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We study flexible public information design in global games. In addition to re-
ceiving public information from the designer, agents are endowed with exogenous
private information and must decide between two actions (invest and not invest),
the profitability of which depends on unknown fundamentals and the agents’ ag-
gregate action. The designer does not trust the agents to play favorably to her
and evaluates any policy under the “worst-case scenario.” First, we show that the
optimal policy removes any strategic uncertainty by inducing all agents to take
the same action, but without permitting them to perfectly learn the fundamen-
tals and/or the beliefs that rationalize other agents’ actions. Second, we identify
conditions under which the optimal policy is a simple “pass/fail” test. Finally, we
show that when the designer cares only about the probability the aggregate invest-
ment is successful, the optimal policy need not be monotone in fundamentals but
then identify conditions on payoffs and exogenous beliefs under which the opti-
mal policy is monotone.

Keywords. Global games, adversarial coordination, Bayesian persuasion, robust
public information design.
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1. Introduction

Coordination plays a major role in many socioeconomic environments. The damages
to society of miscoordination can be severe and often call for government intervention.
Think of the possibility of default by major financial institutions in case investors run or
refrain from rolling over their short-term positions. Such defaults can trigger a collapse
in financial markets, with severe consequences for the real economy. Confronted with
such prospects, governments and supervising authorities have incentives to intervene.
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These interventions often take the form of public information disclosures, such as stress
testing or, more broadly, releases of information aimed at influencing market beliefs.

In this paper, we study public information design in markets in which a large num-
ber of receivers (e.g., investors in financial markets) must choose whether to play an
action favorable to the designer (e.g., pledging funds to a financial institution), or an
“adversarial” action (e.g., refraining from pledging). A policymaker can flexibly design
a policy disclosing information to market participants about relevant economic funda-
mentals. The analysis delivers results that are important for various situations in which
coordination plays a major role, including bank runs, currency crises, and technology
and standards adoption. In the context of stress testing, the policymaker may repre-
sent a supervising authority attempting to prevent a run against the banking sector (see,
e.g., Henry and Kok (2013) and Homar, Kick, and Salleo (2016)). In the case of currency
crises, the policymaker may represent a central bank attempting to dissuade specula-
tors from short-selling the domestic currency by releasing information about the bank’s
reserves and/or domestic economic fundamentals. In the case of technology adoption,
the policymaker may represent the owners of an intellectual property trying to persuade
heterogenous market users of the merits of a new product (Lerner and Tirole (2006)).

The backbone of the model is a global game of regime change in which multiple
agents must choose between “attacking” a status quo or “refraining from attacking,”
and where the success of the attack depends on its aggregate size and on exogenous
fundamentals. In addition to receiving public information from the designer, agents are
endowed with exogenous private information. The designer does not trust the agents
to play favorably to her and evaluates any policy of her choice under the “worst-case”
scenario. That is, when multiple rationalizable strategy profiles are consistent with the
information disclosed, the designer takes a “robust approach” by looking at the outcome
that prevails when agents play according to the rationalizable profile least favorable to
her.1

We assume the policymaker can flexibly design a policy that disseminates publicly
information about relevant economic fundamentals. We use the model to address the
following questions: (a) Are there benefits to preventing market participants from pre-
dicting each others’ actions and beliefs? (b) When are simple policies such as pass/fail
tests optimal? (c) Are there merits to nonmonotone rules that induce the market to play
favorably for intermediate fundamentals but not necessarily for stronger ones?

Our first result establishes that, despite the fear of adversarial coordination, the op-
timal policy satisfies the “perfect coordination property.” In each state, it induces all
market participants to take the same action, but without creating homogenous beliefs
among market participants. In other words, the optimal policy completely removes any
strategic uncertainty while preserving structural uncertainty. Given the public informa-
tion disclosed, each receiver can perfectly predict the action of any other receiver, but
not the beliefs that rationalize such actions. For example, an agent who is induced to in-
vest must not be able to determine whether other agents invest because they know that

1Such a robust approach is motivated by the applications the analysis is meant for. For example, when
concerned about runs to the banking sector, policymakers typically do not trust the market to play favor-
ably.
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the fundamentals are so strong that the investment will always succeed, irrespective of
the behavior of other agents (e.g., the bank will never default), or because they are confi-
dent that other agents will invest. The optimal policy leverages the heterogeneity of the
agents’ primitive beliefs by making investing dominant for some agents based on their
first-order beliefs, but only iteratively dominant for others based on their higher-order
beliefs.2 Under adversarial coordination, preserving uncertainty over beliefs is key to the
minimization of the risk of an undesirable outcome such as a bank default, a currency
collapse, or the failure of a new technology to take off. When the designer trusts the
agents to follow her recommendations, the optimality of the perfect coordination prop-
erty is straightforward and follows from arguments similar to those establishing the Rev-
elation Principle (e.g., Myerson (1986)). This is not the case under adversarial coordina-
tion for information that facilitates perfect coordination may also favor the emergence
of rationalizable profiles in which some of the agents play adversarially to the designer.

Our second result shows that, when the economic fundamentals and the agents’ be-
liefs comove in the sense that states in which fundamentals are strong are also states in
which most agents expect other agents to expect the fundamentals to be strong, and so
on, then the optimal policy takes the form of a simple “pass/fail” test, with no further
information disclosed to the market. It is known that, when the distribution from which
the agents’ private signals are drawn is log-supermodular, or equivalently, satisfies the
Monotone Likelihood Ratio Property— in short MLRP—all agents follow monotone (i.e.,
cut-off) strategies, no matter the public information. This is because, under MLRP, the
agents’ “optimism ranking” is preserved under Bayesian updating. If agent j is more op-
timistic than agent i before the public announcement is made (formally, j’s beliefs dom-
inate i’s beliefs according to the MLRP order), then this continues to be the case after
any public announcement. When this is the case, disclosing information to the market
in addition to whether or not the policymaker expects the agents’ investment to suc-
ceed when they play adversarially does not help. We also show that MLRP is key to the
optimality of simple pass/fail policies. When the information the policymaker discloses
can be used to change the ranking of the agents’ optimism, the policymaker can lever-
age the optimism reversal to spare more fundamentals from the undesirable outcome
by disclosing information in addition to whether or not she expects the investment to
succeed.3

In the context of stress testing, these results provide a foundation for the optimality
of simple pass/fail policies. Importantly, optimal stress tests should be transparent, in
the sense of facilitating coordination among investors, but should not generate consen-
sus among market participants about the soundness of the financial institutions under
scrutiny.

2The optimal policy does not ensure that investing is the unique rationalizable action based on first-
order beliefs for all agents. It relies on a contagion argument through higher-order beliefs to induce all
agents to invest under the unique rationalizable profile.

3When, instead, the designer trusts her ability to coordinate the receivers on the course of action most
favorable to her, optimal policies always take the form of action recommendations, and hence pass/fail
policies are optimal, irrespective of the agents’ primitive beliefs. This is not the case under adversarial/ro-
bust design.
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Our third result is about the optimality of monotone pass/fail policies, that is, rules
that grant a pass grade if and only if the exogenous fundamentals are above a given
threshold. We show that the optimality of such rules is related to the extent to which
the policymaker’s preferences for a favorable outcome (e.g., for avoiding a bank default)
vary with the fundamentals. We identify precise conditions involving the policymaker’s
preferences and the agents’ payoffs and exogenous beliefs under which monotone rules
are optimal. Such conditions are fairly sharp in the sense that, when violated, one can
identify instances in which nonmonotone rules strictly outperform monotone ones.4

The reason is that nonmonotone rules make it more difficult for the agents to com-
monly learn the fundamentals and hence permit the policymaker to give a pass grade
to a larger set of fundamentals. When the policymaker’s preferences for the favorable
outcome (i.e., for avoiding a bank default) do not vary much with the exogenous funda-
mentals (in particular, when they are constant), nonmonotone rules may be optimal.

Organization The rest of the paper is organized as follows. Below, we wrap up the in-
troduction with a brief review of the most pertinent literature. Section 2 presents the
model. Section 3 contains all the results about properties of optimal policies (perfect-
coordination, pass/fail, monotonicity). Section 4 discusses how the results accommo-
date enrichments that are useful in applications (e.g., more general payoffs, as well as
the possibility that the policymaker faces uncertainty about the outcome induced by
her information dissemination). Section 5 concludes. The Appendix contains all proofs
with the exception of the proofs of Examples 2 and 3, which are in the Supplemen-
tary Appendix (available at https://econtheory.org/supp/5768/supplement.pdf). The
manuscript Inostroza and Pavan (2024a) contains additional material. In particular, (a)
it extends Theorem 1* in the main text (about the optimality of perfectly coordinating
the market response) to a broader class of economies, (b) discusses the benefits of dis-
criminatory disclosures, when the latter are feasible, and (c) expands the material in
Section 4.3 discussing the role of the multiplicity of the receivers and their exogenous
private information for the optimality of monotone rules.

(Most) pertinent literature The paper is related to a few strands of the literature. The
first one is the literature on adversarial coordination and unique implementation. See,
among others, Segal (2003), Winter (2004), Sakovics and Steiner (2012), Frankel (2017),
Halac, Kremer, and Winter (2020), and Halac, Lipnowski, and Rappoport (2021). These
papers focus on the design of transfers. Instead, we focus on the design of public in-
formation in settings in which the receivers are endowed with exogenous private infor-
mation. Li, Song, and Zhao (2023), and Morris, Oyama, and Takahashi (2024) consider
the design of private information in binary supermodular games in which the receivers’
exogenous information is symmetric. Halac, Lipnowski, and Rappoport (2022) study
unique implementation when the designer can use a combination of transfers and in-
formation provision. Goldstein and Huang (2016) and Galvão and Shalders (2022) also

4We also show that the conditions guaranteeing the optimality of monotone rules are more stringent
when the policymaker faces multiple privately-informed receivers than when she faces either a single (pos-
sibly privately-informed) receiver, or multiple receivers who possess no exogenous private information.

https://econtheory.org/supp/5768/supplement.pdf
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study public information design in settings in which the receivers possess exogenous
private information. Goldstein and Huang (2016) restrict the policymaker to binary
monotone rules, whereas Galvão and Shalders (2022) to partitional structures whereby
when two states are pooled into the same cell, all in-between states are also pooled into
the same cell. Related is also Alonso and Zachariadis (2023) who study the comple-
mentarity between private and public information. Relative to these works, our paper
establishes three key results: (a) it proves that inducing all agents to take the same action
is always optimal, despite the fear of adversarial coordination; (b) it shows why, in gen-
eral, binary policies are suboptimal but then identifies sharp conditions under which
such policies are optimal; (c) it shows why, in general, nonmonotone rules permit the
policymaker to induce a favorable outcome over a larger set of fundamentals but then
identifies sharp conditions under which optimal policies are monotone.5

The second strand is the literature on information design with multiple receivers.
See, among others, Alonso and Camara (2016a), Arieli and Babichenko (2019), Bardhi
and Guo (2018), Basak and Zhou (2020), Che and Hörner (2018), Doval and Ely (2020),
Galperti and Perego (2023), Gick and Pausch (2012), Gitmez and Molavi (2022), Heese
and Lauermann (2021), Laclau and Renou (2017), Mathevet, Perego, and Taneva (2020),
Shimoji (2021), and Taneva (2019). The key contribution vis-a-vis this literature is in
showing how the interaction between (a) adversarial coordination and (b) exogenous
private information among the receivers shapes the optimal provision of public infor-
mation.6

The third strand is the literature on global games with endogenous information. An-
geletos, Hellwig, and Pavan (2006) and Angeletos and Pavan (2013) study signaling in
global games. Angeletos and Werning (2006) investigate the role of prices as a vehicle
for information aggregation. Angeletos, Hellwig, and Pavan (2007) consider a dynamic
model in which agents learn from the accumulation of private information and from the
(possibly noisy) observation of past outcomes. Cong, Grenadier, and Hu (2020) consider
a dynamic setting similar to the one in Angeletos, Hellwig, and Pavan (2007) but allowing
for policy interventions. Edmond (2013) and Kyriazis and Lou (2024) consider propa-
ganda in global games, in a setting in which the policymaker manipulates the agents’
private signals. Szkup and Trevino (2015), Yang (2015), Morris and Yang (2022), and
Denti (2023) study the acquisition of private information in global games. Our paper
contributes to this strand by identifying properties of flexible public information provi-
sion when (a) the sender can commit, and (b) the receivers play adversarially.

Finally, the paper is related to the literature on stress testing. See Goldstein and Sapra
(2014) for an overview of some of the early contributions. Bouvard, Chaigneau, and
de Motta (2015) study a setting where a policymaker must choose between full trans-
parency and full opacity but cannot commit to a disclosure policy. Williams (2017) and
Goldstein and Leitner (2018) study the design of stress tests when the receivers do not
possess exogenous private information. Orlov, Zryumov, and Skrzypacz (2023) study the
joint design of stress tests and precautionary recapitalizations whereas Faria-e Castro,

5In particular, Example 3 below shows that nonmonotone rules strictly outperform monotone ones in
the same environment of Goldstein and Huang (2016).

6See Bergemann and Morris (2019) and Kamenica (2019) for an overview on information design.
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Martinez, and Philippon (2016) and Garcia and Panetti (2017) the joint design of stress
tests and government bailouts. Inostroza (2023) studies regulatory disclosures with mul-
tiple audiences of investors who care about different aspects of a financial institution’s
balance sheet. Alvarez and Barlevy (2021) and Quigley and Walther (2024) study the in-
centives of banks to disclose balance sheet (hard) information. Corona, Nan, and Gao-
qing (2017) study how stress tests disclosures may favor banks’ coordinated risk taking
in the spirit of Farhi and Tirole (2012). Morgan, Persitani, and Vanessa (2014), Flannery,
Hirtleb, and Kovner (2017), and Petrella and Resti (2013) conduct an empirical analysis
of the information provided by stress tests in the US and the EU. Our paper contributes
to this literature along the following dimensions: (a) it shows that optimal stress tests
should not create conformism in market participants’ beliefs about exogenous funda-
mentals but should be sufficiently transparent to eliminate any ambiguity about the
market response to the tests; (b) it identifies conditions under which simple pass/fail
policies are optimal; (c) it provides conditions for optimal tests to be monotone (see
also Inostroza and Pavan (2024b) for a discussion of how the toughness of optimal stress
tests relates to the type of securities issued by the banks).

2. Model

Global games have been used to study the interaction between information and co-
ordination in many socioeconomic environments, including bank runs, debt crises,
currency attacks, investment in technologies with network externalities, technological
spillovers, and political change.

To ease the exposition, hereafter we describe the model and all the results in the
context of a specific game in the spirit of Rochet and Vives (2004) in which the agents
are investors (e.g., fund managers, or unsecured bank depositors) deciding whether or
not to pledge funds to one, or multiple financial institutions, and where these institu-
tions default on their obligations when the size of the aggregate investment is not large
enough.7 The analysis, however, readily extends to many other global games.

Players and actions A policymaker designs an information disclosure policy, for ex-
ample, stress tests, call reports, publication of accounting standards, and disclosure of
various macro and financial variables that are jointly responsible for the profitability of
the agents’ decisions. The market is populated by a measure-one continuum of agents
(the receivers) distributed uniformly over [0, 1]. Each agent may either take a “friendly”
action, ai = 1, or an “adversarial” action, ai = 0. The friendly action is interpreted as the
decision to invest (more generally, to “refrain from attacking” a status quo the policy-
maker wants to preserve). The adversarial action is interpreted as the decision to not
invest (more generally, to “attack”). We denote by A ≡ ∫ 1

0 ai di ∈ [0, 1] the size of the
aggregate investment.

7Rochet and Vives (2004) consider a three-period economy à la Diamond and Dybvig (1983) but with
heterogenous investors, in which banks may fail early or late. As shown in that paper, the full model admits
a reduced-form version similar to the one considered here.
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Fundamentals and exogenous information Consistently with the rest of the literature,
we parameterize the relevant fundamentals by θ ∈ R. The fundamentals are exogenous
to the policymaker’s choice of a disclosure policy. It is commonly believed (by the policy-
maker and the agents alike) that θ is drawn from a distribution F , absolutely continuous
over an interval �⫌ [0, 1], with a smooth density f strictly positive over �. In addition,
each agent i ∈ [0, 1] is endowed with private information summarized by a unidimen-
sional statistic xi ∈ R drawn independently across agents given θ from an absolutely
continuous cumulative distribution function P(x|θ) with smooth density p(x|θ) strictly
positive over an (open) interval �θ ≡ (�θ, �̄θ ) containing θ, with �θ, �̄θ monotone in
θ, and with p(x|θ) bounded over (x, θ). The bounds �θ, �̄θ can be either finite or infi-
nite. For example, when xi = θ + σεi, with εi drawn from a uniform distribution over
[−1, +1], then for any θ, �θ = θ − σ and �̄θ = θ + σ . When, instead, xi = θ + σεi, with
εi drawn from a standard Normal distribution, then for any θ, �θ = −∞ and �̄θ = +∞.
Furthermore, in this latter case, P(x|θ) = �((x − θ)/σ ), where � is the cumulative dis-
tribution function of the standard Normal distribution. We denote by x ≡ (xi )i∈[0,1] a
profile of private signals and by X(θ) the collection of all x ∈ R[0,1] that are consistent
with the fundamentals being equal to θ. As usual, we assume that any pair of signal pro-
files x, x′ ∈ X(θ) has the same cross-sectional distribution of signals, with the latter equal
to P(x|θ).

Regime outcome The fundamentals θ parameterize the critical size of the aggregate
investment that is necessary to avoid default (more generally, an undesirable regime
change). If A> 1 − θ, short-term obligations are met and default is avoided. If, instead,
A ≤ 1 − θ, default occurs. We denote by r = 1 the event in which default is avoided and
by r = 0 the event in which default occurs.8

Dominance regions For any θ ≤ 0, default occurs irrespective of the size of the aggre-
gate investment, whereas for any θ > 1 default is averted with certainty. For θ ∈ (0, 1],
instead, whether or not default occurs is determined by the behavior of the market.

Payoffs Each agent’s payoff differential between investing and not investing, u(θ, A),
is equal to g(θ) > 0 in case default is avoided, and b(θ) < 0 otherwise. In turn, the poli-
cymaker’s payoff is equal to W (θ) in case default is avoided, and L(θ) in case of default,
with W (θ) >L(θ) for all θ. When W and L are invariant in θ, the policymaker’s objective
reduces to minimizing the probability of default. The functions b, g, W , and L are all
bounded. For any (θ, A) ∈�× [0, 1], then let

u(θ, A) ≡ g(θ)1(A> 1 − θ) + b(θ)1(A≤ 1 − θ),

UP (θ, A) ≡ W (θ)1(A> 1 − θ) +L(θ)1(A≤ 1 − θ)

denote the payoffs of a representative agent and of the policymaker, respectively, when
the fundamentals are θ and the aggregate investment is A.

