 1=
Bz'=7 < 1, we have 87z 7 < 1. This implies that the infinite sum defining R*(z) con-

verges.
Now, we want to show that v: X x Z — R given by (110) is a fixed point of M: C — C:

1—y
c
M(v)(x,z) = max + v(x', w)|z/1t,
W 2)= max { 1=y AL, w) t]}
where X = (0, +00) and I'(x, z) = {(c, x') € X% : ¢ + x' < xz}}.

Let us analyze this maximization problem. Since 0 ¢ X U Z, it is not possible that
xz =0 for (x, z) € X x Z. Since the utility is strictly increasing, it is not possible that
¢+ x’ < xz, since in this case we could increase consumption to obtain a higher utility.

Therefore, ¢ + x’ = xz. Thus, we can define ¢ = "7 sothatz — = %, for t € [0, z]. Thus,
xl—ytl—y

I—vy

PRl ) L
1-—
{(z - =

+BT ” w1 +R(w))7|2]},

M(v)(x, z) = sup {

tel0,z]

+I%QT[ uﬂ‘7(1+—R(uu)ﬂz}}

tel0,z]

where we have used Lemma A.28 for the decreasing map x — ﬁ Let us define

g (z) = Q”{_T[wl_7(1 + R(w))7|z].
We are interested in the maximization problem max;¢o,,; v(¢), where v: [0, z] - R is

_nl-r 1-y
o(t) = (Zl D sl s (113)
-y I—vy

The first-order condition is v/(¢) = —(z — t)~Y + t~YBq*(z) = 0, which leads to the opti-
mal,

1
o z[Bq (Z)]V1 . (114)
1+[Bq*(2)]”

Notice that t* € (0, z). Then v’(t) = —y[(z — t)"Y~! + Y"1 Bg*(2)] < 0, which implies
that #* given by (114) is optimal. Substituting (114) into (113), we obtain

1 1y
o) = LB B @]
1 q9_ _ 1 q9_
A—n{1+[Bg"]7}"" =Y 4[]}
= 1
{1+ [Be* @]}

T -y
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Therefore, M(9)(x, z) = & {1+ [Bq*(2)]” }7 and % will be a fixed point of M if we
establish that {1 + [B¢* (z)] }7 =[1+R*(2)]?,i.e.,

R'(2) =B [q"(2)]7 = B7 Qi [w! ™" (1 + R*w))"|z]} 7.

1
Using again Lemma A.28, (103), for the increasing function x + x7, this is equivalent to

1-y

R*(z) = E%QT_T[wT (1+ R*(w))|z].

s 1-
Recall that R*(z) =Y oo, B [ry s(2)] Ty, where r; ((z) is defined recursively by r:f,o(z) =1
and r} ((2) = r;"s_l(Q’l‘_T[w|z]) - Qj_,[w|z] for s > 1. Notice that all r} (z) are nonde-
creasing and continuous in z, by Remark A.29 and an adaptation of Lemma A.12. By
Proposition A.2, the product of those terms can commute with the Qj__ operator. Thus,
1o lwrf g (w)|z] = Qy_ [w|zlrf 1 (Q-[w|z]) = r} (2). Using these properties and ex-
pressions, we obtain
Z}

B [w'T (14 R (w)|2] = B7Q [w (1+ZB% ”(W)

s=1

,_
—
=R

=BV ()T +ZB” < [wr 2]} 7

©“

-2 [y ] 7

which is just R*(z), as we wanted to verify. The expressions for the optimal savings, con-
sumption and consumption growth are obtained in the same fashion as in Theorem 4.3.
This concludes the proof. O

A.8.5 Proofof Theorem 4.7 It is useful to collect the expressions for consumption and
savings for all cases (y € (0,1),y =1,y > 1). From (30), (97), and (111), the optimal
consumption is given by

it 4

1+Z[ﬁ [rs(0] 7 xz ifye(0,1),

c*(x,2) = (l—B)-xz ify=1,

-y

1—1—2,6’ ”(z)T -xz ify>1.
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Since the optimal savings is given by xz — ¢*(x, z), it is sufficient to study the claims for
consumption, since the ones for savings follow from those. We restate below the claims
in Theorem 4.7, with the respective proofs.

