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Comonotonicity (same variation) of random variables minimizes hedging possi-
bilities and has been widely used, e.g., in Gilboa and Schmeidler’s ambiguity mod-
els. This paper investigates anticomonotonicity (opposite variation (AC)), the nat-
ural counterpart to comonotonicity. It minimizes leveraging rather than hedging
possibilities. Surprisingly, AC restrictions of several traditional axioms do not give
new models. Instead, they strengthen the foundations of existing classical mod-
els: (a) linear functionals through Cauchy’s equation; (b) Anscombe–Aumann ex-
pected utility; (c) as-if risk-neutral pricing through no-arbitrage; (d) de Finetti’s
bookmaking foundation of Bayesianism using subjective probabilities; (e) risk
aversion in Savage’s subjective expected utility. In each case, our generalizations
show where the critical tests of classical axioms lie, i.e., in the AC cases (maximal
hedges). We next present examples where AC restrictions do essentially weaken
existing axioms, and do provide new properties and new models.
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1. Introduction

Comonotonicity is widely used in mathematics (Hardy, Littlewood, and Pólya (1934,
Theorem 236)) and in many applied fields, including decision theory.1 Puccetti and
Wang (2015) provided a survey. Comonotonicity was the main tool in Gilboa’s (1987)
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and Schmeidler’s (1989) famous ambiguity models. Two variables are comonotonic if
they covary in the same direction. Comonotonicity maximizes leveraging possibilities
while minimizing hedging possibilities (Hoeffding (1940)).

Anticomonotonicity (AC) is a natural counterpart to comonotonicity. Two variables
X and Y are AC if they covary in the opposite direction; i.e., if X and −Y are comono-
tonic. AC minimizes leveraging possibilities while maximizing hedging possibilities.
Aouani, Chateauneuf, and Ventura (2021) introduced AC diversification for Choquet in-
tegrals. AC turns out to be of interest in its own right, and this paper studies it in general.
We will shed new light on many classical results and provide new models.

Schmeidler (1989) used comonotonicity to weaken Anscombe and Aumann’s (AA)
(1963) classical independence preference condition. The latter condition characterized
subjective expected utility. Schmeidler, thus, obtained a new preference model: Cho-
quet expected utility. It could accommodate ambiguity aversion in Ellsberg’s (1961)
paradox. This result, together with Gilboa and Schmeidler (1989), famously opened
the field of decision under ambiguity, a big field today (Gilboa and Marinacci (2016);
Trautmann and van de Kuilen (2015)). Many papers have since studied the comonotonic
weakening of various axioms.

It is natural to study the counterpart to the Gilboa–Schmeidler approach, now weak-
ening axioms with the AC rather than the comonotonicity restriction, where leveraging
is now minimized while hedging is maximized rather than the other way around. The
research question then is “which models result this way?” We first investigated this ques-
tion for the most famous result in the literature using comonotonicity: Schmeidler’s
(1989) generalization of AA’s subjective expected utility. The answer (Theorem 4) sur-
prised us: the AC weakening of independence does not provide any new (generalized)
model at all. It still fully axiomatizes subjective expected utility, as did AA’s full-force in-
dependence. This result can be interpreted negatively because it did not produce any
new model. However, a positive interpretation is that it reinforces the classical result
of AA: we generalize their result and, more specifically, show where its critical test is,
namely in the AC cases. To justify or criticize their model normatively and to verify or
falsify their model empirically, only the AC cases have to be considered, and they decide.

Next, we investigated our research question for some other famous derivations of
linear/affine2 optimization models. We considered de Finetti’s (1931) bookmaking. de
Finetti used bookmaking to normatively defend the use of subjective probabilities and
his work is considered one of the three cornerstones of Bayesianism, together with Ram-
sey (1931) and Savage (1954). We next considered as-if risk-neutral pricing by a financial
market. Such pricing is necessary and sufficient to avoid arbitrage possibilities. This
result, called the fundamental theorem of asset pricing (Björk (2009)), is a cornerstone

(2002)), labor market equilibria (Chade, Eeckhout, and Smith (2017)), multi-attribute utility theory (Eke-
land, Galichon, and Henry (2012)), optimal transport (Galichon (2016)), risk allocations (Rüschendorf
(2013)), risk attitudes (Yaari (1969, p. 328)), risk measures (Föllmer and Schied (2016)), time preference
(Bastianello and Faro (2023)), and welfare theory (Ebert (2004)).

2An affine function on (a subset of) a linear space is a linear function with a constant added. A linear
function assigns value 0 to the origin (0). In all our theorems, representing functionals remain representing
if a constant is added, so the difference between affine and linear never matters.
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in finance. Finally, we considered Cauchy’s functional equation, which is also widely
used (Aczél (2014)). In all these cases, we found that AC restrictions do not lead to new
models, but to generalizations and reinforcements of existing axiomatizations. For all
these classical results, we more precisely identify the critical cases to be tested or inves-
tigated, i.e., when hedging is maximal. Because all these results have the same format,
becoming routine from a mathematical perspective, we present formal statements of
some of them in Appendix A. Demonstrating the unity (“routine”) of these results, as
done in our proofs, is an additional contribution of this paper. de Finetti’s bookmaking,
AA’s subjective expected utility, and no-arbitrage in finance are all cornerstone results
in their respective fields, developed independently. We show that they all amount to
the same mathematical result, and were all obtained by establishing Cauchy’s equation
(Theorem 1) for their certainty equivalents.

We also investigated our research question for AC restrictions of convexity, involving
inequalities rather than the equalities of affinity and linearity. Under expected utility,
we obtain an AC generalization of an appealing characterization of risk aversion (The-
orem 7). Here, as before, we do not develop a new model or phenomenon but consol-
idate an existing result. We point out some appealing features of (our generalization
of) the result, a result known to specialists but not as widely known as it deserves to
be (Section 6). We finally consider some ambiguity models. Here the AC restrictions
do bring new phenomena, as first shown by Aouani, Chateauneuf, and Ventura (2021),
whose result we generalize (Proposition 8). Further, AC restrictions also bring new mod-
els here, more general than those without these restrictions. We provide a first example,
the double-cautious ambiguity model (Proposition 9), leaving further developments to
future studies.

2. Anticomonotonic restrictions for functionals: Additivity and linearity

This section presents an AC generalization (Theorem 1) of the well known Cauchy func-
tional equation for several variables. Later sections will apply this generalization to de-
cision theory and, more narrowly, to decision making under uncertainty, giving gener-
alizations of several classic representation theorems for linear/affine functionals (The-
orem 4 and Propositions 13 and 15). These results essentially all follow as corollaries of
the theorem in this section.

