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Efficient and strategy-proof mechanism under general
constraints
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This study investigates efficient and strategy-proof mechanisms for allocating in-
divisible goods under constraints. First, we examine a setting without endow-
ments. In this setting, we introduce a class of constraints—ordered accessibility—
for which the serial dictatorship (SD) mechanism is Pareto-efficient (PE), individ-
ually rational (IR), and group strategy-proof (GSP). Then we prove that accessi-
bility is a necessary condition for the existence of PE, IR, and GSP mechanisms.
Moreover, we show an example where the SD mechanism with a dynamically con-
structed order satisfies PE, IR, and GSP if one school has an arbitrary accessible
constraint and each of the other schools has a capacity constraint. Second, we
examine a setting with endowments. We find that the generalized matroid is a
necessary and sufficient condition on the constraint structure for the existence of
a mechanism that is PE, IR, and strategy-proof. We also demonstrate that a top
trading cycles mechanism satisfies PE, IR, and GSP under any generalized ma-
troid constraint. Finally, we observe that any two out of the three properties—PE,
IR, and GSP—can be achieved under general constraints.

Keywords. Matching with constraints, efficient matching, generalized matroid,
strategy-proofness.
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1. Introduction

Our focus is on the problem of allocating indivisible goods among agents in the pres-
ence of constraints. For example, when assigning schools to students, each school
should satisfy not only the usual capacity constraints, but also meet diversity require-
ments, including type-specific quotas (Abdulkadiroğlu and Sönmez (2003)) and pro-
portionality constraints (Nguyen and Vohra (2019)). Additionally, schools may have
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minimal quotas to determine the minimum number of students required for their op-
erations. In the case of refugee resettlement (Delacrétaz, Kominers, and Teytelboym
(2023)), the central authority must consider factors such as heterogeneous family sizes
and other requirements—such as job training and language classes—resulting in multi-
dimensional knapsack constraints. In student–project assignment problems (Abraham,
Irving, and Manlove (2007)) in which an instructor can offer multiple projects, certain
subsets of projects may share common quotas, as both projects and instructors have
capacity constraints.

Our goal is to characterize those constraints that admit the existence of allocation
mechanisms that are Pareto-efficient (PE), individual rational (IR), and strategy-proof
(SP) for the agents. PE is a natural efficiency requirement and IR ensures that agents
have incentives to participate in the mechanism. SP is often considered desirable be-
cause it eliminates the need for participating agents to engage in sophisticated reason-
ing; truthful reporting of preferences becomes a dominant strategy. We also examine
group strategy-proofness (GSP), which is a stronger requirement than SP, as GSP mech-
anisms are robust to manipulation by groups of agents.1

We consider two settings. In the first, agents are not endowed with any goods, as in
the case of school choice. In the second case, some agents are endowed with a good,
such as in the case with teacher reassignment (Combe, Tercieux, and Terrier (2022),
Combe, Dur, Tercieux, Terrier, and Ünver (2022)). Refugee resettlement would fit into
either setting (Delacrétaz, Kominers, and Teytelboym (2023)).

Before summarizing our results, we will establish a context: agents will be referred to
as students, and objects are seats within schools. Constraints on how students must be
assigned to schools, beyond the obvious requirement that no school exceeds its capacity,
will be referred to as feasibility constraints.

For the no-endowment setting, there are a variety of PE, IR, and GSP mechanisms
for allocating students to schools that satisfy various feasibility constraints. For example,
Delacrétaz, Kominers, and Teytelboym (2023) proposed a modified version of a top trad-
ing cycle (TTC) mechanism for multidimensional knapsack constraints. Kamada and
Kojima (2023) introduced general upper bound (hereditary or downward-closed) con-
straints. This class also yields the existence of PE, IR, and GSP mechanisms. However,
there is no PE, IR, and GSP mechanism for arbitrary constraints. For example, a desired
mechanism may not exist under proportionality constraints (see Example 3).

Our result delineates the boundary between what is possible and what is not. We
show that the SD mechanism with a dynamically constructed order satisfies PE, IR, and
GSP if one school has an accessible constraint and each of the other schools has a ca-
pacity constraint (Theorem 2). Furthermore, we prove that accessibility is a necessary
condition (in a maximal domain sense) to guarantee the existence of a mechanism that
satisfies PE, IR, and GSP (Theorem 3). Moreover, a PE, IR, and GSP mechanism exists
when the feasibility constraints satisfy a property called σ-accessibility for some permu-
tation σ of the students (Theorem 1).

1Instances of coordinated reporting to manipulate school choice mechanisms have been documented
by Pathak and Sönmez (2008).
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An example of a σ-accessible constraint is when a school requires that the number
of minority students matched to it must be at least half the number of majority students
matched to it. This constraint is σ-accessible for a permutation σ in which the minority
students are ahead of the majority students. The σ-accessible constraints also arise in
school choice in China (Huang (2021)). In China, each district contains multiple schools,
and although students can apply to schools in other districts, the government imposes
limits on the proportion of cross-district students in schools. Note that these constraints
are accessible but not downward-closed. In contrast, every downward-closed constraint
is σ-accessible for any σ , and every σ-accessible constraint is accessible.

Now let us turn to the setting with endowments. Here, IR requires that each stu-
dent be assigned to a school that is at least as good as her endowment. In general,
there is no PE, IR, and SP mechanism under arbitrary constraints. Delacrétaz, Kominers,
and Teytelboym (2023) provide an example with multidimensional knapsack constraints
(see Example 4). This raises the question of which constraint structure is essential for
the existence of PE, IR, and SP mechanisms. We show that the feasibility constraints
being generalized matroid (g-matroid) is both a “necessary and sufficient” condition to
guarantee existence.

To establish sufficiency, we modify the TTC with M-convex set constraints (TTC-M)
mechanism introduced by Suzuki, Tamura, and Yokoo (2018) (Theorem 4). Our modifi-
cation of TTC-M not only handles the constraints covered by Suzuki, Tamura, and Yokoo
(2018). but also accommodates a wider range of more complex constraints, as detailed
in Section 1.1. To establish the necessity of the g-matroid condition, we provide an ex-
ample of a market in which a single school has a constraint that is not a g-matroid, and
for which no PE, IR, and SP mechanism exists (Theorem 5).

1.1 Related work

Our study is closely related to the papers by Suzuki, Tamura, and Yokoo (2018), Suzuki,
Tamura, Yahiro, Yokoo, and Zhang (2023). These studies explored settings with endow-
ments and a generalized TTC, where the distributional constraint is represented by an
M-convex set on the vector of the number of students assigned to each school. Suzuki,
Tamura, and Yokoo (2018), Suzuki et al. (2023) proposed the TTC-M mechanism and
proved that it is PE, IR, and GSP. We make two major contributions to the literature.

First, we identify that a g-matroid is a necessary condition of the constraint struc-
ture for the existence of mechanisms that satisfy the three desirable properties. This
finding partially addresses the open question posed by Suzuki et al. (2023). In addition,
g-matroid is an important concept in the literature on indivisible goods allocation prob-
lems with monetary transfers. Kelso and Crawford (1982) introduced the gross substi-
tutes condition and showed that a competitive equilibrium exists under this condition.
The key fact is that a demand correspondence derived from the gross substitutes con-
dition forms a g-matroid for every price vector (Gul and Stacchetti (1999), Fujishige and
Yang (2003), Nguyen and Vohra (2024)).
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Second, our model generalizes theirs because constraints are imposed on the
matched student–school pairs. An example of such constraints can be found in aca-
demic hiring, where each student (or applicant) has multiple labels based on their ex-
pertise, and each school (or university) provides an upper and lower quota on each
label (Huang (2010), Fleiner and Kamiyama (2016), Yokoi (2017)). Another example is a
model in which a student has multiple types, but is allocated as one of her types (Kurata,
Hamada, Iwasaki, and Yokoo (2017)). This model includes important real-life applica-
tions, such as affirmative action in India (Sönmez and Yenmez (2022)) and Brazil (Aygün
and Bó (2021)).

Another difference from the model proposed by Suzuki, Tamura, and Yokoo (2018),
Suzuki et al. (2023) is that our model includes outside options and allows for unmatched
agents. Therefore, our model is flexible enough to include house allocation with exist-
ing tenants (Abdulkadiroğlu and Sönmez (1999)) and kidney exchanges (Roth, Sönmez,
and Ünver (2004)) as special cases. In addition, our TTC generalizes the “‘you request
my house—I get your turn” (YRMH-IGYT) mechanism (Abdulkadiroğlu and Sönmez
(1999)) and the top trading cycles and chains (TTCC) mechanism with the SP and PE
chain rule (Roth, Sönmez, and Ünver (2004)).

Hafalir, Kojima, and Yenmez (2023) studied the existence of a desired mechanism
that weakly improves a distributional objective upon the initial matching. They showed
that if the distributional objective satisfies a notion of discrete concavity, called pseudo
M�-concavity, their generalized TTC satisfies (constrained) PE, IR, and SP. It should be
noted that the set of matchings that weakly improves the distributional objective upon
the initial matching forms a g-matroid if the distributional objective satisfies pseudo
M�-concavity.

Kamiyama (2013) explored the case where the outside option is assumed to be worst
for every student (every school is acceptable to any student). He showed that a mecha-
nism, called the generalized serial dictatorship with project closures (GSDPC), satisfies
PE and SP for general constraints. The GSDPC sequentially assigns each student to her
best school to the extent that the remaining students can be feasibly assigned. It is not
difficult to see that the GSDPC satisfies GSP. Furthermore, in the setting without endow-
ments, any mechanism is IR; hence, the GSDPC satisfies PE, IR, and GSP.

