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Adoption epidemics and viral marketing
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An innovation (e.g., new product or idea) spreads like a virus, transmitted by those
who have previously adopted it. Agents update their beliefs about innovation
quality based on private signals and when they hear about the innovation. We
characterize equilibrium adoption dynamics and the resulting lifecycle of virally-
spread innovations. Herding on adoption can occur but only early in the inno-
vation lifecycle, and adoption eventually ceases for all virally-spread innovations.
A producer capable of advertising directly to consumers finds it optimal to wait
and allow awareness to grow virally initially after launch.
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When a novel virus enters a population, infected hosts expose others who, if suc-
cessfully infected, will start spreading the virus as well. In such an infectious-disease epi-
demic, virus strains that are more successful at causing infection spread more quickly
through the population. In the same way, when a new product is launched, a new
idea espoused, or a new method developed, an epidemic diffusion process ensues in
which those who have purchased the product, accepted the idea, or adopted the method
spread awareness and cause others to consider it as well. During such an adoption epi-
demic, consumers can make inferences about quality based on how long it took for them
to be exposed. For example, hearing about a movie long after it has been released is a
sign that it is unlikely to be very good since, if it were, you would likely have heard about
it sooner.

Our economic-epidemic model adapts the Susceptible-Infected (SI) model of viral
epidemiology' to an economic context in which consumers receive informative private
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n the SI model, hosts progress from susceptible (state S) to infected (state I) once they are exposed to
the virus, that is, infectivity equals 100%. Our epidemiological model is a variation in which some exposed
consumers do not become infected (because they choose not to adopt) and are henceforth immune.
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signals about quality and decide whether to adopt a new innovation. There is a unit-
mass population of consumers and an “innovation” that is “good” with probability «
and “bad” with probability 1 — «. When first exposed to the innovation, each consumer
i receives a conditionally independent private signal s; € {G, B} that matches the true
state with probability p € (1/2, 1). Consumer i then decides whether to adopt the inno-
vation, preferring to adopt whenever she believes that the innovation is more likely to be
good than bad. Those who adopt are “infected” and subsequently expose others, while
those who choose not to adopt are “immune/removed” and do not expose anyone else
to the innovation.

Our first main finding is that the adoption epidemic has a unique equilibrium epi-
demic trajectory, which depends on (i) consumers’ ex ante belief « € [0, 1] about the
likelihood that the innovation is good, (ii) the precision p € (1/2, 1) of consumers’ pri-
vate signals, and (iii) the fraction L of the consumer population that learns about the
innovation at “launch” at time ¢t = 0. The case with L = 1 is relatively trivial since all con-
sumers are exposed to the innovation at time ¢ = 0 and simultaneously decide whether
to adopt; we refer to this as a “traditional ad campaign.” By contrast, when L ~ 0, al-
most all consumers encounter the innovation socially; we refer to this case as a “viral
campaign.”

The qualitative features of the equilibrium trajectory of a viral campaign depend
on whether or not the innovation is more likely to be good than bad, i.e., is @ > 1/2 or
a < 1/22 When 1/2 < a < p,> we show that consumers adopt regardless of their private
signal (“herd on adoption”) immediately after launch, but this herding phase eventu-
ally ends and is followed by subsequent phases in which newly-exposed consumers are
less and less likely to adopt—until eventually all adoption ceases, an endogenous ob-
solescence. By contrast, when 1 — p < a < 1/2, consumers do not herd on adoption
immediately after launch and newly-exposed consumers’ belief about innovation qual-
ity initially rises over time. However, as when 1/2 < a < p, newly-exposed consumers
eventually become sufficiently pessimistic about quality that all adoption ceases.

In an extension, we allow the producer of the innovation to launch it virally but then
end the viral campaign at any time 7 € [0, co) with an ad that reaches all still-unexposed
consumers. Our main finding in this extension is that a traditional ad campaign (cor-
responding to T = 0) leads to strictly less overall adoption than an optimal-length viral
campaign.® However, we also show that it is never optimal in our model to run a viral
campaign forever.

Relation to the literature The idea that ideas can spread like a virus is widely appreci-
ated* and well studied, with some going even further to explore how ideas mutate as they
circulate through a population; see, for example, Adamic, Lento, Adar, and Ng (2016) and

2If @ > p (or @ < 1 — p), then consumer behavior is trivial with everyone (or no one) adopting.

3The producer in our analysis seeks to maximize the mass of consumers who adopt the innovation. If
quicker adoption is more valuable, such as when the innovation may become obsolete or when adoption
corresponds to purchasing a new product and the producer is a firm that discounts profits, then the pro-
ducer may prefer running a traditional ad campaign even though doing so leads to less overall adoption.

4See, for example, “The Age of the Viral Idea” by Bill Davidow, The Atlantic, November 17, 2011, and “The
Internet Catches a Viral Epidemic” by Bill Wasik, Wired, April 16, 2013.
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Jackson, Malladi, and McAdams (2022). We abstract from the possibility of mutation, but
push the literature forward by modeling becoming infected as an economic choice. In
doing so, we characterize the equilibrium dynamics of the epidemic diffusion process
and show how these dynamics change over time, passing through several phases with
distinctive patterns of adoption.

Most closely related is Banerjee (1993), who pioneered the study of adoption epi-
demics in the context of rumors, when only those exposed at launch have informative
private signals about quality. Because those exposed after launch do not have any pri-
vate information, their likelihood of adopting upon being exposed (“infectivity”) at any
given time is the same for low- and high-quality rumors. Moreover, the pattern of adop-
tion is especially simple, with all socially-exposed consumers adopting the rumor until
a critical moment after which no one adopts. By contrast, infectivity in our model de-
pends on innovation quality and the epidemic transitions through up to four distinct
phases.

Because awareness of the innovation spreads by word of mouth, this paper con-
nects with the broader economic literature on diffusion; see, for example, Campbell
(2013), Campbell, Mayzlin, and Shin (2017), Leduc, Jackson, and Johari (2017), and
Sadler (2020). The main difference is that this literature mostly focuses on consumers’
search technology and social network, whereas we focus on the impact of consumers’
private information about quality. There is also a literature in marketing and consumer
behavior on the diffusion of new products through influentials, for example, Dodson
and Muller (1978) and Van den Bulte and Joshi (2007). This literature also develops
compartmental models where consumers transit between different states marking their
awareness of the product and/or their adoption behavior. However, consumers in these
models typically make decisions according to rules governed by exogenous parameters;
see Watts and Dodds (2007) for a comprehensive survey. By contrast, the consumers in
our analysis are Bayesian utility maximizers.

An extensive literature endogenizes the diffusion dynamics of an infectious patho-
gen; see, for example, Newman (2002) on disease spread over a social network, Laxmi-
narayan and Brown (2001) and McAdams (2017) on when to switch to a new antibiotic
in the face of rising resistance, and Farboodji, Jarosch, and Shimer (2021) and McAdams,
Song, and Zou (2023) on the impact of social distancing during the outbreak and en-
demic phases of an epidemic. The basic difference with this literature is that agents in
an infectious-disease epidemic prefer to avoid infection, whereas being “infected” in
our model may or may not benefit consumers depending on whether the innovation is
good or bad.

Finally, the paper relates indirectly to the literature on social learning. In the classic
social learning model (Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992)),
infinitely-many agents are arrayed in a line and sequentially decide whether to adopt,
based on their own private signal and all decisions made by those before them. By con-
trast, in our model, only those who have chosen to adopt expose others to the innova-
tion, and when deciding whether to adopt, consumers do not know the length of the
chain of exposures that led to their own exposure.®

5Classic social learning reemerges within a variation of our model if one instead assumes (i) all infected
and immune consumers expose others at the same rate and (ii) each consumer is able to observe the history
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The rest of the paper is organized as follows. Section 1 presents the model. Sec-
tion 2 characterizes the equilibrium epidemic trajectory of innovation adoption over
time. Section 3 extends the analysis to allow the producer to choose when to end the
viral campaign with an ad that reaches all remaining consumers. Section 4 concludes by
discussing the important assumptions of the model and a few interesting directions for
future research. Formal proofs omitted in the main text are in the Appendix.

1. MODEL

There is an “innovation” which may be either “good” or “bad” and a continuum of con-
sumers having unit mass. Each consumer i gets payoff +1 when adopting a good inno-
vation, —1 when adopting a bad innovation, or zero when not adopting, and seeks to
maximize their own expected payoff. Each consumer therefore strictly prefers to adopt
if and only if they believe that the innovation’s likelihood of being good exceeds 1/2. Let
a € [0, 1] be the ex ante probability that the innovation is good.

Epidemiological dynamics Innovation awareness spreads through the consumer pop-
ulation following a variation of the classic Susceptible-Infected (SI) model of viral epi-
demiology (Kermack and McKendrick (1927)). At each point in time ¢ > 0, each con-
sumer is in one of three epidemiological states: Susceptible (state S), if not yet exposed
to the innovation; Infected (state I), if previously exposed and chose to adopt; or Im-
mune/Removed (state R), if previously exposed and chose not to adopt. We assume that
mass L > 0 of consumers are exposed to the innovation at time ¢ = 0 regardless of in-
novation quality. Each consumer who adopts becomes infected and spreads innovation
awareness virally by exposing other randomly-selected consumers to the innovation;
each infected consumer initiates such exposure events at rate normalized to one.% If an
exposed consumer is susceptible, they receive a private signal and decide whether or
not to adopt, transitioning immediately either to the infected state (if adopting) or to
the immune state (if not adopting). If an exposed consumer is infected or immune, they
remain in the same state; by assumption, adoption decisions are permanent.