8The model assumes that, given A and θ, the regime outcome is binary. The case in which default is
“partial” is qualitatively similar, from a strategic standpoint, to the case where, given A and θ, the regime
outcome is stochastic and determined by variables that are not observable by the policymaker at the time
of her public announcements (see the discussion in Section 4).
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Policy Let S be a compact Polish space defining the set of possible signal realizations.
A policy � = (S , π ) consists of the set S along with a measurable mapping π : � → 
(S )
specifying, for each θ, a probability distribution over the information disclosed to the
market.

Timing The sequence of events is the following:

(i) The policymaker publicly announces the policy �= (S , π ) and commits to it.9

(ii) The fundamentals θ are drawn from the distribution F and the agents’ exogenous
signals x ∈ X(θ) are drawn from the distribution P(x|θ).

(iii) The public signal s is drawn from the distribution π(θ) and is publicly observed.

(iv) Agents simultaneously choose whether or not to invest.

(v) The regime outcome is determined (i.e., whether or not default occurred) and
payoffs are realized.

Adversarial coordination and robust information design The policymaker does not
trust the market to follow her recommendations and play favorably to her (i.e., invest
whenever θ > 0).10 Instead, she adopts a robust/conservative approach. She evaluates
any policy � under the “worst-case” scenario, that is, she assumes that the market plays
according to the rationalizable strategy profile that is most adversarial to her, among all
those consistent with the policy �.

Definition 1. Given any policy �, the most aggressive rationalizable profile (MARP)
consistent with � is the strategy profile a� ≡ (a�i )i∈[0,1] that minimizes the policymaker’s
ex ante expected payoff over all profiles surviving iterated deletion of interim strictly
dominated strategies (henceforth IDISDS).

In the IDISDS procedure leading to MARP, agents use Bayes rule to update their be-
liefs about the fundamentals θ and the other agents’ exogenous information x ∈ X(θ)
using the common prior F , the distribution of private signals P(x|θ), and the policy
�. Under MARP, given (x, s), each agent i ∈ [0, 1], after receiving exogenous informa-
tion x from Nature and endogenous information s from the policymaker, refrains from
investing whenever there exists at least one conjecture over (θ, A) consistent with the
above Bayesian updating and supported by all other agents playing strategies surviving
IDISDS, under which refraining from investing is a best response for the individual.

Remarks. Hereafter, we confine attention to policies � for which MARP exists.11 Be-
cause the game among the agents is supermodular (no matter the prior F , the distri-
bution P from which the exogenous signals are drawn, and the policy �), the strategy

9See Leitner and Williams (2023) for a discussion of the commitment assumption in stress testing.
10If she did, a simple monotone policy revealing whether or not θ > 0 would be optimal.
11Because the state is continuous, in principle, one can think of policies � for which the agents’ common

posteriors are not well-defined or, when combined with the agents’ exogenous information, are such that
the agents’ hierarchies of beliefs are not well-defined, in which case MARP may not exist.
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profile a� coincides with the “smallest” Bayes–Nash equilibrium (BNE) of the continua-
tion game among the agents, and minimizes the policymaker’s payoff state by state, and
not just in expectation. The reason why we consider MARP is that, in general, without
imposing specific assumptions on F , P , and �, the only way the “smallest” BNE can be
identified is by the iterated deletion of interim strictly dominated strategies. In standard
global games, the “smallest” BNE is typically identified by assuming the agents’ signals
are drawn from a distribution P satisfying the monotone likelihood property (MLRP),
which is also used to guarantee equilibrium uniqueness. Here, we allow for arbitrary
policies �, and do not require that, given �, the continuation equilibrium be unique.

Furthermore, given a policy �= (S , π ), when describing the agents’ behavior, we do
not distinguish between pairs (x, s) that are mutually consistent given � (meaning that
the joint density of (x, s) is positive, that is,

∫
θ:s∈supp(π(θ)) p(x|θ) dF(θ) > 0) and those that

are not. Because the policymaker commits to the policy �, the abuse is legitimate and
permits us to ease the exposition. Any claim about the optimality of the agents’ behav-
ior, however, should be interpreted to apply to pairs (x, s) that are mutually consistent
given �.

3. Properties of optimal policies

We now introduce and discuss three key properties of optimal policies.

3.1 Perfect-coordination property

Definition 2. A policy � = (S , π ) satisfies the perfect-coordination property (PCP)
if, for any θ ∈ �, any exogenous information x ∈ X(θ), any public announcement s ∈
supp(π(θ)), and any pair of individuals i, j ∈ [0, 1], a�i (xi, s) = a�j (xj , s), where a� =
(a�i )i∈[0,1] is the most aggressive rationalizable profile (MARP) consistent with the pol-
icy �.

A disclosure policy thus has the perfect-coordination property if it coordinates all
market participants on the same action, after any information it discloses. For any θ ∈�,
any s ∈ supp(π(θ)), let r�(θ, s) ∈ {0, 1} denote the regime outcome that prevails when
agents play according to a�, that is, r�(θ, s) = 1 (alternatively, r�(θ, s) = 0) means that
default does not occur (alternatively, occurs) when, given (θ, s), market participants play
according to MARP consistent with �. That the agents’ signals are drawn independently
from P(x|θ), conditional on θ, implies that the cross-sectional distribution of signals is
pinned down by P(x|θ), and hence the regime outcome (i.e., whether default occurs or
not) is the same across any pair of signal profiles x, x′ ∈ X(θ), and thus depends only on
�, θ, and s. Hereafter, we say that the policy � is regular if MARP under � is well-defined
and the regime outcome under a� is measurable in (θ, s).

Theorem 1. Given any regular policy �, there exists another regular policy �∗ satisfying
the perfect-coordination property (PCP) and such that, when the agents play according to
MARP under both � and �∗, for any θ, (a) the probability of default under �∗ is the same
as under �, (b) the transition from � to �∗ leads to a Pareto improvement (the policymaker
is indifferent, no agent is worse off, and some agents are strictly better off).
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The policy �∗ is obtained from the original policy � by disclosing, for each θ, in addi-
tion to the information s ∈ supp(π(θ)) disclosed by the original policy �, a second piece
of information that reveals to the market the regime outcome r�(θ, s) ∈ {0, 1} that pre-
vails at (θ, s) when agents play according to MARP consistent with the original policy �,
a�.

That, under the new policy �∗, it is rationalizable for all agents to invest when the
policy discloses the information (s, r�(θ, s)) = (s, 1), and to refrain from investing when
the policy discloses the information (s, r�(θ, s)) = (s, 0), is fairly straightforward. In fact,
the announcement of (s, 1) (alternatively, of (s, 0)) makes it common certainty among
the agents that θ > 0 (alternatively, that θ ≤ 1).

The reason why the result is not obvious is that the designer does not content herself
with one rationalizable profile delivering the desired outcome; she is concerned with the
possibility of adversarial coordination and, as a result, when she recommends to all the
agents to invest, she must guarantee that investing is the unique rationalizable action
for each agent, irrespective of his exogenous signal x. The proof in the Appendix shows
that when the additional information is r�(θ, s), this is indeed the case.

To fix ideas, consider first the case where, under the original policy �, the regime out-
come r�(θ, s) is monotone in θ. The announcement that r�(θ, s) = 1 makes it common
certainty among the agents that θ > θ̂(s), for some threshold θ̂(s). In this case, all agents
revise their first-order beliefs about θ upward when receiving the additional information
that r�(θ, s) = 1. That each agent is more optimistic about the strength of the fundamen-
tals, however, does not guarantee that, under MARP consistent with the new policy �∗,
more agents invest than under the original policy �. In fact, the new piece of informa-
tion changes not only the agents’ first-order beliefs about θ but also their higher-order
beliefs and the latter matter for the determination of the most-aggressive rationalizable
profile. More generally, r�(θ, s) need not be monotone in θ. This is because MARP un-
der the original policy � need not entail strategies that are monotone in x. As a result, in
general, the announcement that r�(θ, s) = 1 need not trigger an upward revision of the
agents’ beliefs.

The result in Theorem 1 follows instead from the game being supermodular along
with the fact that Bayesian updating preserves the likelihood ratio of any two states
that are consistent with no default under the original policy �. Formally, for any s ∈
supp(π(�)), any pair of states θ′ and θ′′ such that (a) s ∈ supp π(θ′ ) ∩ supp π(θ′′ ), and
(b) r�(θ′, s) = r�(θ′′, s) = 1, the likelihood ratio of such two states under �∗ is the same
as under the original policy �. This property implies that the posterior beliefs (over �)
of each agent with private signal x who, under the new policy �∗, receives information
(s, 1), are a “truncation” of the posterior beliefs the same agent would have had under
the original policy � after receiving information s. The truncation eliminates from the
support of the agent’s original beliefs states θ at which, under MARP consistent with the
original policy � there would have been default, and hence the agent’s payoff differen-
tial from investing would have been negative. Because the game is supermodular, under
any policy �, MARP is less aggressive than the most aggressive strategy profile surviving
n − 1 rounds of IDISDS (in the sense that any agent who invests under the latter pro-
file does so also under MARP, but the opposite is not necessarily true). This means that
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the extra information r�(θ, s) = 1 also removes from the support of each agent’s beliefs
states θ at which the payoff differential from investing is negative under the most ag-
gressive profile surviving n − 1 rounds of IDISDS under �. Hence, at any stage n of the
IDISDS procedure, the truncation makes each agent more willing to invest. That is, any
agent who would have invested after hearing s under the original policy �, also invests
after hearing (s, 1) under the new policy �∗. Because this is true for any n, it is also true
in the limit as n goes to infinity. In other words, after the new policy �∗ announces (s, 1),
each agent learns that his payoff differential from investing when all other agents play
according to MARP consistent with the new policy �∗ is strictly positive. Hence, after
the new policy announces (s, 1), each agent’s unique rationalizable action is to invest,
irrespective of her private information x.

When, instead, the new policy �∗ announces (s, 0), each agent learns that the state θ

is among those at which there would have been default under MARP consistent with the
original policy � (i.e., r�(θ, s) = 0). The announcement thus makes it common certainty
among the agents that θ ≤ 1. It is then immediate that, under MARP consistent with the
new policy �∗, all agents refrain from investing.

The policy �∗ thus completely removes any strategic uncertainty. Indeed, when
(s, r�(θ, s)) = (s, 1) (alternatively, (s, r�(θ, s)) = (s, 0)) is announced, each agent knows
that, under MARP consistent with the new policy �∗, all other agents invest (alterna-
tively, refrain from investing), irrespective of their exogenous private information. Im-
portantly, while the policy �∗ removes any strategic uncertainty, it preserves structural
uncertainty, that is, heterogeneity in the agents’ first and higher-order beliefs about θ.
As explained in the Introduction, it is essential that agents who invest are uncertain as
to whether other agents invest because they find it dominant to do so, or because when
they count on other agents investing, they find it iteratively dominant to do so, which
requires heterogeneity in posterior beliefs.

That the policymaker is indifferent between � and �∗ is a direct implication of the
fact that, for any θ, her payoff depends on A only through the probability of default,
which is the same across the two policies. That, for any θ, no agent is worse off (and
some agents are strictly better off) follows from the fact that, under �∗, all agents re-
frain from investing (alternatively, invest) in case of default (alternatively, no default),
whereas this is not the case under �.

When it comes to disclosures in financial markets, Theorem 1 implies that optimal
policies should combine the announcement of a pass/fail result (captured by r ∈ {0, 1})
with the disclosure of additional information (captured by s) whose role is to guaran-
tee that, when a pass grade is given, the extra information s the agents receive from
the policymaker makes investing the unique rationalizable action. This structure ap-
pears broadly consistent with common practice. The theorem, however, says more. It
indicates that optimal disclosure policies should be transparent about market responses
but not in the sense of creating conformism in beliefs about fundamentals. Rather, they
should leave no room to ambiguity as to whether or not default will be averted when a
pass grade is announced. Preserving heterogeneity in beliefs about fundamentals is key
to minimizing the probability of default.
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3.2 Pass/fail

Our next result provides a foundation for policies that take a simple pass/fail form; it
identifies a key property of the agents’ beliefs under which such policies are optimal.

Theorem 2. Suppose that p(x|θ) is log-supermodular. Then, given any regular pol-
icy � satisfying the perfect-coordination property, there exists a regular binary policy
�∗ = ({0, 1}, π∗ ) that also satisfies the perfect-coordination property and such that, when
agents play according to MARP under both � and �∗, for any θ, the probability of default
and the payoffs (for each agent and the policymaker) are the same under �∗ and �.12

As anticipated in the Introduction, the log-supermodularity of p(x|θ) (equivalently,
the assumption that the distribution p(x|θ) from which the agents’ private signals are
drawn satisfies MLRP)) implies that the policymaker cannot reverse the ranking in the
agents’ optimism through public announcements. Whenever agent j is more optimistic
than agent i (in the monotone likelihood-ratio order) based on her exogenous private
information xj , she continues to be more optimistic after hearing the policymaker’s an-
nouncement, irrespectively of the shape of the policy �. In turn, this implies that MARP
is always in monotone strategies, and hence that the policymaker does not benefit from
disclosing any information beyond the fate of the regime r�(θ, s).

To see this more formally, take any policy � = (S , π ) satisfying the perfect coordi-
nation property. Given the result in Theorem 1, without loss of optimality, assume that
�= (S , π ) is such that S = {0, 1}×S, for some Polish space S, and that, under MARP con-
sistent with �, when the policymaker discloses any signal (s, r�(θ, s)) = (s, 1), investing
is the unique rationalizable action for each agent, irrespective of their exogenous private
information. Given the policy �, let U�(x, (s, 1)|k) denote the expected payoff differen-
tial of an agent with exogenous private information x who receives public information
(s, r�(θ, s)) = (s, 1) and who expects all other agents to invest if and only if their exoge-
nous signal exceeds a cut-off k. No matter the shape of the policy �, when p(x|θ) is
log-supermodular, then MARP associated with the policy � is in monotone (i.e., cut-off)
strategies. Hence, each agent’s expected payoff differential when all other agents play
according to MARP can be written as U�(x, (s, 1)|k) for some k that depends on s. That
the original policy � satisfies the perfect-coordination policy in turn implies that, for any
s and k such that (k, (s, 1)) are mutually consistent,13 U�(k, (s, 1)|k) > 0. That is, the ex-
pected payoff differential of any agent whose private signal x coincides with the cutoff
k must be strictly positive. If this were not the case, the continuation game would also
admit a rationalizable profile (in fact, a continuation equilibrium) in which some of the
agents refrain from investing, thereby contradicting the fact that investing irrespectively
of x is the unique rationalizable profile following the announcement of (s, 1).

Now consider a policy �∗ that, for any θ, draws the signal (s, 1) (alternatively, (s, 0))
from the distribution π(θ) of the original policy �= (S , π ) but conceals the information

12The property that p(x|θ) is log-supermodular means that, for any x′, x′′ ∈ R, with x′ < x′′, and any
θ′, θ′′ ∈ �, with θ′′ > θ′, then p(x′′|θ′′ )p(x′|θ′ ) ≥ p(x′′|θ′ )p(x′|θ′′ ).

13This means that the set θ ∈ � such that (a) k ∈ �θ and (b) (s, 1) ∈ supp(π(θ)) has strictly positive mea-
sure under F .
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s and only discloses r = 1 (alternatively, r = 0). By the law of iterated expectations, for all
k with (k, (s, 1)) mutually consistent, because U�(k, (s, 1)|k) > 0 then U�∗

(k, 1|k) > 0.
This implies that the new policy �∗ also satisfies the perfect-coordination property. The
policymaker can thus drop the additional signals s from the original policy � and still
guarantee that after r = 1 is announced, investing is the unique rationalizable action
for all agents. That the probability of default and the payoffs (for each agent and the
policymaker) are the same under � and �∗ then follows directly from the fact that, for
any θ, the probability that each agent invests is the same under the two policies, along
with the fact that signals are payoff-irrelevant when fixing the agents’ behavior.

The inability to change the ranking in the agents’ beliefs through public announce-
ments is key to the optimality of simple pass/fail policies, as the next example shows.

Example 1. Suppose that θ is drawn from a uniform distribution over [−1, 2]. Given
θ, each agent i ∈ [0, 1] receives an exogenous signal xi ∈ {xL, xH }, drawn independently
across agents from a Bernoulli distribution with probability

p
(
xL|θ

) =
{

2/3 if θ ∈ (0, 1/3) ∪ [2/3, 5/6) ∪ [1, 7/6) ∪ [4/3, 5/3)

1/3 if θ ∈ [1/3, 2/3) ∪ [5/6, 1) ∪ [7/6, 4/3) ∪ [5/3, 2).

The value of p(xL|θ) for θ ∈ [−1, 0] plays no role in this example, so it can be taken
arbitrarily. Suppose that agents’ payoffs are such that g(θ) = 1−c and b(θ) = −c, for all θ,
with c ∈ (1/2, 8/15). There exits a deterministic policy that satisfies PCP and guarantees
that default does not occur for θ > 0, whereas no pass/fail policy can guarantee that
default does not occur for all θ > 0.14 ♦

Proof of Example 1. Figure 1 illustrates the signal structure considered in Example 1.
The dash line depicts the probability of signal xL whereas the solid line the complemen-
tary probability of signal xH , as a function of θ.

Note that the agents’ posterior beliefs under the signal structure of Example 1 can
be ranked according to FOSD, but not according to MLRP. Each agent observing xH has
posterior beliefs about θ that dominate those of each agent observing xL in the FOSD
order. Nonetheless, the ratio p(xH|θ)/p(xL|θ) is not increasing in θ over the entire do-
main, meaning that p(x|θ) is not log-supermodular and hence posteriors cannot be
ranked according to MLRP. Also note that, under the payoff specification in the example,
investing is optimal for an agent assigning probability to default no greater than 1 − c,
whereas not investing is optimal if such a probability is at least 1 − c.

To see that there exists no pass/fail policy guaranteeing that default does not occur
for all θ > 0, note that, by virtue of Theorem 1, if such a policy existed, there would also
exist a binary policy satisfying PCP and such that π(1|θ) = 0 for all θ ≤ 0 and π(1|θ) = 1
for all θ > 0, with π(1|θ) denoting the probability that the policy discloses signal 1 when

14The example features signals drawn from a distribution with finite support. This property, however, is
not essential. Conclusions similar to those in the example obtain when the agents’ signals are drawn from a
continuous distribution. We thank Tommaso Denti for suggesting a similar example with finite signals and
Leifu Zhang for suggesting an example with continuous signals.
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Figure 1. Suboptimality of simple pass/tail tests.

the fundamentals are θ. Under such a policy, after hearing that s = 1, no matter the
private signal x, each agent assigns probability 1/2 to θ ∈ [0, 1] and probability 1/2 to
θ ∈ [1, 2]. Because c > 1/2, each agent expecting all other agents to refrain from investing
(and hence default to occur for all θ ∈ [0, 1]), then finds it optimal to do the same. Hence,
under MARP consistent with the above policy, after the signal s = 1 is announced, all
agents refrain from investing, meaning that the above policy fails to spare types θ ∈ [0, 1]
from default, when the agents play adversarially.