We fix (�, ℱ ), in which � is a state space and ℱ a sigma-algebra of subsets of � called
events. We denote by B(�, ℱ ) the set of acts, i.e., all bounded measurable real-valued
functions from � to ℝ, equipped with the sup-norm. Two acts X and Y in B(�, ℱ ) are
comonotonic if

for all ω, ω′ ∈� :
(︁
X(ω) −X

(︁
ω′)︁)︁(︁Y (ω) −Y

(︁
ω′)︁)︁ ≥ 0. (1)

Two acts X and Y in B(�, ℱ ) are anticomonotonic (AC) if X and −Y are comonotonic.
Other terms used in the literature are antimonotonicity or countermonotonicity. Each
constant act is both comonotonic and AC with every other act.

A functional I : B(�, ℱ ) → ℝ is additive if

for all X , Y : I(X +Y ) = I(X ) + I(Y ). (2)
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The equation is also known as Cauchy’s equation (Aczél (1966)). Monotonicity holds for
I if I(X ) ≥ I(Y ) whenever X(ω) ≥ Y (ω) for all ω ∈�. The functional I satisfies comono-
tonic additivity if (2) holds only for all pairs of comonotonic acts X , Y , while I satisfies
anticomonotonic additivity (AC additivity) if (2) only holds for all pairs of AC acts X , Y .
Moreover, I is homogeneous if I(αX ) = αI(X ) for all α ∈ ℝ and all X ∈ B(�, ℱ ). Positive
homogeneity imposes the homogeneity requirement only for α ≥ 0. The functional I is
linear if it is additive and homogeneous. The above definitions are extended to I de-
fined on subdomains in the obvious manner, imposing the requirements only when all
acts involved are contained in the subdomain.

Theorem 1 (Cauchy’s equation for anticomonotonicity). Under (a) continuity, (b)
monotonicity, or (c) finiteness of �, AC additivity of a functional I : B(�, ℱ ) →ℝ is equiv-
alent to additivity and, furthermore, to linearity in case of (a) or (b).

All proofs are provided in Appendix B. A sketch of the proof of Theorem 1 is as fol-
lows. First, AC additivity implies I(0) = I(0 + 0) = 0, and then AC additivity for X and
−X gives I(−X ) = −I(X ). Second, for comonotonic acts X , Y , AC additivity for X +Y

and −Y gives I(X+Y )−I(Y ) = I(X ), and, thus, comonotonic additivity. Third, for gen-
eral X , Y in a finite space, we can write each of X and Y as a sum of one act increasing in
indexes of the state space and another act decreasing, yielding four “index-monotonic”
acts. Every pair of those four acts is either comonotonic or AC. By proper groupings in
X +Y , the sum of these four acts, and repeated application of comonotonic and AC ad-
ditivity, additivity then readily follows for general X , Y . Linearity for finite state spaces
follows under minimal extra conditions (Aczél (1966)). The extension of linearity to in-
finite state spaces first follows for simple acts and then for general acts from standard
integration techniques using monotonicity or continuity. It follows that homogeneity is
readily implied by additivity together with one of the other (weak) conditions that imply
linearity.

In many applications, a functional I is taken as primitive, for instance, in production
theory, price index theory, finance, or the theory of risk measures. Then Theorem 1 can
be directly applied. The rest of this paper focuses on decision theory, where a preference
relation ≽ is taken as primitive.

3. Basic definitions of decision under uncertainty

In addition to (�, ℱ ) as before, we consider a set 𝒞 of outcomes, endowed with a binary
relation ≽. In the preceding section, 𝒞 = ℝ and ≽ = ≥. A preference interval in 𝒞 is a
subset of 𝒞 that, for each pair of outcomes x≽ z contained, also contains all outcomes y
with x≽ y ≽ z.

The set of acts, denoted B(�, ℱ ), contains all maps X from � to 𝒞 that are bounded,
i.e., there exist outcomes x, z such that x ≽ X(ω) ≽ z for all ω, and measurable, i.e.,
every inverse of a preference interval is an event. Outcomes are identified with constant
acts, so that ≽ is also a binary relation on constant acts. The preference relation is an
extension of ≽ to all acts, also denoted ≽; no confusion will arise. In the rest of this paper,
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≽ on acts is taken as primitive, and we seek to characterize phenomena through directly
observable properties of ≽. Weak ordering holds if completeness (X ≽ Y or Y ≽X for all
acts X , Y ) and transitivity hold. It will be implied in all our results. The notation ≻, ∼,
≼, and ≺ is as usual. We call ≽ trivial if X ∼ Y for all acts X , Y .

Throughout, we assume that 𝒞 is a mixture space, which provides a convenient gen-
eralization of convex sets. Mixture spaces include money intervals in ℝ, convex sets of
probability distributions, and convex sets of commodity bundles. For simplicity, readers
unfamiliar with general mixture spaces may have in mind any such special case and see
that all conditions below are then satisfied. We call 𝒞 a mixture space if it is endowed
with a mixture operation. A mixture operation generalizes convex combinations in lin-
ear spaces. It maps 𝒞× [0, 1]×𝒞 to 𝒞 and is denoted αx+ (1−α)y. It is required to satisfy
the conditions

(i) 1x+ 0y = x (identity)

(ii) αx+ (1 − α)y = (1 − α)y + αx (commutativity)

(iii) α(βx+ (1 −β)y ) + (1 − α)y = αβx+ (1 − αβ)y (distributivity).

A real-valued functional I represents ≽ or ≽ maximizes I if the preference domain is
contained in the domain of I and X ≽ Y ⇔ I(X ) ≥ I(Y ). A function is an interval scale
if it is unique up to multiplication by a positive factor and addition of a constant. Subjec-
tive expected utility or expected utility (EU ) holds if there exist a probability measure P

on ℱ and a utility function U : 𝒞 →ℝ such that ≽ maximizes expected utility
∫︁
�U(X ) dP ,

where this integral, called the EU of X , is assumed to be well defined and finite.3

In most of this paper, utility U : 𝒞 →ℝ will be affine, i.e., it satisfies

For all α ∈ [0, 1] and x, y ∈ 𝒞 : U
(︁
αx+ (1 − α)y

)︁ = αU(x) + (1 − α)U(y ). (3)

Acts are mixed statewise and, thus, the space of acts is also a mixture space. We will fol-
low the economic tradition of also calling affine functionals on act spaces linear. Thus,
we say that EU is linear in probability and weights events linearly.

Mixture continuity holds for ≽ if the sets

{︁
α ∈ [0, 1] : αX + (1 − α)Z ≽ Y

}︁
and

{︁
α ∈ [0, 1] : Y ≽ αX + (1 − α)Z

}︁

are closed for all acts X , Y , Z. Together with some other conditions, mixture continuity
implies the existence of a certainty equivalent for each act.