Imamura and Kawase (2024) studied PE under a general constraint and, in particu-
lar, provided a method for checking whether a given matching is Pareto-efficient. They
identified that a matroid is a necessary and sufficient condition for the constraint to
characterize the set of PE matchings by serial dictatorship (SD). They also introduced
the constrained serial dictatorship (CSD) to check PE under general constraints. The
CSD is almost the same as the GSDPC; however, it also considers IR. Hence, the CSD can
be viewed as a PE and IR mechanism, but it is not SP.

The field of matching under constraints has grown rapidly (Abdulkadiroğlu and Sön-
mez (2003), Biró, Fleiner, Irving, and Manlove (2010), Hafalir, Yenmez, and Yildirim
(2013), Ehlers, Hafalir, Yenmez, and Yildirim (2014), Kamada and Kojima (2015, 2017),
Kawase and Iwasaki (2020)) with a primary focus on stability or fairness. However, our
study emphasizes the importance of PE. Several studies examined PE mechanisms un-
der constraints (Root and Ahn (2020), Yokote (2022), Delacrétaz, Kominers, and Teytel-
boym (2023)). In particular, Delacrétaz, Kominers, and Teytelboym (2023) studied PE,
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IR, and SP mechanisms under multidimensional knapsack constraints. As previously
highlighted, they established that desired mechanisms do not exist when endowments
are present and do exist when they are not. These findings can be derived from our
results.

2. Preliminaries

2.1 Model

A market is a tuple (I, S, (�i )i∈I , (Fs )s∈S ,ω). I = {1, 2, � � � , n} is a finite set of students,
and S is a finite set of schools. Each student i has a strict preference �i over S ∪ {∅},
where ∅ means being unmatched (or an outside option). We write x�i x′ if either x�i x′
or x= x′ holds. Fs is the family of subsets of students that school s can accept; ω : I →
S ∪ {∅} is an endowment function, where ω(i) = s denotes that the endowment of i is
s ∈ S ∪ {∅}. In a setting without endowments, we assume that ω(i) = ∅ for all i ∈ I.

A matching μ is a subset of I×S such that each student i appears at most in one pair
of μ; that is, |μ∩ {(i, s) : s ∈ S}| ≤ 1 for all i ∈ I. For each i ∈ I, we write μ(i) to denote the
school to which i is assigned at μ, that is, μ(i) = s if (i, s) ∈ μ and μ(i) =∅ if (i, s) /∈ μ for
all s ∈ S. Similarly, for each s ∈ S, we write μ(s) to denote the set of students assigned to s
at μ, that is, μ(s) = {i ∈ I : (i, s) ∈ μ}. A matching is called feasible if μ(s) ∈ Fs for all s ∈ S.
For notational simplicity, we sometimes add unmatched pairs (i, ∅) to a matching, but
we ignore such pairs.

Let μ0 denote the endowment matching (or initial matching), that is, μ0(i) = ω(i)
for all i ∈ I. We assume that the endowment matching is feasible, that is, μ0 ∈ F .

2.2 Constraints

The aggregated constraint is sometimes represented by F = {X ⊆ I × S :X(s) ∈ Fs (∀s ∈
S)}, where X(s) = {i ∈ I : (i, s) ∈X}.2 Using this notation, a matching μ is feasible if and
only if μ ∈ F . In addition, we will also consider a distributional constraint F ⊆ I× S that
may not be expressible through individual constraints (Fs )s∈S .

Let E be a ground set. A family of subsets F ⊆ 2E is a matroid if it satisfies the fol-
lowing three properties: (i) ∅ ∈ F ; (ii) if X ∈ F and X ′ ⊆X , then X ′ ∈ F ; (iii) if X , Y ∈ F
and |X| < |Y |, then y ∈ Y \X exists such that X ∪ {y} ∈ F . If individual constraint Fs
is a matroid for every s ∈ S, then the aggregated constraint F is also a matroid. Given a
matroid F , an element B ∈ F is called a base if B is an inclusion-wise maximal subset
of E in F . According to property (iii), all the bases of a given matroid have the same
cardinality. The collection of all the bases is called the matroid base family. The matroid
base family can be characterized as a nonempty family of subsets B ⊆ 2E that satisfies
the following property: for any B, B′ ∈ B and b ∈ B \ B′, there exists b′ ∈ B′ \ B such that
(B \ {b}) ∪ {b′} ∈ B.

Matroid constraints include many real-life examples of constraints. Abdulkadiroğlu
and Sönmez (2003) formally studied type-specific quotas to address student diversity

2Note thatX ∈ F may not be a matching because some students may appear multiple times.
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requirements within schools. Kamada and Kojima (2015) studied the regional maximum
quotas in the context of medical residency matching in Japan. These constraints are
special cases of a matroid.

A nonempty family of subsets F ⊆ 2E is a g-matroid if, for any X , Y ∈ F and e ∈
X \Y , it holds that

(i) X \ {e} and Y ∪ {e} ∈F or

(ii) there is e′ ∈ Y \X such that (X \ {e}) ∪ {e′} and (Y ∪ {e}) \ {e′} are in F .

Alternatively, a g-matroid can be characterized by another property (Murota and Sh-
ioura (1999), Tardos (1985)): for anyX , Y ∈F and e ∈X \Y , it holds that

(i) X \ {e} ∈ F or (X \ {e}) ∪ {e′} ∈ F for some e′ ∈ Y \X and

(ii) Y ∪ {e} ∈ F or (Y ∪ {e}) \ {e′} ∈ F for some e′ ∈ Y \X .

Moreover, a g-matroid can be represented by F = {S ⊆ E : p(S) ≤ |X ∩ S| ≤ q(S) (∀X ⊆
E)}, with a paramodular pair (p, q) (Frank (2011)). Here, a pair (p, q) is called paramod-
ular if

(i) p is supermodular (i.e., p(X ) +p(Y ) ≤ p(X ∪Y ) +p(X ∩Y ) for allX , Y ⊆E)

(ii) q is submodular (i.e., q(X ) + q(Y ) ≥ q(X ∪Y ) + q(X ∩Y ) for allX , Y ⊆E)

(iii) p, q satisfy cross-inequality (i.e.,p(X )−q(Y ) ≥ p(X \Y )−q(Y \X ) for allX , Y ⊆
E).

A g-matroid is also called anM�-convex family because the corresponding set of 0–1
vectors is an M�-convex set as a subset of ZE (Murota (2016)). The subsequent proposi-
tion gives useful subclasses of g-matroids. Refer to (Yokoi, 2017, Proposition 17) for its
proof.

Proposition 1. Let L ⊆ 2E be a laminar family3 and let �L, uL ∈ Z≥0 for each L ∈ L.
Then a family F = {X ⊆E : �L ≤ |X ∩L| ≤ uL (∀L ∈ L)} is a g-matroid if F �= ∅.

It is not difficult to see that a g-matroid is a class that includes both a matroid and
a matroid base family. Moreover, a nonempty family of subsets F ⊆ 2E is a g-matroid if
and only if there exists a matroid base family B ⊆ 2E

′
with E ⊆ E′ such that F = {B ∩E :

B ∈ B} (Tardos (1985)). Additionally, for a g-matroid F and �, u ∈ Z≥0, its truncation
Fu� = {X ∈ F : � ≤ |X| ≤ u} is also a g-matroid if Fu� �= ∅ (Tardos (1985)). If individual
constraint Fs is a g-matroid for every s ∈ S, then the aggregated distributional constraint
is also a g-matroid.

A family of subsets F ⊆ 2E belongs to the class of general upper bound (or indepen-
dence system) if X ⊆ Y ∈ F implies X ∈ F . A family of subsets F ⊆ 2E is called acces-
sible if for any X ∈ F \ {∅}, there exists e ∈ X such that X \ {e} ∈ F . By definition, any

3A family L ⊆ 2E is called a laminar family if, for anyX , Y ∈ L, eitherX ∩Y = ∅,X ⊆ Y , orX ⊇ Y .



Theoretical Economics 20 (2025) Efficient and strategy-proof mechanism 487

Figure 1. Classes of constraints we deal with in this study.

nonempty accessible set system must contain the empty set. For an order σ of E, a fam-
ily of subsets F ⊆ 2E is called σ-accessible if for any X ∈ F \ {∅}, we have X \ {e} ∈ F for
e ∈ arg max{σ−1(e) : e ∈X}. By definition, every general upper bound is σ-accessible for
any σ , and every σ-accessible set system (for some σ) is accessible. In addition, these
classes are distinct, as {∅, {1}, {1, 2}} is σ-accessible for σ = (1, 2), but not general upper
bound, and {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} is accessible, but not σ-accessible for any
σ .

Figure 1 illustrates the relationship among classes of constraints.

2.3 Properties

A matching μ is said to Pareto dominate μ′ if μ(i) �i μ′(i) for all i ∈ I and μ(i) �i μ′(i)
for some i ∈ I. A feasible matching μ is called Pareto-efficient (PE) if there is no feasi-
ble matching μ′ that Pareto dominates μ. Additionally, a feasible matching μ is called
individually rational (IR) if μ(i) �i μ0(i) for all i ∈ I.