1. If the DM becomes more impatient, i.e., the discount factor 8 decreases, then the
DM consumes more (and saves less).
If we take the derivative of ¢* with respect to 3, we obtain

o0 R 1__7
Z%BVI[r”(Z)] v
(-1)—=1 5-xz ifye(0,1),
o R 1777
{1+ZBV[r”(Z)] 7
t?C* (x Z) s=1 .f )
» = —X 1 -1,
B T . Y
2B @] T
(-1) s=1 5-xz ify>1.
o s 1777
b Saiten’
s=1

Thus, ’;% < 01in all cases, which establishes the claim.

2. If the elasticity of intertemporal substitution (EIS= %) increases and Bz < 1, then
the DM consumes more (and saves less).
Taking the derivative of ¢* with respect to vy, we obtain*

1

e’} [Bsrq—,s(Z)]? ; .
s=1 W . ]n[ﬁ rT,S(Z)] . (_1)?

(—1) 2

1+ B[] 7

&c* { ZBV 7. (Z) }
W(x, z) = < )] |
z . S
;ﬁ [ "T,s(z)] ( 1)y2

(-1) 2

:14_2[3% Ts(Z) Ty}

Ifye(1), %<

Xz

Xz

Assumption 10(v1), Fr,s(z) < zr; s—1(z). Therefore, r; ;(z) < Z°.

Brzs(z) < (B2)°.

0, 1). If % increases, y decreases and the result follows.

if ye (0, 1),

ify>1.

has the same signal of In[B°r; (z)] (if it is the same for all 5). By
This implies that
If Bz < 1, then B°r; s(z) < 1, which implies that

’%<Oif76

45We omit the case y = 1 because it does not make sense to take the derivative with respect to vy in this

case.
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If y>1, y " has the same signal of In[B°r} ((2)] (if it is the same for all s).
Since Qj_,[w|z] < Z, ryg(2) < zrmil(z). Therefore, ry s(z) < z°. This implies that
B°ry ((z) < (BZ)*. The rest of the argument is the same as above.

3. If the DM becomes more risk averse, i.e., the risk attitude parameter = decreases,
then the DM consumes more (and saves less) if y € (0, 1) and consumes less (and
saves more) if y > 1. Moreover, if y = 1, consumption and savings decisions are not
affected by the risk attitude.

Taking the derivative of ¢* with respect to y, we obtain

S 1—y s 1-2y gr; o(z
S =Y B ()] 9rz,s(2)
- 7 or
(-1)= —-xz ifye(0,1),
00 B 1 7
Z 7 [rr,5(2)]
A I . ify =1
Jr ’ - 00 . 1 Y=154L
s 1-2y gr; ((2)
Z 7 ”(Z)] ’ (;’T
(—1)= - xz ify>1.
{HZB? 7 (2)] }

Since ’w%"lz] > 0, we have ‘9”{'7—57(2) > 0. Therefore, if y € (0, 1), % < 0. On the other
hand, since (Ml}iz[wlz] < 0, we have T(;T(z) < 0. Thus, if y > 1, (9—: > 0. This estab-

lishes the claims.

4. If the distribution of returns increases, or more specifically, the 7-quantile Q[w|z]
of future interest rates increases for a fixed quantile 7 for all z € Z, then the DM
consumes less (and saves more) if y € (0, 1) and consumes more (and saves less) if
v > 1. Moreover, if y = 1, consumption and savings decisions are not affected by
these changes.

This comes from the expressions obtained in the previous item.