Let S, (1), 1,(t), and R, (¢) denote the mass of susceptible, infected, and immune
consumers at time ¢, conditional on the unobserved innovation-quality state o € {g, b}.
Since the population has unit mass, R, (¢) =1 —S,(t) — [, (¢) and the overall epidemi-
ological process is described by (S, (¢), I,(¢) : t >0, o = g, b). Let g, (¢) denote time-¢
consumers’ likelihood of adopting when the state is w € {g, b}.

Epidemiological dynamics are characterized by the system of differential equations:

Si (1) = —1,(1)S, (1) (1
I,(1) = qo(t),(1)Su (1) 2)

of decisions made along the entire chain of consumers leading to their exposure. In that context, consumers
along each exposure chain behave exactly as in the classic model.

6The transmission rate being equal to one is without loss. Given any transmission rate 8 # 1, equilibrium
epidemiological dynamics are exactly the same but happen 8 times faster than in our model.
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Equation (1) follows from the fact that each infected consumer meets another consumer
at rate 1 and fraction S, (¢) of others remain suspectible, generating a state-dependent
flow 1,,(#)S,(t) of newly-exposed consumers who are then no longer susceptible. Equa-
tion (2) follows from the fact that fraction ¢, (¢) of these newly-exposed consumers
choose to adopt. Note that epidemiological dynamics are completely determined by
the adoption process (g,(t) : t > 0, » = g, b) and the mass L of consumers exposed at
time t = 0.

Consumer belief formation Let p(¢) be the probability that the innovation is good con-
ditional on first encountering it socially at time ¢, what we refer to as the “interim be-
lief” of consumers exposed socially at time ¢. Let f(¢|w) denote the endogenous’ p.d.f.
of consumers’ time of exposure conditional on the state w € {g, b}. By Bayes’ rule,

— af (1|w=g) :
P(1) = Fao=e (1= Fia=p) OO equivalently,

pi) __a  fule=g)

1-p(t) 1—a f(tlo=Db) ®)

Once exposed to the innovation, each consumer i observes private signal s; € {G, B}.
These signals are conditionally i.i.d. with Pr(s; = Glo =g) =Pr(si =Blo =b) =p €
(1/2,1).8

A consumer i exposed at launch (#; = 0) with signal s; € {G, B} updates to “ex post
belief” p(0; s;), where

p(0; G) o p and p(0; B) o 1- p.

- - 4
1-p0;G) 1-a 1—p 1-p(;B) 1-a p &

A consumer i exposed socially at time #; updates her belief based on both her own private
signal s; € {G, B} and when she is exposed, forming “ex post belief” p(z; s;). Again by
Bayes' rule,

pti; G)  p(t) . P pli; B)  p(t) I-p

= and =
1-p(t;G) 1—pt) 1-p 1-pt;B) 1—p() % p

)

By assumption, all consumers receive equally-informative private signals, regardless of
whether they encountered the innovation direction at launch or indirectly through a
social interaction.

Belief dynamics Since the consumer population has unit mass, the flow of newly-
exposed consumers can be interpreted as the density of the time-until-exposure ¢, that
is, f(tlw) =1S,,(1)| = Sw ()1, (1), where |S, ()| is the flow of consumers exposed at time
¢t (“time-¢ consumers”) when the innovation is good (v = g) or bad (w = b). Thus, time-¢

"We characterize the equilibrium distribution of ¢|w, showing that f(¢|w) exists and is continuous in ¢ at
all but finitely-many points when the innovation lifecycle transitions from one phase to the next.

8The fact that consumers receive binary private signals is not essential. In Appendix B of the working-
paper version (McAdams and Song (2023)), we extend the analysis to a setting in which consumers receive
continuous private signals satisfying the monotone likelihood ratio property.
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consumers’ interim belief is given by

p(1) o Se()g(1)

1-p() 1-a % Sp()Ip(t)” ©)

Adoption dynamics Let ay,(t) denote the likelihood that each time-f consumer chooses
to adopt given private signal s; € {G, B}. Time-t consumers are said to “herd on adop-
tion” if ag(#) = ap(t) = 1 and to “herd on nonadoption” if a;(¢) = ap(t) = 0. They are
said to be “sensitive to signals” if a;(¢#) = 1 but ap(#) = 0. Note that time-¢ consumers
find it optimal to herd on adoption whenever p(¢) > p, to herd on nonadoption when
p(t) <1— p, and to be sensitive to signals when 1 — p < p(¢) < p. Time-f consumers are
indifferent whether to adopt after a bad private signal if p(#) = p and indifferent whether
to adopt after a good signal if p(#) =1 — p.

Equilibrium Our solution concept is Bayesian Nash equilibrium (or simply “equilib-
rium”). We will show by construction that an equilibrium exists and that generically
this equilibrium is essentially unique, in the sense that all equilibria generate the same
population-wide epidemiological dynamics (S, (¢), [,(?): t > 0; w € {g, b}).

1.1 Discussion of modeling assumptions

Two key features of our model are that (i) only those who have adopted spread aware-
ness of the innovation, causing high-quality innovations to spread more rapidly,® and
(ii) newly-exposed consumers can determine how long the innovation has been in cir-
culation before deciding whether to adopt themselves. For example, word of mouth
about a new movie spreads naturally from those who have chosen to go see it, causing
people to hear about great movies more quickly than bad ones. Similarly, after a new sci-
entific method is published, other scientists spread awareness by using it in their own
published work. In each case, consumers (moviegoers, scientists) can determine when
the innovation was launched (theatrical release, scientific publication) and update their
own beliefs about its likely quality based on its recency before deciding whether to adopt
themselves.

Other substantive economic assumptions play an important simplifying role in the
analysis. In particular, (iii) consumers decide whether to adopt when they are first ex-
posed to the innovation, (iv) adoption is irreversible, and (v) those who adopt transmit
awareness forever. Assumptions (iii)—(iv) dramatically simplify the analysis by allowing
us to focus on consumers’ beliefs only at the time of initial exposure, while (v) ensures
that all consumers are eventually exposed to the innovation regardless of quality. Of
course, in practice, consumers can often choose to wait before adopting and may only
spread the word for a limited period of time. For instance, a movie-goer might wait until
she hears about a movie from several people before seeing it and, even if she loves it,
only gush to friends about it while it remains fresh in her mind.

91f those who have rejected the innovation spread awareness at the same rate as those who have adopted
it, then consumers would learn nothing from the time at which they are exposed.
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The easiest of these assumptions to relax is (ii). Suppose that only fraction 1 — 5 of
consumers are able to observe the time ¢ since launch. Since all consumers are even-
tually exposed to the innovation, a consumer who is unable to observe the time since
launch will not make any inference about innovation quality and so will decide whether
to adopt as if encountering the innovation at launch. The overall likelihood that a con-
sumer exposed at time ¢ > 0 will adopt in innovation-quality state w € {g, b} is therefore
dw(t) =1q,(0)+ (1—1)q. (), where g, (0) and g, (¢) are the likelihoods that consumers
who can observe the time will adopt, respectively, at time 0 and time ¢. The rest of our
analysis then carries over, with more complex formulas but little additional insight.

In the concluding remarks, we discuss how to modify the analysis to allow for tem-
porary infectiousness, relaxing assumption (v). In the working-paper version McAdams
and Song (2023), we also suggest some directions for future work in models that give
consumers the option to wait or to “rent” the innovation, relaxing assumptions (iii) and
(iv). Yet another valuable direction for future work would be to allow susceptible con-
sumers to learn from more than just their meetings with infected individuals. For in-
stance, in a standard random-meetings model, susceptible individuals would meet in-
fected, immune, and other susceptible individuals (not just infected people, as in our
model) and be able to learn from all of these meetings.!®

2. ADOPTION EPIDEMIC DYNAMICS

This section characterizes the unique equilibrium trajectory of the adoption epidemic
throughout a viral campaign, from launch through endogenous obsolescence, in the
most interesting case with intermediate prior belief « € (1 — p, p).!!

Consumer behavior at and immediately after launch We begin by considering how
consumers must behave at the very beginning of the viral campaign, at launch (¢ = 0)
and shortly afterward. Since 1 — p < a < p, we have p(0; B) < 1/2 < p(0; G) and any
consumer exposed at launch finds it optimal to adopt after getting a good signal but
not after a bad signal, that is, they are sensitive to signals. Since good signals are
more likely for good innovations, more consumers adopt at launch and word of mouth
spreads more rapidly for good innovations. Hearing quickly about an innovation is
therefore good news about its quality. More precisely, I,(¢) ~ pL, I;(t) ~ (1 — p)L, and
Sg(t) ~ Sp(t) ~1 — L for all t ~ 0, where L is the mass of consumers exposed at launch.
By equation (6), we conclude that

p(1) oY P
1-p(#t) 1—a 1-p

forall t ~ 0, (7)

regardless of L. That is, consumers’ interim belief shortly after launch is the same as
if they have gotten a good private signal of precision p. Because a > 1 — p, equation

10As an example, suppose that a new movie is released on Thursday and you hear about it on Friday
night from someone who saw it. What you infer about its quality on Friday night will depend on how many
other people you have talked to since Thursday who did not mention the movie.