A mechanism ψ is a map from a preference profile to a feasible matching. A mecha-
nism is PE and IR if it always produces a feasible matching that fulfills the conditions of
PE and IR, respectively.

A mechanism ψ is strategy-proof (SP) if for every preference profile �I , there is
no i ∈ I and her preference �′

i such that ψ[�′
i, �−i](i) �i ψ[�I ](i), where �I = (�j )j∈I

and �−i = (�j )j∈I\{i}. Intuitively, SP requires that no student can be assigned to a
strictly preferred school by misreporting her preference. Similarly, the mechanism ψ

is group strategy-proof (GSP) if, for every preference profile �I , there is no I ′ ∈ 2I \ {∅}
and their preference profile �I′ such that ψ[�′

I′ , �−I′ ](i) �i ψ[�I ](i) for all i ∈ I ′ and
ψ[�′

I′ , �−I′ ](i) �i ψ[�I ](i) for some i ∈ I′, where �′
I′= (�′

j )j∈I ′ and �−I′ = (�j )j∈I\I′ . In
other words, GSP requires that no group of students can make each member weakly
better off and that at least one student in the group is strictly better off by jointly misre-
porting her preferences. Clearly, GSP is a stronger property than SP.

A mechanism is nonbossy if no student can influence the assignment of others
without changing her own assignment by misreporting her preference. Formally, for
every preference profile �I , i ∈ I, and preference �′

i, ψ[�I ](i) = ψ[�′
i, �−i](i) implies

ψ[�I ] = ψ[�′
i, �−i]. Pápai (2000) showed that a mechanism is GSP under unit capacity
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constraint if and only if it is SP and nonbossy. It is easy to verify that this equivalence
still holds under any constraints in our model.

2.4 Applications

In this section, we examine some applications on matching under constraints and show
that our results can be used to check the existence of a desired mechanism in each case.4

Reassignment of teachers with distributional concerns Combe et al. (2022), Combe, Ter-
cieux, and Terrier (2022) studied a teacher reassignment market and focused on improv-
ing distributional welfare over the initial matching μ0. Each teacher i ∈ I has a type τ(i)
that represents her characteristics, such as experience. Each school s has a quota qs and
a type ranking ▷s over the types	 := {τ(i) : i ∈ I}∪ {θ∅}. We assume that τ(i)▷s θ∅ for all
i ∈ μ0(s) and s ∈ S. A matching μ is status quo improving if it is IR for each teacher, and
Lorenz dominates the initial matching for each school s (i.e., τ(i) ▷s θ∅ for all i ∈ μ(s)
and |{i ∈ μ(s) : τ(i) ⊵s θ}| ≥ |{i ∈ μ0(s) : τ(i) ⊵s θ}| for all type θ ∈ 	). A matching is sta-
tus quo improving teacher optimal (SI teacher optimal) if it is status quo improving and
not Pareto dominated for teachers by any other status quo improving matching. Combe
et al. (2022) provided a variant of TTC, which is SI teacher optimal and SP.

Their existence result can be derived from our findings.5 For each school s, define a
constraint as a family of subsets of students that Lorenz dominate the students matched
to s in the initial matching. Then SI teacher optimality is equivalent to the conjunction
of IR and PE in a setting with endowments. The key fact is that the constraint for each
school forms a g-matroid, enabling the application of Theorem 4. Moreover, our result
can strengthen their result from SP to GSP.

Note that the constraint of Lorenz domination for each school s can be represented
by a g-matroid of the form in Proposition 1 by setting L = {Lθ : θ ∈	, θ⊵s θ∅} and

• Lθ∅ = {i ∈ I : θ∅ ▷s τ(i)}, uθ∅ = �θ∅ = 0, and

• Lθ = {i ∈ I : τ(i)⊵s θ}, uθ = qs, �θ = |{i ∈ μ0(s) : τ(i)⊵s θ}| for each θ ∈	with θ▷s θ∅.

It is possible to construct a more general g-matroid constraint by using different values
for the upper and lower bounds. For example, setting uθ = |{i ∈ μ0(s) : τ(i) ⊵s θ}| + 1 for
the most experienced type θ would prevent allocating too many such teachers to one
school.

As seen above, our necessary and sufficient condition enables us to appropriately
extend a model while preserving the existence of the desired mechanism.

Proportionality ceiling constraint The proportionality ceiling constraint arises from
school choice in a Chinese district. In this context, the government has imposed a

4For additional existing models not discussed in this paper, please refer to the working paper version for
details: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4844451.

5The model studied by Combe, Tercieux, and Terrier (2022) is a special case where unmatched teachers
and schools with vacant seats are not allowed in the initial matching, and different students cannot have the
same type. Thus, our findings can also derive the existence result of Combe, Tercieux, and Terrier (2022).

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4844451
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proportionality ceiling that states the number of students from outside a district as-
signed to a school should not exceed a certain fraction of the total number of students
assigned (Huang (2021)).

For example, let us consider a setting in which there are two students from within
the district, denoted i1, i2, and two students from outside the district, denoted u1, u2. If
the proportion to be guaranteed is half, the constraint for a school s with capacity 2 is

F̂s = {∅, {i1}, {i2}, {i1, i2}, {i1, u1}, {i1, u2}, {i2, u1}, {i2, u2}
}

.

The constraint F̂s is σ-accessible with respect to σ = (i1, i2, u1, u2 ).
In general, the proportionality ceiling constraint is σ-accessible, where σ is an order

in which students from within the district are listed before those from outside the dis-
trict. Theorem 1 immediately implies the existence of PE, IR, and GSP mechanisms in a
setting without endowments.

Moreover, similar constraints also appear in various other applications such as re-
source allocation during a pandemic (Dur, Morrill, and Phan (2021)) and dynamic
matching (Bando and Kawasaki (2021)). These details are discussed in Section 3.3.

Proportionality constraint Maintaining a certain balance in the student body is a com-
mon practical requirement. Specific ratios or percentages often define this balance. For
example, in 2003, the Cambridge, Massachusetts, public school district implemented a
policy requiring that the percentage of students from families of low socioeconomic sta-
tus be within a range of 15 percent of the district’s overall proportion (Nguyen and Vohra
(2019)).

Consider the same students provided in the example of proportionality ceiling con-
straint. Suppose instead of a proportionality ceiling constraint, a proportionality con-
straint is imposed that the number of the two types of students must be equal. Then the
constraint for school s becomes

F̂s = {∅, {i1, u1}, {i1, u2}, {i2, u1}, {i2, u2}
}

.

This constraint is inaccessible; thus, a proportional constraint is inaccessible in gen-
eral. Thus, Theorem 3 immediately implies the nonexistence of the desired mechanism
under these constraints in a setting without endowments.

The negative findings on proportionality constraints can be associated with the
nonexistence of stable matchings. These details are discussed in Section 3.3.

3. Setting without endowments

In this section, we consider a setting without endowments. We first prove that, for any
order σ of students, the SD mechanism with σ satisfies PE, IR, and GSP if the constraints
are σ-accessible. We then observe that PE, IR, and SP mechanisms may not exist even
when the constraints are accessible. Furthermore, we demonstrate that accessibility is a
necessary condition for the existence of PE, IR, and GSP mechanisms.
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Algorithm 1: Serial dictatorship (SD) with σ .

input : a market (I, S, (�i )i∈I , F ) and σ ∈ �
output: a matching

1 Let μ(0) ← ∅;
2 for k← 1, 2, � � � , |I| do
3 r ← arg max�σ(k)

{s ∈ S ∪ {∅} : μ(k−1) ∪ {(σ(k), s)} ∈ F };

4 if r ∈ S then μ(k) ← μ(k−1) ∪ {(σ(k), r )};
5 else μ(k) ← μ(k−1);

6 return μ(|I|);

3.1 SD mechanism for accessible constraints

Let � be the set of all permutations of the students. The SD mechanism considers stu-
dents one by one in a predetermined order σ ∈ �. In each step of the mechanism, the
current student is given the opportunity to select her most preferred school from the re-
maining available schools, subject to the imposed constraint. Once the student makes
a choice, the student is fixed on her assignment to the school of her choice. The SD
mechanism is formally described in Algorithm 1.

The SD mechanism is IR because each student can at least choose the option of
being unmatched. Furthermore, the mechanism is GSP because of the sequential nature
of the mechanisms. Indeed, as each student selects her preferred school in her turn,
there is no room for a group of students to coordinate and manipulate the outcome
strategically.

Unfortunately, the SD mechanism does not satisfy PE under general constraints,
even when there is only one school.6 To observe this, consider a market with I = {1, 2},
S = {s}, �1 = �2 = (s∅), and Fs = {∅, {1, 2}}. In this market, the SD mechanism out-
puts a matching in which no student matches to s, regardless of the order. However,
the unique PE and IR matching is the matching in which both students are matched to
school s. The essential reason why the SD mechanism fails to output the matching is
that the constraint Fs is not accessible.

By contrast, the SD mechanism is PE if the individual constraints are σ-accessible
for a common σ ∈ �. We prove this fact for a more general case in which the dis-
tributional constraint is σ-accessible. A distributional constraint F is σ-accessible if
μ\ {(i, μ(i))} ∈ F for any feasible nonempty matchingμ ∈ F \ {∅} and i ∈ arg max{σ−1(i) :
i ∈ I, μ(i) �= ∅}. Note that, for any σ-accessible individual constraints (Fs )s∈S , the aggre-
gated constraint F is also σ-accessible. Indeed, we have the following theorem.