A.9 Proofs of Section 4.2

PROOF oF THEOREM 4.8. Assumption 11 implies Assumption 1, but for the fact that

= [0, w] x {0, 1} is not connected. However, since z; — v(x;, z;) is constant (it does
not depend on z;), its image is connected and the conditions described in Remark 3.12
are met. If we define u(x, y, z) = U(x), this is continuous and bounded; ¢ given by
(40) is continuous and I'(x, z) = {0, 1} is continuous, with nonempty, compact values.
Therefore, Assumption 2 holds. Thus, existence and uniqueness of the fixed-point v
follows from Theorem 3.11. The claim that v is strictly increasing in x; follows from The-
orem 3.13, since Assumption 3 is also satisfied: u and ¢ are strictly increasing in their
first variable and I' is constant.
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Since v is a function of x; only and only next period shocks matter, we can simplify
notation by letting e and w denote the future realizations of the shocks. With this nota-
tion, we can rewrite (42) as

9(x) = max{Bv(Q;[wl]), U(x) + Bo(Q-le]x)}. (115)

Since e € {0, 1}, then Q;[e] € {0, 1}. Let us consider separately these two cases.

First case: Q,[e] = 0.

In this case, we have v(x) = max{Bv(Q,[w]), U(x) + Bv(0)}. In the particular case in
which x = 0, this becomes v(0) = max{Bv(Q,[w]), Bv(0)}, since U(0) = 0. By Assump-
tion 11, Q;[w] > 0 and from the fact that v is strictly increasing, Bv(Q.[w]) > Bv(0),
which implies that v(0) = Bv(Q.[w]) > 0. For simplicity, denote Bv(Q.[w]) by A>0.
Then we have established that v(x) = max{;l, U(x)+ B;l}. Since U is strictly increasing,
if there exists x such that U (%) = (1 — B);l, then

ifx <X,

v(x) = -
Ux)+pBA ifx>x.

Since B < 1, A= BE(QT[Nw]) < v(Q;[w]). Therefore, Q,[w] > x. This implies that
9(Q-[w]) = U(Q;[w]) + BA = U(Q-[w]) + B*0(Q-[w]). Therefore,

ﬁ(QT[w1)=1_—1B2U(QT[w1) and A= BBZU(QT[w])

Since Q;[e] = 0, this is exactly the expression of 4 given by (43), i.e., A = A. With this
equality, then the definition of ¥ as the value such that U(x) = (1 — B)/] =(1—-B)A be-
comes exactly the definition of x* in (44). Moreover, using Q:[e] = 0, we see that the
expression of v(X) in (45) for x > x* is equal to U (x) + B A, exactly as above. This con-
cludes the proof for this case.

Second case: Q,[e] = 1.

In this case, we have v(x) = max{Bv(Q,[w]), U(x)+ Bv(x)}. Repeating the same argu-
ments given above, we conclude that ¥(0) = max{Bv(Q.[w]), Bv(0)} = Bv(Q,[w]). Again,
denote Bv(Q,[w]) by A > 0. Then we have established that 9(x) = max{A4, U (x)+ Bo(x)}.
Since both U and v are strictly increasing, if there exists X such that U (x) + Bv(X) = A,

ifx <X,

v(x) =
Ux)+ Bo(x) ifx>x.

Since B < 1, A= BU(Q-[w]) < v(Q[w]). Therefore, Q.[w] > X¥. This implies that
2(Q-[w]) = U(Q,[w]) + Bv(Q,[w]). Therefore,

5(Q-[w]) = ﬁU(QT[w]) and A= %U(Qr[w])-

Since Q;[e] = 1, from (43) we have again A = A. From this, the definition of ¥ as the
value such that U (x) + Bv(x) = A becomes U (x)(1 + %) = A leading to the definition
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of x* in (44). Now, it remains to observe that if x > ¥ = x*, the expression v(x) = U(x) +

Bu(x) implies 9(x) = ﬁ U(x). Since Q,[e] = 1, this is exactly the expression that we find
in (45). This concludes the proof. O

APPENDIX B: RELATING QP AND OTHER PREFERENCES

In this Appendix, we further discuss the relationship between the quantile preferences
and alternative models, specially subjective expected utility (EU) and Epstein—Zin.