We summarize as follows.

Assumption 2 (Structural assumption). A state space � is given with a sigma-algebra
ℱ and an outcome set 𝒞 that is a mixture space. The set of acts, B(�, ℱ ), contains all
bounded measurable maps from � to 𝒞, and ≽ is a binary relation on B(�, ℱ ).

3In decision theory, there is much interest in finite additivity. We, therefore, only require finite additivity
of probability measures. A necessary and sufficient condition for countable additivity can readily be added
in all our results (Wakker (1993, Proposition 4.4)).
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An outcome x is a certainty equivalent (CE) of an act X if x ∼ X . In general, it does
not always need to exist or be unique. Monotonicity holds for ≽ if X ≽ Y whenever
X(ω) ≽ Y (ω) for all ω ∈�. The following definitions generalize previous ones. Two acts
X , Y are comonotonic if there are no states ω, ω′ such that X(ω) ≻ X(ω′ ) and Y (ω) ≺
Y (ω′ ). Acts X , Y are AC if there are no states ω, ω′ such that X(ω) ≻X(ω′ ) and Y (ω) ≻
Y (ω′ ).

4. The intuition of anticomonotonicity

This section presents an informal interpretation of the AC condition. The most famous
appearance of comonotonicity was in Schmeidler (1989). He considered the special
case of Assumption 2 where 𝒞 is a convex set of probability distributions over prizes,
also called lotteries, denoted P , Q, R here. A mixture αP + (1 − α)Q assigns probability
αP(E) + (1 −α)Q(E) to every prize set E for 0 ≤ α ≤ 1. Thus, 𝒞 is a mixture space. Again,
mixtures are transferred to acts statewise. He further assumed EU for risk (lotteries). The
above setup is known as the AA setup. All deviations from EU over acts are then due to
ambiguity, facilitating its analysis.

Under ambiguity, EU over acts is violated by interactions between events. Thus, the
classical independence axiom,

for all acts X , Y , C and 0 <α< 1 : X ∼ Y ⇒ αX + (1 − α)C ∼ αY + (1 − α)C, (4)

which is the main axiom used by AA to axiomatize EU over all acts, is violated. For exam-
ple, C’s events may “interact” with Y ’s events by providing hedges that reduce variations
of outcomes without doing so with X’s events, leading to a strict preference for the safer
αY + (1−α)C in (4) and a violation of independence. In (4), C denotes a “common” new
act that is mixed in. Because hedging occurs in mixtures, later modifications of indepen-
dence in this paper will impose comonotonicity or AC restrictions on such mixtures, and
will concern X , C and Y , C.

We next discuss AC, assuming ambiguity aversion. (For ambiguity seeking, similar
reasonings hold with preferences reversed.) Comonotonicity minimizes hedging possi-
bilities for acts X , Y . Schmeidler imposed independence, stated in (4), only if acts X , C
are comonotonic and so are Y , C.4 Then hedging effects are minimal and leveraging
effects are maximal in both convex combinations in (4), and one may conjecture that
they cancel, so that (4) then still holds. So it does under Schmeidler’s Choquet expected
utility (CEU), even characterizing that theory.

For AC, leveraging is minimal and hedging is maximal. We raised the research ques-
tion, “what happens if independence (4) is only imposed if both X , C and Y , C are AC?”
Our first hunch was that interaction effects, extreme again, may again balance and can-
cel, and that the axiom will give an alternative way to axiomatize CEU.

We could not have been farther off. As it turned out, AC independence precludes
any nonneutral ambiguity attitude. AA’s EU and full-force independence follow (Theo-
rem 4 below). This result came as a surprise to us. Whereas with minimal hedging in (4),

4Schmeidler also required X , Y to be comonotonic, but this restriction can be omitted (as may be in-
ferred from the yet weaker (5) given later), facilitating the following intuitions.
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no ambiguity attitude is precluded, minimal leveraging leaves more space to the extent
that all ambiguity attitudes under CEU are precluded. This result on AC may be taken as
negative: AC did not bring any new model. However, a positive interpretation is that AC
provides a new and stronger axiomatization of existing models—EU in this case. To jus-
tify EU normatively or descriptively, it suffices to justify independence in the AC cases.
They provide the most critical cases and all other cases follow. AC independence leads
to Theorem 4 in the following section and to several related results discussed later.

5. Classical linear/affine functionals

In the literature using the AA setup, outcome spaces are assumed to be mixture spaces,
as in this paper, and an affine utility function U : 𝒞 → ℝ is assumed. Mostly, the mixture
space is assumed to be a convex set of probability distributions, with U expected utility,
as in the preceding section.

We now formally define independence. We use a weakened version because it better
conveys the intuitions of conditions defined later.5 Independence holds if

for all acts X , C, outcomes x, and 0 <α< 1 :

X ∼ x ⇒ αX + (1 − α)C ∼ αx+ (1 − α)C. (5)

In other words, any act X in any mixture can be replaced by its certainty equivalent x.
The condition is seemingly weaker than (4) in the sense of restricting general acts Y in
(4) to constant acts x. However, it is readily seen to be equivalent if every act has a cer-
tainty equivalent,6 which holds in all results in this paper. The condition is appealing
because it justifies “ironing out” in mixtures (Li (2020)). It is convenient for comono-
tonic and AC generalizations because constant acts are comonotonic and AC with ev-
ery other act. Schmeidler’s comonotonic independence requires (5) only if X and C are
comonotonic.

Definition 3. AC independence holds for ≽ if the implication of (5) is imposed only if
X and C are AC.

In other words, one can replace any act in a mixture with its certainty equivalent
only if the acts in the mixture are AC. The following theorem generalizes AA’s classical
characterization of subjective expected utility.

Theorem 4. Adopt Assumption 2. The following statements are equivalent:

(i) Weak ordering, monotonicity, mixture continuity, and independence hold.

(ii) Weak ordering, monotonicity, mixture continuity, and AC independence hold.

(iii) Subjective expected utility holds with U affine.

In (iii), U is an interval scale.

5This weakening avoids an intuitive confusion described in Section 4, because x does not provide any
hedge or leverage in the right-hand side of (5), so that any canceling of such effects cannot play any role.