Theorem 1. If the distributional constraint is σ-accessible for an order σ ∈ �, the SD
mechanism (Algorithm 1) with σ satisfies PE, IR, and GSP.

6In contrast, the CSD (Imamura and Kawase (2024)) is PE, IR, and GSP for any market consisting of only
one school s. The mechanism is PE and IR in general. In addition, it is GSP since each student can only
indicate whether she desires the school s, and misreporting affects the outcome only when it makes the
agent worse off.
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Proof. The SD mechanism satisfies IR and GSP, as we have stated above. Therefore, it is
sufficient to prove that it also satisfies PE. Suppose, on the contrary, that the SD mecha-
nism outputs a matching μ that is not PE. Then there exists a feasible matching μ′ ( �= μ)
that Pareto dominatesμ. Let k be the smallest index such thatμ(σ(k)) �= μ′(σ(k)). Then
we have μ(σ(j)) = μ′(σ(j)) for j = 1, 2, � � � , k− 1 and μ′(σ(k)) �σ(k) μ(σ(k)). This leads
to a contradiction becauseσ(k) could have chosenμ′(σ(k)) on her turn in the SD mech-
anism.

We remark that σ-accessibility is not a necessary condition to guarantee the exis-
tence of a PE, IR, and GSP mechanism.

Example 1. Let I = {1, 2, 3}, S = {s1, s2}, Fs1 = {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}, and
Fs2 = {X ⊆ I : |X| ≤ 1}. Note that Fs1 is not σ-accessible for any σ .

However, this market admits a PE, IR, and GSP mechanism. Indeed, the SD mech-
anism, which employs the order (1, 2, 3) if s1 is the most preferable school for stu-
dent 1 and order (1, 3, 2) otherwise, satisfies PE, IR, and GSP. This is because student
1 is assigned to the most preferable school, and the sets {X \ {1} : 1 ∈ X ∈ Fs1 } and
{X : 1 /∈X ∈ Fs1 } are (2, 3)- and (3, 2)-accessible, respectively.

More generally, if one school s∗ has an arbitrary accessible constraint Fs∗ and each
of the other schools s ∈ S \ {s∗} has a capacity constraint Fs = {X ⊆ I : |X| ≤ qs}, then
the SD mechanism with a dynamically constructed order (which is formally described
in Algorithm 2) satisfies PE, IR, and GSP.

Theorem 2. If one school s∗ has an accessible constraint Fs∗ and each of the other schools
s ∈ S \ {s∗} has a capacity constraint Fs = {X ⊆ I : |X| ≤ qs}, then Algorithm 2 satisfies PE,
IR, and GSP.

Algorithm 2: Serial dictatorship (SD) with a dynamically constructed order.

input : a market (I, S, (�i )i∈I , (Fs )s∈S ) where Fs∗ is accessible and
Fs = {X ⊆ I : |X| ≤ qs} (∀s ∈ S \ {s∗}) and σ ∈ �

output: a matching
1 Let μ(0) ← ∅ and P ← I;
2 for k← 1, 2, � � � , |I| do
3 if ∃i ∈ P such that μ(k−1)(s∗ ) ∪ {i} ∈ Fs∗ then
4 Let i(k) be the first such an i according to the order of σ ;

5 else Pick the first i(k) ∈ P according to the order of σ ;
6 Let r ← arg max�

i(k)
{s ∈ S ∪ {∅} : μ(k−1) ∪ {(i, s)} ∈ F };

7 if r ∈ S then μ(k) ← μ(k−1) ∪ {(i(k), r )};
8 else μ(k) ← μ(k−1);
9 P ← P \ {i(k)};

10 return μ(|I|);
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Proof. The mechanism is IR since each student can at least choose the option of being
unmatched. The mechanism is GSP because each student selects her preferred school
in her turn.

To prove PE, suppose to the contrary that the mechanism outputs a matching μ that
is not PE. Let μ′ be a feasible matching that Pareto dominates μ. Let k∗ ∈ {1, 2, � � � , |I|}
be the smallest integer such that μ′(i(k∗ ) ) �i(k∗ ) μ(i(k

∗ ) ). Then, regardless of whether
μ′(i(k∗ ) ) = s∗ or not, i(k

∗ ) can select μ′(i(k∗ ) ) = s∗ in the k∗th round of Algorithm 2. This
contradicts the assumption and, thus, the mechanism is PE.

3.2 Impossibility for inaccessible constraints

If more than one school does not have a capacity constraint, a PE, IR, and SP mechanism
may not exist even when the constraints are accessible.

Example 2. Let I = {1, 2} and S = {s1, s2}. The constraint Fs of each school s is defined
as

Fs1 = {∅, {2}, {1, 2}
}

and Fs2 = {∅, {1}, {1, 2}
}

.

Note that Fs1 and Fs2 are accessible. Suppose that the true preference �i of each student
i is given as

�1 = (s1s2∅) and �2 = (s2s1∅).

It is not difficult to see that there exist only two PE and IR matchings for their true prefer-
ences: μ1 := {(1, s1 ), (2, s1 )} and μ2 := {(1, s2 ), (2, s2 )}. If student 1 misreports her pref-
erence as �′

1 = (s1∅s2 ), whereas student 2 reports her true preference �2, then μ1 is the
unique PE and IR matching. Conversely, if student 1 reports her true preference �1, and
student 2 misreports her preference as �′

2 = (s2∅s1 ), then μ2 is the unique PE and IR
matching. Therefore, in any PE and IR mechanism, either student 1 or 2 can benefit
from misreporting their preferences. This means that no mechanism can simultane-
ously satisfy PE, IR, and SP for the market.

Consequently, accessibility is insufficient to guarantee the existence of a mechanism
that satisfies PE, IR, and SP. Nevertheless, accessibility is a necessary condition in a max-
imal domain sense for the existence of a mechanism that satisfies PE, IR, and GSP.

We first observe that a simple market does not admit a desired mechanism. We then
prove that any market does not admit a desired mechanism if there is one school with
an inaccessible constraint and another school with a unit capacity constraint.

Example 3. Suppose there are two students 1, 2 and two schools s1, s2. The constraint
Fs on each school s is defined as

Fs1 = {∅, {1, 2}
}

and Fs2 = {∅, {1}, {2}
}

.
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The constraint Fs1 could appear as a proportional constraint; for example, the number
of male and female students who match with a particular school must be equal. This
market does not admit a mechanism that simultaneously satisfies PE, IR, and SP.

To obtain a contradiction, suppose that ψ is a mechanism that satisfies PE, IR, and
SP. We define eight preference profiles:

• P(1) = (s2∅s1, s1∅s2 )

• P(2) = (s2s1∅, s1∅s2 )

• P(3) = (s2s1∅, s1s2∅)

• P(4) = (s2∅s1, s1s2∅)

• Q(1) = (s1∅s2, s2∅s1 )

• Q(2) = (s1∅s2, s2s1∅)

• Q(3) = (s1s2∅, s2s1∅)

• Q(4) = (s2∅s1, s2s1∅).

In profile P(1), student 1 prefers s2, followed by ∅ and then s1. Student 2 prefers
s1, followed by ∅ and then s2. Based on PE and IR, we derive that ψ[P(1)] = {(1, s2 )}.
For profile P(2), the outcome ψ[P(2)] must be {(1, s1 ), (2, s1 )} or {(1, s2 )} by PE and IR.
However, ψ[P(2)] = {(1, s1 ), (2, s1 )} is impossible by SP because it incentivizes student
1 to misreport so that the preference profile becomes P(1). Hence, we obtain ψ[P(2)] =
{(1, s2 )}. Similarly, we have ψ[P(3)] = {(1, s2 )} by PE, IR, and SP. This implies ψ[P(4)] =
{(1, s2 )} by PE, IR, and SP.

Applying similar reasoning, we can determine that ψ[Q(1)] = ψ[Q(2)] = ψ[Q(3)] =
{(2, s2 )}. In addition, we can conclude thatψ[Q(4)] = {(2, s2 )} by PE, IR, and SP. However,
this contradicts SP because it incentivizes student 2 to misreport at P(4).

Theorem 3. Fix a set of students I with |I| ≥ 2, a set of schools Swith |S| ≥ 2, and a school
s∗ ∈ S with the constraint Fs∗ . Suppose that Fs∗ is not accessible. Then there must exist a
market (I, S, (Fs )s∈S ) with s∗ ∈ S and Fs = {X ⊆ I : |X| ≤ 1} for all s ∈ S \ {s∗} such that no
mechanism simultaneously satisfies PE, IR, and GSP.

Proof. We first consider the case where |S| = 2. We consider a market in which S =
{s∗, t} and Ft = {X ⊆ I : |X| ≤ 1}. As Fs∗ is not accessible, there exists a nonempty X∗ ∈
Fs∗ such thatX∗ \ {i} /∈ Fs∗ for all i ∈X∗. Note thatX∗ must contain at least two students
because ∅ ∈ Fs∗ by assumption. Suppose, to the contrary, that there exists a mechanism
ψ that satisfies PE, IR, and GSP. Note that ψ is also nonbossy because it is GSP.