B.1 Quantile preferences are not expected utility

In this subsection, we show that it is not possible, in general, to reduce a given quantile
preference to EU.*6 More formally, we show that given a quantile preference =, in gen-
eral it is not possible to find subjective beliefs 7 and utility function u : R — R such that
the expected utility ’=(, ,) defined by 7 and u is equivalent to =, in the sense that

QX1=Q- Y] &= X=Y &= XrmuY
—  Ez[u(X)]=E;[u(Y)]. (116)

This can be seen in a simple state space, with only two states, i.e., ) = {w1, w2}.
Now we prove that assertion (116) does not hold. A quantile preference 3=, over ran-
dom variables X : ) — R is defined by a number 7 € (0, 1) and probability over ) de-
fined by p = Pr[ow = w;]. Consider random variables X and Y such that X (w;) < X (w2)
and Y(w;) > Y(w2). Then
X(wy) ifr<p, Y(wp) ifr<1-p,

and Q’T[Y] =

X(wp) ifr>p Y(wp) ifr>1-p.

For concreteness, assume 7 = % and p= %, sothatr<pandr<1- p.

For a contradiction, suppose that we have found subjective beliefs 7 over (1, de-
fined by = = Pr[w = w1], and strictly increasing utility function # : R — R such that
(116) holds. Let X’ be a constant random variable, i.e., X'(w1) = X'(w2) = x’. Thus,
Q;[X'1=x"=u"Y(E,[u(X")]). By (116), we must have, for any random variable X such
that X' (w1) < X' (w2),

¥>QX]=X(w1) = u(xX)=7u[X(e)]+0-mu[X(w2)]

We claim that this implies that 77 = 1. Indeed, for a contradiction, assume that 7 <
1. Pick X(w1) =0<x'=1 and u[X(w2)] > ”(x/)_fl"éx(“’l) = ”(1)1:7;"(0), which implies
X(w2) > x> X(w1)and u(x') < wu[X (w1)]+ (1 —m)u[X (w2)], contradicting (116). This
shows that 7 = 1.

Since 7 = 1, for any random variable X, E;[u(X)] = u(X (w1)). Consider the random

variables X and Y definedby 1 = X(w;) < X(w2) =2and Y(w1) =3 > Y(w2) =0. Then

u(l) = E’n’[u(X)] < E’n’[u(Y)] = u(3) but 1= QT[X] > QT[Y] =0,
which again contradicts (116) and shows that this equivalence is not possible.

46This subsection has been developed to address a question posed by an anonymous reviewer.
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This proof works for an arbitrary state space and shows that the problem already
arises if we restrict ourselves to binary lotteries, i.e., random variables that take only two
variables. In this case, it is enough to substitute the two states by a fixed partition of
Q=07 UQy.

B.2 Restricting the set of random variables

Despite of the main negative general point of the equivalence between QP and EU for
binary lotteries discussed above, when one restricts the utility function and the class of
random variables, it may be possible to obtain equivalence of QP and EU for given utility
functions and beliefs 7 in this restricted setting.

Both QP and EU are characterized the one parameter capturing risk attitude. Thus,
we concentrate on studying the connection through this parameter.

We begin our study of the relationship between QP and the EU preferences by spec-
ifying the class of utility functions. We consider the Constant Relative Risk Aversion
(CRRA):

I—y
1—v’
Moreover, let us restrict ourselves to log-normal variables X such that In(X) ~ N(u, o)
to describe lotteries.

First, we calculate the certainty equivalent for a y-CRRA EU maximizer is

u(x) = fory>0,v#1. 117

=Y
1—vy

1
(1—y)pn+ 5"2” - y)z]

(1-7)

=E[u(X)]= CXP[

1 1
= ln(v):u+§az(1—y) = v:exp|:,u,+§0'2(l—'y):|, (118)

which depends on vy, u, and 2.
Second, for QP, the certainty equivalent is given by

Q:[XT=exp(n + 0gs), (119)

where ¢, = Fg,l (7) is the 7-quantile of a standard normal variable (Fy is the c.d.f. of a
standard normal variable), and depends on 7, u, and o.