6In (4), replace every act with its certainty equivalent (same for X and Y ) and use transitivity.
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We mention two other generalizations of classic representations using linear func-
tionals to illustrate the wide applicability of AC. The results work similarly to Theorem 4
and for brevity are, therefore, only outlined here. Appendix A gives complete formal
statements. The first result concerns de Finetti’s (1931) axiomatization of subjective ex-
pected value maximization. It rationalized subjective probabilities, which is well under-
stood nowadays, but was then a conceptual breakthrough. de Finetti used a bookmak-
ing axiom, another influential innovation: no positive linear combination of acceptable
bets should lead to a sure loss. His result can be generalized like AA’s EU axiomatization
above by adding an AC restriction to the axiom (Proposition 15 in Appendix A). Here,
again, the AC restriction does not bring new models, but simplifies the normative task
of defending the rationality of the Bayesian approach. Again, the AC cases are critical
and one can focus on them. The other cases then follow.

A similar generalization can be obtained for as-if risk-neutral pricing in finance.
Now, acts are financial assets and the functional I assigns market prices to acts. As-if
risk-neutral prices are subjective expected values based on as-if subjective probabili-
ties, which are the market probabilities. Such pricing is necessary to avoid arbitrage
possibilities. Proposition 13 in Appendix A shows that arbitrage only needs to be pre-
cluded in AC cases, and already as-if risk-neutral pricing is implied. Again, the essence
of no-arbitrage is captured by the AC cases, and, again, minimizing leveraging possibil-
ities, which is what the AC restriction does, works differently than minimizing hedging
possibilities, which comonotonicity does.

6. Anticomonotonic convexity for concavity of utility

In the remainder of the main text, we consider AC generalizations of convexity and con-
cavity axioms. This means that we now deal with inequalities rather than equalities and
that we relax some linearities. This section maintains linearity in events/probabilities by
assuming expected utility for acts on �. However, unlike all other sections, it allows for
nonlinear utility: U on 𝒞 need not be EU. We provide an AC axiomatization of concave
utility.

Whereas mixture sets have almost exclusively been studied for affine/linear utility
in the AA setup, they provide a natural domain for studying convexity and concavity of
utility, the topic of this section. We thus say that U is concave if U(αx + (1 − α)y ) ≥
αU(x) + (1 − α)U(y ) for all outcomes x, y, and 0 < α< 1. Convexity has ≤ instead of ≥.
We will maintain continuity.

Definition 5. Utility U on the mixture space 𝒞 is mixture continuous if, for all out-
comes x, y, U(αx+ (1 − α)y ) is continuous in α.

The condition is implied by affinity and also by common continuity conditions on
convex subsets of Euclidean spaces. Hence, it is less restrictive than most other conti-
nuity conditions.
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Definition 6 (Convexity of preference). Preferences are convex if

for all acts X , Y and 0 <α< 1 : X ∼ Y =⇒ αX + (1 − α)Y ≽X . (6)

Preferences are AC convex if the above implication is imposed only for AC acts X and Y .

Convexity of preference is a common assumption in consumer theory (Mas-Colell,
Whinston, and Green (1995)). It is also called quasiconvexity or, sometimes, quasicon-
cavity because it is equivalent to the quasiconcavity of any representing function. It re-
flects a preference for smoothing, diversification, and hedging in the models discussed
next. It is remarkable that the same mathematical condition that captures the utility of
commodity bundles in consumer theory also provides a characterization of risk aversion
in subjective expected utility, as this section shows. It also captures ambiguity aversion
in the currently most popular ambiguity models, as shown in the following section.

We next present an appealing implication of AC convexity in Savage’s expected util-
ity, where utility is not assumed to be affine in outcomes and where utility curvature
captures different risk (or uncertainty) attitudes. To avoid triviality, we assume nonde-
generateness, i.e., there exists an event A with 0 <P(A) < 1.

Theorem 7. Adopt Assumption 2 with nondegenerate expected utility and a mixture
continuous utility function U . Then the statements

(i) ≽ satisfies convexity

(ii) ≽ satisfies AC convexity

(iii) U is concave

are equivalent.

Debreu and Koopmans (1982) showed that (i) and (iii) in the theorem are equivalent,
more generally, even without assuming continuity of utility, for Euclidean spaces instead
of mixture spaces. We follow their proof closely, with some modifications to ensure AC.
The main complication in the proof is that some convenient monotonicity properties in
Euclidean spaces7 are not available for general mixture spaces.

Wakker and Yang’s (2019) Corollary 6 shows that the statements in Theorem 7 are
equivalent to comonotonic convexity of ≽. That is, in this case, the comonotonic and
AC restrictions are equivalent. The characterization in Theorem 7 and, similarly, in the
related works just cited, through convexity of preference with respect to outcome mix-
ing, is appealing because it makes risk aversion directly testable for subjective probabil-
ities. To explain this point, we first note that concave utility captures risk aversion under
expected utility. In decision under risk, where probabilities are objective and known be-
forehand, the conditions most commonly used to characterize risk aversion involve a
preference for expected value or an aversion to mean-preserving spreads. Those con-
ditions use probabilities as inputs. This use is problematic for decision under uncer-
tainty because then probabilities are subjective and not directly observable, as in Savage

7For instance, we have no monotonicity of U in α in (14) in the proof given later.
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(1954). The main purpose of preference axiomatizations is to make theoretical prop-
erties directly observable. Therefore, the aforementioned common conditions for risk
aversion, using probabilities as input, are not well suited for the context of uncertainty.
Theorem 7 and its predecessors make risk aversion directly observable and testable for
subjective probabilities.

The contribution of our Theorem 7 to its predecessor Debreu and Koopmans (1982)
is, again, related to the central topic of this paper: we only need to inspect the most
critical cases with maximal hedging possibilities. If risk aversion (and convexity, i.e.,
preference for diversification) passes those tests, then it holds everywhere.

7. Anticomonotonic convexity for ambiguity: New properties

This and the following section, like the preceding one, study AC restrictions for convex-
ity. However, we now take a dual approach. Contrary to the preceding section, but as
in all other sections, we assume linear/affine utility (e.g., EU) of outcomes; unlike the
preceding sections, we allow for nonlinear event weighting. That is, we investigate the
implications of AC convexity for ambiguity models, deviating from EU for acts. Now, for
the first time in this paper, new properties and models will result from the AC restriction.

In Section 5 and Theorem 4, we presented a version of AA’s setup for their axioma-
tization of expected utility. However, this setup has proved extremely useful for devel-
oping deviations from expected utility to capture ambiguity, and this section will use it.
Famous contributions include Gilboa and Schmeidler’s (1989) axiomatization of multi-
ple priors and Schmeidler’s (1989) axiomatization of Choquet expected utility, initiating
the field of ambiguity theory.