For each i ∈X∗, we define P(i) as a preference profile such that P(i)
i = (t∅s∗ ), P(i)

j =
(s∗∅t ) for each j ∈X∗ \ {i}, and P(i)

j = (∅s∗t ) for each j ∈ I \X∗. By PE and IR, student

i must be matched with school t at P(i) (i.e., (i, t ) ∈ ψ[P(i)]). In addition, at least one
student j ∈ X∗ \ {i} is unmatched at P(i) (i.e., (j, s∗ ) /∈ ψ[P(i)]) because X∗ \ {i} /∈ Fs∗ .
We draw an arrow from each student i ∈X∗ to an agent j ∈X∗ \ {i} who is unmatched
at P(i). Then there must be at least one cycle. Let (i1, i2, � � � , ik ) be such a cycle, where
(i�+1, s∗ ) /∈ψ[P(i� )] for �= 1, 2, � � � , k (we use ik+1 to represent i1 for simplicity). Note that
k ≥ 2 because there is no self-loop. For each j ∈ {1, 2, � � � , k}, we define the preference
profiles P̂(ij ), ˆ̂P(ij ), andQ(ij ) as
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Table 1. Preference profiles in the proof of Theorem 3.

{i1, � � � , ik} \ {ij , ij+1} ij ij+1 X∗ \ {i1, � � � , ik} I \X∗

P(ij ) (s∗∅t ) (t∅s∗ ) (s∗∅t ) (s∗∅t ) (∅s∗t )
P̂(ij ) (s∗∅t ) (ts∗∅) (s∗∅t ) (s∗∅t ) (∅s∗t )
ˆ̂P(ij ) (s∗∅t ) (ts∗∅) (s∗t∅) (s∗∅t ) (∅s∗t )
Q(ij ) (s∗∅t ) (ts∗∅) (ts∗∅) (s∗∅t ) (∅s∗t )
R (ts∗∅) (ts∗∅) (ts∗∅) (s∗∅t ) (∅s∗t )

• P̂
(ij )
ij

= (ts∗∅) and P̂
(ij )
i = P(ij )

i for each i ∈ I \ {ij }

• ˆ̂P(ij )
ij+1

= (s∗t∅) and ˆ̂P(ij )
i = P̂(ij )

i for each i ∈ I \ {ij+1}

• Q
(ij )
ij+1

= (ts∗∅) andQ
(ij )
i = ˆ̂P(ij )

i for each i ∈ I \ {ij+1}.

The preference profiles are summarized in Table 1. By PE and SP, we haveψ[P̂(ij )](ij ) = t
for j = 1, 2, � � � , k. Hence, by nonbossiness, ψ[P̂(ij )] = ψ[P(ij )] for j = 1, 2, � � � , k. More-

over, by a similar argument, we also have ψ[Q(ij )] =ψ[ ˆ̂P(ij )] =ψ[P̂(ij )] =ψ[P(ij )].
Now, let us consider the preference profile R such that Ri = (ts∗∅) for each i ∈

{i1, � � � , ik}, Ri = (s∗∅t ) for each i ∈X∗ \ {i1, � � � , ik}, and Ri = (∅s∗t ) for each i ∈ I \X∗.
Recall that school t has a capacity of 1. By symmetry, we may assume, without loss of
generality, that no student other than ik is matched to t in ψ[R] (i.e., ψ[R](ik ) = t or
ψ[R] = {(i, s∗ ) : i ∈X∗}). For each j ∈ {1, 2, � � � , k}, let R(j ) be the preference profile such
that R(j )

i = (ts∗∅) for each i ∈ {ij , � � � , ik}, R(j )
i = (s∗∅t ) for each i ∈X∗ \ {ij , � � � , ik}, and

R
(j )
i = (∅s∗t ) for each i ∈ I \X∗. Note that R(1) = R and R(k−1) =Q(ik−1 ). By PE, IR, and

GSP, it is not difficult to see that ψ[R] = ψ[R(1)] = ψ[R(2)] = · · · = ψ[R(k−1)] = ψ[Q(ik−1 )].
This implies that (ik−1, t ) ∈ψ[Q(ik−1 )] =ψ[R]. However, this contradicts the assumption
that no student other than ik is matched to t in ψ[R]. Hence, it can be concluded that
no mechanism simultaneously satisfies PE, IR, and GSP.

The case where |S| > 2 can be proved in the same way by setting ∅ �i s for all i ∈ I
and s ∈ S \ {s∗, t}.

By combining Theorem 2 and Theorem 3, we can conclude that accessibility is a
necessary and sufficient condition for the existence of a PE, IR, and GSP mechanism
when there are at least two schools and at most one school does not have a capacity
constraint.

3.3 Relation to stability

Finally, we discuss the relationship between the results obtained in this section and the
existence of stable matchings. Note that stability is a stronger condition than IR, but not
comparable to PE. In addition, it is clear that the mechanism that always outputs the
endowment matching satisfies both IR and SP. In order to discuss stability, we introduce
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a model to allocate indivisible goods with priorities. In this model, each school s is en-

dowed with a priority, which is represented by a choice function over sets of students.

Let Chs : 2I → 2I be the choice function of s ∈ S, where Chs(X ) ⊆X for all X ⊆ I. The

choice function Chs induces the feasibility constraint Fs = {X ⊆ I : Chs(X ) = X}. The

condition Chs(X ) = X is called individual rationality of school s. A matching μ is sta-

ble if it is individually rational for both sides and there exists no (i, s) ∈ I × S such that

s �i μ(i) and i ∈ Chs(μ(s) ∪ {i}).

We introduce conditions that impose restrictions on the priorities. A choice function

Ch satisfies path-independence (Plott (1973)) if for any sets of students X and Y , we

have Ch(X ∪ Y ) = Ch(Ch(X ) ∪ Ch(Y )). Furthermore, a choice function Ch satisfies

unidirectional substitutes and complements conditions (Huang (2021), Dur, Morrill, and

Phan (2021)) if there exists an ordered type t : I → R such that for any X ⊆ I and i ∈
Ch(X ), the following conditions hold: (a) {i′ ∈ Ch(X )\{i} : t(i′ ) = t(i)} ⊆ {i′ ∈ Ch(X \{i}) :

t(i′ ) = t(i)} and (b) {i′ ∈ Ch(X ) : t(i′ )< t(i)} \ {i} = {i′ ∈ Ch(X \ {i}) : t(i′ )< t(i)}.

When every choice function satisfies path-independence, a stable matching exists

(Roth (1984), Aygün and Sönmez (2013)). Intuitively, a path-independent choice func-

tion rules out complementarities, which are associated with the nonexistence of stable

matchings. However, Huang (2021) demonstrated that a choice function can accommo-

date a specific type of complementarity. When every choice function satisfies unidirec-

tional substitutes and complements conditions for a common t, a stable matching still

exists. Note that a path-independent choice function C induces a general upper bound

since C(X ) =X implies C(Y ) = Y for all Y ⊆X .7 Moreover, a choice function that sat-

isfies unidirectional substitutes and complements induces a σ-accessible constraint, as

discussed in a similar manner to the arguments presented in Section 2.4.8

An inaccessible constraint is associated with stronger complementarities. A choice

function Ch with the following complementarities leads to an inaccessible constraint:

there existsX ⊆ I with Ch(X ) �= ∅ such that for any i ∈ Ch(X ), we have Ch(Ch(X )\{i}) ⊊

Ch(X ) \ {i}. The set Ch(X ) with such an X is inaccessible in the feasibility constraint

induced by Ch. This type of complementarity is encountered in choice functions under

proportional constraints and lower bounds, and is also observed in matchings involving

couples. The presence of this complementarity is known to lead to the nonexistence

of a stable matching (Nguyen and Vohra (2019), Biró et al. (2010), Ehlers et al. (2014),

Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo (2016), Fragiadakis and Troyan (2017)).

Importantly, this complementarity not only implies the absence of stable matchings but

also rules out the existence of mechanisms that satisfy the properties of PE, IR, and GSP,

as required by our necessity of accessibility.

7If a path-independent choice function induces a matroid constraint, it satisfies the law of aggregate
demand (Yokoi (2019)). Consequently, this class of choice functions guarantees the existence of stable and
SP mechanisms (Hatfield and Milgrom (2005)).

8Bando and Kawasaki (2021) introduced a broader class of choice functions and studied dynamic match-
ing. The constraints induced by the choice functions are also σ-accessible.
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4. Setting with endowments

In this section, we establish that a g-matroid is a maximal domain for the existence of
PE, IR, and SP mechanisms in a setting with endowments. To demonstrate this, we first
prove that a TTC mechanism satisfies PE, IR, and GSP if the constraints are g-matroid.
Subsequently, we construct a market that permits no PE, IR, and SP mechanisms for
each constraint Fs∗ that is not a g-matroid.

4.1 Motivating example

We begin with the following example, a simplified version of one found in Delacrétaz,
Kominers, and Teytelboym (2023), that illustrates that no mechanism can simultane-
ously achieve PE, IR, and SP under general constraints. Specifically, Delacrétaz, Komin-
ers, and Teytelboym (2023) demonstrated that no mechanism satisfies PE, IR, and SP
under multidimensional knapsack constraints.9

Example 4. Suppose that there are three students, 1, 2, 3, and three schools, s1, s2, s3.
The preference �i of each student i is given as

�1 = (s3s1s2∅), �2 = (s3s1s2∅), �3 = (s2s3∅s1 ).

For this preference, student 1 prefers school s3 the most and least prefers the outside
option ∅. The constraint Fs of each school s is given as

Fs1 = {∅, {1}, {2}, {3}
}

, Fs2 = {∅, {1}, {2}, {3}, {1, 2}
}

, Fs3 = {∅, {1}, {2}, {3}
}

.