To see that, instead, the policymaker can avoid default for all θ > 0 using a richer
policy, consider the policy � = (S , π ), with S = {0, (1, mid ), (1, ext )} that, in addition
to publicly announcing a pass grade, also announces whether the fundamentals are ex-
treme (i.e., θ ∈ (0, 5/6) ∪ (7/6, 2]), or intermediate (i.e., θ ∈ [5/6, 7/6]). Formally, for any
θ ∈ [−1, 0], π(0|θ) = 1, meaning that the policymaker assigns a failing grade. For any θ ∈
[5/6, 7/6], instead, π(1, mid|θ) = 1, meaning that the the policymaker announces a pass
grade and that fundamentals are intermediate. Finally, for any θ ∈ (0, 5/6) ∪ (7/6, 2],
π(1, ext|θ) = 1, meaning that the policymaker announces a pass grade and that funda-
mentals are extreme. See Figure 1 for a graphical representation.

Under such a policy, investing is the unique rationalizable action for any agent ob-
serving a pass grade, no matter whether the agent also learns that the fundamentals are
intermediate or extreme.

To see this, consider first the case in which the fundamentals are extreme, that is,
θ ∈ (0, 5/6) ∪ (7/6, 2]. All agents with exogenous information xH find it dominant to
invest when hearing s = (1, ext ). In fact, even if all other agents refrained from investing,
the probability that each agent with signal xH assigns to θ > 1 (and hence to the event
that there is no default) is Pr[θ > 1|xH , ext ] = 8/15 > c, making it dominant to invest.
As a consequence of this property, each agent with exogenous private information xL

finds it iteratively dominant to invest. This is because, for any θ ∈ [1/3, 5/6], even if all
agents with exogenous information equal to xL refrained from investing, the aggregate
investment from those individuals with information xH would suffice for default not to
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occur. This means that the probability that each agent with information xL assigns to
the event that default does not occur is at least equal to Pr[θ > 1/3|xL, (1, ext )] = 11/15,
implying that it is optimal for the agent to invest.

Next, consider the case in which fundamentals are intermediate, that is, θ ∈
[5/6, 7/6]. In this case, the ranking of the agents’ optimism is reversed, with those agents
observing the xL signal assigning higher probability to higher states. In particular, be-
cause each agent with information xL assigns probability 2/3 > c to θ ≥ 1, any such
agent finds it dominant to invest. Because, for any θ ∈ (5/6, 1), 1/3 of the agents re-
ceives information xL, the minimal size of investment that each agent with signal equal
to xH can expect at any θ ∈ (5/6, 1) is equal to p(xL|θ) = 1/3 > 1 − θ, implying that even
if all the less optimistic agents with signal xH refrained from investing, default would not
occur. But this means that investing is iteratively dominant for those agents receiving
the xH signal.

Hence, the proposed policy spares any θ > 0 from default. Because all agents invest
when they observe a pass grade, no matter whether they learn that the fundamentals
are extreme or intermediate, one may find it surprising that the policymaker needs to
provide the extra information. This is a consequence of the policymaker not trusting the
market to play favorably to her. The extra information is precisely what guarantees the
uniqueness of the rationalizable action.

As anticipated above, the benefits from disclosing information in addition to the
pass (or fail) grade stem from the possibility to reverse the ranking of the agents’ op-
timism, which is possible only when the distribution p(x|θ) is not log-supermodular.
In the example above, the most optimistic agents are those observing the xL signals
when the fundamentals are intermediate, whereas they are those observing the xH sig-
nals when the fundamentals are extreme. The reversal in the agents’ optimism in turn
permits the policymaker to guarantee that investing is the unique rationalizable action
over a larger set of fundamentals (the entire set θ > 0 in the example).

The above example also illustrates the failure of the Revelation Principle when the
policymaker is concerned with unique implementation (equivalently, when the market
is expected to play according to MARP). It is well known that, in this case, confining
attention to policies that take the form of action recommendations is with loss of gener-
ality. The contribution of Theorem 2 is in showing that, notwithstanding such a qualifi-
cation, the optimal policy does take the form of action recommendations in the special
case in which beliefs comove with fundamentals according to MLRP.

3.3 Monotone rules

We now turn to the optimality of policies that fail with certainty institutions with weak
fundamentals and pass with certainty those with strong fundamentals. As anticipated in
the Introduction, the optimality of such rules crucially depends on whether the policy-
maker’s preferences for avoiding default when fundamentals are large are strong enough
to compensate for the possibility that nonmonotone rules may permit her to reduce the
ex-ante probability of default (i.e., the possibility that default may occur over a set of
fundamentals of smaller ex ante probability under a nonmonotone rule).
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In this subsection, we identify a condition relating the policymaker’s preferences to
the agents’ exogenous beliefs and payoffs under which monotone rules are optimal. We
show that the condition is fairly sharp in that, when violated, one can identify economies
in which nonmonotone rules do strictly better than monotone ones. These economies
include many of the examples considered in the literature, for example, Goldstein and
Huang (2016).

We assume hereafter that{
x ∈R :

∫
�
u
(
θ, 1 − P(x|θ)

)
1(θ > 0)p(x|θ) dF(θ) ≤ 0

}
�= ∅. (1)

When Condition (1) is violated, the expected payoff differential between investing and
not investing is positive for any agent who is informed that fundamentals are non-
negative and who expects each other agent to invest (alternatively, not invest) when re-
ceiving a signal above (alternatively, below) hers. In this case, the information-design
problem is uninteresting because the policymaker can save all θ > 0 through a policy
that announces whether or not θ > 0. Then, let

xmax ≡ sup
{
x ∈ R :

∫
�
u
(
θ, 1 − P(x|θ)

)
1(θ > 0)p(x|θ) dF(θ) ≤ 0

}
. (2)

As we show in the Appendix, xmax is an upper bound for the set of cut-offs characterizing
the strategies consistent with MARP across all disclosure policies � satisfying the perfect
coordination property.

For any x, let Θ(x) ≡ {θ ∈ � : x ∈ �θ} denote the set of fundamentals that, given the
distribution P(·|θ) from which the agents’ signals are drawn, are consistent with private
information x.

Condition M. The following properties hold:

(i) infΘ(xmax ) ≤ 0;

(ii) for any θ0, θ1 ∈ [0, 1], with θ0 < θ1, and x≤ xmax such that (a) θ1 ≤ P(x|θ1 ) and (b)
x ∈ �θ0 ,

UP (θ1, 1) −UP (θ1, 0)

UP (θ0, 1) −UP (θ0, 0)
>

p(x|θ1 )b(θ1 )
p(x|θ0 )b(θ0 )

. (3)

Property (i) in Condition M says that the lower bound of the support of the beliefs
of an agent with signal xmax, where xmax is the threshold defined in (2), is nonpositive
and, therefore, that according to this agent there is a positive probability that default is
unavoidable, no matter the aggregate investment. Clearly, this property trivially holds
when, for any θ, the agents’ signals are drawn from a distribution whose support is large
enough (and hence, a fortiori, when the noise in the agents’ signals is drawn from a
distribution with unbounded support, e.g., a Normal distribution).

Property (ii) of Condition M says that the value the policymaker assigns to avoiding
default increases with the underlying fundamentals at a large enough rate. Specifically,
the property requires that the benefit that the policymaker derives from changing the
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agents’ behavior (inducing all agents to invest starting from a situation in which no agent
invests) must increase with the fundamentals at a sufficiently high rate, with the critical
rate determined by a combination of the agents’ payoffs in case of default and beliefs.

Theorem 3. Suppose that p(x|θ) is log-supermodular and Condition M holds. Given
any regular policy � satisfying the perfect-coordination property, there exists a regu-
lar deterministic binary monotone policy �θ̂ = ({0, 1}, πθ̂ ) that also satisfies the perfect-
coordination property and such that, when the agents play according to MARP under both
� and �θ̂, the policymaker’s ex ante expected payoff is weakly higher under �θ̂ than under
�.15

When Condition M holds, the choice of the optimal policy reduces to the choice of
the smallest threshold θ̂ such that, when agents commonly learn that θ > θ̂, under the
unique rationalizable profile, all agents invest irrespective of their exogenous private
information. For this to be the case, it must be that,

∫ ∞
θ̂

u(θ, 1−P(x|θ))p(x|θ) dF(θ) > 0,
for any x ∈R.

The above problem, however, does not have a formal solution, due to the lack of
upper semicontinuity of the policymaker’s payoff in θ̂. Notwithstanding these compli-
cations, hereafter we follow the pertinent literature and refer to the “optimal monotone
policy” as the one defined as follows. For any θ ∈ (0, 1), let x∗(θ) be the critical signal
threshold such that, when agents follow a cut-off strategy with threshold x∗(θ), default
occurs if and only if the fundamentals are below θ.16 Let

θ∗ ≡ inf
{
θ̂ ≥ 0 :

∫ ∞

θ̂
u
(
θ̃, 1 − P

(
x∗(θ)|θ̃

))
p

(
x∗(θ)|θ̃

)
dF(θ̃) ≥ 0 for all θ ∈ [θ̂, 1)

}
(4)

be the lowest truncation point θ̂ such that, when the policy reveals that fundamentals
are above θ̂, then for any possible default threshold θ ∈ [θ̂, 1), if default were to occur for
fundamentals below θ and not for fundamentals above θ, then the marginal agent with
signal x∗(θ) would find it optimal to invest. Hereafter, we assume that θ∗ is well-defined,
which is always the case when17

θ## ≡ sup
{
θ ∈ (0, 1) :

∫
�
u
(
θ̃, 1 − P

(
x∗(θ)|θ̃

))
p

(
x∗(θ)|θ̃

)
dF(θ̃) ≤ 0

}
< 1.

15The policy �θ̂ is such that there exists a threshold θ̂ ∈ [0, 1] such that, for any θ ≤ θ̂, πθ̂(θ) assigns

probability one to s = 0, whereas for any θ > θ̂, πθ̂(θ) assigns probability one to s = 1.
16For any θ ∈ (0, 1), the threshold x∗(θ) is implicitly defined by P(x∗(θ)|θ) = θ. When the noise in the

agents’ signals is bounded, the definition of x∗(θ) can be extended to θ = 0 and θ = 1. When the noise is
unbounded, abusing notation, one can extend the definition to θ = 0 and θ = 1 by letting x∗(0) = −∞ and
x∗(1) = +∞.

17For any θ̂ ∈ (θ##, 1), and any θ ∈ [θ̂, 1),

0 <

∫
�
u
(
θ̃, 1 − P

(
x∗(θ)|θ̃

))
p

(
x∗(θ)|θ̃

)
dF(θ̃) <

∫ ∞

θ̂
u
(
θ̃, 1 − P

(
x∗(θ)|θ̃

))
p

(
x∗(θ)|θ̃

)
dF(θ̃).

Hence, when θ## < 1, θ∗ is well-defined.
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The optimal monotone policy is the one with cut-off θ̂ = θ∗.18

The previous literature (e.g., Goldstein and Huang (2016)) characterized the thresh-
old θ∗ by restricting attention to monotone rules. The contribution of Theorem 3 is in
identifying the conditions under which such rules are optimal. Importantly, these con-
ditions are not met in the works that restrict attention to monotone rules. As the ex-
amples below suggest, in those settings, the policymaker can strictly increase her payoff
through a nonmonotone rule.

As we show in the Appendix, Property (i) in Condition M guarantees that, starting
from the optimal monotone policy (the one with cut-off θ∗), one cannot perturb the
policy by assigning a pass grade also to a small interval of fundamentals [θ′, θ′′], with 0 ≤
θ′ < θ′′ < θ∗, while guaranteeing that investing remains the unique rationalizable action
when the policymaker announces a pass grade (i.e., when the signal s = 1 is disclosed).
This property trivially holds when the noise in the agents’ signals is large (and hence, a
fortiori, when noise is unbounded), but plays a key role when the noise is drawn from a
bounded interval of small size (see Example 2 below for an illustration).

Property (ii) of Condition M in turn guarantees that the higher payoff the policy-
maker obtains, under the new policy, from avoiding default when fundamentals are
stronger compensates for the possibility that, from an ex ante perspective, the proba-
bility of default may be larger under monotone policies than under nonmonotone ones
(see Example 3 for an illustration of why nonmonotone rules may permit the policy-
maker to avoid default over a set of fundamentals of larger ex ante probability).

As anticipated above, Condition M is fairly sharp in the sense that, when violated,
one can identify economies in which the optimal policy is nonmonotone. We provide
two such examples below. Example 2 illustrates the role of Property (i) in Condition M,
whereas Example 3 illustrates the role of Property (ii) in Condition M. These examples
also illustrate why nonmonotone rules, in general, may reduce the set of fundamentals
over which default happens.

Let θMS ∈ (0, 1) be implicitly defined by the unique solution to∫ 1

0
u
(
θMS, A

)
dA= 0. (5)

The threshold θMS corresponds to the value of the fundamentals at which an agent who
knows θ and holds Laplacian beliefs with respect to the aggregate investment is indiffer-
ent between investing and not investing.19 Importantly, θMS is independent of the initial
common prior F and of the distribution of the agents’ signals.

18The reason why this is an abuse is that, under the monotone policy with cut-off θ∗, in the continuation
game that starts after the policymaker announces s = 1, there exists a rationalizable profile in which some
of the agents refrain from investing. However, there exists a monotone policy with cut-off θ̂ arbitrarily close
to the threshold θ∗ such that, after the policymaker announces s = 1 (equivalently, that θ ≥ θ̂), the unique
rationalizable profile features all agents investing. Because the policymaker’s payoff under the latter policy
is arbitrarily close to the one she obtains when all agents invest for θ > θ∗ and refrain from investing when
θ ≤ θ∗, the abuse appears justified.

19This means that the agent believes that aggregate investment is uniformly distributed over [0, 1]. See
Morris and Shin (2006).
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Figure 2. Suboptimality of deterministic binary monotone policies.

Example 2. Suppose that there exist scalars g, b ∈ R, with g > 0 > b, such that, for any
θ, g(θ) = g, and b(θ) = b. Assume that θ is drawn from a uniform distribution with sup-
port [−K, 1 +K], for some K ∈ R++. Finally, assume that the agents’ exogenous signals
are given by xi = θ + σεi, with σ ∈ R++ and with each εi drawn independently across
agents from a uniform distribution over [−1, 1], with σ < K/2. Let θ∗

σ be the thresh-
old defined in (4), applied to the primitives described in this example.20 There exists
σ# ∈ (0, K/2) such that (a) infΘ(x∗

σ# (θMS )) > 0, and (b) for all σ ∈ (0, σ# ), starting from
the optimal monotone policy with cut-off θ∗

σ , there exists a deterministic nonmonotone
policy satisfying the perfect-coordination property and permitting the policymaker to
avoid default over a set of fundamentals of strictly larger probability measure than the
optimal monotone policy. ♦

The proof is in the Supplementary Appendix. Here, we sketch the key arguments.
To fix ideas, let g = 1 − c and b = −c, with c ∈ (0, 1), as in Example 1, and recall that,
under such a payoff specification, investing is optimal when the probability of default is
no greater than 1 − c, whereas not investing is optimal when such a probability exceeds
1 − c.

For any binary policy �= ({0, 1}, π ), and any threshold θ ∈ [0, 1] such that (x∗
σ (θ), 1)

are mutually consistent under �, let

V �
σ (θ) ≡ U�

σ

(
x∗
σ (θ), 1|x∗

σ (θ)
)
,

denote the payoff of the marginal agent with signal x∗
σ (θ), after the policy � announces

that s = 1, where U�
σ is the function defined after Theorem 2.

Now, for any θ̂ ∈ �, let �θ̂ = ({0, 1}, πθ̂ ) be the deterministic, binary, monotone rule
with cut-off θ̂. Note that the absence of any public disclosure is equivalent to a mono-
tone policy with cut-off θ̂ = min� = −K and that, under such a policy, default occurs if
and only if θ ≤ θMS = c.

20Hereafter, the subscript σ in θ∗
σ and x∗

σ is meant to highlight that these thresholds are those for the
economy in which the noise in the agents’ exogenous private signals is scaled by σ .
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A necessary and sufficient condition for all agents to invest under MARP consistent
with the policy �θ̂, after hearing that s = 1, is that, for any possible default threshold

θ > θ̂, V �θ̂
σ (θ) > 0. The lowest fundamental in the support of x∗

σ (θ)’s beliefs is x∗
σ (θ) − σ .

Hence, when x∗
σ (θ) − σ > θ̂, the marginal agent with signal x∗

σ (θ) already knows from
his private information that fundamentals are above θ̂. Because, in the absence of any
public disclosure, the payoff of the marginal agent is strictly negative for all θ < θMS, this
implies that the cut-off θ∗

σ for the optimal monotone rule is θ∗
σ = x∗

σ (θMS ) − σ .
Now to see that the optimal monotone policy is improvable, assume that σ is small

so that x∗
σ (θMS ) − σ > 0. Next, pick γ, δ > 0 small and let θ′′ ≡ x∗

σ (θMS − δ) − σ and
θ′ ≡ θ′′ − γ, with θ′ > 0. Consider a binary policy �γ,δ = ({0, 1}, πγ,d ), that in addition to
announcing a pass grade s = 1 when fundamentals are above θ∗

σ (as the optimal mono-

tone rule does) also announces s = 1 when θ ∈ [θ′, θ′′]. Let V
�γ,δ
σ (θ) be the payoff of

the marginal agent with signal x∗
σ (θ) under the new rule �γ,δ, after the policymaker an-

nounces that s = 1. This payoff is represented in Figure 2 along with the payoff V �θ
∗
σ

σ (θ)

under the optimal monotone rule. Provided that γ and δ are small, V
�γ,δ
σ (θ) ≥ 0 for

all θ for which (x∗
σ (θ), 1) are mutually consistent under �γ,δ, with V

�γ,δ
σ (θ) = 0 if and

only if θ = θMS. Starting from �γ,δ, one can then further perturb the policy �γ,δ by giv-
ing a fail grade to banks with fundamentals in [θ∗

σ , θ∗
σ + ε], with ε > 0 small. The new

policy �̃ so constructed is such that V �̃
σ (θ) > 0 for all θ for which (x∗

σ (θ), 1) are mu-
tually consistent under �̃, meaning that, when the policymaker announces that s = 1,
investing is the unique rationalizable action for all agents. The policy �̃ thus satisfies
the perfect-coordination property and guarantees that default occurs over a set of fun-
damentals of strictly smaller probability under F than the optimal monotone policy
�θ∗

σ = ({0, 1}, πθ∗
σ ).