It is interesting to determine when the certainty equivalent for the two preferences
coincide. From (118) and (119), this happens if and only if

1 1 o
pt 30 (1= =p+0g & s0l-y =g, ¢ 7=Fy(31-y). 120

If we fix the standard deviation o of the random variable that we are considering, then
(120) defines a map between v, the risk aversion parameter in the EU model, and 7, the
risk aversion parameter in the QP model. This map will be further discussed below.
However, note that we can achieve equivalence between the two preference struc-
tures even if they do not yield the same certainty equivalent, which was imposed to
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obtain (120). Indeed, this equivalence can be established by considering a subset of
random variables where the orders implied by both preferences coincide. We will inves-
tigate this equivalence within some restricted sets. We start by analyzing the case with
two risky choices, then extend our analysis to include risk-free alternatives.

B.2.1 Two risky choices Let X and Y be two random variables such that In(X) ~
N(u, ox) and In(Y) ~ N(u, oy), i.e., they are two log-normal variables that differ only
in their variance, but not their average. Therefore, if y # 1, from equations (118) and
(119), we have the following choices:

1 1 ox >oy ify<l1,
X=ppY ,LL+—0')2((1—’}’)2IJ«+—0'}21(1—‘)’) — X =0y . Y
2 2 ox <oy ify>1

ox >oy ifr>—,
X=Y << exp(p+oxq:)>exp(u+oyqr) =
ox <oy Iifr< 3

This shows that, if we compare only log-normal random variables with the same av-
erage, T-quantile preferences for r < % are equivalent to CRRA EU with y > 1: in both
models, the DM prefers the random variable with lower variance. Of course, this do-
main of choices is very restrictive and does not allow even a distinction between EU
preferences with different parameters.

Notice that 7 < % <= ¢, <0. Since we understand 7 < % asrisk aversion, the choice
under the QP makes sense: the DM prefers the random variable with lower variance.*’

Itis illustrative to verify what happens when y = 1. In this case, E[u(X)] = E[In(X)] =
w. Thus, this DM is indifferent between log-normal variables with the same mean but
different variance, even though she is risk averse. Notice that the same indifference oc-
curs if y = 0. For the quantile model, indifference occurs only if 7 = 3.4

It is natural to consider a slightly larger domain, which includes also risk-free vari-
ables. We consider this next.

B.2.2 Including risk-free alternatives Since all EU and QP lead to the same certain
equivalent for the risk-free variables, namely the value that they assume with proba-
bility one, the only interesting case that remains to analyze is the comparison between
alog-normal variable X such thatIn(X) ~ N(u, ox) and a risk-free variable Y such that
Pr[Y =y] =1.

Consider a y-CRRA EU preference, for y > 1, and a 7-quantile preference, for 7 < %
Then

1
X>vY < eXP[M‘i‘EU)Z((l—Y)}Zy,

47It should be noted that a CRRA with y € (0, 1) is also considered risk averse, since u”(x) = —yx?¥~1 <0.
However, when confronted with two log-normal variables with same mean, a EU DM with y < 1 prefers
would prefer the random variable with larger risk aversion. For quantile preferences, this happens only if
T> %, which characterizes risk loving. Notice also that if 7 = % the DM is indifferent between X and Y.

48Remember that we are excluding the cases in which 7 € {0, 1}. If we were to consider these cases, then
=0 would lead to Q.[X] = 0 for all log-normal variables X .
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X=Y < exppt+oxqg:)=>y.

The two preferences may differ if

1 1
pts 21—V Zptoxg on(l—v)zqr

Foragiven y > 1 and 7 < 3, there exists o such that 30(1 — y) = ¢,. If ox < 0,
1 1
EUX(1—7)>§U(1—7)=(]7
L,
= exp ,u—i—EO'X(l—y) >exp(n+oxqr). (121)

In this case, there are risk-free variables Y for which the preferences would be
X>gy Y >; X.

This means that the EU DM prefers the risky variable X over the risk-free alternative Y,
while the quantile DM prefers the risk-free Y. If ox > o, we can have the reverse, i.e.,

X <pr Y < X.

Notice, however, that this discrepancy would happen only for certain values of risk-free
lotteries. If we exclude some risk-free lotteries, the two preferences may agree. This
suggests the following procedure.