We present results for Schmeidler’s CEU model. A weighting function W maps events
to [0, 1] and satisfies W (∅) = 0, W (�) = 1, and A ⊃ B ⇒ W (A) ≥ W (B). We call W
convex if W (A ∪ B) + W (A ∩ B) ≥ W (A) + W (B) for all events. This implies pseudo-
convexity: W (A) ≤ W (A ∪B) −W (B) ≤ 1 −W (Ac ) for all disjoint events A, B. Choquet
expected utility (CEU ) holds if there exists a weighting function W and an affine utility
function U : 𝒞 → ℝ such that the preference relation maximizes

X ↦→
∫︂

[0,∞)
W

(︁
U(X ) ≥ x

)︁
dx−

∫︂
(−∞,0]

(︁
1 −W

(︁
U(X ) ≥ x

)︁)︁
dx. (7)

We again study the convexity of preference. Any utility effect, as in Theorem 7, has
now been ruled out by the affinity assumption of U . Hence, as follows from Theorem 7,
convexities must now speak to deviations from EU. In the first axiomatized ambiguity
models (Gilboa and Schmeidler (1989); Schmeidler (1989)), and in many that followed
later, convexity was found to be equivalent to ambiguity aversion, explaining Ellsberg’s
(1961) famous paradox. Hence, convexity has as yet been the most central condition in
ambiguity theories.

This section presents a case where an AC restriction essentially weakens a prefer-
ence condition, i.e., convexity in the AA setup. Aouani, Chateauneuf, and Ventura (2021)
(their Theorem 1 and Corollary 1) first proved the following result for the special case of
𝒞 = ℝ and linear utility. Their result is deep and has a complex proof. We next provide
its extension to general mixture spaces, which readily follows, thus covering AA’s setup.
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Proposition 8. Adopt Assumption 2 and CEU. Then AC convexity of ≽ is equivalent to
pseudo-convexity of W .

Proposition 8 implies that AC convexity of ≽ is strictly more general than convexity
because pseudo-convexity of W is clearly more general than convexity, and the latter is
equivalent to convexity of ≽ (Schmeidler (1989)). Example 10 below will confirm that
AC convexity is strictly more general.

8. Anticomonotonic convexity for ambiguity: New models

We now turn to a case where the AC restriction brings a more general model. We first
define the model. It is a subcase of Schmeidler’s CEU. The double-cautious ambiguity
model holds if ≽ maximizes CEU with respect to an affine utility function U : 𝒞 → ℝ and
a weighting function W that is e(vent)-cautious ([W (E) > 0 ⇒W (Ec ) = 0]) and w(eight)-
cautious (W (E) ≤ 0.5) for all E ≠ �. As for the intuition of these two conditions, the
proof of Proposition 9 shows that e-cautiousness is equivalent to the next condition,
clarifying its cautiousness interpretation: one is allowed to hope for something good
(CEU(X ) or more) only if it is very likely in the sense that getting less is quasi-impossible.
Thus, what one hopes for is cautious in the sense that it can still qualify as a kind of
worst-case scenario:

for all acts X and ε > 0 : W
{︁
ω∈� : U

(︁
X(ω)

)︁
< CEU(X ) − ε

}︁ = 0. (8)

For the intuition of w-cautiousness, we define IU(X ) := infω∈�(U(X(ω)), the infimum
utility for each act X . It is real-valued because acts are bounded. The proof of Proposi-
tion 9 shows that w-cautiousness is equivalent to the next condition, clarifying its cau-
tiousness interpretation: if one hopes for something good (ε more than the worst case),
then its bad opposite (even if quasi-impossible) should still receive at least as much at-
tention.

For all acts X and ε > 0 : W
{︁
ω∈� : U

(︁
X(ω)

)︁
> IU(X ) + ε

}︁ ≤ 0.5. (9)

We next turn to a preference axiomatization of the double-cautious model. For a
preference axiomatization of CEU in the AA setup, Schmeidler (1989) gave necessary
and sufficient conditions, mainly comonotonic independence. They could be added in
the theorem below to obtain a complete preference axiomatization, but for brevity we
will not repeat them. By xEy we denote the two-outcome act that assigns outcome x to
event E and y to Ec . We say that ≽ satisfies e-cautiousness if, for all outcomes x ≻ y and
events E, [xEy ≻ y ⇒ yEx∼ y]. We say that ≽ satisfies w-cautiousness if, for all outcomes
x≻ y and events E ≠�, xEy ≼ 0.5x+ 0.5y.

Proposition 9. Adopt Assumption 2 and CEU. The statements

(i) the double-cautious model holds

(ii) conditions (8) and (9) hold
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(iii) ≽ is e-cautious and w-cautious

are equivalent. Furthermore, the double-cautious model satisfies AC convexity.

E-cautiousness and w-cautiousness only involve AC acts, and, hence, the AC restric-
tion is vacuous for these preference conditions. The convexity preference condition
does involve acts that are not AC and here the AC restriction turns out to provide a real
restriction in the premise, leading to a less restrictive preference condition. Thus, the
double-cautious model implies AC convexity but not convexity, as the following exam-
ple shows.

Example 10. Let � = [0, 1], ℱ be the usual Lebesgue sigma-algebra, 𝒞 = ℝ
+, and U

be the identity U(x) = x for all x. To define W , let λ be the usual Lebesgue measure
(uniform distribution). Let g : [0, 1] → [0, 1] be nondecreasing, g(p) = 0 for all 0 ≤ p <

0.5, 0 ≤ g(p) ≤ 0.5 for all 0.5 ≤ p < 1, g(1) = 1. Further, g is nonconvex on [0.5, 1), say
g(p) = √︁

(2p− 1)/2 there. We define W (E) = g(λ(E)) with one exception: if λ(E) =
1 but E ≠ �, then W (E) = 0.5 rather than 1. This W is double-cautious so that ≽ is
AC convex. Furthermore, W is not convex as readily follows from nonconvexity—even
strict concavity—of g on [0.5, 1) and, consequently (Schmeidler (1989)) neither is ≽. The
latter claim is verified by calculations in Appendix B. ◊

In general, Example 10 with g(p) = (2p − 1)θ/2 on (0.5, 1) for some θ > 0, gives a
convenient parametric family for the double-cautious model. Conditions (8) and (9) are
conceptually simpler and easier to implement than convexity: they are directly imposed
on the evaluation made of a relevant act X , rather than involving inspection of mixtures
of acts. In this sense, the relaxation of convexity, maintaining AC convexity, is useful.
Furthermore, Example 10 suggests that the extra caution coming from convexity is not
large.

The results presented in the last two sections primarily serve to demonstrate the pos-
sibility of getting new properties and models from AC. Detailed studies of the pros and
cons of such models, and further models and properties to be derived from AC restric-
tions are left to future work. The end of Appendix A cites some results from the literature
that may be useful for such future work.