The reason why the nonmonotone policy �̃ constructed in the proof of Example 2
guarantees that default occurs over a smaller set of fundamentals than the optimal
monotone policy is that agents receiving signals around θMS are highly sensitive to the
grade the policy gives to institutions with fundamentals around θMS but not so much so
to the grade given to fundamentals far from θMS. In the above example with bounded
noise, an agent receiving a signal x∗

σ (θMS ) is not sensitive at all to the grade the policy
gives to fundamentals below x∗

σ (θMS ) − σ because his private signal informs him that
the fundamentals are above x∗

σ (θMS ) − σ . Hence, while it is impossible to amend the
optimal monotone policy (the one with cut-off θ∗

σ = x∗
σ (θMS ) −σ) by giving a pass grade

also to fundamentals slightly below θ∗
σ without inducing some of the agents to refrain

from investing, it is possible to amend the optimal monotone policy by extending the
pass grade to an interval [θ′, θ′′] of fundamentals sufficiently “far away” from θ∗

σ , while
continuing to induce all agents to invest under MARP. The reason why such improve-
ments are not feasible under Condition M in Theorem 3 is that Property (i) in Condi-
tion M implies that x∗

σ (θMS ) − σ < 0, thus making the above construction unfeasible.21

Interestingly, when θ ∈ [θ′, θ′′], the assumption of bounded support of the agents’ beliefs

21Under Property (i), the marginal agent with signal x∗
σ (θMS ) does not rule out any fundamental in

(0, θMS ). Hence, any perturbation of the optimal monotone policy passing fundamentals to the left of θMS

induces the agent to refrain from investing.
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implies that a positive-measure set of agents know with certainty that θ ∈ [θ′, θ′′] and yet,
under the unique rationalizable profile, all agents invest; this is because, by design, the
policy �̃ constructed in Example 2 guarantees that, when θ ∈ [θ′, θ′′], such an event is
not commonly learned.

The next example considers an economy in which the noise in the agents’ exoge-
nous signals is drawn from a distribution with an unbounded support (in which case,
Property (i) in Condition M trivially holds), but Property (ii) is violated.

Given any binary, deterministic policy � = ({0, 1}, π ) (i.e., any policy such that, for
any θ, π(θ) is a degenerate Dirac distribution assigning probability 1 either to s = 1 or
to s = 0), let D� = {(θi, θ̄i] : i = 1, � � � , N } denote the partition of (0, θMS] induced by π,
with N ∈ N, θ1 = 0, and θN = θMS.22 Let d ∈ D� denote a generic cell of the partition
D� and, for any θ ∈ (0, θMS], denote by d�(θ) ∈ D� the cell that contains θ. Finally, let
M(�) ≡ maxi=1, ���,N |θ̄i − θi| denote the mesh of D�, that is, the Lebesgue measure of the
cell of D� of maximal Lebesgue measure.

Example 3 below shows that, when the noise in the agents’ information is small, any
deterministic binary policy of large mesh can be improved upon by a non-monotone de-
terministic binary policy with a smaller mesh. This property in turn implies that optimal
policies are highly nonmonotone.

Example 3. Suppose that θ is drawn from an improper uniform prior over R and that
the agents’ signals are given by xi = θ+ σεi, with εi drawn from a standard Normal dis-
tribution.23 Further assume that there exist scalars g, b, W , L ∈ R, with g > 0 > b and
W > L, such that, for any θ, g(θ) = g, b(θ) = b, W (θ) = W and L(θ) = L. There ex-
ists a scalar σ̄ > 0 and a function E : (0, σ̄ ] → R+, with limσ→0+ E(σ ) = 0, such that, for
any σ ∈ (0, σ̄ ], in the game in which the noise in the agents’ information is scaled by σ ,
the following is true: given any deterministic binary policy � = ({0, 1}, π ) satisfying the
perfect-coordination property and such that M(�) > E(σ ), there exists another deter-
ministic binary policy �∗ with M(�∗ ) < E(σ ) that also satisfies the perfect-coordination
property and such that the ex ante probability of default under �∗ is strictly smaller than
under �. ♦

See the Supplementary Appendix for a detailed proof of the result. Here, we dis-
cuss the main ideas. Nonmonotone policies permit the policymaker to avoid default
over a larger set of fundamentals by making it difficult for the agents to commonly
learn the fundamentals when the latter are between 0 and θMS and the policymaker
announces a pass grade. Intuitively, if the policymaker assigned a pass grade to an inter-
val (θ′, θ′′] ⊂ (0, θMS] of large Lebesgue measure, when σ is small and θ ∈ (θ′, θ′′], most
agents would receive private signals xi ∈ (θ′, θ′′]. No matter the grade assigned to fun-
damentals outside the interval (θ′, θ′′], in the continuation game that starts after the
policymaker announces a pass grade, most agents with signals xi ∈ (θ′, θ′′] would then

22That is, either (a) π(θ) = 0 for all θ ∈ ∪i=2k,k≤N (θi, θ̄i] and π(θ) = 1 for all θ ∈ ∪i=2k−1,k≤N (θi, θ̄i], or (b)
π(θ) = 1 for all θ ∈ ∪i=2k,k≤N (θi, θ̄i] and π(θ) = 0 for all θ ∈ ∪i=2k−1,k≤N (θi, θ̄i].

23The improperness of the prior simplifies the exposition but is not important. The agents’ hierarchies
of beliefs are still well-defined.
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assign high probability to the joint event that θ ∈ (θ′, θ′′], that other agents assign high

probability to θ ∈ (θ′, θ′′], and so on. When this is the case, it is rationalizable for such

agents to refrain from investing. Hence, when σ is small, the only way the policymaker

can guarantee that, when θ ∈ (0, θMS], the agents invest after hearing a pass grade is by

dividing the set (0, θMS] into a collection of disjoint intervals, each of small Lebesgue

measure. This guarantees that the support of each agent’s posterior beliefs after a pass

grade is announced is not connected. Connectedness of the supports facilitates ratio-

nalizable profiles where some agents refrain from investing.

Next, suppose that the intervals (θi, θ̄i] ⊂ (0, θMS], i = 1, � � � , N , receiving a pass

grade are far apart, implying that the policymaker fails an interval (θ′, θ′′] ⊂ (0, θMS] of

large Lebesgue measure (note that this is indeed the case under the optimal monotone

deterministic rule with cutoff θ∗
σ , where θ∗

σ is the threshold defined in (4).24 The detailed

derivations in the Supplementary Appendix then show that, starting from �, the policy-

maker could assign a pass grade to fundamentals in the middle of [θ′, θ′′] and a fail grade

to some fundamentals to the right of θ′′, in such a way that (a) investing continues to be

the unique rationalizable action for all agents after hearing a pass grade, and (b) the set

of fundamentals receiving a pass grade under the new policy is strictly larger than under

the original one. Furthermore, the construction sketched above can be iterated until one

arrives at a new policy with a mesh smaller than E(σ ) under which default occurs over

a set of fundamentals of strictly smaller measure than under the original policy. When

the benefit W (θ) −L(θ) of avoiding default is constant in θ, as in the example above, the

new policy thus yields the policymaker a strictly higher payoff than the original one.

Finally, one can show that, when σ is small, a pass grade can be given to all θ >

θMS +ε, with ε > 0 small, while guaranteeing that all agents invest after the policymaker

announces the pass grade s = 1.25

The above properties thus also imply that, if the policymaker is restricted to deter-

ministic policies (arguably, the most relevant case in practice), when the precision of the

agents’ exogenous information is large, the optimal policy is highly nonmonotone over

(0, θMS ) and announces a pass grade when fundamentals are above θMS.

4. Extensions

We first introduce a few enrichments in Section 4.1, then establish the analog of the

three theorems above for these richer economies in Section 4.2, and then conclude in

Section 4.3 discussing the role of the multiplicity of the receivers and their exogenous

private information.

24The subscript simply highlights the dependence of the cutoff θ∗
σ on σ .

25Formally, for any ε > 0, there exists σ(ε) such that, for any σ < σ(ε), given any pass/fail policy � satis-
fying PCP, there exists another pass/fail policy �′ also satisfying PCP that agrees with � on any θ < θMS and
gives a pass grade to any θ ≥ θMS + ε.
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4.1 Generalizations

The fundamentals are given by (θ, z), with θ drawn from � according to the absolutely
continuous cdf F , and with z drawn from [z, z] according to Qθ(z), with the cdf Qθ(z)
weakly decreasing in θ, for any z.26

The variable θ continues to parameterize the maximal information the policymaker
can collect about the fundamentals. The additional variable z parameterizes risk that
the agents and the policymaker face at the time of the disclosure (e.g., macroeconomic
variables that are only imperfectly correlated with the fundamentals). As in the baseline
model, conditional on θ, the private signals x = (xi )i∈[0,1] are i.i.d. draws from an (ab-
solutely continuous) cumulative distribution function P(x|θ), with associated density
p(x|θ) strictly positive and bounded over the interval �θ ∈R.

There exists a function R : �×[0, 1]×[z, z] →R such that, given any (θ, A, z), default
occurs (i.e., r = 0) if, and only if, R(θ, A, z) ≤ 0. The function R is continuous and strictly
increasing in (θ, z, A). For any (θ, A), the probability of avoiding default is thus given
by r(θ, A) ≡ P[R(θ, A, z) > 0|θ, A].

There exist functions Ŵ , L̂ : �× [0, 1] × [z, z] → R such that, given any (θ, A, z), the
policymaker’s payoff is equal to

ÛP (θ, A, z) = Ŵ (θ, A, z)1
(
R(θ, A, z) > 0

) + L̂(θ, A, z)1
(
R(θ, A, z) ≤ 0

)
. (6)

Hence, Ŵ (θ, A, z) is the policymaker’s payoff in case default is avoided, whereas
L̂(θ, A, z) is her payoff in case of default. Likewise, there exist functions ĝ, b̂ : �× [0, 1]×
[z, z] → R such that, given any (θ, A, z), the agents’ payoff differential between investing
and not investing is equal to

û(θ, A, z) = ĝ(θ, A, z)1
(
R(θ, A, z) > 0

) + b̂(θ, A, z)1
(
R(θ, A, z) ≤ 0

)
, (7)

with ĝ(θ, A, z) > 0 > b̂(θ, A, z), for any (θ, A, z). For any (θ, A), then let

g(θ, A) ≡ E
[
1
(
R(θ, A, z) > 0

)
ĝ(θ, A, z)|θ, A

]
r(θ, A)

and

b(θ, A) ≡ E
[
1
(
R(θ, A, z) ≤ 0

)
b̂(θ, A, z)|θ, A

]
1 − r(θ, A)

denote the agents’ expected payoff differential in case of no default and in case of de-
fault, respectively. Likewise, for any (θ, A), let

W (θ, A) ≡ E
[
1
(
R(θ, A, z) > 0

)
Ŵ (θ, A, z)|θ, A

]
r(θ, A)

and

L(θ, A) ≡ E
[
1
(
R(θ, A, z) ≤ 0

)
L̂(θ, A, z)|θ, A

]
1 − r(θ, A)

26All the results extend to the case where Qθ(z) has unbounded support. Note that Qθ(z) is not required
to be absolutely continuous in z (in fact, it is not absolutely continuous in the baseline model, where the
distribution has a mass point of 1 at z = 0).
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denote the policymaker’s expected payoff, again in case of no default and default, re-
spectively.

The agents’ and the policymaker’s expected payoffs can then be conveniently ex-
pressed as a function of θ and A only, by letting

u(θ, A) ≡ r(θ, A)g(θ, A) + (
1 − r(θ, A)

)
b(θ, A) and

UP (θ, A) ≡ r(θ, A)W (θ, A) + (
1 − r(θ, A)

)
L(θ, A).

Hereafter, we assume that |u(θ, A)| is bounded and that there exist θ, θ ∈ R, with θ <

θ, such that (a) u(θ, 1) < 0 for all θ ≤ θ, (b) u(θ, 0) > 0 for all θ > θ, and (c) u(θ, 1) >
0 > u(θ, 0) for all θ ∈ (θ, θ]. The thresholds θ and θ define the “critical region” (θ, θ]
where the sign of the agents’ payoff differential depends on the response of the market.27

We also assume that both u(θ, A) and UP (θ, A) are nondecreasing in A and such that
UP (θ, 1) >UP (θ, 0) for all θ ∈ (θ, θ].28

4.2 Results

We identify conditions under which Theorems 1–3 extend to these richer economies.

4.2.1 Perfect-coordination property Given any distribution G ∈ 
� over �, say that G
is “regular” if, when the common posterior over � is G and, for any θ, agents receive
private signals according to P(·|θ), MARP is well-defined. Then, for any regular G, any
θ, let A(θ; G) denote the aggregate investment at θ when agents play according to MARP,
under the common posterior G.

Condition PC. For any distribution τ ∈ 

(�) over posterior beliefs consistent with the
common prior F (i.e., such that

∫
Gτ(dG) = F), the following condition holds:∫ (∫ [

1
(
u
(
θ, A(θ; G)

)
> 0

)
UP (θ, 1) + 1

(
u
(
θ, A(θ; G)

) ≤ 0
)
UP (θ, 0)

]
G(dθ)

)
τ(dG)

≥
∫ (∫

UP
(
θ, A(θ; G)

)
G(dθ)

)
τ(dG).

27The critical region can also be defined in terms of the regime outcome. That is, let θ′, θ̄′ ∈ R, with
θ′ < θ̄′, be defined by R(θ′, 1, z) = R(θ̄′, 0, z) = 0. Note that default occurs with certainty when θ < θ′ and
never occurs when θ > θ̄′, no matter (A, z). Because the agents’ payoff differential is strictly negative (al-
ternatively, strictly positive) when there is default (alternatively, when there is no default), (θ, θ] ⊆ (θ′, θ′

].
All the results below hold also under this alternative definition. The reason for defining the critical region
as done above is that it permits us to weaken some of the assumptions by requiring that they hold over a
smaller set of fundamentals. Clearly, the two definitions coincide when the regime outcome is a determin-
istic function of (θ, A), as in the baseline model.

28That u(θ, A) is monotone in A implies that the continuation game remains supermodular. That
UP (θ, A) is nondecreasing in A implies that, for any �, MARP continues to coincide with the “smallest”
rationalizable profile, that is, the one involving the smallest measure of agents investing. Finally, that for
any θ in the critical region, the policymaker strictly prefers that all agents invest to no agent investing guar-
antees that, when the optimal policy has a pass/fail structure, it is obtained by maximizing the probability
that a pass grade is given when fundamentals are in the critical range.
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To appreciate the meaning of Condition PC, suppose that the policymaker, through
her disclosure policy �, generates a distribution τ over common posteriors G over �,
and that, for any G, agents play according to MARP. Now suppose that, in each state θ,
the policymaker also informs the agents of the sign of their expected payoff differential
u(θ, A(θ; G)) under MARP consistent with G. Finally, suppose that, after each poste-
rior G is generated, the additional information induces all agents to invest when they
learn that u(θ, A(θ; G)) > 0 and not to invest when they learn that u(θ, A(θ; G)) ≤ 0.
Then the additional information makes the agents better off. Condition PC says that the
policymaker is also weakly better off. In other words, the condition requires that the pol-
icymaker’s and the agents’ payoffs be not too misaligned. Condition PC trivially holds
when the policymaker faces no aggregate uncertainty (i.e., when each distribution Qθ

over [z, z] is degenerate), W is weakly increasing in A and L is invariant in A, as in the
baseline model. For example, in case of stress testing, the condition says that the policy-
maker prefers more agents to invest in case the bank under examination avoids default,
but is indifferent as to how many investors pull their money out of the bank when the
latter defaults. More generally, Condition PC accommodates for the possibility that both
W and L depend on A, possibly nonmonotonically, provided that, on average, the loss
to the policymaker from having no agent invest in states θ in which the agents’ expected
payoff differential (under MARP given the induced common posterior G) is negative is
more than compensated by the benefit from having all agents invest in states θ in which
the differential is positive. The average is over both the induced posteriors G and the
fundamentals θ.

As in the baseline model, let A�(θ, s) denote the aggregate size of investment at θ
under MARP consistent with �, when the policy discloses s.

Theorem 1*. Given any regular policy � = (S , π ), there exists another regular policy �∗
satisfying the perfect-coordination property and such that when under both � and �∗
agents play according to MARP the following are true: (1) for any θ, no agent is worse
off under �∗ than under �, and some agents are strictly better off; (2) if, for any θ and
s ∈ supp(π(θ)), the regime outcome is deterministic (i.e., r(θ, A�(θ, s)) ∈ {0, 1}), then for
any θ the probability of default under �∗ is the same as under �; (3) when Condition PC
holds, the policymaker is better off under �∗ than under �.

Theorem 1* extends Theorem 1 to the richer class of economies under considera-
tion, in which the regime outcome is determined by additional variables that are not
observable by the policymaker, and where both the policymaker’s and the agents’ pay-
offs depend on the aggregate investment A beyond its effect on the regime outcome.
The policy �∗ in the theorem is obtained from the original policy � by disclosing, for
each θ, in addition to the information s ∈ supp(π(θ)) disclosed by the original policy �,
a second piece of information that reveals to the market whether at (θ, s), under MARP
consistent with the original policy �, the agents’ expected payoff differential is positive
or negative. Note in particular that because the sign of the payoff differential in the base-
line model is given by the regime outcome, this additional piece of information, in the
baseline model, coincides with the regime outcome r�(θ, s) ∈ {0, 1}.
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In Inostroza and Pavan (2024a), we show that the perfect-coordination property is
fairly general and extends to a class of economies even richer than the one introduced in
Section 4.1 in which (a) the agents’ prior beliefs need not be consistent with a common
prior, nor be generated by signals drawn independently across agents, conditionally on
θ, (b) the number of agents is arbitrary (in particular, finitely many agents), (c) payoffs
can be heterogenous across agents, (d) agents have a level-K degree of sophistication, (e)
the policymaker may possess imperfect information about the payoff state and/or the
agents’ beliefs, (f) the policymaker may engage in flexible discriminatory disclosures
and disclose different information to different agents. The key property is the possi-
bility for the policymaker to have access to information that is a sufficient statistic of
the agents’ information when predicting the sign of the agents’ payoff differential under
MARP. This property holds when, for example, the correlation in the agents’ exogenous
beliefs originates in public signals the policy maker has access to.29

4.2.2 Pass/fail policies

Condition FB. For any x, u(θ, 1 − P(x|θ)) ≥ 0 (alternatively, u(θ, 1 − P(x|θ)) ≤ 0) im-
plies that u(θ′′, 1 − P(x|θ′′ )) > 0 for all θ′′ > θ (alternatively, u(θ′, 1 − P(x|θ′ )) < 0 for all
θ′ < θ).