U Agents herd on adoption forever if « > p and herd on nonadoption forever if « < 1 — p. The cases when
a=pand @ =1 — p are more complex because consumers are sometimes indifferent whether to adopt at
launch, but this extra complexity does not lead to any additional insight.
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(7) implies that (i) p(0+) = lim;—o p(¢) > 1/2 and (ii) p(0+) > p if and only if & > 1/2.
Consumers exposed immediately after launch will therefore herd on adoption ifa > 1/2
but remain sensitive to signals if « < 1/2.

Interim belief dynamics after launch Equation (6) characterizes consumers’ interim

belief p(¢) at time ¢, depending on the ex ante likelihood « that the innovation is good
Se (1)1 (1)

and the ratio OIAGR

Rather than focusing on p(t) directly, we find it convenient to

consider the percentage rate of change of the likelihood ratio £ Eyt()t)’ gotten by taking
the log of both sides of (6) and differentiating:
p(t)
Yo dlog(l - p(t)) _S0 sy Lo Lo
B dr CSg(t) Sp(0)  Ig()  Ip(D)
=—Ig(1) +1p(1) + qg(1)Sg(1) — qp(1)Sp(1) 8)
where gzgg =—1,(t) and %Eg = q,(1)S, (1) by equations (1)-(2). Since 155;[()1) grows ex-

ponentially at rate X (¢), we have p/(¢) = 0 if and only if X(z) = 0.

Lemma 1 summarizes some implications of equation (8), depending on whether
consumers herd on adoption, are sensitive to signals, or herd on nonadoption. (All omit-
ted proofs are provided in the Appendix.)

LEMMA 1. (i) Suppose that consumers herd on adoption at time t. p'(t) <0 if Sg(¢) <
Sp(t) and I4(t) > I(t). (ii) Suppose that consumers are sensitive to signals at time t.
p'(t) > 0 ifand only if the following inequality holds:

pSg(t) — (1= p)Sp(1) > Ig(t) — I (1), (SS)

(We refer to this as “Condition SS,” mnemonic for “sensitive to signal.”) (iii) Suppose that
consumers herd on nonadoption at time t. p'(t) <0 if Io(t) > Ip(1).

Proor. p'(t) 2 0ifand only if X(¢) = 0 in equation (8). (i) Herding on adoption: When
() =qp(t) =1, X(t) = —(Sp(t) — Sg(t)) — (Ig(t) — I(t)), which is negative so long as
Sg(t) < Sp(t) and I4(t) > I,(¢). (ii) Sensitive to signals: When g, (¢) = p and g, (¢) =1 —p,
X (1) =pSg(t) —(1—p)Sp(t) — (Ug(t) —Ip(2)), which is positive if and only if condition (SS)
holds. (iii) Herding on nonadoption: When g¢(#) = q,(t) =0, X (¢) = —(Ig(t) — Ip(1)),
which is negative so long as I, (¢) > I;(¢). O

Discussion of Lemma 1. The conditions Sg(t) < S,(¢) and I¢(¢t) > I;(¢t) capture the
idea that good innovations will reach more people and be adopted by more people by
time ¢ than bad innovations. As we show later in Proposition 4, these intuitive conditions
must always hold in any equilibrium. Lemma 1(i) can therefore be restated more simply
as “p’(t) < 0 whenever consumers herd on adoption” while Lemma 1(iii) is “p/(¢) < 0
whenever consumers herd on nonadoption.”

To gain intuition, recall from equation (6) that p(¢) comoves with the ratio SHOLHO

VIGIAGH
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Suppose that consumers herd on nonadoption. With no new infections, % is con-
stant. But since I¢(¢) > Ij,(t), each susceptible agent is exposed at a faster rate when the

Se(0) decreases

innovation is good; so, S, (¢) falls at a faster percentage rate than S, (¢) and &5 0]

over time. Thus, the ratio %, and hence p(¢) must fall.

Next, suppose that consumers herd on adoption. Since S, (¢) < Sp(?), each infected
agent exposes others at a slower rate when the innovation is good; so, I,¢(¢) rises at a

slower percentage rate than ,(¢) and the ratio L)

1,00
gg 8; also declines (for the same reason as before), the overall effect is that

decreases over time. Since the ratio

Sg(Ng(1)

S, and

hence p(t) must fall even more quickly.'?

Finally, suppose that consumers are sensitive to signals. Although infected agents
encounter susceptible agents less frequently when the innovation is good, each of these
exposure events is more likely to convert into an infection because newly-exposed
agents are more likely to get a positive signal. In particular, each infected agent causes a
new infection at rate pSg(¢) when the innovation is good, compared to rate (1 — p)Sj(¢)
when it is bad. So long as pS,(t) > (1 — p)Sy(?), the ratio 3(3 rises over time. And so as
long as condition (SS) holds, the resultlng ‘upward pressure” on beliefs overwhelms the
“downward pressure” due to the ratio Sg 0 t) falling over time, and p(¢) will rise. However,
as soon as condition (SS) fails, the downward pressure dominates and p(#) must fall.

2.1 Equilibrium lifecycle of an innovation

This section characterizes equilibrium economic-epidemiological dynamics, focusing
on the case of a very small launch (L ~ 0) so that essentially all consumers are exposed
socially.!3 Our main finding is that consumer behavior transitions over time through up
to four distinct phases, what we refer to collectively as the “innovation lifecycle”; see Fig-
ure 1. Behavior immediately after launch (Phase I) depends on whether the innovation
is more likely to be good (a > 1/2) or bad (a < 1/2). Subsequent behavior then passes
through a period of partial herding (Phase II), a period in which consumers are sensitive
to signals (Phase III), and a final period with zero adoption (Phase IV).

THEOREM 1. Supposethata € (1—p, p) and L =~ 0. Equilibrium epidemiological dynam-
ics (S, (1), I,(t) 1t > 0; w € {g, b}) are uniquely determined, with consumers’ post-launch
equilibrium behavior transitioning through four phases at times 0 < t; < f, < t3 < 0.

e Phase I: (i) If « € (1/2, p), then consumers herd on adoption after launch and in-
terim belief p(t) > p decreases until time t; € (0, 00) at which p(t1) = p. (i) Ifa €

12By this reasoning, consumers’ interim belief p(¢) must fall whenever g, (t) = g, (¢), that is, whenever
good and bad innovations have equal infectivity. This is true at all times ¢ > 0 in Banerjee (1993), since
socially-exposed consumers in his model of virally-spread rumors do not receive private signals. This ex-
plains why the interim belief is monotone decreasing in Banerjee (1993), but may be increasing in our
model during periods when consumers are sensitive to signals.

13S0ome qualitative features of the equilibrium epidemic trajectory only hold when L is sufficiently small.
In particular, condition (SS) fails immediately after launch whenever L > %, causing consumer beliefs to fall
even if consumers are sensitive to signals.



462 McAdams and Song Theoretical Economics 20 (2025)

herd on adoption

a€(1/2,p)
p(®)>p
falling
I & [l ts \Y)
| h I | —>
. p®)=p p)e@—-pp) p®<1-p
sensitive to constant falling falling
signals
a€(l-p,1/2) T | T 'T|
() € (1/2,p) part.la sen§|t|ve to vira
rising herding signals obsolescence

F1GURE 1. Visual summary of equilibrium adoption behavior and interim beliefs over the inno-
vation lifecycle, when consumers’ ex ante belief a € (1 — p, p).

(1 — p, 1/2), then consumers are sensitive to signals after launch and p(t) € (1/2, p)
increases until time t; € (0, co) at which p(t1) = p. (iii) If « = 1/2, then t; = 0 and
p(0+) =lime_o p(€) = p.

e Phase II: After time t1, consumers partially herd on adoption, adopting always after
a good signal and with probability ag(t) € (0, 1) after a bad signal, where ap(t) is
decreasing in t, until time t, € (11, 00) at which ag(t2) = 0. Consumers’ interim belief
pt)=pforallte |, ).

e Phase III: After time t2, consumers are sensitive to signals and interim belief p(t) €
(1 — p, p) isdecreasing in t until time t3 € (2, 00) is reached at which p(t3) =1 — p.

e Phase IV: After time t3, consumers herd on nonadoption, what we refer to as “viral
obsolescence,” and consumers’ interim belief p(t) <1 — p continues to decline with
limt%m p(t) =0.

The rest of this section establishes Theorem 1 through a series of five propositions.

Phase I: Herding on adoption case Suppose first that « € (1/2, p), as in the numerical
example illustrated in Figure 2(a). By previous analysis around equation (7), p(0+) > p,
and consumers must initially herd on adoption.

ProrosiTioN 1 (Phase I: Herding on adoption). Suppose that « € (1/2, p). There exists
11 € (0, 00) such that, in any equilibrium trajectory, (i) consumers herd on adoption for
allt € (0, 1), (ii) p(t) is strictly decreasing over t € (0, t1), and (iii) p(t1) = p.

The fact that consumers’ interim belief must fall follows immediately from Lem-
ma 1(i) due to herding on adoption. The critical time ¢, is the first moment after launch
at which newly-exposed consumers no longer strictly prefer to herd on adoption.