Here, Fs1 and Fs3 are (unit) capacity constraints, whereas Fs2 is not. Indeed, {1, 2}, {3} ∈
Fs2 , but {1, 3}, {2, 3} /∈ Fs2 . Constraints such as Fs2 appear as budget constraints (e.g.,
student 3 requires more scholarship money). The endowments of students 1 and 2 are
s2, and the endowment of student 3 is s3.

It is not difficult to see that there exist only two PE and IR matchings:

μ1 = {
(1, s3 ), (2, s1 ), (3, s2 )

}
and μ2 = {

(1, s1 ), (2, s3 ), (3, s2 )
}

.

Here, if student 1 misreports her preference as �′
1 = (s3s2∅s1 ) whereas the other stu-

dents report their true preferences, then μ1 is a unique PE and IR matching. Similarly, if
student 2 misreports her preference as �′

2 = (s3s2∅s1 ) whereas the other students report
their true preferences, then μ2 is a unique PE and IR matching. Hence, in any PE and IR
mechanism, either student 1 or 2 can be better off by misreporting his/her preference,
depending on whether the outcome for true reporting is μ1 or μ2.

The example raises the question of which constraint structure is crucial for the exis-
tence of PE, IR, and SP mechanisms. We identify that a generalized matroid (g-matroid)
is a “necessary and sufficient” condition of constraints to guarantee existence.

9In the model with multidimensional knapsack constraints, there is a finite set of serviceD. Each family

i ∈ I has service needs νi = (νid ) ∈ Z
|D|
≥0 . Each location s ∈ S has a service capacity profile κs = (κsd ) ∈ Z

|D|
≥0 .

The constraint of each school s is represented by Fs ≡ {I ′ ⊆ I :
∑
i∈I′ νid ≤ κsd for all d ∈D}.
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4.2 Mechanism for g-matroid constraints

We provide a TTC mechanism that satisfies PE, IR, and GSP when the constraints are
g-matroid. We derive this mechanism by utilizing the TTC-M mechanism introduced by
Suzuki, Tamura, and Yokoo (2018), Suzuki et al. (2023). The TTC-M mechanism main-
tains PE, IR, and GSP for any distributional constraint that can be represented by an
M-convex set on the vector of the number of students assigned to each school. Let
χe ∈ {0, 1}E be the eth unit vector. A set of integer vectors V ⊆ ZE≥0 is an M-convex set
if, for all v, v′ ∈ V and all e ∈ E with ve > v′

e, there exists f ∈ E with vf < v′
f such that

v−χe +χf ∈ V and v′ +χe −χf ∈ V (Murota (2003)).
Note that the TTC-M mechanism cannot be directly applied to our setting. The pri-

mary reason for this is that in our setting, the constraints are not imposed on the number
of students assigned to each school, but rather on the matched student–school pairs. In
addition, our setting allows students to be unmatched, whereas their model does not.

To utilize the TTC-M mechanism, we construct a virtual market (I, S̃, (�̃i )i∈I , F̃ , ω̃)
from the given market (I, S, (�i )i∈I , F ,ω). The set of schools in the virtual market is
defined as the set of student–school pairs S̃ := {(i, s) : i ∈ I, s ∈ S ∪ {∅}}. Each student
i ∈ I has a strict preference �̃i over S̃ such that for any (i1, s1 ), (i2, s2 ) ∈ S̃, we have

(i) (i1, s1 )�̃i(i2, s2 ) ⇐⇒ s1 �i s2 if i1 = i2 = i
(ii) (i1, s1 )�̃i(i2, s2 ) if i1 = i and i2 �= i.

The distributional constraint F̃ ⊆ ZS̃≥0 is defined as

F̃ :=
{
ν ∈ {0, 1}S̃ :

∑
(i,s)∈S̃

ν(i,s) = |I| and
{

(i, s) ∈ I × S : ν(i,s) = 1
} ∈ F

}
.

The endowment function satisfies ω̃(i) = (i,ω(i)) for each i ∈ I. We will demonstrate
that F̃ is an M-convex set if F is a g-matroid.

The TTC-M mechanism runs on the virtual market as follows. Let ▷ be a com-
mon priority order over the students I. Without loss of generality, we may assume
that 1 ▷ 2 ▷ · · · ▷ n. In each round, every (virtual) school (i, s) ∈ S̃ selects a student.
If (i, s) belongs to the endowment matching, then it selects i. Otherwise, (i, s) selects
the highest priority student among the students i′ for which (i, s) can be added to the
current matching by removing (i′,ω(i′ )) without violating feasibility. This mechanism
gives the selected student the right to obtain a seat. Each student selects the right to
obtain her top applicable school seat. Subsequently, students with such rights can trade
seats among themselves by constructing trading cycles. Implement the trade indicated
by this cycle, and all the involved students are removed from the market. If any students
remain, the procedure continues.

For clarity, we provide an example of how our TTC mechanism works.

Example 5. Let I = {1, 2, 3, 4, 5} and S = {s1, s2}. Suppose that students 1 and 2 prefer
s2, s1, ∅ in this order, and students 3, 4, and 5 prefer s1, s2, ∅ in this order. The constraints
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Algorithm 3: Generalized TTC.

input : a market (I, S, (�i )i∈I , F ,ω)
output: a matching μ̃

1 Let μ(0) ← {(i,ω(i)) : i ∈ I}, μ̃(0) ← ∅, and I(0) ← I;
2 for k← 1, 2, � � � do
3 if I(k−1) = ∅ then return μ̃(k−1);
4 foreach i ∈ I(k−1) do
5 Let S(k)

i ← {s ∈ S ∪ {∅} : (μ(k−1) \ {(i′,ω(i′ ))}) ∪ μ̃(k−1) ∪ {(i, s)} ∈ F (∃i′ ∈
I(k−1) )};

6 Let p(k)
i be the most preferred school in S(k)

i for i;

7 i points to (i, p(k)
i );

8 foreach (i, s) ∈ {(i, p(k)
i ) : i ∈ I(k−1)} do

9 if (i, s) ∈ μ(k−1) then (i, s) points to i;
10 else
11 Let I(k)

(i,s) ← {i′ ∈ I(k−1) : (μ(k−1) \ {(i′,ω(i′ ))}) ∪ μ̃(k−1) ∪ {(i, s)} ∈ F };

12 (i, s) points to the most prioritized (smallest index) student in I(k)
(i,s);

13 Identify a cycle (i1, (i1, p(k)
i1

), i2, (i2, p(k)
i2

), � � � , ir , (ir , p
(k)
ir

));

14 μ(k) ← μ(k−1) \ {(i1,ω(i1 )), � � � , (ir ,ω(ir ))};

15 μ̃(k) ← μ̃(k−1) ∪ {(i1, p(k)
i1

), � � � , (ir , p
(k)
ir

)};

16 I(k) ← I(k−1) \ {i1, � � � , ir };

F is a g-matroid that is defined as the aggregation of

Fs1 = {
I ′ ⊆ I :

∣∣I ′ ∩ {2, 3, 5}
∣∣ ≤ 1

}
and Fs2 = {

I ′ ⊆ I : 1 ≤ ∣∣I ′∣∣ ≤ 2
}

.

Let the endowments be (ω(1),ω(2),ω(3),ω(4),ω(5)) = (s1, s1, s2, ∅, ∅), that is, the en-

dowment matching is μ(0) = {(1, s1 ), (2, s1 ), (3, s2 )}.

In round 1 of Algorithm 3, student 1 points to (1, s2 ), (1, s2 ) points to 1, stu-

dent 2 points to (2, s2 ), (2, s2 ) points to 1, and so on (see Figure 2a). Note that

{(2, s1 ), (3, s2 ), (2, s2 )} is in F although it is not a matching. The cycle identified at

line 13 is (1, (1, s2 )). Hence, we obtain μ(1) = {(2, s1 ), (3, s2 )}, μ̃(1) = {(1, s2 )}, and

I(1) = {2, 3, 4, 5}.

In round 2, the cycle identified at line 13 is (2, (2, s2 ), 3, (3, s1 )) (see Figure 2b). Thus,

we obtain μ(2) = ∅, μ̃(2) = {(1, s2 ), (2, s2 ), (3, s1 )}, and I(2) = {4, 5}.

In round 3, there are two cycles (4, (4, s1 )) and (5, (5, ∅)) (see Figure 2c). Note that

student 5 cannot point to s1, as student 3 was matched to s1 in round 2, and, there-

fore, s1 /∈ S(3)
5 . The trades indicated by these cycles are implemented in rounds 3 and 4.

Consequently, we obtain the matching μ̃(4) = {(1, s2 ), (2, s2 ), (3, s1 ), (4, s1 )}.
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Figure 2. Cycles obtained by the TTC in Example 5. The blue and red arrows represent the
relationship to which students and virtual schools are pointing, respectively. Virtual schools that
have not been pointed to by any student are omitted.