Condition FB (which stands for “single crossing from below”) states that, for any
x, the payoff differential u(θ, 1 − P(x|θ)) from investing when all agents follow a cut-
off strategy with cut-off x crosses 0 once from below. The property clearly holds in the
baseline model where (i) r(θ, A) = 1(A > 1 − θ) and (ii) g(θ) > 0 > b(θ) for all θ. It
also holds when u(θ, A), in addition to being nondecreasing in A as assumed above, is
nondecreasing in θ.

Theorem 2*. Suppose that p(x|θ) is log-supermodular and Condition FB holds. Then,
given any regular policy � = (S , π ) satisfying the perfect-coordination property, there ex-
ists a regular binary policy �∗ = ({0, 1}, π∗ ) that also satisfies the perfect-coordination
property and such that, when agents play according to MARP under both � and �∗, for
any θ, the probability of default and the payoffs (for each agent and the policymaker) are
the same under �∗ and �.

Because �= (S , π ) satisfies the perfect-coordination property, ∪θ supp(π(θ)) can be
partitioned in two sets, S1 and S0, such that, under �, all agents invest (alternatively,
do not invest) when receiving information s ∈ S1 (alternatively, s ∈ S0), irrespectively of
their private signals x. The key step in the proof in the Appendix shows that the log-
supermodularity of p(x|θ), together with Condition FB, jointly imply that, under any
policy, MARP is in cut-off strategies. The reason is the same as the one discussed above
for the baseline model. In turn, this property implies that all agents continue to invest

29We conjecture that, as long as the above sufficient statistic property holds, Theorem 2* and 3* below
also extend to settings in which the agents’ signals are not conditionally independent given θ. Whether the
results extend to some environments in which the sufficient statistic property is violated is an interesting
question for future work.
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(alternatively, refrain from investing) when the policymaker “pools the signals” and dis-
closes only that s ∈ S1 (alternatively, that s ∈ S0). The arguments are similar to those
leading to Theorem 2 above. The policy �∗ = ({0, 1}, π∗ ) is then constructed by letting
π∗(1|θ) = π(S1|θ) (and π∗(0|θ) = π(S0|θ)) for all θ. Contrary to the baseline model, after
the policy �∗ discloses signal 1 (alternatively, signal 0), the regime outcome need not be
deterministic. Nonetheless, the probability of default is the same under the two policies
� and �∗ and so are the payoffs.30

4.2.3 Monotone rules First, we extend the definition of xmax to accommodate for the
fact that, in richer economies, θ need not coincide with 0. That is, we let

xmax ≡ sup
{
x ∈ R :

∫
�
u
(
θ, 1 − P(x|θ)

)
1(θ > θ)p(x|θ) dF(θ) ≤ 0

}
. (8)

Next, we extend Condition M as follows.

Condition M*. (i*) infΘ(xmax ) ≤ θ;

(ii*) For any θ0, θ1 ∈ [θ, θ], with θ0 < θ1, and x≤ xmax such that (a) u(θ1, 1−P(x|θ1 )) ≤
0 and (b) x ∈ �θ0 ,

UP (θ1, 1) −UP (θ1, 0)

UP (θ0, 1) −UP (θ0, 0)
>

p(x|θ1 )u
(
θ1, 1 − P(x|θ1 )

)
p(x|θ0 )u

(
θ0, 1 − P(x|θ0 )

) . (9)

(iii*) |u(θ, 1 −P(x|θ))| is log-supermodular over {(θ, x) ∈ [θ, θ]×R : u(θ, 1 −P(x|θ)) ≤
0}.31

Property (i*) is similar to Property (i) in Condition M in the baseline model but ac-
commodates for the fact that, in richer economies, θ need not coincide with 0. Property
(ii*) extends Property (ii) in Condition M to the current environment with richer pref-
erences in which u(θ, A) and UP (θ, A) depend on A over and above the effect that the
latter variable has on the regime outcome.

Property (iii*) is a new condition that requires that, for any θ′ < θ′′ and x′ < x′′ such
that u(θ′′, 1 − P(x′|θ′′ )) < 0,

u
(
θ′′, 1 − P

(
x′|θ′′))

u
(
θ′, 1 − P

(
x′|θ′)) ≤ u

(
θ′′, 1 − P

(
x′′|θ′′))

u
(
θ′, 1 − P

(
x′′|θ′)) . (10)

Note that u(θ′′, 1 −P(x′|θ′′ )) < 0 implies that u(θ′, 1 −P(x′|θ′ )), u(θ′, 1 −P(x′′|θ′ )), u(θ′′,
1 − P(x′′|θ′′ )) < 0. The condition thus requires that the relative reduction in the ex-
pected losses stemming from the fundamentals improving from θ′ to θ′′ > θ′ is larger

30As in the baseline model, that payoffs (for each agent and the policymaker) are the same under � and
�∗ follows from the fact that, for any θ, the probability that each agent invests is the same under the two
policies, along with the fact that signals are payoff-irrelevant when fixing the agents’ behavior.

31The log-supermodularity of |u(θ, 1 − P(x|θ))| means that, for any x′, x′′ ∈ R, with x′ < x′′, and any
θ′, θ′′ ∈ �, with θ′′ > θ′, such that u(θ′′, 1 − P(x′|θ′′ )) ≤ 0,

u
(
θ′′, 1 − P

(
x′′|θ′′))u(

θ′, 1 − P
(
x′|θ′)) ≥ u

(
θ′′, 1 − P

(
x′|θ′′))u(

θ′, 1 − P
(
x′′|θ′)).
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when agents invest if and only if x > x′ than when they invest if and only if x > x′′ > x′.
The reduction in the losses u(θ, 1 − P(x|θ)) combines the direct effect of θ on u(θ, A)
with the indirect effect of θ on A = 1 − P(x|θ) that obtains when the agents follow a
cut-off strategy whereby they invest if and only if their signals exceed x. The condition
trivially holds in the baseline model where u(θ, A) < 0 if and only if, given (θ, A), there
is default (i.e., A ≤ 1 − θ), in which case u(θ, A) = b(θ).

Theorem 3*. Suppose that p(x|θ) is log-supermodular and Conditions PC, FB, and M*
hold. Given any regular policy �, there exists a regular deterministic binary monotone pol-
icy �θ̂ = ({0, 1}, πθ̂ ) that satisfies the perfect-coordination property and such that, when
the agents play according to MARP under both � and �θ̂, the policymaker’s ex ante ex-
pected payoff is weakly higher under �θ̂ than under �.

To gain some intuition on the role played by the additional requirement in Condi-
tion M* (property (iii*)), first observe that the conditions in the theorem imply that The-
orems 1* and 2* hold. Given any policy �, there thus exists a binary policy �′ = ({0, 1}, π ′ )
satisfying the perfect-coordination property and such that π ′(1|θ) = 0 for all θ ≤ θ and
π ′(1|θ) = 1 for all θ > θ and such that the policymaker is weakly better off under �′ than
under �. The policy �′ can be constructed following the steps in the proofs of Theorems
1* and 2*. Now suppose that �′ is not a deterministic monotone rule (i.e., there is no
θ̂ such that π ′(1|θ) = 1(θ ≥ θ̂) for F-almost all θ). As in Section 3.2, let U�′

(x, 1|x) be
the expected payoff of an agent with signal x who, under the policy �′ hears that s = 1,
and who expects all other agents to invest if and only if their signal exceeds x. Sup-
pose that U�′

(x, 1|x) has a unique global minimum x ≡ arg minx U
�′

(x, 1|x), and that
x ≤ xmax (these properties are not assumed in the proof but permit us to illustrate the
role of Property (iii*) in Condition M* in the simplest possible terms). That �′ satisfies
the perfect-coordination property implies that U�′

(x, 1|x) > 0, for otherwise it is ratio-
nalizable for some of the agents with signal x ≤ x not to invest, after hearing that s = 1
(the arguments are similar to those in the baseline model). To make things interesting,
suppose there exist two disjoint intervals of fundamentals �−, �+ ⊂ Θ(x), both con-
sistent with x, such that (a) sup�− ≤ inf�+, (b) u(θ, 1 − P(x|θ)) ≤ 0 for F-almost all
θ ∈ �− ∪�+, (c) π ′(1|θ) > 0 for F-almost all θ ∈ �−, and (iv) π′(1|θ) < 1 for F-almost all
θ ∈�+ (as we show in the Appendix, when these properties do not hold there exist trivial
improvements of the policy �′ even when Property (iii*) in Condition M* does not hold).

Then, consider a binary policy �̃ = ({0, 1}, π̃ ) constructed from �′ by reducing the
probability of the pass grade s = 1 over the interval �− and increasing it over the interval
�+, as in Figure 3. Let


S(x) ≡
∫ +∞

−∞
u
(
θ, 1 − P(x|θ)

)
p(x|θ)

(
π̃(1|θ) −π ′(1|θ)

)
dF(θ).

Suppose that the new policy �̃ is such that 
S(x) = 0, which implies that U�̃(x, 1|x) >
0. Property (iii*), along with the fact that (a) π̃(1|θ) − π′(1|θ) crosses zero from below,
(b) p(x|θ) is log-supermodular, and (c) Conditions FB holds, guarantees that 
S(x) ≥ 0

for all x < x, which in turn implies that U�̃(x, 1|x) > 0 for all x < x. The proof in the
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Figure 3. Construction of improving policy �̃= ({0, 1}, π̃ ).

Appendix leverages this property to show how to construct a sequence of perturbations
of the policy �′ leading to a new binary policy �θ̂ = ({0, 1}, πθ̂ ) that is deterministic and

monotone and such that U�θ̂(x, 1|x) > 0 for all x, which guarantees that �θ̂ also satisfies
the perfect-coordination property. That the new policy �θ̂ improves over the original
one � then follows from the fact that the policymaker’s payoff satisfies Property (ii*)—
the arguments for this last step are similar to those leading to Theorem 3 in the baseline
model.

4.3 Discussion: Role of multiplicity of receivers and exogenous private information

It is worth contrasting the results about the suboptimality of monotone rules (when
Condition M* is violated) to those for economies featuring either a single privately-
informed receiver, or multiple receivers with no exogenous private information.

Single receiver. With a single receiver, the optimal policy is a simple monotone
pass/fail policy with cutoff equal to θ∗ = 0. This is because, in this model, the policy-
maker’s and the receiver’s payoffs are aligned (they both want to avoid default when
possible). With a single receiver, there is no risk of adversarial coordination, and hence
the optimal policy coincides with the one that the designer would select if she trusted
the receiver to play favorably to her.

Things are different when preferences are misaligned. To see this, suppose the poli-
cymaker’s payoff is equal to W in case of no default, and L <W in case of default, with
W , L ∈ R constant, as in Examples 2 and 3 above. However, now suppose that the re-
ceiver’s payoff differential between investing and not investing is equal to −g in case
of default and −b in case of no default, with g > 0 > b. Such a payoff differential may
reflect the idea that the receiver is a speculator whose payoff is zero when he refrains
from speculating (equivalently, when he invests), is positive when he speculates and de-
fault occurs, and is negative when he speculates and default does not occur. Using the
results in Guo and Shmaya (2019), one can then show that the optimal policy in this
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case has the interval structure: each type x of the receiver is induced to play the action
favorable to the policymaker (abstain from speculating) over an interval of fundamen-
tals [θ1(x), θ2(x)], with θ1(x) < 1 < θ2(x), for all x, and with θ1(x) decreasing in x and
θ2(x) increasing in x. Such a policy requires disclosing more than two signals, and hence
cannot be implemented through a simple pass/fail test. In contrast, with a continuum
of heterogeneously informed receivers with the same payoffs as in the variant above,
the optimal policy is a pass–fail test that is typically nonmonotone in θ.32 Furthermore,
when the optimal policy is not monotone, it does not have the interval structure, as each
receiver with signal x is induced to invest over a nonconnected set of fundamentals. The
reason for these differences is that, with a single receiver, to discourage the latter from
taking the adversarial action, the policymaker must persuade the receiver that the fun-
damentals are likely to be above 1, in which case the attack is unsuccessful. With mul-
tiple receivers, instead, the policymaker must persuade each receiver that enough other
receivers are not attacking, which as shown above, is best accomplished by a nonmono-
tone policy that makes it difficult for the receivers to commonly learn the fundamentals,
when the latter are between 0 and θMS.33

Multiple receivers with no exogenous private information. When all receivers have
the same posterior beliefs, no matter whether payoffs are aligned or misaligned, under
MARP, each receiver plays the friendly action only if it is dominant to do so. The optimal
policy is a simple monotone pass/fail policy with cutoff θ∗ implicitly defined by∫ 1

θ∗
bdF(θ) +

∫ ∞

1
gdF(θ) = 0.

The reason why the optimal policy is monotone when the receivers possess no exoge-
nous private information is that the policymaker needs to convince each of them that θ
is above 1 with sufficiently high probability to make the friendly action dominant.

5. Conclusions

We consider the design of public information in coordination settings in which the de-
signer does not trust the receivers to play favorably to her. We show that, despite the fear
of adversarial coordination, the optimal policy induces all receivers to take the same ac-
tion. Importantly, while each agent can perfectly predict the action of any other agent,
he is not able to predict the beliefs that rationalize such actions. We identify conditions
under which the optimal policy has a pass/fail structure, as well as conditions under
which the optimal policy is monotone, passing institutions with strong fundamentals
and failing the others.

32This is because, under MARP, all agents play the friendly action if and only if it is iteratively dominant
for them to do so, irrespective of the alignment in payoffs.

33Mensch (2021) characterizes general conditions under which the optimal policy is monotone with a
single, uninformed, receiver. Goldstein and Leitner (2018) study an economy in which these conditions are
not satisfied and the optimal policy is nonmonotone. The analysis in these works is very different in that
it does not identify the role that coordination and the receivers’ private information play for the optimal
policy.
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The results are worth extending in a few directions. The analysis assumes that the
policymaker is Bayesian and knows the distribution from which the agents’ exogenous
private information is drawn. While this is a natural starting point, in future work it
would be interesting to investigate how the structure of the optimal policy is affected by
the policymaker’s uncertainty about the agents’ information sources.34

Motivated by the applications the analysis is meant for (most notably, stress testing),
we have confined attention to nondiscriminatory disclosures. In future work, it would
be interesting to extend the analysis to settings in which agents are endowed with ex-
ogenous private information (as assumed here) but the designer can disclose different
information to different agents (discriminatory policies).

The analysis in the present paper is static. Many applications of interest are dy-
namic, with agents coordinating on multiple attacks and/or learning over time (for the
role of dynamics in global games, see, among others, Angeletos, Hellwig, and Pavan
(2007)). In future work, it would be interesting to consider dynamic extensions and in-
vestigate how the timing of information disclosures is affected by the agents’ behavior
in previous periods.35

Finally, the analysis is conducted by assuming that the maximal information that
the designer can collect about the fundamentals (in the paper, θ) is exogenous. In fu-
ture work, it would be interesting to accommodate for the possibility that part of this
information is endogenous. For example, in stress testing, the policymaker may solicit
information from the same banks that are under scrutiny. This creates an interesting
screening + persuasion problem in the spirit of the literature on privacy in sequential
contacting (see, e.g., Calzolari and Pavan (2006a,b), and Dworczak (2020)).36

Appendix

Proof of Theorem 1*. Given any regular policy � = (S , π ) and any n ∈ N, let T�
(n) be

the set of strategies surviving n rounds of iterated deletion of interim strictly dominated
strategies (IDISDS), with T�

(0) denoting the entire set of strategy profiles a = (ai(·))i∈[0,1],
where for any i ∈ [0, 1], ai(x, s) denotes the probability agent i invests, given (x, s).
Let a�

(n) ≡ (a�(n),i(·))i∈[0,1] ∈ T�
(n) denote the most aggressive profile surviving n rounds

of IDISDS (i.e., the profile in T�
(n) that is most adversarial to the policymaker, in the

sense that it minimizes the policymaker’s ex ante payoff).The profiles (a�
(n) )n∈N can be

constructed inductively as follows. The profile a�
(0) ≡ (a�(0),i(·))i∈[0,1] prescribes that all

34See Dworczak and Pavan (2022) for a notion of robustness in information design that accounts for this
type of ambiguity.

35For models of dynamic persuasion, see, among others, Ely (2017) and Basak and Zhou (2022).
36Calzolari and Pavan (2006a) considers an auction setting in which the sender is the initial owner of

a good and where the different receivers are privately-informed bidders in an upstream market who then
resell in a downstream market. Calzolari and Pavan (2006b) studies information design in a model of se-
quential contracting with multiple principals, where upstream principals play the role of senders persuad-
ing downstream principals (the receivers). Dworczak (2020) contains a general analysis of persuasion in
mechanism-design environments with aftermarkets in which senders restrict attention to cut-off mecha-
nisms.
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agents refrain from investing, irrespective of (x, s). Next, let U�
i (x, s; a) denote the pay-

off differential between investing and not investing for agent i receiving information
(x, s) when, under �, all other agents follow the strategy in a. Then a�(n),i(x, s) = 0 if

U�
i (x, s; a�

(n−1) ) ≤ 0 and a�(n),i(x, s) = 1 if U�
i (x, s; a�

(n−1) ) > 0. MARP consistent with � is

the profile (a�i (·))i∈[0,1] given by a�i (·) = limn→∞a�(n),i(·), all i ∈ [0, 1].

Next, observe that, for any n, there exists a function a�(n)(·) such that a�(n),i(·) = a�(n)(·)
for all i ∈ [0, 1]. With an abuse of notation, hereafter we thus denote by a� the com-
mon strategy that all agents follow under MARP consistent with �. For any θ and
s ∈ supp(π(θ)), aggregate investment under MARP consistent with � given (θ, s) is thus
the same for any x, x′ ∈ X(θ) and is given by A�(θ, s) ≡ ∫

a�(x, s) dP(x|θ).
Next, consider the policy �+ = (S+, π+ ), S+ ≡ S × {0, 1}, that, for each θ, draws the

public signal s from the same distribution π(θ) ∈ 
(S ) as the original policy �, and then,
for each s it draws, it also announces the sign of the agents’ payoff differential at (θ, s),
when agents play according to MARP consistent with the original policy �. That is, for
any θ and any s ∈ supp(π(θ)), the new policy �+ thus announces (s, 1(u(θ, A�(θ, s)) >
0)). In the baseline model of Section 2, the sign of u(θ, A�(θ, s)) is uniquely determined
by the regime outcome r�(θ, s). In that environment, for any θ, and any s ∈ supp(π(θ)),
the new policy �+ thus announces (s, r�(θ, s)).