Phase I: Sensitive to signals case Suppose next that a € (1 — p, 1/2), as in the numerical
example illustrated in Figure 2(b). By previous analysis, p(0+) € (1/2, p) and consumers
are sensitive to signals after launch.
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F1GURE 2. Dynamics of interim beliefs (p(¢)) and innovation adoption (/¢(#), I5(¢)) in the equi-

librium adoption epidemic in two examples with (a) @ > § and (b) & < 3.

ProrosiTionN 2 (Phase I: Sensitive to signals). Suppose that a € (1 — p, 1/2) and L = 0.
There exists t; € (0, co) such that, in any equilibrium trajectory, (i) consumers are sensitive
to signals for all t € (0, t1), (ii) p(t) is strictly increasing over t € (0, t1), and (iii) p(t1) = p.

Consumers being sensitive to signals and our small-launch assumption (L ~ 0) en-
sure that condition (SS) is initially satisfied. Consumers’ interim belief p(#) must there-
fore rise initially. The proof in the Appendix shows that, in fact, p(¢) continues to rise
until a critical time #; at which p(#;) = p. We refer to the period up to time # as “Phase 1.”

Phase II: Partial herding After time 1, consumers randomize whether to adopt after a
bad private signal (and always adopt after a good signal), what we call “partial herding.”
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Consumers’ interim belief p(¢) remains constant p and the likelihood ap(¢) that con-
sumers adopt after a bad signal declines continuously until, at a critical time %, ap(t) =0
and consumers become sensitive to signals. We refer to the period from # until # as
“Phase II.”

ProposiTion 3 (Phase II). Supposethata € (1—p, p) and L ~ 0. Thereexists t € (11, 00)
such that, in any equilibrium trajectory, (i) consumers partially herd with adoption prob-
ability ap(t) € (0, 1) after a bad signal for all t € (t,, t2), where

_ P80 — (1 —p)Sp(8) — (Ig(t) = Ip(1))

9
pS5(0) — (1= p)Se(0) ©)

ap(t)

and (ii) p(t) = p for all t € (1, t2). Moreover, ag(t) is continuously decreasing over t €
(t1, ) with ag(t1) <1 and ag(t;) =0.

The intuition for why there must be partial herding after time 7 is that, if consumers
were to herd on adoption, then the interim belief p(¢) would fall below p and they would
strictly prefer to be sensitive to signals, a contradiction. By contrast, if consumers were
sensitive to signals, then p(#) would rise above p and they would strictly prefer to herd
on adoption, another contradiction. Mixing after a bad signal balances the upward and
downward pressure on interim beliefs so that p(¢) is able to remain constant over time.*
The time #, at which Phase I ends is the first time at which pSg (¢) — (1 —p)Sp(¢) = I(t) —
I,(1), so that Condition SS is satisfied with equality. After that point, there is overall
downward pressure on consumer beliefs even if they become sensitive to signals. And
indeed, that is what happens next.

Phases III and IV: End of the innovation lifecycle After time f,, consumers are sensi-
tive to signals and interim belief p(¢) falls until a critical time #3 at which p(#3)=1—p
(Proposition 4). Consumers then herd on nonadoption after time 3, what we refer to as
“viral obsolescence” (Proposition 5). We refer to the period from #, to #3 as “Phase III”
and the obsolescent period after #3 as “Phase IV.”

The fact that consumers suddenly stop adopting at time #3 is a consequence of our
assumption of binary private signals. In the working-paper version McAdams and Song
(2023), we extend the analysis to a richer setting with continuous private signals. In that
context, there is never full herding on adoption or full herding on nonadoption, and
newly-exposed consumers’ likelihood of adopting falls continuously to zero during the
last part of the epidemic.

ProrosiTIiON 4 (Phase III). Suppose that a € (1 — p, p) and L ~ 0. There exists t3 €
(t2, 00) such that, in any equilibrium trajectory, (i) consumers are sensitive to signals for
all t € (12, t3), (ii) p(t) is strictly decreasing over t € (12, t3), and (iii) p(t3) =1 — p. More-
over, Sg(t) < Sp(t) and I4(t) > I(¢) forallt € [0, 3].

14The equilibrium mixed strategies here can be “purified” by augmenting the model so that consumers’
private signals have differing precision. See the working-paper version for details.
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ProposiTiON 5 (Phase IV). Suppose that o € (1 — p, p) and L ~ 0. In any equilibrium
trajectory, consumers herd on nonadoption after time t3 and p(t) is strictly decreasing
with lim;_, » p(t) =0.

The proofs of Propositions 4-5 are the most technically challenging in the paper, but
the intuition underlying these results is easy to explain. After Phase II, the epidemic is
sufficiently mature that the downward pressure on consumer beliefs is so large that p(¢)
must fall over time no matter what newly-exposed consumers do. Phase III is the period
of time while p(¢) is falling from p to 1 — p, causing consumers to be sensitive to signals,
while Phase IV is the final period when p(¢) is below 1 — p.

3. STOPPING THE VIRAL CAMPAIGN

Here, we extend the analysis to allow the producer to decide how long to continue the
viral campaign. Suppose that, at any time 7" > 0, the producer can stop the viral cam-
paign by running a “broadcast advertisement” (or simply “broadcast”) that reaches all
still-unexposed consumers. T = co corresponds to a purely-viral campaign as analyzed
in Section 2, while T = 0 corresponds to a “traditional ad campaign” in which all con-
sumers are exposed nonsocially and must decide independently whether to adopt.

In this section, we characterize the optimal time at which to run the broadcast. To
keep the analysis as simple as possible, we assume that the producer must choose the
broadcast time T € [0, co] before launch and before knowing whether its innovation will
be good or bad; running the broadcast is costless; and the producer’s objective is to
maximize the expected mass of consumers who adopt the innovation.!®

Consumers who encounter the innovation socially before the broadcast make the
same inference and the same adoption decision as in a purely-viral campaign. The dif-
ference is that consumers who would encounter the innovation socially after T now see
the broadcast. Depending on how broadcast-exposed consumers update their beliefs,
this may increase or decrease overall adoption relative to a purely-viral campaign.

Broadcast-updated beliefs Consumers who see the broadcast at time 7 update their
belief about innovation quality based on the fact that they did not encounter the in-
novation during the preceding viral campaign. Let pgr(7') denote consumers’ updated
belief after seeing the broadcast at time 7'. Conditional on the innovation being good or
bad, each consumer will encounter the innovation via broadcast with ex ante probability
S¢(T) or Sy (T), respectively. By Bayes’ rule,

PpBR(T) a S (T)

1—per(D)  1—a  Sp(1) 10)

Lemma 2 establishes several useful facts about broadcast-updated beliefs.

15For simplicity, we assume that the producer does not care about the timing of adoption. Introducing
discounting complicates the analysis but does not generate any additional insight.
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LemMmA 2. Suppose that a € (1 — p, p) and L ~ 0. (i) psr(T) < p(T) forall T > 0. (ii)
pBr(0+) = @ and ;Bpl;;?ﬂ falls exlionentially atrateI,(T) —1I,(T) > O_for all T. Define T
implicitly by pr(T)=1—p. (i) T € (11, t3). (iv) Ifa € (1/2, p), then T € (12, 13).

Discussion of Lemma 2: Since awareness spreads more widely during the viral cam-
paign when the innovation is good, seeing the broadcast is bad news about innovation
quality. Moreover, broadcast-exposed consumers’ negative inference gets worse as time
goes on (Lemma 2(ii)) and is worse than the inference they would make if encountering
the innovation socially at the same time (Lemma 2(i)).

The threshold time T is the moment at which broadcast-exposed consumers are
indifferent whether to adopt with a good private signal. We refer to this moment as
“broadcast obsolescence” since any broadcast after time T will generate zero adoption.
Lemma 2(iii) states that broadcast obsolescence always occurs during Phase II or Phase
111, after partial herding has begun but before viral obsolescence. When « € (1/2, p) so
that the epidemic begins in a herding phase, Lemma 2(iv) implies further that broadcast
obsolescence must occur during Phase III, after partial herding has ended.

Optimal-length viral campaigns We are now ready to characterize the optimal stop-
ping time for the viral campaign, in terms of the threshold times #1, 2, and #3 derived in
the proof of Theorem 1. Note that, by definition, 7 2z pifand only if ppr() Z21—p

THEOREM 2. Suppose that a € (1 — p, p) and L ~ 0, and let T* denote the set of optimal
stopping times. (i) If T > tp, then T* = [t2, T). (ii) If T < to, then either T* =T or T* =
[t3, 00]. Moreover, T* = [t3, oo] if and only if per(t) <1 — p and

7]
a(/T ap(t)(1 — P)|Sé(l)| dr — PSg(t?,))
173
+(1—a)</_ aB(l)P|S§](f)|dl—(1—P)Sb(13)>20 (11)
T
where (Sg(1), Sp(1), ap(t) : t > 0) were derived in the proof of Theorem 1.
Theorem 2 lays out three basic possibilities, depending on whether broadcast obso-

lescence T occurs in Phase II or Phase III and on whether inequality (11) holds:

(a) If T is in Phase III (always true when « € (1/2, p) by Lemma 3(iv)), then Tis opti-
mal and stopping prior to Phase III or after T is suboptimal.