Suppose that we fix y > 1 and a set of random variables In(X) ~ N(u, ox) such that
ox € [0, o]. What should be our choice of 7 and what intervals of risk-free comparisons
would make the two preferences agree?

Choose 7 such that g, = %(1 —v) < 0. Since oy < &, we want to exclude risk-free
random variables with values y satisfying

1 -
exp(u) > eXp[,u + 50)2((1 - v)] >y >exp(p+oxqs) =exp(p+ 04qr),

i.e., we want to exclude y such thatIn(y) € (w+ o¢,, n). In other words, fixing o = ¢ and
y>1,lett=Fn(5(1-7)) ¢ q- = 5(1—7). Then the y-CRRA EU preference agrees with
the 7-quantile preferences for all log-normal variables X such that In(X) ~ N(u, ox),
with oy € [0, o] and risk-free variables taking values y < u + "72(1 7).

It is useful to illustrate the map y + 7 defined by (120), that is,

r=mla, y)=FN(%(1—y)>,

foro=13,1,2.If o = § and y = 2.65, we have 7 = 0.34, as illustrated in Figure 3. If ¢ = 2,
theny=1.41 gives 7 = 0.34. If o = 1, then y = 1.83 gives 7 = 0.34. Notice that this means
that the 7-quantile preference for 7 = 0.34 is the same as the y-CRRA for y = 1.41, 1.83
and 2.65 for different sets of random variables. Table 1 illustrates these different set of
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0.5

0.4
0'30%3 — — m(0.5, x)
m(1, x)
) m(2, x)

0.1F

é 265 4 é 8 1l0
FIGURE 3. Map between y > 7=m(a, y), foro=1,1,2.

random variables. The table reveals the trade-off: if we want to include higher values of
variance in our set of allowable log-normal variables, we have to give-up some risk-free
lotteries, and chose a higher y.%°

We can also illustrate the corresponding preferences for a set of random variables.
Consider the log-normal variables X  such that X! ~ N(2, g;), for i = 1, 2, 3, 4, where
04 =0.3, 03 =0.7, o» = 1.5, 01 = 3. The certainty equivalents of those lotteries for differ-
ent preferences are shown in Table 2.

Consider now the risk-free lotteries Y/, for j =1, 2, 3, where Pr[Y/ = y;] =1, for y; =
2,»=3.5,y3=5.5,y,=6.7,sothat y; <3.24 < y» <4.89 < y3 <6.01 < y4; compare with
values for risk-free lotteries in Table 1. Let us denote by :=; the y;-CRRAEU, fori =1, 2, 3,
where y; = 1.41, y = 1.82, and y3 = 2.65. Let =, denote the quantile preference for
T = 0.34. Of course, for all preferences k € {1,2,3, 7}, X* =, X3 >, X% >, X' and Y* >
Y3 >, Y2 >, Y. The preferences differ, however, in how X? and Y/ are compared. The
ranking are as follows:

XA X3 YA V3 X2 Y2 Y - X
X4 Vs X35 Y3 Y2y X2 Yy X
X4 g Vg V33 X33 V23 Y s X2 3 X1,

TABLE 1. Range of random variables X and Y such that In(X) ~ N(u, ox), for u =2, and Pr[Y =
y] =1 associated to 7 = 0.34.

o y —0q- Interval of oy Interval of y

0.5 2.65 —-0.21 [0, 0.5] (=00, 6.01]U [7.39, +00)

1 1.82 —0.41 [0, 1] (—o00, 4.89] U [7.39, +00)
1.41 —0.82 [0, 2] (=00, 3.24]1 U [7.39, +00)

49The value 7.39 that appears 3 times in Table 1 is just an approximation of exp(u) = exp(2).
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TaBLE 2. CE for y-CRRA EU and 7-QP for v =1.41, 1.82, 2.65, and 7 = 0.34.

o; | Certaint Equivalents: v1=1.41 v2 =1.82 v3 =2.65 0.34-QP
g4 =0.3 7.25 7.12 6.86 6.53
o3 =0.7 6.68 6.04 4.93 5.54
ory=1.5 4.66 2.94 1.15 3.98
o1 =3.0 1.17 0.18 0.00 2.14