Define T�+
(n) and a�

+
(n) analogously to T�

(n) and a�(n) above, but with respect to �+.
The proof is in three steps. Steps 1 and 2 show that any agent i who, given (x, s), finds

it dominant (alternatively, iteratively dominant) to invest under �, also finds it domi-
nant (alternatively, iteratively dominant) to invest under �+ when receiving information
(x, (s, 1)). Step 3 uses the above property to establish that, because the game is super-
modular and a�+

is “less aggressive” than a� (meaning that any agent who, given (x, s),
invests under a� also invests under a�+

when receiving information (x, (s, 1)), then, un-
der a�+

, all agents invest (alternatively, refrain from investing) when receiving informa-
tion (s, 1) (alternatively, (s, 0)).

Step 1. We prove that {(x, s) : U�
i (x, s; a) > 0 ∀a} ⊆ {(x, s) : U�+

i (x, (s, 1); a) > 0 ∀a},
for all i ∈ [0, 1]. That is, any agent i who, under �, finds it dominant to invest, given
information (x, s), also finds it dominant to invest under �+ when receiving information
(x, (s, 1)).

First, note that the supermodularity of the game implies that {(x, s) : U�
i (x, s; a) >

0 ∀a} = {(x, s) : U�
i (x, s; a�

(0) ) > 0} and {(x, s) : U�+
i (x, (s, 1); a) > 0 ∀a} = {(x, s) : U�+

i (x,

(s, 1); a�+
(0) ) > 0}.

Now let ��
i (x, s) denote the distribution over � describing the beliefs of agent i ∈

[0, 1] when receiving information (x, s) ∈ R × S under �, and ��+
i (x, (s, 1)) the corre-

sponding beliefs under �+, when receiving information (x, (s, 1)) under �+. Bayesian
updating implies that

��+
i

(
dθ|x, (s, 1)

) = 1
(
u
(
θ, A�(θ, s)

)
> 0

)
��
i (1|x, s)

��
i (dθ|x, s), (11)

where ��
i (1|x, s) ≡ ∫

{θ∈�:u(θ,A�(θ,s))>0} �
�
i (dθ|x, s) is the total probability an agent with

information (x, s) assigns, under �, to fundamentals for which u(θ, A�(θ, s)) > 0.
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Next, observe that, for any i ∈ [0, 1] and (x, s) ∈R× S such that

U�
i

(
x, s; a�

(0)

) =
∫
θ
u(θ, 0)��

i (dθ|x, s) > 0, (12)

we also have that

U�+
i

(
x, (s, 1); a�+

(0)

)
��
i (1|x, s) =

∫
θ
u(θ, 0)1

(
u
(
θ, A�(θ, s)

)
> 0

)
��
i (dθ|x, s)

≥
∫
θ
u(θ, 0)��

i (dθ|xi, s) =U�
i

(
x, s; a�

(0)

)
> 0.

The first equality follows from the fact that, under a�
(0), no agent invests, along with the

property of posterior beliefs in (11). The first inequality follows from the monotonicity
of u(θ, A) in A along with the fact A�(θ, s) ≥ 0, which together imply that u(θ, 0) ≤ 0 for
any θ for which u(θ, A�(θ, s)) ≤ 0. The second equality follows from the definition of
U�
i (x, s; a�

(0) ). Finally, the second inequality follows from (12).
Thus, any agent for whom investing was dominant after receiving information (x, s)

under �, continues to find it dominant to invest after receiving information (x, (s, 1))
under �+.

Step 2. Next, take any n > 1. Assume that, for any 1 ≤ k≤ n− 1, any i ∈ [0, 1],{
(x, s) : U�

i (x, s; a) > 0 ∀a ∈ T�
(k−1)

} ⊆ {
(x, s) : U�+

i

(
x, (s, 1); a

)
> 0, ∀a ∈ T�+

(k−1)

}
. (13)

Arguments similar to those establishing the result in Step 1 above imply that{
(x, s) : U�

i (x, s; a) > 0 ∀a ∈ T�
(n−1)

} ⊆ {
(x, s) : U�+

i

(
x, (s, 1); a

)
> 0, ∀a ∈ T�+

(n−1)

}
. (14)

Intuitively, the result follows from the following three properties: (a) because the game is
supermodular, {(x, s) : U�

i (x, s; a) > 0 ∀a ∈ T�
(n−1)} = {(x, s) : U�

i (x, s; a�
(n−1) ) > 0}, where

recall that a�
(n−1) is the most aggressive profile surviving n− 1 rounds of IDISDS (clearly,

the same property holds for �+); (b) a�+
(n−1) is “less aggressive” than a�

(n−1), in the sense

that any agent who, given (x, s), invests under a�
(n−1) also invests under �+ when receiv-

ing information (x, (s, 1)); and (c) the extra information that θ is such u(θ, A�(θ, s)) > 0
removes from the support of the agents’ posterior beliefs states in which the payoff dif-
ferential from investing is nonpositive under a�, and hence also under a�

(n−1) (recall that

a�
(n−1) is more aggressive that a�, meaning that any agent who, given (x, s), invests under

a�
(n−1), also invests under a� when receiving the same information (x, s)).

Step 3. Equipped with the results in Steps 1 and 2 above, we now prove that, for all
θ ∈ � and s ∈ supp(π(θ)) such that u(θ, A�(θ, s)) > 0, a�

+
(x, (s, 1)) ≡ limn→∞ a�

+
(n)(x, (s,

1)) = 1 for all x. This follows directly from the fact that, as shown above, a�(x, s) = 1 ⇒
a�

+
(x, (s, 1)) = 1. The announcement that θ is such that u(θ, A�(θ, s)) > 0 thus reveals

to each agent that, when all other agents play according to MARP consistent with the
new policy �+, the payoff differential from investing is strictly positive. Any agent i re-
ceiving information (s, 1) under �+ thus necessarily invests, no matter x. Under the new
policy �+, all agents thus invest when they learn that θ is such that u(θ, A�(θ, s)) > 0.
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That they all refrain from investing when they learn that θ is such that u(θ, A�(θ, s)) ≤ 0
follows from the fact that such an announcement makes it common certainty that θ ≤ θ.

We conclude that the new policy �+ satisfies the perfect-coordination property.
That, when the agents play according to MARP, for any θ, no agent is worse off (and
some agents are strictly better off) under �+ than under � follows from the fact that, for
all s ∈ supp(π(θ)), the following are true: (1) when (θ, s) is such that u(θ, A�(θ, s)) > 0, all
agents who are not investing under � (thus obtaining an expected payoff of zero) invest
under �+ (obtaining an expected payoff u(θ, 1) > 0), and all agents who are investing
under � continue to invest but obtain a larger payoff u(θ, 1) > u(θ, A�(θ, s)) because of
the monotonicity of u(θ, A) in A; (2) when, instead, (θ, s) is such that u(θ, A�(θ, s)) ≤ 0,
all agents who are not investing under � (thus obtaining an expected payoff of zero) con-
tinue not to invest under �+, whereas all agents who are investing under � (obtaining a
negative payoff) now refrain from investing thus obtaining a payoff of zero.

Next, suppose that, under MARP consistent with �, for any θ and s ∈ supp(π(θ)),
the regime outcome is a deterministic function of (θ, s). Then, for any (θ, s), the sign of
u(θ, A�(θ, s)) is determined by the regime outcome (it is strictly positive when r�(θ, s) =
1, i.e., when there is no default, and it is weakly negative when r�(θ, s) = 0, i.e., when
there is default). Because the regime outcome is monotone in A, by inducing all agents
to invest when u(θ, A�(θ, s)) > 0 and not to invest when u(θ, A�(θ, s)) ≤ 0, the policy
�+ induces the same regime outcome as �.

To see that the policymaker is better off under �+ than under �, for any set of sig-
nals S ⊆ S , any θ, let π+(S, 1|θ) (alternatively, π+(S, 0|θ)) denote the probability that
the policy π+ selects signals (s, 1) (alternatively, (s, 0)) with s ∈ S. Then let ��+

(S, 1) ≡∫
θ π

+(S, 1|θ) dF(θ) (alternatively, ��+
(S, 0) ≡ ∫

θ π
+(S, 1|θ) dF(θ)) denote the ex ante

probability of announcements (s, 1) (alternatively, (s, 0)) with s ∈ S, under the policy
�+. Finally, for any S ⊆ S , let ��(S) ≡ ∫

π(S|θ) dF(θ) denote the ex ante probability the
policy � selects signals in S. Condition PC implies that∫

S

(∫ [
1
(
u
(
θ, A�(θ, s)

)
> 0

)
UP (θ, 1) + 1

(
u
(
θ, A�(θ, s)

) ≤ 0
)
UP (θ, 0)

]
��(dθ|s)

)
��(ds)

≥
∫
S

(∫
UP

(
θ, A�(θ, s)

)
��(dθ|s)

)
��(ds).

Hence, the policymaker is better off under �+ than under �.
The result in the theorem then follows by taking �∗ = �+.

Proof of Theorem 2*. The proof is in 2 steps. Step 1 shows that, when p(x|θ) is log-
supermodular and Condition FB holds, then under any regular policy, MARP is in cut-off
strategies. Step 2 then leverages the result in Step 1 to show that, starting from any policy
� that satisfies the perfect-coordination property, one can construct a binary policy �∗
that also satisfies the perfect-coordination property and such that, for any θ, the prob-
ability that each agent invests under �∗ is the same as under �, which implies the result
in the theorem.
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Step 1. Fix an arbitrary policy � = (S , π ) and, for any pair (x, s) ∈ R × S , let
��(θ|x, s) represent the endogenous posterior beliefs over � of each agent receiving ex-
ogenous information x and endogenous information s. Next, let U�(x, s|k) ≡ ∫

u(θ, 1 −
P(k|θ))��(dθ|x, s) denote the expected payoff differential of an agent with information
(x, s), when all other agents follow a cut-off strategy with cut-off k (i.e., they invest if
their private signal exceeds k and refrain from investing if it is below k).

Lemma 1. Suppose that p(x|θ) is log-supermodular and that Condition FB holds. Given
any policy � = (S , π ), for any s ∈ S , there exists ξ�;s ∈ R such that MARP consistent with
� is given by the strategy profile a� ≡ (a�i )i∈[0,1] such that, for any s ∈ S , x ∈ R, i ∈ [0, 1],
a�i (x, s) = 1(x > ξ�;s ) with ξ�;s ≡ sup{x : U�(x, s|x) ≤ 0} if {x : U�(x, s|x) ≤ 0} �= ∅, and
ξ�;s ≡ −∞ otherwise. Moreover, the strategy profile a� is a BNE of the continuation game
that starts with the announcement of the policy �.

Proof of Lemma 1. Fix the policy � = (S, π ). For any s ∈ S , let ξ�;s
(1) ≡ sup{x :

limk→∞ U�(x, s|k) ≤ 0}. Given the public signal s, it is dominant for any agent with pri-
vate signal x exceeding ξ�;s

1 to invest. Next, recall that, for any n ∈ N, T�
(n) denotes the set

of strategy profiles that survive the first n rounds of iterated deletion of interim strictly
dominated strategies (IDISDS), and a�

(n) ≡ (a�(n),i )i∈[0,1] the most aggressive profile in

T�
(n). Observe that the profile a�

(1) is given by a�(1),i(x, s) = 1(x > ξ�;s
(1) ) for all (x, s) ∈R× S ,

and all i ∈ [0, 1], and minimizes the policymaker’s payoff not just in expectation but for
any (θ, s). This follows from the fact that, when nobody else invests, the expected pay-
off differential

∫
u(θ, 0)��(dθ|x, s) between investing and not investing crosses 0 only

once and from below at x = ξ�;s
(1) . The single-crossing property of

∫
u(θ, 0)��(dθ|x, s) in

turn is a consequence of the fact that u(θ, 0) crosses 0 only once from below at θ = θ (as
implied by Condition FB and the definition of θ) along with Property SCB below.

Property SCB. Suppose that the function h : R → R crosses 0 only once from below at
θ = θ0 (i.e., h(θ) ≤ 0 for all θ ≤ θ0 and h(θ) ≥ 0 for all θ > θ0). Let q : R2 → R+ be a
log-supermodular function and suppose that, for any θ, there is an open interval �θ =
(�θ, �̄θ ) ⊂ R containing θ such that q(x, θ) > 0 for all x ∈ �θ and q(x, θ) = 0 for (almost)
all x ∈ R \ �θ, with the bounds �θ, �̄θ nondecreasing in θ. Choose any (Lebesgue) mea-
surable subset � ⊆ R containing θ0 and, for any x ∈ R, let �(x; �) ≡ ∫

� h(θ)q(x, θ) dθ.
Suppose there exists x� ∈ �θ0 such that �(x�; �) = 0. Then, necessarily, �(x; �) ≥ 0 for
all x ∈ �θ0 with x > x�, and �(x; �) ≤ 0 for all x ∈ �θ0 with x < x�, with both inequal-
ities strict if (a) {θ ∈ � : h(θ) �= 0} has strict positive Lebesgue measure, (b) q is strictly
log-supermodular over R2.37

Proof of Property SCB. For any x ∈ R, let �x ≡ {θ ∈ � : x ∈ �θ}. The monotonicity of
�θ in θ implies that �x is monotone in x in the strong-order sense. Pick any x′ ∈ �θ0 with
x′ > x�. That x� and x′ belong to �θ0 implies that θ0 ∈�x� ∩�x′ . Next, observe that

�
(
x′; �

) =
∫
�x′

h(θ)q
(
x′, θ

)
dθ

37That q is strictly log-supermodular over R2 also implies that q(x, θ) > 0 for all (x, θ) ∈ R2.
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=
∫
�x′∩�x�

h(θ)q
(
x′, θ

)
dθ+

∫
�x′ \�x�

h(θ)q
(
x′, θ

)
dθ

=
∫
�x�∩�x′ ∩(−∞,θ0 )

h(θ)q
(
x�, θ

) q(
x′, θ

)
q
(
x�, θ

) dθ

+
∫
�x�∩�x′∩(θ0,∞)

h(θ)q
(
x�, θ

) q(
x′, θ

)
q
(
x�, θ

) dθ

+
∫
�x′ \�x�

h(θ)q
(
x′, θ

)
dθ

≥ q
(
x′, θ0

)
q
(
x�, θ0

)(∫
�x�∩�x′ ∩(−∞,θ0 )

h(θ)q
(
x�, θ

)
dθ+

∫
�x�∩�x′∩(θ0,∞)

h(θ)q
(
x�, θ

)
dθ

)

+
∫
�x′ \�x�

h(θ)q
(
x′, θ

)
dθ

≥ q
(
x′, θ0

)
q
(
x�, θ0

)�(
x�; �

)︸ ︷︷ ︸
=0

+
∫
�x′ \�x�

h(θ)q
(
x′, θ

)
dθ ≥ 0.

The first equality follows from the fact that q(x′, θ) = 0 for almost all θ ∈ � \ �x′ . The
second equality follows from the fact that �x′ can be partitioned into �x′ ∩ �x� and
�x′ \ �x� . The third equality follows from noting that q(x�, θ) > 0 for all θ ∈ �x� . The
first inequality follows from the monotonicity of q(x′, θ)/q(x�, θ) over �x� ∩�x′ as a con-
sequence of q being log-supermodular, along with the fact that θ0 ∈ �x� ∩ �x′ and the
assumption that h crosses 0 once from below at θ = θ0. The second inequality follows
from the fact that, for any θ ∈ (�x� \ �x′ ) ∩ (−∞, θ0 ), h(θ) ≤ 0, along with the fact that
�x� ∩ (θ0, +∞) = �x� ∩ �x′ ∩ (θ0, ∞), with the last property following from noting that
the sets �x are ranked in the strong-order sense. The last inequality follows from the
observation that, for any θ ∈ �x′ \ �x� , h(θ) ≥ 0, which in turn is a consequence of (i)
the monotonicity of the sets �x in x, (ii) the assumption that h crosses 0 only once from
below at θ = θ0, and (iii) the assumption that θ0 ∈ �x� ∩�x′ .

Similar arguments imply that, for x < x�, �(x; �) ≤ 0. The same arguments also
imply that, when (a) {θ ∈ � : h(θ) �= 0} has strict positive Lebesgue measure and (b) q is
strictly log-supermodular over R2, then �(x; �) < 0 for all x < x� and �(x; �) > 0 for all
x > x�. This completes the proof of Property SCB.

The facts that (a) the continuation game is supermodular, (b) the density p(x|θ) is
log-supermodular, and (c) when agents follow monotone strategies, the regime outcome
is monotone in θ imply that, for any s ∈ S , there exists a unique sequence (ξ�;s

(n) )n∈N such

that, for any n ≥ 1, a�
(n) is such that a�(n),i(x, s) = 1(x > ξ�;s

(n) ) for all i and all (x, s) ∈R× S ,

with each ξ�;s
(1) as defined above, and with all other cut-offs ξ�;s

(n), n > 1, s ∈ S , de-

fined inductively by ξ�;s
(n) ≡ sup{x : U�(x, s|ξ�;s

(n−1) ) ≤ 0}. Indeed, Condition FB together

with Property SCB jointly imply that U�(x, s|ξ�;s
(n−1) ) = ∫

u(θ, 1 − P(ξ�;s
(n−1)|θ))��(dθ|x, s)
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crosses zero once from below in x and, therefore, U�(x, s|ξ�;s
(n−1) ) > 0 if, and only if,

x > ξ�;s
(n).

Let T� ≡ ∩∞
n=1T

�
n denote the set of strategy profiles that survive IDISDS under �.

The most aggressive strategy profile in T� is then given by a�i (x, s) ≡ 1(x > ξ�;s ) for all

i and all (x, s) ∈ R× S , where, for any s ∈ S , ξ�;s ≡ limn→∞ ξ�;s
(n). The sequence (ξ�;s

(n) )n is

monotone and its limit is given by ξ�;s = sup{x : U�(x, s|x) ≤ 0} if {x : U�(x, s|x) ≤ 0} �= ∅,
and ξ�;s ≡ −∞ otherwise. This establishes the first part of the lemma. That the profile
a� is a BNE for the continuation game that starts with the announcement of the policy
� follows from the fact that, given any s ∈ S , when all agents follow a cut-off strategy
with cutoff ξ�;s , the best response for each agent i ∈ [0, 1] is to invest for xi > ξ�;s and to
refrain from investing for xi < ξ�;s . This completes the proof of the lemma.

Step 2. Now take any regular policy � = (S , π ) satisfying the perfect-coordination
property. Given the result in Theorem 1, without loss of generality, assume that � =
(S , π ) is such that S = {0, 1} × Ŝ, for some measurable set Ŝ, and is such that (a) when
the policy discloses any signal s = ( ŝ, 1), all agents invest and default does not happen,
whereas (b) when the policy discloses any signal s = ( ŝ, 0), all agents refrain from invest-
ing and default happens.