(b) If T isin Phase Il and (11) holds, then a purely-viral campaign is optimal and stop-
ping prior to Phase IV is suboptimal.

(c) If T isin Phase IT and (11) fails, then T is the unique optimal stopping time.

The proof of Theorem 2 is provided below, after some discussion.
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Intuition for Theorem 2 Focus first on the case when most innovations are good, that
is, @ € (1/2, p) and compare three options: 7' = 0, a traditional ad campaign; 7 = T; and
T = oo, a purely-viral campaign. When 7 = 0, all consumers are sensitive to signals;
so, the producer gets adoption from all consumers with a good private signal and none
with a bad signal. When T = oo, consumers herd on adoption during Phase I, partially
herd on adoption during Phase II, are sensitive to signals during Phase III, and herd
on nonadoption during Phase IV. Compared to 7 = 0, the producer is more likely to
get consumers who are exposed during Phases I-II, equally likely to get those exposed
during Phase III, and less likely to get those exposed during Phase IV.

Whether T =0 or T = o is better is unclear, as it depends on how the extra adop-
tions from consumers exposed during Phases I-II compare to the lost adoptions from
those exposed during Phase IV. But waiting until 7 is better than both of these options,
as it allows the producer to get all the extra adoptions associated with Phases I-II of
a purely-viral campaign while also still inducing consumers who would have been ex-
posed during Phase IV to adopt after a good signal. Indeed, T = T is always an optimal
stopping time in the case when « € (1/2, p).

What about the case when « € (1 — p, 1/2)? Waiting until 7 = T remains superior to
a traditional ad campaign, but now the comparison between 7 = T and a purely-viral
campaign is unclear. The reason is that, if broadcast obsolescence occurs during Phase
11, ending the viral campaign at T forces the producer to forgo some extra adoptions
that otherwise would occur due to partial herding during the rest of Phase II. The two
terms in (11) capture this new tradeoff between lost adoptions from those who would
be exposed during Phase II after T versus the gain from those who would be exposed
during Phase IV.

Numerical exploration of the case a € (1 — p, 1/2) Given the theoretical ambiguity in
this case, we conducted an exhaustive numerical exploration to determine when 7 =T
is optimal and when T = oo is optimal, given every possible p € (1/2, 1) and every pos-
sible a € (1 — p, 1/2). For each such («, p) pair, we computed the equilibrium epidemic
trajectory and compared the overall mass of consumers who adopt when T = T versus a
purely-viral campaign. We found that stopping the campaign at time 7 is strictly better
across the entire parameter space, increasing adoption by as much as 72% for some pa-
rameter values; see Figure 3. Thus, a purely-viral campaign is never optimal (and setting
T =T is always optimal) given any model parameters.

Consumer welfare implications Being exposed virally to an innovation provides an in-
formative “social signal” about its quality. Thus, consumers’ ex ante expected payoff is
higher when an innovation is marketed virally (for any 7 > 0) than in a traditional ad
campaign in which they get no social signal at all. That said, consumers exposed to the
broadcast at time 7 get zero expected payoff, since they are indifferent whether to adopt
even after a positive private signal. By contrast, in a purely-viral campaign, all those
exposed socially after T but before viral obsolescence at time t3 get positive expected
payoff. Thus, a purely-viral campaign is better for consumers than an optimal-length
campaign.'6

16The seller’s choice of when to run the broadcast can be viewed as a limited Bayesian-persuasion prob-
lem (Kamenica (2019)). Let #; be the time that consumer i encounters the innovation in a purely-viral
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F1GURE 3. Percentage increase in the producer’s expected measure of adopting consumers,
denoted (T), when stopping the viral campaign at broadcast obsolescence (T = T) versus a
purely-viral campaign (T = oo). For all combinations of («, p), stopping at T = T is more prof-
itable.

PROOF OF THEOREM 2. Should the viral campaign continue until time 7, the producer
must decide whether to run the broadcast right at that moment, so that still-unexposed
consumers are willing to adopt after a good signal (“go”), or never run the broadcast at
all, allowing the campaign to continue until viral obsolescence (“no-go”).

Case #1: When T > t,, always “go.” Suppose first that T > t,. In this case, the pro-
ducer unambiguously prefers to run the broadcast at time T rather than allowing the
viral campaign to continue. Why? Consumers who are socially exposed after time T
are either sensitive to signals (if exposed in Phase III) or herd on nonadoption (if ex-
posed during Phase IV). By comparison, if the producer runs the broadcast at (or in-
finitesimally before) time 7, all of these consumers are be sensitive to signals—leading
to strictly more adoption, whether the innovation is good or bad.

Case #2: when T < tp, “no go” if and only if inequality (11) holds. Suppose next that
T < t;. Running the broadcast at time T still ensures that all remaining consumers will
be sensitive to signals, avoiding the downside that consumers exposed in Phase IV never
adopt. However, there is also a benefit associated with continuing to run the viral cam-
paign, that consumers exposed in the remainder of Phase II (at times ¢ € (7, t2)) will
sometimes adopt after getting a negative private signal as well as after a positive sig-
nal.'” Whether the producer prefers to continue the viral campaign past time 7 depends
on the magnitudes of these countervailing effects.

campaign, which serves as i’s social signal about quality. Running the broadcast at time 7 changes the
distribution of this signal, revealing only “#; > T” to all those with ; > T. Viewed in this light, the fact that
consumers are worse off under the optimal-length campaign is unsurprising.

17We can ignore the consumers exposed in Phase II, since they are sensitive to signals, and hence adopt
exactly as they would have under a time-T broadcast.
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The downside of continuing the viral campaign is that all consumers who get a pos-
itive signal and would have been exposed during Phase IV choose to adopt under the
time-T broadcast but not under the continued viral campaign. These consumers have
mass pS,(#3) when the innovation is good and mass (1 — p)S;(#3) when it is bad. Overall
then the “viral downside” equals apSg(#3) 4 (1 — a) (1 — p)Sp(#3).

The upside of continuing the viral campaign is that some consumers who get a neg-
ative signal and would have been exposed during the remainder of Phase II choose to
adopt under the continued viral campaign but not under the time-T broadcast. These
consumers have mass f%z ag(t)(1 — p)|Sé,(t)| dt when the innovation is good and mass

thz ap(t)p|S,(¢)|dt when it is bad, where ap(¢) is consumers’ equilibrium likelihood
of adopting after a bad signal during Phase II. Overall then the “viral upside” equals
af%z ag(t)(1—p)|Sy ()| dt+ (1 - ) f%z ap(t)p|S; ()| dt, and the upside exceeds the down-
side if and only if inequality (11) holds.

The analysis thus far has shown: (a) any stopping time T € (7, t3) is always worse
than T = T and all stopping times T € [t3, oo] generate identical adoption since no one
exposed after 3 ever adopts; (b) when T > f,, T is optimal and all stopping times T
(f2, T generate identical adoption; and (c) when T>1t,a purely-viral campaign is better
than stopping at 7 if and only if inequality (11) holds.

Next, we show that all stopping times prior to min{t,, 7} are strictly worse than 7.
The reason is simple: stopping at some time 7’ < min{t;, T} causes consumers who
would have otherwise encountered the innovation between max{7”, ;} and min{t,, T}
(the portion of Phase II that is after 7" and before T) to adopt less often—they are sen-
sitive to signals rather than partially herding on adoption—without inducing any other
consumer to adopt more often. Thus, lengthening the viral campaign from 7" until time
min{ts, T} unambiguously increases overall adoption.

Putting these pieces together allows us to complete the proof. First, when T > t,, we
have shown that 7 is strictly better than all stopping times before f, or after T. Since
all stopping times in [z, T] generate identical adoption, 7 = [£2, T]. This completes the
proof of Theorem 2(i). Next, when T < t, we have shown that 7 is strictly better than all
stopping times before T and strictly better than all those between T and 3. Moreover,
stopping at T is better than a purely-viral campaign (T = oo) if and only if inequality
(11) fails. Since all stopping times after viral obsolescence generate identical adoption,
we conclude that 7 = T when inequality (11) fails and 7 = [t3, oo] when inequality (11)
holds.'® This completes the proof of Theorem 2(ii). O

4. CONCLUDING REMARKS

This paper introduces and analyzes an economic-epidemiological model of innovation
diffusion and adoption, in which awareness of an innovation (e.g., new product or prac-
tice, scientific finding, etc.) spreads by word of mouth from those who have already

18When we say “inequality (11) fails,” we mean that it holds in the opposite direction. If inequality (11)
holds with equality, then stopping at time T generates equal expected adoption as a purely-viral campaign
and 7T =T U |3, .
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adopted it. The paper follows Banerjee (1993) in bridging the economic literature on so-
cial learning and the epidemiological literature on social transmission, combining ideas
and methods from both fields. Because agents choose whether to adopt in our model,
we endogenize the infectivity of a virally-spread innovation and show how infectivity
changes over the course of the adoption epidemic.

In future work, our methodology could be extended in several directions to endo-
genize other key parameters of the innovation diffusion process, including the trans-
mission rate (if agents choose how actively to meet others) and the informativeness of
agents’ private signals (if they choose how intensively to examine the innovation). Inter-
esting future work could also seek to relax some of our simplifying assumptions, to build
more detailed and realistic models of adoption epidemics. Here, we highlight one such
extension, relaxing the assumption that adopters remain permanently infectious.