Y4, X4 X3 V3 X2, V2 X s YL

We will see now how these rankings confirm the previous predictions. Observe that
if 0 = 0.5 and y; = 1.41, the variables that belong to the set of permissible values is
(X4 Y3, Y2, Y} Indeed, X*>1 Y3 > Y2~ Y and X* >, Y3 >, Y2 =, Y!. On the
other hand, {X3, X2, X!, Y*} are not permissible since these variables lead to inconsis-
tencies with =:

for X3: X3~ Y*butY*>, X3

for X?: X?>,Y?butY? >, X%

forX': Y!'s=; X'butXx!>, Yl

forY*: X*'>Y'butY*>, X"
Similarly, if if o = 1 and y» = 1.82, the variables that belong to the set of permissible
values is {X*, X3, Y2, Y1}. Indeed, X* >» X3 >3 Y2 >» Yland X* -, X3, Y2~ YL

On the other hand, {X?, X!, Y4, Y3} are not permissible, since these variables lead to
inconsistencies with =:

for X?: X?>,Y?butY? >, X2

for X': Y!'s, X'butXx!s>,Y!;

forY*: X*>=, Y*butY*>, X%

forY3: X3-,Y3butY3>, X3.
Finally, if if o = 2 and y3 = 2.65, the variables that belong to the set of permissible val-
ues is {X*%, X3, X2, Y1}, Indeed, X* >3 X3 >3 X2 >3 Y! and X* >, X3 -, X2 >, YL
On the other hand, {X!, Y4, Y3, Y?} are not permissible, since these variables lead to
inconsistencies with = :

forX': Y!'s3X'butx!s=,Yl

forY*: X*>=3Y*butY*>, X%

forY3: Y3s3X3butX3®~,Y3;

forY?: Y?s=3X?butX?>,Y?
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The discussion in this Appendix has important practical implications for empirically
identifying and separating the QP from the EU. For example, when designing an exper-
iment to identify and estimate the risk attitude and compare these models, one needs
enough variation in the lotteries to be able to separate them. de Castro et al. (2022c)
consider binary lotteries with fixed payoffs, but consider substantial variation in the cor-
responding probabilities to identify the parameters of these two models.

B.3 Comparison with Epstein-Zin

Quantile preferences (QP) are representatives of monotone preferences studied by Bom-
mier, Kochov, and Le Grand (2017). Thus, in particular, QP has also the recursive repre-
sentation established by their Lemma 1, namely

Ule,m)=W(c,I(moU™)),

where W is a time aggregator and [ is a certainty equivalent.’® Although the usual spec-
ification of Epstein and Zin preferences is not monotonic, in general, as Bommier, Ko-
chov, and Le Grand (2017) show, the above equation may suggest that QP are also a
subclass of the Epstein and Zin (1989) general preferences. It turns out that this is not
the case.

Epstein and Zin (1989, p. 944) called their certainty equivalent as mean value func-
tional as map from the set of measures to Ry “which is consistent with first- and second-
degree stochastic dominance and satisfies” u(6;) = x, Vx e R,.

While the quantile certainty equivalent is consistent with first-degree stochastic
dominance, it does not satisfy second-degree stochastic dominance. To see this, con-
sider the following example.

ExaMPLE B.1. Let Y be a risk-free lottery that pays 100 for sure. Let X be a mean-
preserving spread of Y, such as the following: X =99 + p =100 — (1 — p) with prob-
ability p € (0, 1) and X = 100 + p with probability 1 — p. Itis clear that E[X] = 100 and
E[u(X)] < u(E[X]) = u(100) = u(Y) for any concave u. However,

99 + ifr < p,
QT[X]={ ponr=r

100+ p ifr> p.

Thus, Q;[X] > Q;[Y] =100 if 7 > p. Finally, note that while Y stochastically dominates
X in the second degree for any p € (0, 1), a 7-quantile maximizer may prefer X if r >

p- Y
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