Equipped with the result in Lemma 1, we show that, starting from �= (S , π ), one can
construct a binary policy �∗ = ({0, 1}, π∗ ) also satisfying the perfect-coordination prop-
erty and such that the probability of default under �∗ is the same as under �. The policy
�∗ = ({0, 1}, π∗ ) is such that, for any θ, π∗(1|θ) = ∫

Ŝ π(d( ŝ, 1)|θ). That is, for each θ, the
binary policy �∗ recommends to invest with the same total probability as the original
policy � discloses signals leading all agents to invest.38

We now show that, under �∗, when the policy announces that s = 1, the unique ra-
tionalizable action for each agent is to invest. To see this, for any (x, 1) that are mutually
consistent given �∗, let U�∗

(x, 1|k) denote the expected payoff differential for any agent
with private signal x, when the policy �∗ announces s = 1, and all other agents follow a
cut-off strategy with cut-off k.39 From the law of iterated expectations, we have that

U�∗
(x, 1|k) =

∫
Ŝ
U�

(
x, ( ŝ, 1)|k

)
ς�(dŝ|x, 1) (15)

where ς�(·|x, 1) is the probability measure over Ŝ obtained by conditioning on the event
(x, 1), under �. For any signal s = ( ŝ, 1) in the range of π, MARP consistent with � is such
that a�i (x, ( ŝ, 1)) = 1 all x ∈R, and all i, meaning that investing is the unique rationaliz-
able action after � announces s = ( ŝ, 1). Lemma 1 in turn implies that, for all s = ( ŝ, 1)
in the range of π, ŝ ∈ Ŝ, all k ∈R, U�(k, ( ŝ, 1)|k) > 0. From (15), we then have that, for all
all k ∈ R, U�∗

(k, 1|k) > 0. In turn, this implies that, given the new policy �∗, when s = 1
is disclosed, under MARP consistent with �∗, all agents invest, that is, a�

∗
i (x, 1) = 1 all x,

all i ∈ [0, 1]. It is also easy to see that, when the policy �∗ discloses the signal s = 0, it be-
comes common certainty among the agents that θ ≤ θ. Hence, under MARP consistent

38
∫
Ŝ π(d( ŝ, 1)|θ) represents the total probability that the measure π(θ) assigns to signal ( ŝ, 1).

39Recall that (x, 1) are mutually consistent under �∗ if p�∗
(x, 1) ≡ ∫

p(x|θ)π∗(1|θ) dF(θ) > 0.
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with �∗, after s = 0 is disclosed, all agents refrain from investing, irrespective of their pri-
vate signals. The new policy �∗ so constructed thus (a) satisfies the perfect-coordination
property, and (b) is such that, for any θ, the probability of default under �∗ is the same
as under �.

Proof of Theorem 3*. The conditions in the theorem imply that Theorems 1* and
2* hold. Thus, assume that the policy � = (S , π ) (a) is a regular (possibly stochastic)
“pass/fail”policy (i.e., S = {0, 1}, with π(1|θ) = 1 − π(0|θ) denoting the probability that
signal s = 1 is disclosed when the fundamentals are θ), (b) is such that π(1|θ) = 0 for
all θ ≤ θ and π(1|θ) = 1 for all θ > θ, and (c) satisfies the perfect-coordination property.
Theorems 1* and 2* imply that, if � does not satisfy these properties, there exists an-
other policy �′ that satisfies these properties and yields the policymaker a payoff weakly
higher than �. The proof then follows from applying the arguments below to �′ instead
of �.

Suppose that � is such that there exists no θ̂ such that π(1|θ) = 0 for F-almost
all θ ≤ θ̂ and π(1|θ) = 1 for F-almost all θ > θ̂.40 We establish the result by showing
that there exists a deterministic monotone policy �θ̂ = ({0, 1}, πθ̂ ) satisfying the perfect-
coordination property that yields the policymaker a payoff strictly higher than �.

Recall that, for the policy � to satisfy the perfect-coordination property, it must be
that, when the policy discloses the signal s = 1, U�(x, 1|x) > 0 for all x such that (x, 1)
are mutually consistent, where U�(x, 1|x) is the expected payoff differential of an agent
with signal x who hears that s = 1 and who expects all other agents to follow a cut-off
strategy with threshold x.

Let G denote the set of policies �′ = (S , π ′ ) that, in addition to properties (a) and (b)
above, are such that U�′

(x, 1|x) ≥ 0 for all x such that (x, 1) are mutually consistent.41

For any � ∈G, let UP[�] denote the policymaker’s ex ante expected payoff when, under �,
agents invest after hearing that s = 1 and refrain from investing after hearing that s = 0.
Denote by arg max�̃∈G UP[�̃] the set of policies that maximize the policymaker’s payoff
over G.42

Step 1 below shows that any � ∈ arg max�̃∈G UP[�̃] is such that π(1|θ) = 0 for F-
almost all θ ≤ θ∗ and π(1|θ) = 1 for F-almost all θ > θ∗, with θ∗ as defined in (4).
Step 2 then shows that the policymaker’s payoff under the optimal monotone policy
�θ∗ = ({0, 1}, πθ∗

) with cut-off θ∗ can be approximated arbitrarily well by a deterministic
monotone policy �θ̂ = ({0, 1}, πθ̂ ) ∈ G that satisfies the perfect-coordination property,
thus establishing the theorem.

Step 1. Given any policy �, let

X� ≡ {
x : (x, 1) �-mutually consistent and U�(x, 1|x) = 0

}
.

40If this not the case, then the deterministic monotone policy �θ̂ = ({0, 1}, πθ̂ ) with cut-off θ̂ also satisfies
the perfect-coordination property and yields the policymaker the same payoff as �, in which case the result
trivially holds.

41As explained in the main text, some policies �′ in G need not satisfy the perfect-coordination property,
namely those for which there exists x, with (x, 1) mutually consistent, such that U�′

(x, 1|x) = 0.
42That arg max�̃∈G UP [�̃] �= ∅ follows from the compactness of G and the upper hemicontinuity of UP .
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Take any policy �′ ∈ G for which there exists no θ̂ such that π ′(1|θ) = 0 for F-almost
all θ ≤ θ̂ and π′(1|θ) = 1 for F-almost all θ > θ̂. Clearly, if X�′ = ∅, there exists another
policy �′′ ∈G that yields the policymaker a payoff strictly higher than �′.43 Thus, assume
that X�′ �= ∅, and let x̄ ≡ supX�′

. Claim A below shows that the set {θ ∈ Θ(x̄) : π ′(1|θ) <
1} has strict positive F-measure. Claim B shows that, given any �′ ∈ G for which the
posterior beliefs of the marginal agent with signal x̄ differ from those obtained by Bayes’
rule conditioning on the event that fundamentals are above some threshold θ̂, there
exists another policy �′′ ∈ G that yields the policymaker a payoff strictly higher than �′.
Finally, Claim C shows that, under the properties in Condition M*, the only policies �′ ∈
G that generate posterior beliefs for the marginal agents with signal x̄ equal to those
obtained from Bayes’ rule by conditioning on the event that fundamentals are above
some threshold θ̂ are such that π ′(1|θ) = 0 for F-almost all θ ≤ θ∗ and π ′(1|θ) = 1 for
F-almost all θ > θ∗. Jointly, the three claims thus establish the result that any policy
� ∈ arg max�̃∈G UP[�̃], is such that π(1|θ) = 0 for F-almost all θ ≤ θ∗ and π(1|θ) = 1 for
F-almost all θ > θ∗.

Given any x, let θ0(x) be the fundamental threshold below which the agents’ ex-
pected payoff differential is negative and above which it is positive, when all agents fol-
low a cut-off strategy with cut-off x. Because Condition FB holds, θ0(x) is well-defined.44

For any policy �= ({0, 1}, π ) ∈G, let p�(x, 1) ≡ ∫ +∞
−∞ π(1|θ)p(x|θ) dF(θ) denote the joint

probability density of the exogenous signal x and the endogenous signal s = 1.

Claim A. For any �′ = ({0, 1}, π ′ ) ∈G such that X�′ �= ∅, {θ ∈Θ(x̄) : π ′(1|θ) < 1} has strict
positive F-measure.

Proof of Claim A. Suppose, by contradiction, that π ′(1|θ) = 1 for F-almost all θ ∈
Θ(x̄). Property (i*) in Condition M* then implies that x̄ > xmax, where xmax is defined
as in (8). In fact, if this was not the case, the monotonicity of Θ(·) would imply that
infΘ(x̄) ≤ infΘ(xmax ) < θ. That π ′(1|θ) = 1 for F-almost all θ ∈ Θ(x̄) would then imply
that π ′(1|θ) = 1 for a set of fundamentals θ < θ of strict positive F-measure, which is
inconsistent with the assumption that �′ ∈G. Thus, necessarily, x̄ > xmax.

Now suppose that infΘ(x̄) ≥ θ. That π′(1|θ) = 1 for F-almost all θ ∈ Θ(x̄) means
that, from the perspective of an agent with signal x̄, the information conveyed by the
announcement that s = 1 under �′ is the same as under the monotone deterministic
policy �θ = ({0, 1}, πθ ) with cut-off θ̂ = θ. As a result, U�′

(x̄, 1|x̄) = U�θ(x̄, 1|x̄). Because
x̄ > xmax, and because, by definition of xmax, U�θ(x, 1|x) > 0 for all x > xmax, it must be
that U�′

(x̄, 1|x̄) > 0, which contradicts the assumption that x̄ ∈ X�′
. Hence, it must be

that infΘ(x̄) < θ. As explained above, however, this is inconsistent with the assumption
that �′ ∈G.

43In fact, because there exists no such a θ̂, there must exists a set (θ′, θ′′ ) ⊆ [θ, θ̄] of F-positive measure
over which π′(1|θ) < 1. The policy �′′ can then be obtained from �′ by increasing π′(1|θ) over such a set.
Provided the increase is small, �′′ ∈ G. Because UP (θ, 1) > UP (θ, 0) over [θ, θ̄], the policymaker’s payoff
under �′′ is strictly higher than under �′.

44When the regime outcome is a function of A and θ only, as in the baseline model, θ0(x) coincides with
the threshold below which default occurs and above which it does not occur when agents follow a cut-off
strategy with cut-off x.
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Next, for any �′ = ({0, 1}, π ′ ) ∈G, let

θH ≡ sup
{
θ ∈� : ∃δ > 0 s.t.π′(1|θ′)< 1 forF-almost all θ′ ∈ [θ− δ, θ)

}
.

The result in Claim A above implies that θH is such that θH > infΘ(x̄).

Claim B. Take any �′ = ({0, 1}, π ′ ) ∈ G such that X�′ �= ∅. Suppose that{
θ ∈ (θ, θH ) : π ′(1|θ) > 0

}
has strict positive F-measure. (16)

Then there exists another policy �′′ ∈G that yields the policymaker a payoff strictly higher
than �′.

Claim B essentially says that, if �′ ∈G is not a deterministic monotone rule, and there
exists a x̄ such that U�′

(x̄, 1|x̄) = 0, then it is improvable.

Proof of Claim B. The proof below distinguishes two cases.
Case 1: θ < θ0(x̄) ≤ θH . Consider the policy �ε,δ = ({0, 1}, πε,δ ) defined by πε,δ(1|

θ) = π ′(1|θ) for all θ ≤ θ0(x̄+δ), with δ > 0 small so that θ0(x̄+δ) < θH , and πε,δ(1|θ) =
min{π ′(1|θ) + ε, 1} for all θ > θ0(x̄ + δ), with ε > 0 also small. To see that, when ε and δ

are small, �ε,δ ∈ G, note that by definition of θ0(·), for any x, and any θ > θ0(x), u(θ, 1 −
P(x|θ)) > 0. This property, together with the monotonicity of θ0(·), jointly imply that,
for any x≤ x̄+ δ,∫ ∞

−∞
u
(
θ, 1 − P(x|θ)

)(
π ′(1|θ)1

(
θ ≤ θ0(x̄+ δ)

)
+ min

{
π ′(1|θ) + ε, 1

}
1
(
θ > θ0(x̄+ δ)

))
p(x|θ) dF(θ)

≥
∫ ∞

−∞
u
(
θ, 1 − P(x|θ)

)
π ′(1|θ)p(x|θ) dF(θ). (17)

To see what justifies the inequality, observe that u(θ, 1−P(x̄+δ|θ)) > 0 for θ > θ0(x̄+δ),
by definition of θ0(·). Because, for any θ, u(θ, 1 − P(x|θ)) is decreasing in x, we
then have that, for any x ≤ x̄ + δ, u(θ, 1 − P(x|θ)) > 0 for all θ > θ0(x̄ + δ). Because
�′ ∈ G, the right-hand side of (17) is nonnegative.45 Hence, for any x ≤ x̄ + δ such
that (x, 1) are mutually consistent under �ε,δ, because the left-hand side of (17) is
equal to U�ε,δ

(x, 1|x)p�ε,δ
(x, 1) and because, for such x, p�ε,δ

(x, 1) > 0, we have that
U�ε,δ

(x, 1|x) ≥ 0. That U�ε,δ
(x, 1|x) ≥ 0 also for all x > x̄ + δ such that (x, 1) are mutu-

ally consistent under �ε,δ follows from the fact that, by definition of x̄, for any x≥ x̄+ δ,
the function J(x) ≡ ∫ +∞

−∞ u(θ, 1 − P(x|θ))π ′(1|θ)p(x|θ) dF(θ) is bounded away from 0,
along with the fact that, for any δ > 0, the function family (Jε,δ(·))ε whose elements
Jε,δ(·) are given by Jε,δ(x) ≡ ∫ +∞

−∞ u(θ, 1 −P(x|θ))πε,δ(1|θ)p(x|θ) dF(θ) is continuous in
ε in the sup-norm in a neighborhood of 0.46 Because the new policy �ε,δ ∈G is such that

45Either (x, 1) are not mutually consistent under �′, in which case the right-hand side of (17) is zero, or
they are mutually consistent, in which case the right-hand side of (17) is equal to U�′

(x, 1|x)p�′
(x, 1), which

is nonnegative because p�′
(x, 1) > 0 and U�′

(x, 1|x) ≥ 0.
46That is, ∀k > 0, ∃
> 0 so that ∀ 0 < ε< 
, |Jε,δ(x) − J(x)| ≤ k, ∀x ≥ x̄+ δ.
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πε,δ(1|θ) ≥ π ′(1|θ) for all θ, with the inequality strict over a set of fundamentals θ ∈ (θ, θ̄]
of F-positive measure, the policymaker’s payoff under �ε,δ is strictly higher than under
�′, as claimed.

Case 2: θH < θ0(x̄). Consider the monotone deterministic policy �θ = {{0, 1}, πθ}
with cut-off θ̂ = θ. Then, for any x ≥ x̄,∫ +∞

−∞
u
(
θ, 1 − P(x|θ)

)
πθ(1|θ)p(x|θ) dF(θ)

<

∫ +∞

−∞
u
(
θ, 1 − P(x|θ)

)
π ′(1|θ)p(x|θ) dF(θ), (18)

where the inequality follows from the following facts: (i) πθ(1|θ) = π ′(1|θ) for F-almost
all θ ∈ (−∞, θ]∪[θH , +∞) and (ii) πθ(1|θ) = 1 ≥ π ′(1|θ) for F-almost all θ ∈ (θ, θH ), with
the inequality strict over a set of fundamentals in (θ, θH ) of strictly positive measure
under F , and (iii) u(θ, 1 − P(x|θ)) < 0 for θ ∈ (θ, θH ) (by the fact that θH < θ0(x̄) ≤ θ0(x)
along with the definition and monotonicity of the function θ0(·)).

Furthermore, (x̄, 1) are mutually consistent under �′, that is, p�′
(x̄, 1) > 0. Be-

cause πθ(1|θ) ≥ π ′(1|θ) for all θ, (x̄, 1) are mutually consistent also under �θ, that
is, p�θ(x̄, 1) > 0. Observe that, when x = x̄, the left-hand side of (18) is equal to
U�θ

(x̄, 1|x̄)p�θ(x̄, 1) whereas the right-hand side is equal to U�′
(x̄, 1|x̄)p�′

(x̄, 1). By the
definition of x̄, U�′

(x̄, 1|x̄) = 0, which then implies that U�θ
(x̄, 1|x̄) < 0. By continuity of

U�θ(x, 1|x) in x and the definition of xmax we thus have that x̄ < xmax. This property in
turn permits us to apply Properties (i*) and (ii*) of Condition M* below.

Next, let

θL ≡ inf
{
θ ∈� : ∃δ > 0 s.t.π′(1|θ) > 0, with π ′(1|·) continuous over [θ, θ+ δ)

}
.

By assumption, {θ ∈ (θ, θH ) : π ′(1|θ) > 0} has strict positive F-measure. If θL ≥ θH , then
there exists another policy �′′ for which θL < θH and such that (a) the policymaker’s
payoff under �′′ is the same as under �′ and (b) U�′′

(x, 1|x) = U�′
(x, 1|x) for all x. The

claim (and ultimately the theorem) then follows from applying the arguments below to
�′′ instead of �′. Thus, assume that θL < θH . Furthermore, note that u(θL, 1−P(x̄|θL )) <
0.47 Also observe that infΘ(x̄) < θL. This follows from the fact that, as shown above,
x̄ < xmax, which together with Property (i*) in Condition M* and the monotonicity of
Θ(·) in x implies that infΘ(x̄) < θ. Because θL ≥ θ, we thus have that infΘ(x̄) < θL.

Recall that x̄ is the largest solution to U�′
(x, 1|x) = 0. This property, together with the

fact that �′ ∈G implies that U�′
(x, 1|x) > 0 for all x > x̄ such that (x, 1) are mutually con-

sistent under �′. Next, observe that, for all x≥ x̄, (x, 1) are mutually consistent under �′.
Because u(θ, 1 − P(x̄|θ)) > 0 for θ > θ0(x̄) and u(θ, 1 − P(x̄|θ)) < 0 for θ < θ0(x̄) (by def-
inition of θ0(x̄)) and because U�′

(x̄, 1|x̄) = 0, it must be that supΘ(x̄) ≥ θ0(x̄). Because,
by definition of case (2), θ0(x̄) > θH , this means that supΘ(x̄) > θH . The monotonicity of
Θ(·) implies that supΘ(x) > θH for all x ≥ x̄. Because π ′(1|θ) = 1 for F-almost all θ > θH ,
we thus have, for all x≥ x̄, (x, 1) are mutually consistent under �′ (and hence U�′

(x, 1|x)
is well-defined for all such x).

47This follows from the definition of θ0(x̄), along with Condition FB, and the fact that θL < θH < θ0(x̄).
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The continuity of U�′
(·, 1|·) in x implies that, for any η ∈ (0, xmax − x̄), the function

U�′
(·, 1|·) is bounded away from zero over [x̄+ η, xmax]. That is, there exists K > 0 such

that U�′
(x, 1|x) >K for all x ∈ [x̄+η, xmax]. This property, along with (a) the continuity

of U�′
(·, 1|·) in x and (b) the fact that U�′

(x̄, 1|x̄) = 0 in turn imply that there exists η ∈
(0, xmax − x̄) such that U�′

(x, 1|x) ≥U�′
(x̄+η, 1|x̄+η) > 0 for all x ∈ [x̄+η, xmax].