9. Conclusion

This paper provides a systematic study of anticomonotonic restrictions of axioms for
preference relations and functionals. Anticomonotonicity is the natural counterpart to
the well known comonotonicity. We obtained many generalizations of classical theo-
rems, for each showing where the most critical tests are. These tests concern cases with
maximal possibilities for hedging. Our results highlight the asymmetry between anti-
comonotonicity and comonotonicity. For ambiguity, anticomonotonicity can serve to
bring new phenomena and models.
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Appendix A: Linear/affine functionals

This Appendix presents some results, similar to Theorems 1 and 4, for linear/affine func-
tionals.

The following lemma, repeating part of Theorem 1 and used in its proof, is remark-
able in giving, for finite state spaces, a complete logical equivalence of a condition and
its AC restriction, i.e., AC additivity. We do not expect the equivalence to hold for gen-
eral state spaces without some extra regularity condition, but this remains to us an open
question. We maintain the notation B(�, ℱ ) below, although this set now contains all
maps from � to ℝ.

Lemma 11. Suppose that � is finite and ℱ = 2�. For I : B(�, ℱ ) → ℝ, AC additivity is
equivalent to additivity.

Theorem 1, using Lemma 11, assumed a full linear space as the domain and only
used an elementary addition operation. The following proposition considers more gen-
eral convex sets as the domain, involving convex combinations. It underlies Theorem 4.
For simplicity, and because we do not need more, we give it only for 𝒞 = ℝ. For later ref-
erence, we repeat that, for 𝒞 = ℝ and a convex set D of acts, I : D → ℝ is affine or linear
if

for all α ∈ [0, 1] and X , Y ∈D : I
(︁
αX + (1 − α)Y

)︁ = αI(X ) + (1 − α)I(Y ). (10)

We call I comonotonically affine if (10) holds for I whenever X and Y are comono-
tonic. We call I AC affine if (10) holds for I whenever X and Y are AC.

Proposition 12. Assume 𝒞 = ℝ and a functional I : D → ℝ, where D ⊂ B(�, ℱ ) is con-
vex and contains a constant act in its interior. Then AC affinity is equivalent to affinity
whenever I is monotonic (with respect to ≥ on ℝ) or continuous.

We now turn to an application to finance. Again 𝒞 = ℝ, and now acts are financial
assets and I reflects the market price. Additivity of I and even linearity are implied by
common market trade assumptions and are thus automatically satisfied. Monotonicity
is then taken as the critical condition in Proposition 13 below: a linear combination of
trades should never lead to a sure loss (no-arbitrage). Market prices I are normalized,
I(0) = 0 and I(1) = 1, implying, together with the other conditions, that I(x) = x for
all outcomes x. The fundamental theorem of asset pricing entails that no-arbitrage im-
plies as-if risk-neutral pricing: there exists a probability measure P on � such that I is
its expectation, denoted 𝔼P or 𝔼 for short. We generalize this fundamental theorem of
finance. First, for linear combinations, only additivity is needed, and not scalar multi-
plication. (This point has been known for long time.) We further show that additivity
can be weakened to AC acts. That is, the critical test of no-arbitrage in financial mar-
kets occurs in cases where leverage possibilities are maximal. This suffices to ensure
no-arbitrage everywhere.
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Proposition 13. There exists a probability measure P such that I = 𝔼P (“as-if risk neu-
trality”) if and only if I is normalized and satisfies monotonicity and AC additivity. Here,
P is unique.

Gilboa and Samuelson (2022) characterized no-arbitrage for arbitrary sets of acts
and discussed its normative status.

In the risk management literature, for a risk measure I, the equality I(X + Y ) =
I(X ) + I(Y ) is often interpreted as that no diversification benefit8 is assigned to the
portfolio vector (X , Y ); see Wang and Zitikis (2021) in the context of the Basel Accords.
In this context, Proposition 13 is intuitive: If no portfolio of two AC risks (representing
maximum hedging effect) is assigned a diversification benefit, then no portfolio should
have any diversification benefit, and, hence, the risk measure should simply be the ex-
pected value. This is in sharp contrast to the idea of assigning no diversification benefit
to comonotonic risks, which leads to a large class of risk measures called distortion risk
measures; mathematically, they coincide with the dual utility functionals of Yaari (1987).
See McNeil, Frey, and Paul Embrechts (2015) for the use of distortion risk measures in
risk management.

We next turn to de Finetti’s bookmaking argument. Again, 𝒞 =ℝ. Subjective expected
value, or expected value (EV ), holds if EU holds with U the identity function. Additivity
holds for ≽ if

for all acts X , Y , Z : X ∼ Y =⇒ X +Z ∼ Y +Z. (11)

If a certainty equivalent exists for every act, as is the case in all results in this paper, then
a convenient reformulation is

for all acts X , Z and outcomes x : X ∼ x =⇒ X +Z ∼ x+Z. (12)

The condition at first seems to be weaker than (11) because of the restriction to constant
Y = x. However, it readily implies (11) by twofold application with the (same) CE for X ,
Y , and transitivity. The condition is well suited for our purposes because the constant
act x is automatically AC with the other acts.

Definition 14. AC additivity holds for ≽ if (12) is imposed only if X and Z are AC.

Proposition 15. Adopt Assumption 2 with ≽ on 𝒞 = ℝ the natural ordering ≥. There
exists a probability measure P such that expected value holds if and only if there exists
a certainty equivalent for every act, and weak ordering, monotonicity, and AC additivity
hold.

de Finetti and many other authors who have written about bookmaking assumed ad-
ditivity more or less implicitly,9 but emphasized the importance of monotonicity. They

8The diversification benefit often refers to I(X )+ I(Y )− I(X+Y ); see McNeil, Frey, and Paul Embrechts
(2015).

9Whereas this assumption is natural in finance, it is highly restrictive in the present context of individual
choice. The bookmaking argument usually makes yet stronger assumptions by also incorporating positive
scalar multiplications and, thus, positive linear combinations. Proposition 15 showed that such assump-
tions are not needed because they are implied by the other conditions.
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used the above result, without the AC restriction, and several variations, to argue that it
is rational to use subjective probabilities in the context of uncertainty. Linearity of utility,
as implied here, is reasonable for moderate stakes (l’Haridon and Vieider (2019, p. 189);
Savage (1954, p. 91)). de Finetti’s result was historically important as a foundation of
Bayesianism. Our result shows that the most critical case of bookmaking occurs when
there are maximal possibilities of hedging (AC). That is, de Finetti needed to defend his
condition only for AC cases.