Temporary infectiousness In practice, consumers who adopt an innovation may only
remain infectious for a limited period of time. For example, people may eventually get
bored of a new game and stop telling others about it as they stop playing themselves. To
model this possibility, suppose that each adopter “recovers” from the transmissive infec-
tious state I to a quiescent state Q at rate y > 0. The differential equation (2) governing
the dynamics of infection changes to

1,(1) = qo(0) 1 (1)Sw (1) — v (1), 2"

with Q'(¢) = yI(¢t) and lim;_, o, Q(¢) being the mass of consumers who eventually adopt.
An important difference in this variation of our model is that the innovation will only
reach a fraction of the population, with good innovations reaching more people than
bad ones. Thus, even for consumers who cannot observe the time since launch, simply
being exposed to the innovation is a positive signal about its quality.

APPENDIX: OMITTED PROOFS

The following lemma is useful in several of the proofs that follow.

LEMMA 3. Fix any a € (1 — p, p). Suppose that p(t) > a for all t € (0, {] for some t along
some equilibrium epidemic trajectory. Then I¢(t) > Ip(1), Ié(t) > 1, (1), Sg(t) < Sp(1), and
Sg(t) < S, (1) forall t € (0, ].

. pt Ie(NSg(1) |Sg ()]
PrOOF. By equation (6), 15,75 = 1255 X 7.5,0) = Toa X SOk

sumption, |Sé,(t)| > |8} (¢)], and hence Sé(t) < 8,(t) <0 forall t € (0, f]. By equations
D-(2), I,(t) = —qu(1)S,,(t). Since g, (t) > q,(¢) at all times, we conclude that Ié,(t) >
1 l’)(t) > 0 for all t € (0, 7]. Finally, because launch-exposed consumers are sensitive to
signals (due to a € (1 — p, p)), we have Sg(0) = S,(0) =1 — L and I,(0) > I;,(0). Since
Sé(t) < S;)(t) and Ié(t) > I}’)(t), we conclude as desired that Sg (1) < Sp(¢) and I4(t) > I, (t)
forall r € (0, 7]. O

Since p(t) > « by as-
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ProoF OF ProposITION 1. Because a € (1/2, p), p(0+) > p and socially-exposed con-
sumers herd on adoption until the first time #, at which p(#;) = p. Prior to #1, X (¢) =
—Ug(t) = Ip(1)) — (Sp(t) — Sg(1)) and p(t) > p > a. By Lemma 3, I,(t) — I(¢) and
Sp(t) — S, (¢) are each strictly increasing from time 0 (when X (0) = L(2p — 1) > 0) until

11. The likelihood ratio £ g()t) therefore falls exponentially at an increasing rate, implying

that p(z) reaches the threshold p in finite time. O

PRrROOF OF PROPOSITION 2. Because « € (1 — p,1/2), p(0+) € (1/2, p) and socially-
exposed consumers are sensitive to signals until the first time #; at which either p(#1) =p
or p(t1) =1 — p. Since launch-exposed consumers are also sensitive to signals, I,(¢) =
p(1 —Sg(#)) and I,(t) = p(1 — Sp(2)). Prior to time ¢, condition (SS) in the main text can
now be simplified to

2(Ig(1) —Ip(n) <2p—1 (SS)

If the launch size L > %, then 7¢(0) — I;(0) = L(2p — 1) and condition (SS’) would fail
and p(t) would fall after launch. However, because of our small-launch assumption,
I¢(t) — I (t) ~ 0 and p(¢) must rise after launch. In particular, % rises exponentially
atrate X (¢) =2p — 1 — (Ig(¢) — Ip(t)), which equals (2p — 1)(1 - L)~2p —1att=0.
Let 7 be the time at which p(¢) would reach the threshold p in a hypothetical situ-
ation in which X (1) = X = p— % > 0 at all times. We have shown that X (0) ~ 2X and
X(t) > X so long as Ig(1) — Ip(1) < X. But Io(1) — Ip(t) < Ig(t) < pLeP'.!® Thus, for all
L small enough that pLeP’ < X, X (t) remains strictly above X and p(¢) continues to

increase until reaching the threshold p in finite time, that is, p(#1) = p, as desired. O

ProoFr oF PropPosITION 3. We begin by showing that p(¢) = p for some period of time
after ;. If p(t) were to rise above p after #;, then consumers would herd on adop-
tion and p(¢) must fall by Lemma 1(i), a contradiction. By contrast, if p(¢) were to
fall below p, consumers would then be sensitive to signals. As discussed in the proof
of Proposition 2, our assumption of a small launch (L ~ 0) guarantees that only a
small mass of consumers are exposed to the innovation during Phase I;?° in particu-
lar, Sg(#1), Sp(t1) € (1 — €, 1) and I¢(#1), Ip(11) € (0, €) for some small e. Consequently,
Condition (SS) holds and p(#) must rise after time #; by Lemma 1(ii), a contradiction.

By equation (6), interim belief p(¢#) = p requires that 1% _alg()8,(1)

5 = a5, Ob equiv-
Ig(0)Sg(1) _ (1—a)p

alently, LS @ = all—p): N order for this ratio not to change over time, the ratio of
o (g(DSe (D)) (1-a)p . S . . B
derivatives 7 555y TS,y must also equal a—p)" Taking derivatives, using equations (1)—(2),

195Ler! is the mass of consumers who would be infected if (i) each infected agent encounters a sus-
ceptible agent at rate one and (ii) newly-exposed consumers are sensitive to signals. In fact, each infected
agent encounters some agent at rate one, but fraction I, (¢) of these encounters are with someone already
infected.

201f L is not sufficiently small, condition (SS) may not hold at time #;. In that case, Phase II has zero
length and the epidemic progresses directly to Phase III, with consumers sensitive to signals and p(¢) falling
immediately after #;.
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and rearranging yield
(1—a)p  1(0Sg(t) +I()Sy(1)  Tg(1)S5(1)qg(1) — I (1) S (1)
a(l—=p) T (OS(1) + Ip()S, (1) Iy (£)S2(1)qp(t) — 12(1)S (1)

_ L(0Sg(1)(Sg(1)qg (1) — Ig(1))
I (D)Sp(1) (Sp (1) gp (1) — Ip(1))

Ig(1)Sg(1) _ (1—a)p

Since 7.5, = ati—p)’

this condition holds if and only if

Sg()qg(t) — Ig(1) =Sp(1)qp(t) — Ip(1). (12)

Let ap(t) denote the likelihood that consumers exposed at time ¢ adopt after a bad
signal, resulting in overall adoption likelihoods g¢(¢) = p + (1 — p)ap(t) and g, (1) =1 —
p + pap(t) that good and bad innovations, respectively. Equation (12) now becomes

(pSg(t) — (1= p)Sp (1)) — (Ig(1) — Ip(1)) + ap(t)((1 — p)Sg (1) — pSp(1)) =0 (13)

or, equivalently,

pSg (1) — (1 — p)Sp (1) — (Ig(t) — Ip(1))
pSp(t) — (1 — p)Sg(1)

Equation (14) uniquely determines ap(#1+). Note that so long as p(¢) = p, Lemma 3
implies that I (#) > I;(#1) and S, (#1) > S, (#1); we conclude by equation (14), ag(t) <1
so long as p(t) remains at p. Moreover, because Condition SS holds at time #; (discussed
earlier), the numerator in (14) is positive; so, ag(f1+) > 0.

Equations (1), (2), (14) now uniquely determine the path of (ag(¢), S¢ (), Sp(2), I4(2),
I(1)), starting at time #; and so long as ap(¢) € [0, 1]. Let £, be the first time after #; at
which ag(#) =0, or t» = 0o if ap(t) remains forever between zero and one. To complete
the proof, we need to show that ap(¢) is strictly decreasing after #; and reaches zero in
finite time.

Let £, denote the first time after ¢; at which ag(#2) =0, or f, = oo if consumers par-
tially herd forever. Since p(¢) > « throughout Phase I and p > «, Lemma 3 implies that
Sp(t) > Sg(1), ensuring that the denominator of (14) remains positive. Moreover, , is the
first time as which the numerator of (14) equals zero, that is, when Condition SS holds
with equality.