Note that a trading cycle can be interpreted as an alternating cycle in the exchange
graph of a g-matroid intersection. This correspondence can be established by construct-
ing an instance of the g-matroid intersection problem where the common ground set is
the set of student–school pairs S̃. One g-matroid is the distributional constraint F̃ , and
the other is a partition matroid M that ensures that each student appears at most once.
In other words,X ∈ M if |X∩{(i, s) ∈ S̃ : s ∈ S∪{∅}}| ≤ 1 for all i ∈ I. For a feasible match-
ing μ, the exchange graph is a directed bipartite graph with bipartition μ and S̃ \ μ. A
pair (y, x) ∈ μ× (S̃ \ μ) is an arc if (μ \ {y}) ∪ {x} ∈ F̃ and (x, y ) ∈ (S̃ \ μ) × μ is an arc if
(μ \ {y}) ∪ {x} ∈ M. To preserve the feasibility of matching after trading, it is sufficient
to select a cycle in the exchange graph that does not contain shortcuts (Murota (1996)).
A standard method for selecting such a cycle is to select a shortest cycle. However, such
a selection rule does not satisfy strategy-proofness (Imamura and Kawase (2024)). The
TTC-M mechanism instead selects cycles without shortcuts by utilizing the priority or-
der.

Formally, our TTC mechanism is described in Algorithm 3. At the beginning of round
k, the set of remaining students is I(k−1), and each student i ∈ I(k−1) is matched with
μ(k−1)(i) = (i,ω(i)). Each student i ∈ I \ I(k−1) exits the market matched with μ̃(k−1)(i).
The set of schools to which student i ∈ I(k−1) has a chance of being matched with is
represented as S(k)

i . Then each student i ∈ I(k−1) points to (i, p(k)
i ), where p(k)

i is the

most preferred school in S(k)
i . Each virtual school (i, s) points to the most prioritized

student i′ who (i, s) can add by removing (i′,ω(i′ )).
We prove the following theorem.

Theorem 4. The generalized TTC mechanism (Algorithm 3) satisfies PE, IR, and GSP if
the distributional constraints form a g-matroid. Additionally, Algorithm 3 can be imple-
mented to run in time O(|I|2 · |S|) if we assume that the feasibility of a matching can be
checked in a constant time.

Proof. Recall that the TTC-M mechanism satisfies PE, IR, and GSP when the distri-
butional constraint is represented by an M-convex set on the vector of the number of
students assigned to each school (Suzuki et al. (2023)). Therefore, to demonstrate that
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Algorithm 3 satisfies PE, IR, and GSP, it is sufficient to prove that F̃ is an M-convex set
if F is a g-matroid. Suppose that F is a g-matroid. Then F ′ = {ν ⊆ S̃ : ν ∩ (I × S) ∈ F } is

also a g-matroid by definition. Further, F̃ can be obtained from F ′ by truncating it with
cardinality |I| (i.e., F̃ = {ν ∈ F ′ : |ν| = |I|}), and such a truncation induces a matroid base
family (Tardos (1985)). As the class of matroid base families is a subclass of M-convex

sets (Murota (2016)), F is an M-convex set.
Next we discuss the computational complexity of Algorithm 3. As at least one stu-

dent is fixed in each iteration, the number of iterations is at most O(|I|). The run-

ning time of each iteration is O(|I| · |S|). Therefore, the total running time is at most
O(|I|2 · |S|).

4.3 Impossibility for non-g-matroid constraints

Next we demonstrate that the g-matroid structure is necessary for the existence of a
mechanism that satisfies PE, IR, and SP.

Theorem 5. Fix a set of students I, a set of schools S with |S| ≥ 3, and a school s∗ with

the constraint Fs∗ . Suppose that Fs∗ is not a g-matroid. Then there must exist a market

(I, S, (Fs )s∈S ,ω) with s∗ ∈ S and Fs = {X ⊆ I : |X| ≤ 1} for all s ∈ S \ {s∗} such that no
mechanism simultaneously satisfies PE, IR, and SP.

Proof. As Fs∗ is not a g-matroid, there exist subsets X and Y in Fs∗ and a student e in
X \Y , such that we have the alternatives

(i) X \ {e} /∈ Fs∗ and (X \ {e}) ∪ {e′} /∈ Fs∗ for any e′ ∈ Y \X
(ii) Y ∪ {e} /∈ Fs∗ and (Y ∪ {e}) \ {e′} /∈ Fs∗ for any e′ ∈ Y \X .

Here, we provide the proof for the case in which (i) holds. We defer the proof for the case
when (ii) holds to Appendix A, as it can be demonstrated in a similar manner.

Suppose that there exist X , Y ∈ Fs∗ and e ∈ X \ Y such that X \ {e} /∈ Fs∗ and (X \
{e}) ∪ {f } /∈ Fs∗ for any f ∈ Y \X . Let Z ∈ Fs∗ be a set of students such that (X ∩ Y ) ⊆
Z ⊆ (X ∪ Y ) \ {e}. Such a set Z must exist because Y satisfies the condition. Among all
sets Z that satisfy this condition, we select a set that maximizes |X ∩Z|.

We consider two cases separately: (a) |X \Z| = 1 and (b) |X \Z| ≥ 2.

Case (a): |X \Z| = 1 In this case, we haveX∩Z =X \ {e}. In addition, we have |Z \X| ≥
2 because (X \ {e}) ∪J =Z ∈ Fs∗ by setting J =Z \X . We select two students x, y ∈Z \X
arbitrarily (see Figure 3). We consider a market in which the set of schools is S = {s∗, t, u}
and Ft = Fu = {I ′ ⊆ I : |I ′| ≤ 1}. Additionally, let the endowments be ω(e) = t, ω(i) = s∗

for each i ∈ Z, and ω(i) = ∅ for each i /∈ Z ∪ {e}. The endowment matching μ0 for this
market is feasible because μ0(s∗ ) =Z, |μ0(t )| = 1, and |μ0(u)| = 0 ≤ 1.
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Figure 3. Case (a).

Suppose that the students’ preferences are given as

• �e = (s∗t · · · )

• �x = (tus∗ · · · )

• �y = (tus∗ · · · )

• �i = (s∗ · · · ) for each i ∈X \ {e}

• �i = (∅s∗ · · · ) for each i ∈ Z \ (X ∪
{x, y})

• �i = (∅ · · · ) for each i /∈X ∪Z.

Let μx be the matching such that xmatches to u and every other student matches to
her most favorite school (or her outside option). Similarly, let μy be the matching such
that y matches to u and every other student matches to her most favorite school. Then
μx andμy are feasible sinceμx(s∗ ) = μy(s∗ ) =X . Furthermore, we can observe that only
μx and μy are PE and IR. By symmetry, we can assume, without loss of generality, that
a mechanism outputs μx. Suppose that x misreports her preference as t �′

x s
∗ �′

x · · · .
With this misreporting, the unique PE and IR matching is μy . Hence, any PE and IR
mechanism cannot satisfy SP.

Case (b): |X \ Z| ≥ 2 Let e′ be an arbitrary student in X \ (Z ∪ {e}) (see Figure 4). We
consider a market in which the set of schools is S = {s∗, t, u} and Ft = Fu = {I ′ ⊆ I : |I ′| ≤
1}. In addition, let the endowments be ω(e) = t, ω(e′ ) = u, ω(i) = s∗ for each i ∈ Z, and
ω(i) = ∅ for each i ∈ I \ (Z ∪ {e, e′}). The endowment matching μ0 for this market is
feasible because μ0(s∗ ) =Z and |μ0(t )| = |μ0(u)| = 1.

Suppose that students’ preferences are defined as

• �e = (us∗t · · · )

• �e′ = (s∗tu · · · )

• �i = (s∗ · · · ) for each i ∈X ∩Z
• �i = (∅s∗ · · · ) for each i ∈Z \X

Figure 4. Case (b).
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• �i = (s∗∅ · · · ) for each i ∈X \ (Z ∪ {e, e′})

• �i = (∅ · · · ) for each i /∈X ∪Z.

Let μ be the matching produced by a PE, IR, and SP mechanism. By IR, we haveX ∩Z ⊆
μ(s∗ ) ⊆X ∪Z. If e /∈ μ(s∗ ), then we must have μ(s∗ ) ⊆ Z by the maximality of |X ∩Z|.
Hence, μ(e) �= s∗ implies μ(e′ ) �= s∗. Let us consider three subcases depending on μ(e).

Case (b1): μ(e) = t. In this case, μ(e′ ) �= s∗ and μ(e′ ) = u. This means that μ is not
PE because e and e′ can be better off by swapping their allocated
schools, which is a contradiction.

Case (b2): μ(e) = s∗. Suppose that e misreports s∗ as being unacceptable (i.e., sub-
mitting �′

e = (ut · · · )). Then emust be matched with u in any PE
and IR matching, which contradicts SP.

Case (b3): μ(e) = u. In this case, μ(e′ ) �= s∗ and μ(e′ ) = t. Suppose that e′ misreports
that t as being unacceptable (i.e., submitting �′

e = (s∗u · · · )).
Then e′ must be matched with s∗ because there exists a unique
PE and IR matching {(i, s∗ ) : i ∈X}, which contradicts SP.

5. Discussion and conclusion

5.1 Relationship between the two settings

We discuss the relationship between the settings, which can be summarized as shown in
Table 2. Recall that the endowments are assumed to be feasible in both settings. In the
setting with endowments, any feasible matching in F can be set as the initial matching
μ0. In contrast, in the setting without endowments, the initial matching μ0 is restricted
to the empty matching, but it implies that the empty matching must be feasible in this
setting. Thus, the necessary or sufficient conditions of one setting cannot be simply
applied to the other setting.

To make this difference clearer, let us assume that the empty matching is feasible in
the setting with endowments as well. Then the necessary and sufficient condition for the
existence of a desired mechanism in this setting becomes a matroid. Since any matroid
constraint is σ-accessible for every σ , this is a sufficient condition for the existence of a
desired mechanism in the setting without endowments.