Next we suggest a generalization of AC, similar to the following generalization of
comonotonicity that we explain first.10 Two acts X and Y are maxmin related if for
every state ω, either X takes its best value or Y takes its worst value, or vice versa. This
implies that X and Y are comonotonic. Remarkably, many results in the literature using
comonotonic preference conditions can be generalized by imposing the condition only
for maxmin related acts. In this way, and historically remarkable, Anger (1977) preceded
Schmeidler (1986) by providing a more general axiomatization of the Choquet inte-
gral. Other papers that provide such maxmin generalizations of comonotonicity include
Chateauneuf (1991), Aouani, Chateauneuf, and Ventura (2021), Wakker (1990), Bas-
tianello, Chateauneuf, and Cornet (2024), and Cerreia-Vioglio, Maccheroni, and Mari-
nacci (2015), whose put–call parity conditions are equivalent to Anger’s maxmin relat-
edness. Even if mathematically more general than comonotonicity, maxmin relatedness
never became very popular. We think that this happened because comonotonicity is
more intuitive and better at capturing conceptual and empirical content. We can sim-
ilarly generalize AC, e.g., if 𝒞 = ℝ, by requiring X and −Y to be maxmin related. That
is, either (i) at every ω, either X or Y is best, or (ii) at every ω, either X or Y is worst.
We conjecture that the AC condition can be generalized in this manner in several results
in our paper. We did not pursue this generalization because we find AC more intuitive,
similarly as the literature has preferred comonotonicity to maxmin relatedness.

Finally, we briefly mention some results from the literature that may be useful for fur-
ther studies of AC restrictions. Aouani, Chateauneuf, and Ventura (2021) provided many
related results for superadditivity, supermodularity, and other properties, and implica-
tions for uncertainty attitudes and diversification. Beissner and Werner (2023) provided
optimization techniques for non-expected utility models that are neither differentiable
nor satisfy convexity of preference. Under some further assumptions, Castagnoli, Catte-
lan, Maccheroni, Tebaldi, and Wang (2022) axiomatized their star-shaped representing
functionals through the following condition, which is weaker than AC convexity. Uncer-
tainty reduction holds if

for all acts X , outcomes x, and 0 <α< 1 : X ∼ x =⇒ αX + (1 − α)x≽X . (13)

The condition is weaker than AC convexity because every constant act x is AC with ev-
ery other act. Thus, AC convexity is between convexity and uncertainty reduction. Given
the other assumptions, AC convex functionals will thus be in the “middle” between con-
vex and star-shaped functionals. Interestingly, Castagnoli et al. (2022) showed that their
star-shaped functionals are maxima of concave functionals, a result that can be used to
analyze AC convex preferences and functionals.

10We thank a referee for encouraging us to discuss possible further generalizations.
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Appendix B: Proofs

We present proofs of results in their order of appearance in the main text and then in
Appendix A. This is not a logical order in the sense that some proofs use results presented
later. We then indicate those in the beginning of proofs.

Proof of Theorem 1. This proof uses Lemma 11. It is direct that linearity implies ad-
ditivity, which implies AC additivity. We, therefore, assume the latter and derive linearity.

For any fixed finite partition, AC additivity implies additivity for the simple acts de-
fined on that partition by Lemma 11. Theorem 5.1.1 in Aczél (1966) shows that linearity
follows for these acts under mild extra conditions such as continuity (at one point suf-
fices) or monotonicity. Linearity follows for all simple acts because any pair of simple
acts is measurable with respect to a joint simple partition. Finally, by standard integra-
tion techniques, linearity extends to all bounded acts: each can be “sandwiched” be-
tween dominating and dominated simple functions. By continuity or monotonicity, its
I value then is the limit of the I values of the limiting simple acts.

Proof of Theorem 4. This proof uses Proposition 12. That (iii) implies (i) and (i) im-
plies (ii) is direct. We, therefore, assume (ii) and derive (iii). If all outcomes are in-
different, then so are, by monotonicity, all acts and, hence, the result is trivial, with U

constant. So we assume nontriviality. On the outcome set, standard mixture indepen-
dence axioms hold because AC does not impose any restriction. By Herstein and Mil-
nor (1953), there exists an affine representation on outcomes. We, until further notice,
fix two outcomes M ≻ m and consider only acts X with M ≽ X(ω) ≽ m for all ω. By
monotonicity and mixture continuity, for each such act there exists a 0 ≤ p ≤ 1 such
that pM + (1 − p)m ∼ X . By Theorem 4 of Herstein and Milnor (1953), p is uniquely
determined and represents preferences over acts. We denote it by MP(X ), the match-
ing probability of X . It can be taken as a certainty equivalent for each act. We next
show that MP is an expectation representation for all acts (by, essentially, establishing
Cauchy’s equation for it).

We write p∗ = pM + (1 − p)m for all p ∈ [0, 1]. The idea of the proof is to replace
all outcomes by their equivalent p∗, which, by monotonicity, does not affect preference,
and then, by isomorphisms, everything follows from preceding results. The switches
between isomorphic spaces below involve some notational burden.

We first show that MP is AC affine. Assume X and Y are AC and α ∈ (0, 1). Write
p = MP(X ) and q = MP(Y ). Now

αX + (1 − α)Y ∼ αp∗ + (1 − α)Y ∼ αp∗ + (1 − α)q∗ = (︁
αp+ (1 − α)q

)︁∗
,

where the first two equivalences follow from AC independence and the last equality fol-
lows from affinity of MP on outcomes (also readily and more basically from distributivity
in mixture spaces). The equality

MP
(︁
αX + (1 − α)Y

)︁ = αp+ (1 − α)q

follows: MP is AC affine.
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To invoke Proposition 12, we adjust the domain of MP to become a subset of
B(�, ℱ ). For each act X , we define X ′ : � → [0, 1] by X ′(ω) = MP(X(ω)) for all ω. This
X ′ is measurable because every inverse of a preference interval is an event, and X ′ is
also bounded. Define I by I(X ′ ) = MP(X ). This I is well defined because all X with the
same X ′ are indifferent by monotonicity. This I inherits monotonicity from MP. It is
also AC affine: Consider AC acts X ′, Y ′, and 0 <α< 1. We take underlying X and Y with
X(ω) = X ′(ω)∗ and Y (ω) = Y ′(ω)∗; they are also AC. For every ω,

(︁
αX(ω) + (1 − α)Y (ω)

)︁′ = αX ′(ω) + (1 − α)Y ′(ω)

because MP is affine on outcomes. Hence,

I
(︁
αX ′ + (1 − α)Y ′)︁ = MP

(︁
αX + (1 − α)Y

)︁
.

By AC affinity of MP, this is αMP(X ) + (1 − α)MP(Y ) = αI(X ′ ) + (1 − α)I(Y ′ ); I is AC
affine. It is affine by Proposition 12. It is normalized.