Next, note that

(14)

ap(t) =

(pSy(1) — (1 = p)S (1) — (Ig(1) = I, (1)) (pSp (1) — (1 — p)Sg (1))
—(pSg (1) = (1= p)Sp(£) — (Ig(1) = Ip(1))) (pS, (1) — (1 — p)S, (1))

(pSy(1) — (1 — p)Sg (D)’

ag(t) =

Rearranging and simplifying the numerator, we have
numerator = (p* — (1 — p)*)(Sg(1)Sp(£) — S,(1)S, (1))

— (L(0) = I,()) (pSh (1) — (1 = p)Sg (1))
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+ (I (1) = Ip (1)) (pS}, (1) — (1 = p) Sy (1)).
By (1)-(2), the second term above can be rewritten as
— (I = I,(0) (pSp (1) — (1 = p)Sg (1))
=—(Ig(1)Sg(1)(p+ (1 — p)ag(t)) — Ip(1)Sp(t)(1 — p + pap(1)))
x (pSp(t) — (1 = p)Sg(1))
= —Ip(1)(Ig(t) — Ip(1)) (pSp (1) — (1 — p)Se (1))
— (Ig(6) = Ip (1)) Sg (1) (p + (1 = p)ag (1)) (pSp () — (1 — p)Sg(1)) (15)

Similarly, the third term above can be rewritten as

(Ig() = Ip() (pS}, (1) — (1 = p)S, (1))
= —(Ig() = Ip(0) (pIp(D)Sp (1) — (1 = p)Ig(1)Sg (1))
=—Ip(1)(Ig(1) = Ip(1) (pSh (1) — (1 = p)Sg (1))
+ (Ig(1) = Ip(1))Sg () (1 = p) (I (1) = Ip(1)) (16)

To establish that the entire numerator is negative, we will show that the first term
is negative and that the sum of the second term (15) and third term (16) is negative. To
that end, recall that I, (¢) > I;(1), Ié,(t) > 1, (1), Sg(t) < Sp(1), and Sé(t) < 8§, (¢) atall times
t < t, (Lemma 3). The fact that the first term is negative now follows immediately from
(1)-(2), since Sé,(t)Sb(t) =8, ()8 (1) = —Sg(1)Sp(£)(Ug(t) — Ip(t)) < 0. Moreover, pSy () >
(1—p)Se(t) because Sy, (1) > Sg(¢) and p > 1/2; so, the first part of (15) and the first part of
(16) are negative. To show that the sum of (15) and (16) is negative, it therefore suffices to
show that (p+ (1 —p)ag(?))(pSp(t) — (1 —p)Sg (1)) > (1—p)(Ig(t) —I,(2)). But this follows
immediately from the fact that pS;, () — (1 — p)Sg(t) > I4(¢) — I,(t) (since Condition SS
remains satisfied) and p + (1 — p)ap(t) > 1 — p (since p > 1/2 and ag(t) > 0).

Overall, we conclude that ag(#) > 0 but that aj3(¢) < 0 so long as the numera-
tor of equation (14) continues to be positive, that is, so long as Condition SS con-
tinues to be satisfied. Moreover, there is a finite time # at which partial herding
ceases. To see why, suppose for the sake of contradiction that consumers were to par-
tially herd forever. Because all consumers are eventually exposed to the innovation,
lim;_, 00 Sg(t) = lim;_, o Sp(¢) = 0. On the other hand, because Ié(t) > I}, (t) so long as
ag(t) >0, lim; 00 (Ig () — I (2)) > Ig(t1) — I¢(#1) > 0. All together then the numerator of
(14) must eventually become negative, a contradiction. O

ProOFs OF PropPosITIONS 4-5. We prove Propositions 4-5 together, dividing the proof
into four main steps.
Step 1: After time 12, 2 declines exponentially at an increasing rate until some

1-p(n)
ime i i 7y — — (1-p)a (1-p)? 1
time t at which p(t) = max{l — p, a}, wherea = T platp(i=a) T2 ).

By Lemma 1, § ya g()t) declines exponentially at rate X (). So, it suffices to show that

X(t) <0 and X'(¢) < 0 at all times after ¢ until a time 7 is reached at which p(7) =

€ (
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max{l — p, a}. By the proof of Proposition 3: p(#2) = p; consumers are sensitive to signal
at time #, (because ap(t2) =0); and X (2) = (pSg(t2) — I4(£2)) — (1 = p)Sp(t2) — I (12)) =
0. It suffices to show that X’(¢) < 0 at all times ¢ € [t2, f), since then it must also be that
X (t) <O0atall times ¢ € (#2, ).

According to the proof of Lemma 1(ii), X' () = —2(pSg()Ig(t) — (1 — p)Sp()15(1))

while consumers are sensitive to signals. Thus, X'(¢) < 0 so long as Se)ls()  1-p

Se(t2)14(12) So (1)l (t2) Sp(2)1(12) p
. p(t) _ aSg(t2)lg(f2 . ¢ (12)1g(12 1—p : ;

BY equatlon (6), 1-p(t) = (1—a)Sp(2)1p(12)’ SO, S,y (1) > e if and only if p([) > a Of,
lf(pt()t) ?ﬁ;f ; = 1=-. In other words:

equivalently,
when consumers are sensitive to signal, X’(¢) = 0 if and only if p(¢) = « 17

At time t,, consumers are sensitive to signal and p(%) = p > ; so, X'(%2) < 0. More-
over, X'(t) < 0 at times 7 € (2, f) since (i) consumers remain sensitive to signal (because
p(t) € (1—p, p)) and (i) p(1) > a. We conclude that {2 g()t) decreases exponentially at an
increasing rate from time 7, until time 7.

What about after time 72 There are two relevant cases. First, suppose that @ € (1 —
p, 1/2], so that « < 1 — p. In this case, p(7) = 1 — p and Phase III ends at time 7, that is,
t3 = f. Second, suppose that « € (1/2, p). In this more challenging case, a € (1 — p, 1/2)
and the argument so far shows that £ g()[) declines at an increasing rate until time 7,
when consumers’ interim belief hits «. However, we still need to show that consumers’
interim belief continues falling long enough after time 7 to reach 1 — p.

Step 2: In the case when a € (1/2, p), t£ g()t) declines exponentially at a decreasing rate
from time t until time t3 at which p(t3) =1 — p.

The argument in Step 1 established that p(7) = a € (1 — p, 1/2) and X (f) < 0; thus,
consumers’ interim belief continues to fall below « right after time 7. By condition (17),
we conclude that X’(¢) > 0 right after 7 and at all times ¢ > 7 so long as consumers’ in-
terim belief remains between 1 — p and a.

This leaves three possibilities for what happens after time 7: (i) p(¢) decreases until
a time #3 at which point p(#3) = 1 — p and Phase III ends; (ii) p(¢) decreases forever but
never reaches 1 — p; or (iii) p(¢) stops decreasing (and starts increasing) at some time ¢
before reaching 1 — p.

We will prove that possibility (i) always occurs, by ruling out (ii) and (iii).

As shorthand, define X (c0) = lim;_, oo X (¢), Ig(00) =lim;, « I¢(?), and so on.

“Possibility (ii)” cannot occur.

Suppose for the sake of contradiction that consumers’ interim belief continues falling
forever after time # but never reaches 1 — p. This is only possible if X (co) = 0, which in
turn requires that /g (00) — pSg(00) = Ij(00) — (1 — p)Sp(00). Since all consumers eventu-
ally encounter the innovation, Sg(00) = S, (00) = 0. Thus, it must be that /¢ (c0) = I;(00).
We will reach a contradiction by showing that I, (c0) > I, (c0).

Recall that we are focusing here on the case in which a € (1/2, p). We have shown:
consumers are sensitive to signals at launch (¢ = 0), adopting good innovations with
probability p and bad ones with probability 1 — p; consumers herd on adoption in Phase
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I (¢ € (0, 11)), adopting all innovations with probability one; and consumers partially
herd on adoption in Phase II (z € (11, 2)), adopting good innovations with probability
p +ap(t)(1 — p) and bad ones with probability 1 — p + ap(t)p. Moreover, given the pre-
sumption that possibility (ii) is occurring, consumers are again sensitive to signals at
all times ¢ > f». Overall, the mass of consumers who adopt a good innovation therefore
takes the form:

h 1
Ig(oo)sz—i-/O |S;(t)|dt+/ (p+ (1= plap(1)|Sy(1)|dt

n

oo
+/ p|Sg(1)]dt

2]

n 73
=p +/0 (1- p)lS;(t)|dz+/ (1= plag(n)[Sy(0)]dt (18)
3]

where |8, (¢)] is the flow of consumers being exposed at time ¢ and L + I |Se ()| dr =1
because the consumer population has unit mass. Similarly, the overall share of con-
sumers who adopt a bad innovation takes the form:

17}

n
Ib(oo)z(l—p)L—f-/O |S,;(t)|dz+/ (1= p+ pap(1))|S,(1)|dt

n

+/ (1—p)|S,(0)|dt

17}

5] 17}
=(1—p)+/0 p\S/b(t)def pap(1)|S,(1)| dt (19)

n

Since consumers’ interim belief exceeds p throughout Phase I and equals p throughout
Phase I, |S§(t)| > |S;(t)| for all # € (0, 2) by Lemma 3. Thus,

n [#]
Ib(oo)<(1—p)+/0 p|Sjg(t)|dz+/ pap(1)|Sy(1)|dr (20)

3]

(18), (20) together imply
n %)
I4(00) — Ip(00) > (2p—l)<l—/0 ‘Sg,(t)|dt—/ aB(t)|Sjg(t)\dt>. (21)
n

Finally, note that fot] ISg(D)]dt = (1 — L) — S(t1) and, since ap(t) <1 for all ¢ € (11, t2),
fttlz ap(1)|Sy(1)]dt < S(t1) —S(2). We conclude that Ig(c0) —Ip(00) > (2p—1)(L +S(22)) >
0; so, Ig(00) > I(o0), completing the desired contradiction.

“Possibility (iii)” cannot occur.