Table 2. Relationship between settings for the existence of a desired mechanism.

Setting Assumption Initial Endowment Condition

Without endowments ∅ ∈ F μ0 = ∅ (σ-)accessible
With endowments F �= ∅ μ0 ∈ F g-matroid
Including both ∅ ∈ F μ0 ∈ F matroid
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5.2 Two out of PE, IR, and GSP

In both settings, with and without endowments, any two of the three properties PE, IR,
and GSP can be achieved under general constraints. It is evident that the mechanism
that always outputs the endowment matching satisfies both IR and GSP. To satisfy PE and
GSP, we can utilize a generalized SD mechanism that sequentially assigns each student
to her best school in a predetermined order, ensuring that the remaining students can
be feasibly assigned. To observe that the outcomeμ of the mechanism is PE, suppose, to
the contrary, that there exists a feasible matching μ′ that is a Pareto improvement of μ.
Let i∗ be the first student assigned to a school other than μ(i∗ ) in the mechanism. Then
μ′(i∗ ) �i∗ μ(i∗ ); however, this contradicts the behavior of the generalized SD mecha-
nism. Additionally, the mechanism is GSP because if a student does not select her pre-
ferred school in her turn, she will not receive another chance to do so. This mechanism
is equivalent to the GSDPC proposed by Kamiyama (2013). PE and IR can be achieved by
using the CSD mechanism (Imamura and Kawase (2024)). The CSD mechanism sequen-
tially assigns each student to her best school in a predetermined order, while ensuring
that the remaining students can be assigned to produce a feasible IR matching. Clearly,
this mechanism satisfies IR. The property of PE follows from the fact that a matching is
PE if it is PE under the IR constraint. Note that the CSD mechanism is not SP because
each student is assigned to a school depending on the preferences of the later students.

5.3 Conclusion

This study investigated the existence of efficient and strategy-proof mechanisms in in-
divisible goods allocation problems under general constraints.

In the setting without endowments, we demonstrated that the SD mechanism satis-
fies PE, IR, and GSP if the constraints are σ-accessible for a common σ . We also proved
that accessibility is a necessary condition to ensure the existence of PE, IR, and GSP
mechanisms. Identifying the most general class of constraints under which PE, IR, and
SP mechanisms exist remains open. In a setting with endowments, we revealed that the
g-matroid is a maximal domain under which we can guarantee the existence of a PE, IR,
and SP mechanism. The same statement holds true even if we replace SP with GSP.

In a setting without endowments, we formulate an integer linear program (ILP) to
determine the existence of PE, IR, and SP mechanisms for a given market. In the case
where I = {1, 2, 3}, S = {s1, s2}, Fs1 = {X ⊆ I : |X| �= 2}, and Fs2 = {X ⊆ I : |X| ≤ 1}, the
Gurobi solver with the ILP revealed that no such mechanism exists. The irreducible in-
consistent subsystem obtained for the market contains relationships among 43 prefer-
ences, making it challenging to discern its underlying structure. Whether accessibility is
necessary for the existence of PE, IR, and SP mechanisms remains for future research.

In a setting with endowments, Delacrétaz, Kominers, and Teytelboym (2023) pre-
sented stronger nonexistence results under multidimensional knapsack constraints. For
example, the desired mechanism does not exist even when PE and IR are replaced by
the property that a mechanism Pareto improves upon every Pareto-inefficient endow-
ment. We call this property Pareto-improving (PI). Formally, a mechanism ϕ is PI if, for
any preference profile �I at which the endowment matching μ0 is Pareto-inefficient,
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ϕ[�I ](i) �i μ0(i) for all i ∈ I and ϕ[�I ](i) �i μ0(i) for some i ∈ I. PI is a weaker require-
ment than the conjunction of PE and IR. Delacrétaz, Kominers, and Teytelboym (2023)
showed by example that no PI and SP mechanism exists under multidimensional knap-
sack constraints. In contrast, a PI and SP mechanism exists in Example 4. Thus, we
are left with the question, “Which class of constraints is necessary and sufficient for the
existence of PI and SP mechanisms?”

Finally, let us discuss the case in which the endowment matching μ0 is infeasible.
In this case, no IR matchings exist, especially when every student prefers her own en-
dowment the most. Therefore, we have no option but to abandon IR. Moreover, aban-
doning IR is a natural choice when allocating chores in a setting without endowments.
Nevertheless, even without IR, we can still attain PE and GSP by employing the GSDPC
mechanism under any constraints, as long as at least one feasible matching exists.

Appendix A: Omitted part of the proof of Theorem 5

Here, we provide the proof of Theorem 5 for the case when (ii) holds.
Suppose that there exist X , Y ∈ Fs∗ and e ∈X \ Y such that Y ∪ {e} /∈ Fs∗ and (Y ∪

{e}) \ {f } /∈ Fs∗ for any f ∈ Y \X . LetZ ∈ Fs∗ be a set of students such that (X ∩Y ) ∪ {e} ⊆
Z ⊆X ∪Y . Such a set Z must exist because X satisfies the condition. Among all sets Z
that satisfy this condition, we select a set that minimizes |X ∩Z|.

We consider two cases separately: (c) |X ∩ Z| = |X ∩ Y | + 1 and (d) |X ∩ Z| ≥ |X ∩
Y | + 2.

Case (c): |X ∩Z| = |X ∩Y | + 1 In this case, we haveX ∩Z = (X ∩Y ) ∪ {e}. In addition,
we have |Y \ Z| ≥ 2 because (Y ∪ {e}) \ J = Z ∈ Fs∗ by setting J = Y \ Z. We select two
students x, y ∈ Y \Z arbitrarily (see Figure 5). We consider a market in which the set of
schools is S = {s∗, t, u} and Ft = Fu = {I ′ ⊆ I : |I ′| ≤ 1}. Additionally, let the endowments
be ω(e) = t, ω(i) = s∗ for each i ∈ Y and ω(i) = ∅ for each i /∈ Y ∪ {e}. The endowment
matchingμ0 for this market is feasible becauseμ0(s∗ ) = Y , |μ0(t )| = 1, and |μ0(u)| = 0 ≤
1.

Suppose that the students’ preferences are given as

• �e = (s∗t · · · )

• �x = (tus∗ · · · )

• �y = (tus∗ · · · )

• �i = (s∗ · · · ) for each i ∈Z \ {e}

• �i = (∅s∗ · · · ) for each i ∈ Y \ (Z ∪
{x, y})

• �i = (∅ · · · ) for each i /∈Z ∪Y .

Figure 5. Case (c).
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Figure 6. Case (d).

Let μx be the matching such that xmatches to u and every other student matches to
her most favorite school (or her outside option). Similarly, let μy be the matching such
that y matches to u and every other student matches to her most favorite school. Then
μx and μy are feasible because μx(s∗ ) = μy(s∗ ) = Z. Furthermore, we can observe that
only μx and μy are PE and IR. By symmetry, we can assume, without loss of generality,
that a mechanism outputs μx. Suppose that x misreports her preference as t �′

x s
∗ �′

x

· · · . With this misreporting, the unique PE and IR matching is μy . Hence, any PE and IR
mechanism cannot satisfy SP.

Case (d): |X ∩Z| ≥ |X ∩ Y | + 2 Let e′ be an arbitrary student in Z \ (Y ∪ {e}) (see Fig-
ure 6). We consider a market in which the set of schools is S = {s∗, t, u} and Ft = Fu =
{I ′ ⊆ I : |I ′| ≤ 1}. In addition, let the endowments be ω(e) = u, ω(e′ ) = t, ω(i) = s∗ for
each i ∈ Y , and ω(i) = ∅ for each i ∈ I \ (Y ∪ {e, e′}). The endowment matching μ0 for
this market is feasible because μ0(s∗ ) = Y and |μ0(t )| = |μ0(u)| = 1.

Suppose that students’ preferences are defined as

• �e = (s∗tu · · · )

• �e′ = (us∗t · · · )

• �i = (s∗ · · · ) for each i ∈Z ∩Y

• �i = (∅s∗ · · · ) for each i ∈ Y \Z
• �i = (s∗∅ · · · ) for each i ∈ Z \ (Y ∪

{e, e′})

• �i = (∅ · · · ) for each i /∈Z ∪Y .

Let μ be the matching produced by a PE, IR, and SP mechanism. By IR, we have
Z ∩Y ⊆ μ(s∗ ) ⊆Z ∪Y . If e ∈ μ(s∗ ), then we must haveX ∩Z ⊆ μ(s∗ ) by the minimality
of |X∩Z|. Hence,μ(e′ ) �= s∗ impliesμ(e) �= s∗. Let us consider three subcases depending
on μ(e′ ):

Case (d1): μ(e′ ) = t. In this case, μ(e) �= s∗ and μ(e) = u. This means that μ is not PE
because e and e′ can be better off by swapping their allocated
schools, which is a contradiction.

Case (d2): μ(e′ ) = s∗. Suppose that e′ misreports s∗ as being unacceptable (i.e., sub-
mitting �′

e′ = (ut · · · )). Then e′ must be matched with u in any
PE and IR matching, which contradicts SP.

Case (d3): μ(e′ ) = u. In this case, μ(e) �= s∗ and μ(e) = t. Suppose that e misreports
t as being unacceptable (i.e., submitting �′

e = (s∗u · · · )). Then e
must be matched with s∗ because there exists a unique PE and
IR matching {(i, s∗ ) : i ∈Z}, which contradicts SP.
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