Now fix η ∈ (0, xmax − x̄) such that

U�′
(x, 1|x) ≥U�′

(x̄+η, 1|x̄+η) > 0 ∀x ∈ [x̄+η, xmax]. (19)

For any ε > 0 small, then let δ(ε) be implicitly defined by

∫ θL+ε

θL

u
(
θ, 1 − P(x̄+η|θ)

)
π ′(1|θ)p(x̄+η|θ) dF(θ)

=
∫ θH

θH−δ
u
(
θ, 1 − P(x̄+η|θ)

)(
1 −π ′(1|θ)

)
p(x̄+η|θ) dF(θ). (20)

Observe that, for ε > 0 small, δ(ε) is also small, and such that

θL + ε < θH − δ(ε). (21)

Also, note that u(θ, 1 −P(x̄+η|θ)) < 0 for all θ ∈ [θL, θH ]. This follows from the fact that
u(θ, 1 − P(x̄+η|θ)) > 0 only for θ ≥ θ0(x̄+η) > θ0(x̄) > θH .

Consider the policy �ε,η = {{0, 1}, πε,η} defined by the following properties: (a)
πε,η(1|θ) = π ′(1|θ) for all θ /∈ {[θL, θL + ε] ∪ [θH − δ(ε), θH ]}; (b) πε,η(1|θ) = 0 for all
θ ∈ [θL, θL + ε]; and (c) πε,η(1|θ) = 1 for all θ ∈ [θH − δ(ε), θH ]. Because, for any x ≥ x̄,
(x̄, 1) are mutually consistent under �′, they are also mutually consistent under �ε,η.
This follows from the fact that πε,η(1|θ) = 1 for F-almost all θ > θH along with the fact
that supΘ(x) > θH for all x ≥ x̄, as shown above. Hence, U�ε,η

(x, 1|x) is well-defined for
all x ≥ x̄. Also, observe that p�ε,η

(x̄+η, 1) need not coincide with p�′
(x̄+η, 1). However,

Condition (20) implies that

U�ε,η
(x̄+η, 1|x̄+η)

sgn= U�′
(x̄+η, 1|x̄+η) > 0.

We now show, for any η ∈ (0, xmax − x̄) satisfying Condition (19), ε > 0 satisfying
Condition (21), and x such that (x, 1) are mutually consistent under �ε,η, U�ε,η

(x, 1|x) ≥
0. Recall that, by the definition of xmax, for all x > xmax, U�θ

(x, 1|x) is well-defined and
strictly positive, implying that∫ +∞

−∞
u
(
θ, 1 − P(x|θ)

)
πθ(1|θ)p(x|θ) dF(θ) > 0.

Also recall that, for any x, the payoff differential u(θ, 1 −P(x|θ)) is negative for θ < θ0(x)
and positive for θ > θ0(x), and that, for any x > xmax, θ0(x) > θ0(xmax ) > θ0(x̄) > θH .

Because the policy �ε,η is such that πε,η(1|θ) = πθ(1|θ) for all θ > θH and πε,η(1|θ) ≤
πθ(1|θ) for all θ < θH , with the inequality strict over a set of strictly positive measure
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under F , we have that∫ +∞

−∞
u
(
θ, 1 − P(x|θ)

)
πε,η(1|θ)p(x|θ) dF(θ)

>

∫ +∞

−∞
u
(
θ, 1 − P(x|θ)

)
πθ(1|θ)p(x|θ) dF(θ).

Because the right-hand side is strictly positive, for any x > xmax, U�ε,η
(x, 1|x) > 0.

Next, for any θ ∈ [θ, θ̄], let x∗(θ) be the signal threshold such that, when all agents in-
vest for x > x∗(θ) and refrain from investing for x < x∗(θ), the expected payoff differen-
tial u(θ̃, 1−P(x∗(θ)|θ̃)) is positive if and only if the fundamentals θ̃ are above θ. Observe
that, for any θ ∈ [θ, θ̄], the existence of such a threshold follows from Condition FB, and
that x∗(θ) = −∞ and x∗(θ̄) = +∞. Clearly, for any η ∈ (0, xmax − x̄) satisfying Condition
(19), ε > 0 satisfying Condition (21), and x ≤ x∗(θL + ε),∫ +∞

θL

u
(
θ, 1 − P(x|θ)

)
p(x|θ)πε,η(1|θ) dF(θ) > 0.

This is because for any x ≤ x∗(θL + ε), θ0(x) ≤ θL + ε. The result then follows from
the fact that, for any x ≤ x∗(θL + ε), πε,η(1|θ) = 0 for all θ ≤ θ0(x). Hence, for any x ≤
x∗(θL + ε) such that (x, 1) are mutually consistent under �ε,η, U�ε,η

(x, 1|x) ≥ 0.
Next, observe that for any x ∈ (x∗(θL + ε), x∗(θH − δ(ε))],∫ +∞

θL

u
(
θ, 1 − P(x|θ)

)
p(x|θ)πε,η(1|θ) dF(θ)

=
∫ +∞

θL

u
(
θ, 1 − P(x|θ)

)
p(x|θ)π ′(1|θ) dF(θ)

−
∫ θL+ε

θL

u
(
θ, 1 − P(x|θ)

)
p(x|θ)π ′(1|θ) dF(θ)

+
∫ θH

θH−δ(ε)
u
(
θ, 1 − P(x|θ)

)
p(x|θ)

(
1 −π ′(1|θ)

)
dF(θ) ≥ 0.

To understand the inequality, first observe that the first integral on the right-hand side
of the equality is nonnegative (if it was strictly negative then (x, 1) would be mutually
consistent under �′ and U�′

(x, 1|x) < 0, which is inconsistent with the fact that �′ ∈ G).
Second, observe that the integrand function in the second integral on the right-hand
side of the equality is nonpositive (this follows from the fact that, when x > x∗(θL + ε),
u(θ, 1−P(x|θ)) ≤ 0 for all θ ≤ θL+ε). Finally, the integrand function in the third integral
on the right-hand side of the equality is nonnegative (this follows from the fact that when
x < x∗(θH − δ(ε)), u(θ, 1 − P(x|θ)) ≥ 0 for all θ > θH − δ(ε)). Hence, for any such x, if
(x, 1) are mutually consistent under �ε,η, it must be that U�ε,η

(x, 1|x) ≥ 0.
Next, consider x ∈ (x∗(θH − δ(ε)), x∗(θH )). For any x, let


S(x) ≡
∫ +∞

θL

u
(
θ, 1 − P(x|θ)

)
p(x|θ)

(
πε,η(1|θ) −π ′(1|θ)

)
dF(θ),
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and, for any (x, θ), let q(θ, x) ≡ |u(θ, 1 − P(x|θ))|p(x|θ). Note that, for any

x ∈ (
x∗(θH − δ(ε)

)
, x∗(θH )

)
,

θ0(x) ∈ (θH − δ(ε), θH ), and


S(x) =
∫ θH−δ(ε)

θL

−u
(
θ, 1 − P(x|θ)

)
p(x|θ)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

+
∫ θ0(x)

θH−δ(ε)
−u

(
θ, 1 − P(x|θ)

)
p(x|θ)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

+
∫ θH

θ0(x)
−u

(
θ, 1 − P(x|θ)

)
p(x|θ)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

≥
∫ θH−δ(ε)

θL

q(θ, x)
q(θ, x̄+η)

q(θ, x̄+η)
(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

+
∫ θ0(x)

θH−δ(ε)

q(θ, x)
q(θ, x̄+η)

q(θ, x̄+η)
(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

+ q
(
θH − δ(ε), x

)
q
(
θH − δ(ε), x̄+η

) ∫ θH

θ0(x)
q(θ, x̄+η)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

≥ q
(
θH − δ(ε), x

)
q
(
θH − δ(ε), x̄+η

) ∫ θH

θL

q(θ, x̄+η)
(
π′(1|θ) −πε,η(1|θ)

)
dF(θ)

= q
(
θH − δ(ε), x

)
q
(
θH − δ(ε), x̄+η

)
S(x̄+η) = 0.

The first equality follows from the definition of the 
S(x) function. The first inequality
follows from the fact that (i) for any θ ≤ θ0(x), u(θ, 1 − P(x|θ)) < 0, whereas for any
θ > θ0(x), u(θ, 1 − P(x|θ)) > 0, and (ii) for θ ∈ [θ0(x), θH ], π′(1|θ) ≤ πε,η(1|θ). Together,
these properties imply that∫ θH

θ0(x)
−u

(
θ, 1 − P(x|θ)

)
p(x|θ)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

≥ 0 ≥ q
(
θH − δ(ε), x

)
q
(
θH − δ(ε), x̄+η

) ∫ θH

θ0(x)
q(θ, x̄+η)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ).

The second inequality follows from the fact that π ′(1|θ) − πε,η(1|θ) turns from positive
to negative at θ = θH − δ(ε) ≤ θ0(x), along with the fact that, for any θ ∈ [θL, θ0(x)], the
function q(θ, x)/q(θ, x̄+η) is nonincreasing in θ as implied by the log-supermodularity
of |u(θ, 1 − P(x|θ))|p(x|θ) over {(θ, x) ∈ [0, 1] × R : u(θ, 1 − P(x|θ)) ≤ 0}, which in turn
follows from Property (iii*) of Condition M* and the assumption that p(x|θ) is log-
supermodular. The second equality follows from the fact that θ0(x̄ + η) > θ0(x̄) > θH ,
which implies that u(θ, 1 − P(x̄ + η|θ)) ≤ 0 for all θ ≤ θH . Finally, the last equality fol-
lows from the fact that, by construction of the policy �ε,η, 
S(x̄+η) = 0. Hence, for any
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x ∈ (x∗(θH − δ(ε)), x∗(θH )), 
S(x) ≥ 0, which implies that, for any x in this range such
that (x, 1) are mutually consistent under �ε,η, U�ε,η

(x, 1|x) ≥ 0.
Similar arguments imply that, for any x ∈ [x∗(θH ), x+η],


S(x) =
∫ θH

θL

−u
(
θ, 1 − P(x|θ)

)
p(x|θ)

(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

=
∫ θH

θL

q(θ, x)
q(θ, x̄+η)

q(θ, x̄+η)
(
π ′(1|θ) −πε,η(1|θ)

)
dF(θ)

≥ q
(
θH − δ(ε), x

)
q
(
θH − δ(ε), x̄+η

)
S(x̄+η) = 0,

implying that, for such x, too, if (x, 1) are mutually consistent under �ε,η, then
U�ε,η

(x, 1|x) ≥ 0 (this result also follows from Property (iii*) of Condition M* along with
the log-supermodularity of p(x|θ)).

Thus far, we have established that, for any x ∈ (−∞, x + η) ∪ (xmax, +∞) such that
(x, 1) are mutually consistent under �ε,η, U�ε,η

(x, 1|x) ≥ 0. Below we show that there
exists a ε̄ > 0 such that, for any η ∈ (0, xmax − x̄) satisfying Condition (19), and ε > 0
satisfying Condition (21), with ε ∈ [0, ε̄], the same is true also for any x ∈ [x̄ + η, xmax]
such that (x, 1) are mutually consistent under �ε,η. For any x, let

S�
ε,η

(x) ≡
∫ +∞

θL

u
(
θ, 1 − P(x|θ)

)
p(x|θ)πε,η(1|θ) dF(θ).

Note that, for any η, the function family (S�
ε,η

(·))ε is continuous in ε in the sup-norm, in
a neighborhood of 0. That is, for any z > 0, there exists κ > 0 such that, for any 0 < ε< κ,
and all x, |S�

ε,η
(x) − S�

0,η
(x)| ≤ z, where �0,η = �′.48 By Condition (19), U�′

(x, 1|x) is
bounded away from zero over [x̄+η, xmax]. Hence, there exists ε̄ > 0 small such that, for
any η ∈ (0, xmax − x̄) satisfying Condition (19), and ε ∈ [0, ε̄], Condition (21) holds and,
for any x ∈ [x̄+η, xmax], U�ε,η

(x, 1|x) > 0.49

Together, the results above thus imply that, for any η ∈ (0, xmax − x̄) satisfying Con-
dition (19), and ε ∈ [0, ε̄], the policy �ε,η ∈ G.

We now show that, when Property (ii*) in Condition M* holds, for any η ∈ (0, xmax −
x̄) satisfying Condition (19), and ε ∈ [0, ε̄], the new policy �ε,η yields the policymaker an
expected payoff strictly higher than �′. To see this, observe that the policymaker’s payoff
under any such policy is equal to

UP
[
�ε,η] =

∫ θL+ε

−∞
UP (θ, 0) dF(θ) +

∫ θH

θH−δ(ε)
UP (θ, 1) dF(θ)

+
∫

(θL+ε,θH−δ(ε))∪(θH ,+∞)

(
π ′(1|θ)UP (θ, 1) + (

1 −π ′(1|θ)
)
UP (θ, 0)

)
dF(θ).

48This follows from the fact that |u(θ, A)| and p(x|θ) are both bounded.
49Recall that, as established above, for any x≥ x̄+η, (x, 1) are mutually consistent under �ε,η.
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Differentiating UP[�ε,η] with respect to ε, and using the implicit function theorem to
obtain the derivative of δ(ε), we have that

dUP
[
�ε,η]

dε
= f (θH − δ)

(
1 −π ′(1|θH − δ)

)[
UP (θH − δ, 1) −UP (θH − δ, 0)

] × δ′(ε)

− f (θL + ε)π ′(1|θL + ε)
[
UP (θL + ε, 1) −UP (θL + ε, 0)

]
= f (θL + ε)π ′(1|θL + ε)

[
UP (θH − δ, 1) −UP (θH − δ, 0)

]
× p(x̄+η|θL + ε)u

(
θL + ε, 1 − P(x̄+η|θL + ε)

)
p(x̄+η|θH − δ)u

(
θH − δ, 1 − P(x̄+η|θH − δ)

)
− f (θL + ε)π ′(1|θL + ε)

[
UP (θL + ε, 1) −UP (θL + ε, 0)

]
.

Property (ii*) in Condition M*, together with the fact that x̄ ≤ xmax, guarantee that, for
any η ∈ (0, xmax − x̄) satisfying Condition (19), and ε ∈ (0, ε̄], dUP[�ε,η]/dε > 0. We con-
clude that the policy �ε̄,η ∈ G yields the policymaker a payoff strictly higher than �′. This
completes the proof of Claim S1-B.

Claim C. Take any �′ = ({0, 1}, π ′ ) ∈G such that X�′ �= ∅ and{
θ ∈ (θ, θH ) : π ′(1|θ) > 0

}
has zero F-measure. (22)

Then π ′(1|θ) = 0 for F-almost all θ ≤ θ∗ and π ′(1|θ) = 1 for F-almost all θ > θ∗.

Claim C says that, if �′ ∈G is a deterministic monotone rule, and there exists a x̄ such
that U�′

(x̄, 1|x̄) = 0, then �′ differs from the optimal monotone rule �θ∗
over at most a

set of fundamentals of zero F-measure.

Proof of Claim C. Let �θH = ({0, 1}, πθH ) be the deterministic monotone policy with
cut-off θH . Clearly, any x such that (x, 1) are mutually consistent under �′ is such
that (x, 1) are also mutually consistent under �θH . Furthermore, for any such x,
U�′

(x, 1|x) = U�θH (x, 1|x) (both properties follow because the two policies differ only
over sets of zero F-measure).

Suppose that θH > θ∗. Below we establish that, in this case, any x such that (x, 1)
are mutually consistent under �θH is such that U�θH (x, 1|x) > 0. Clearly, for any x such
that (a) θ0(x) ≤ θH , and (b) (x, 1) are mutually consistent under �θH , U�θH (x, 1|x) >
0. Thus, consider any x such that θ0(x) > θH , and (b) (x, 1) are mutually consistent
under �θH . Note first that, for any such x, (x, 1) are mutually consistent also under �θ∗ =
({0, 1}, πθ∗

). This is because πθ∗
(1|θ) ≥ πθH (1|θ) for all θ. Furthermore, for any such x,∫ +∞

θH

u
(
θ, 1 − P(x|θ)

)
p(x|θ) dF(θ) ≥

∫ +∞

θ∗
u
(
θ, 1 − P(x|θ)

)
p(x|θ) dF(θ). (23)

This follows from the fact that u(θ, 1 − P(x|θ)) < 0 for all θ ∈ [θ∗, θH ]. Hence, for

any such x, because U�θ
∗

(x, 1|x) ≥ 0, U�θH (x, 1|x) ≥ 0. Now take x = x̄ and recall
that, by definition, U�′

(x̄, 1|x̄) = 0. Because U�′
(x̄, 1|x̄) = U�θH (x̄, 1|x̄), this means that
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U�θH (x̄, 1|x̄) = 0. Property (i*) of Condition M* then implies that infΘ(x̄) < θ. Hence,

for x = x̄, the inequality in (23) is strict, which in turn implies that U�θ
∗

(x̄, 1|x̄) < 0, con-
tradicting the assumption that �θ∗ ∈ G. Therefore, it must be that θH ≤ θ∗. However, by
definition of θ∗, if θH < θ∗, there exists an x such that (a) U�θH (x, 1|x) < 0, and (b) (x, 1)
are mutually consistent under �θH . Because, for all such x, U�′

(x, 1|x) is well-defined
(i.e., (x, 1) are mutually consistent also under �′) and U�θH (x, 1|x) =U�′

(x, 1|x), we thus
have that U�′

(x, 1|x) < 0, which contradicts the assumption that �′ ∈G. Hence, θH = θ∗.
This completes the proof of Claim C.

Step 2. Step 1 implies that arg max�̃∈G UP[�̃] �= ∅ and that any �∗ = ({0, 1}, π ) with

�∗ ∈ arg max�̃∈G UP[�̃] is such that π(1|θ) = 0 for F-almost all θ ≤ θ∗ and π(1|θ) = 1 for
F-almost all θ > θ∗. The result in the theorem then follows from observing that, given
any �∗ ∈ arg max�̃∈G UP[�̃], there exists a nearby deterministic monotone policy �θ̂ ∈ G

with cut-off θ̂ = θ∗ + ε̃, for ε̃ > 0 small, such that �θ̂ satisfies the perfect-coordination

property (i.e., U�θ̂(x, 1|x) > 0 all x such that (x, 1) are mutually consistent under �θ̂).50

The continuity of UP[�θ̂] in θ̂ then implies that, for ε̃ > 0 small, UP[�θ̂] > UP[�], thus
establishing the result in the theorem.
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