Suppose for the sake of contradiction that there exists ¢’ > #; such that X (¢#) < 0forall ¢z €
(2, 1), X(¢)=0,and p(t') > 1 — p. For future reference, note that X (¢') = 0 requires that
pSg (1) —1Ig(t") = (1—p)Sp(t') —I(¢"). Also recall that, since X (1) =0and p(4)) =p > «a,
condition (17) implies that X’(#;) < 0 and that X (¢) grows more negative until time 7 at
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which p(7) = a. Thus, it must be that ¢ > 7 and that p(¢') € (1 — p, a) or equivalently,
I (t)Sg(t)  1—p

. : (d-p)(1-a) =r
given equation (6), o < LSO < 5 -

Several equations that follow are quite complex, so we introduce the following
shorthand: a = Sg(tz); b=S8(tr); c= pSg(tg) — ]g(l‘g) = (1 — p)Sp(t2) — Ip(12); and
d=—(pSg(t") —Ig(t') = —((1 = p)Sp(t') — Ip(1)).

We know that

¢ +d=(pSg(tz) — Ig(t2)) — (pSe(r') — Ig(t'))

t/
- f 2014(1Sg(1) dt = 2(I (1) — Te(12)) = —2p(S, (£') — S¢(12))

17}

t/
= [ 20 1 0s0 di=2(15(¢) = Iy(12)
15

2

=—2(1 = p)(Sp(t) = Sp(12)), (22)
which implies that
Ig(t) = Ig(t2) = Ip (1) — Ip(t2) = #
Sg(t') = Sg(t2) 2—%
Sp(t') — Sp(t2) =—2(Cl+_dp)-

Therefore,

Io(£)Se (1) (Ig(t2) +1g(t') — Ig(12))(Sg(t2) + Sg(t') — Sg(t2))

Ip()Sp(?)  (Ip(12) + Ip(1') — Ip(£2)) (Sp(£2) + Sp(t") — Sp(22))

_c+d (ap — H_c+d

a 2 ap—c 3
o c+d c+d
(b_2(1—p)><(b(1_”)_c)+ 2 )

c® —d?

a(ap —c) +

c? —d?

b(b(1 —p)— _—
(b(1-p) C)+4(1—p)

ap—c) _ (1-a)p
e T-p)—c) — a(l-p)
2 —d? <0, M > 122 3 contradiction.
b (1)Sp (1) [
Step 3: At all times, t < t3, Sg(t) < Sp(t), and I4(t) > I(1).
Let LS(t) = Sp(t) — Sg(¢) denote the “exposure gap,” the extra share of consumers
who have been exposed to good innovations by time ¢, and let LI(¢) = I4(t) — I(t) de-

note the “adoption gap,” the extra share who have adopted. Atlaunch, S,(0) =S$,(0) =L,

We already know that 5 Z(( > 1. Hence, no matter whether ¢ — d2 > 0 or
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I,(t) =pL,and I;,(t) = (1 — p)L; so, LS(0) =0and LI(0) = (2p — 1)L > 0. Here, we will
show that LS(¢) > 0and LI(¢) > 0 atall times ¢ € (0, #3).

LS(t)>0and LI(t) > 0forallt <t.

By Steps 1-2, consumers’ interim belief p(¢) declines throughout Phase III, from p at
time #, to 1 — p at time f3; so, there is a unique time 7 € (f,, t3) at which p(f) = . Note
that p(t) exceeds consumers’ ex ante belief « at all times ¢ € (0, 2] by Propositions 1-3
and that p(¢) > « for all ¢ € (¢, 1) by definition of 7. Lemma 3 therefore implies that
LS'(t) =S, (1) — Sg,(t) >0and LI'(t) = Ié,(t) —1,(¢t) > 0forall f € (0, 1). Since LS(0) =0
and L1(0) > 0, we conclude that LS(¢) > 0 and LI(¢) > 0 for all # € (0, ), and thus for all
t<t.

LS(t)>0and LI(t) >0 forallt e [, t3].

We begin by showing that the “adoption gap” LI(¢) exceeds LI(t;) during all of Phase III.
Fix any ¢’ € (#2, t3). Recall that X (%) = 0 (shown in the proof of Proposition 3), X (') <0
(proven in Step 2), and X (¢) = (pSg(¢) — Ig(1)) — ((1 — p)Sp(t) — Ip(2)) for all € [12, 13)
(by Lemma 1, because consumers are sensitive to signals). Thus,

(pSg(t) = Ig () = (1 = pISu(¥') = In(r')) < (pSg(2) = Ig(£2)) — ((1 = p)Sp(t2) = Ip(12)).
Rearranging and reformulating terms as in equation (22) yields

v t
/ —2pI4(1)Se(1)dt < / —2(1 — p)I(1)Sp(1) dt. (23)
%) 17}
Since Ig,(t) = plg(1)S,(2) andll’)(t) = (1—p)1(t)Sp (1), inequality (23) implies that I (¢') —
I¢(t2) > I(t') — Ip(t2), which in turn implies that LI(¢') > LI(t). Since LI(t2) > 0, we
conclude that LI(¢) > 0 forall ¢ € (», 3], as desired.

The “exposure gap” LS(t) = S,(t) — Sg(¢) is nonmonotone during Phase III, but we
can show that LS(¢) > Oforall t € (¢, t3]. Recall that p(¢) > aforallt € [tp, f) and p(t) < «
forall ¢ € (¢, t3], where 7 € (,, t3) is the unique time during Phase III at which consumers’
interim belief p(¢) equals their ex ante belief «. Also recall that, by equation (6),

p(t)Z2a ifandonlyif Sg(0)Ig(t) 2 Sp(0)p(2) iff —Sg,(z)z—sg,(z). (24)

Prior to time 7, p(¢) > « and condition (24) implies that LS’(¢) > 0, that is, the exposure
gap is increasing, and hence obviously still positive. After time #, p(¢) < @ and condition
(24) implies that Sg(1)14(t) < Sp(1)1(t); since I4(t) > I(t), this is only possible if S () >
S, (1). Thus, even though the exposure gap tightens after time 7, it must remain positive
throughout Phase III.

Step 4: After time t3, 12 g()t) declines exponentially at a constant rate, L1(t) is constant,
and LS(t) is decreasing but positive.

Consumers’ interim belief at time 3 equals 1 — p, making them indifferent whether
to adopt after a good private signal. Let ag(#3) € [0, 1] be the probability with which
consumers exposed to the innovation at time #3 adopt after a good signal. Note that

X (13) =ag(13)(pSg(t3) — (1 — p)Sp(13)) — (Ig(13) — Ip(13)).
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To establish that consumers’ interim belief continues declining below 1 — p, it suffices to
show that X (#3) < 0. However, this follows immediately from the facts that X (3—) <0
(proven in Step 2), I4(t3) > I(#3) (proven in Step 3), and ap(#3) € [0, 1].

Once consumers’ interim belief falls below 1 — p, immediately after time 3, con-
sumers herd on nonadoption; so, X (#3+) = —(I4(#3) — I,(#3)) < 0 by Step 3 and be-
liefs continue to fall. Consumers therefore still herd on nonadoption, meaning that
I (t) = Ig(13), Ip(t) = I (13), and hence X (t) = X (#3) and LI(t) = LI(t3) for all # > #3.
We conclude that all adoption ceases after time 73 and that ; 2 g()t) forevermore declines
exponentially at the constant rate | X (#3)|. In particular, lim,_,~, p(¢) = 0.

Finally, as discussed in Step 3, the fact that p(¢) < a implies that Sy (#)Ip(¢) >
S¢(1)1g(1); hence, the exposure gap must shrink during obsolescence, that is, LS'(#) <0
forall t > t3. At the same time, because I¢(t) > I, (¢), the condition Sy, ()1} (¢) > Sg(¢)1,(¢)
is only possible if S;,(¢) > Sg(¢); thus, LS(¢) > 0 forall ¢ > t3. O

PrOOF oF LEMMA 2. (i) In the proof of Theorem 1, we showed that I,(¢) > I,,(¢) at all
times ¢ > 0 during a purely-viral campaign. Comparing equations (6), (10), this implies
per(T) < p(T) forall T > 0.

. dlog(Se(T)/Sp(T S,(T)
(i) ppr(0+) = a by (10) and Sg(0+) = S,(0+) =1 — L. SECEBED - et
il’jg; = —(Ig(T) — I,(T)) by (1); thus lf;‘;g)n falls exponentially at rate I, (T) — I(T).

(iii) By part (i) and Proposition 5, limy_, o, pgr(7T") < lim7_ o p(T) = 0. By part (ii),
pBrR(0+) = a > 1 — p and ppr(7T) is strictly decreasing and continuous. T is therefore
well-defined as the unique time at which pgr(T) = 1 — p. Moreover, T > t; because
per(f1)~a>1—p and T < t3 because ppr(#3) < p(t3) =1 — p.

(iv) So far, we have shown that T must occur during Phase II or Phase III. To complete
the proof, we need to show that T occurs during Phase [l when « € (%, p). In Section 2.1,
we showed that condition SS holds throughout Phase II (corresponding to the intuition
that there is “upward pressure” on beliefs when consumers are sensitive to signals) but

fails to hold throughout Phase III. When « € (%, p), the fact that % - 1_7’3 (by defi-
nition of 7) implies ggg; < I_Tp (because & > 1/2), and hence pSg(T) — (1 — p)S,(T) < 0.
b

Because I,(T) —I,(T) > 0, we conclude that condition SS must fail at time 7', and hence
Te (t2, 13). |
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