By standard techniques (e.g., I’s affinity implies strong independence), I is 𝔼P for a
probability measure P , first for all indicator functions, then for all simple X ′, and then,
by monotonicity, for all X ′. Because MP(X ) = I(X ′ ), MP is the EU functional with MP
on outcomes as affine utility function U . We have obtained the desired representation
for all acts with outcomes between m and M .

We now turn to acts with outcomes not between m and M . For any other out-
comes M∗ ≽ M ≽ m ≽ m∗, we can similarly obtain an expectation representation. We
can rescale all these to take value 0 at m and value 1 at M . They then all agree on a
common domain and are all part of one expectation functional defined on the whole
domain.

Proof of Theorem 7. It is clear that (iii) implies (i) and (i) implies (ii). We, therefore,
assume (ii) and derive (iii). Assume, for contradiction, that U is not concave. Then there
are outcomes M ′ and m′, 0 <α′ < 1, such that

U
(︁
α′M ′ + (︁

1 − α′)︁m′)︁<α′U
(︁
M ′)︁ + (︁

1 − α′)︁U(︁
m′)︁.

By mixture continuity, we can find the largest 0 ≤ σ < α′ such that m = σM ′ + (1 − σ )m′
satisfies U(m) = σU(M ′ )+(1−σ )U(m′ ) and the smallest 1 ≥ τ > α′ such that M = τM ′+
(1 − τ)m′ satisfies U(M ) = τU(M ′ ) + (1 − τ)U(m′ ). We have

for all 0 <α< 1 : U
(︁
αM + (1 − α)m

)︁
<αU(M ) + (1 − α)U(m). (14)

By nondegenerateness, we can take A ∈ ℱ with 0 <P(A) = p< 1. We write (x, y ) for
xAy and in the rest of this proof, use only such acts. First assume (M , m) ∼ (m, M ). This
occurs if P(A) = 0.5 or U(m) =U(M ). Note that the two acts are AC. By AC convexity,

(︁
(m+M )/2, (m+M )/2

)︁
≽ (m, M ),

implying

U
(︁
(m+M )/2

)︁ ≥ (︁
U(m) +U(M )

)︁
/2,
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contradicting (14). From now on we may assume U(M ) > U(m) and p = P(A) > 0.5.
Otherwise, we would interchange M and m, and/or A and Ac . We have (M , m) ≻
(m, M ). In the remainder of this proof, we will only use outcomes x of the form
x = αM + (1 − α)m for some α. We assume without further mention that all outcomes
are of this form. Mapping α to α(x) provides an isomorphism of interval [0, 1] to the
outcome space.11 We use it to define average increases below.

We define x0 = m. By mixture continuity, there exists m ≺ x1 ≺ M with (x1, m) ∼
(x0, M ). If there are several such x1, we take the one closest to m, i.e., we take x1 =
αM + (1 − α)m with α minimal (existing by continuity of U). By mixture continuity, we
can inductively define a “standard sequence” m= x0, x1, x2, � � � , xn such that (xj+1, m) ∼
(xj , M ) for all j < n, each xj closest to m so that α(xj+1 ) > α(xj ) and (M , m) ≺ (xn, M ).
We have

for all j : U(xj+1 ) −U(xj ) = (1 −p)
(︁
U(M ) −U(m)

)︁
p

. (15)

We first consider the case xn ≺ M . We then similarly define a “standard sequence” M =
yn+1, yn, yn−1, � � � , y1 such that (yj−1, M ) ∼ (yj , m) and α(yj−1 ) < α(xj−1 ) < α(yj ), and yj
closest to m for all j. We have (m, M ) ≻ (y1, m) and

for all j : U(yj ) −U(yj−1 ) = (1 −p)
(︁
U(M ) −U(m)

)︁
p

. (16)

For every j, we have xj−1 ≺ yj ≺ xj and, further, there exists a 0 < α < 1, dependent
on j, such that yj = αxj + (1 − α)xj−1. By m ≼ xj−1 ≼ xj ≺ M , we have AC of (xj−1, M )
and (xj , m). AC convexity and (xj−1, M ) ∼ (xj , m) imply

α(xj , m) + (1 − α)(xj−1, M ) ≽ (xj , m) ∼ (xj−1, M ). (17)

We next show that because the triple of outcomes m, αM + (1 − α)m, M on Ac in (17)
brings in a kind of strict convexity, the triple xj−1, yj(= αxj + (1 − α)xj−1 ), xj on A must
bring in a kind of concavity, and it is enough to maintain the aforementioned AC con-
vexity. This point is elaborated next.

The U value of the left act in (17) exceeds the U value of the other two acts and,
therefore, also the α/1 − α convex combination of the latter two U values. That is,

pU
(︁
αxj + (1 − α)xj−1

)︁ + (1 −p)U
(︁
αm+ (1 − α)M

)︁
≥ p

(︁
αU(xj ) + (1 − α)U(xj−1 )

)︁ + (1 −p)
(︁
αU(m) + (1 − α)U(M )

)︁
.

This and

(1 −p)U
(︁
αm+ (1 − α)M

)︁
< (1 −p)

(︁
αU(m) + (1 − α)U(M )

)︁
(implied by (14)) imply (dropping p)

U
(︁
αxj + (1 − α)xj−1

)︁
>αU(xj ) + (1 − α)U(xj−1 ).

11In general, the only way in which the mixture space of all x = αM + (1 − α)m may not be isomorphic
to [0, 1] is by having x = αM + (1 − α)m = α′M + (1 − α′ )m for all 0 < α < α′ < 1, as follows mainly from
distributivity. This case is excluded by (15) below.
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The triple xj−1, yj (which equals αxj + (1 − α)xj−1), and xj exhibits a kind of concav-
ity.

Using the above isomorphism with [0, 1], the aforementioned “concavity” means
that the average increase of U over [xj−1, yj ] exceeds that over [yj , xj ]:

(︁
U(yj ) −U(xj−1 )

)︁
α>

(︁
U(xj ) −U(yj )

)︁
/(1 − α).

A similar proof shows that the average increase of U over [yj , xj ] exceeds that over
[xj , yj+1]. In this proof, write xj = α′yj + (1 − α′ )yj+1 and proceed as above with yj for
xj−1, xj for yj , yj+1 for xj , (16) for (15), and α′ for α. The two results together imply that
the average increase over an interval decreases as we move from m to M , from [yj , xj ] to
[xj , yj+1], to [yj+1, xj+1], and so on.

By (14), the average U increase over [m, y1] is strictly below that of [m, M]. But we
have just partitioned that interval [m, M] into 2n + 1 intervals that all have a strictly
smaller average increase than [m, y1]. A contradiction has resulted.

We, finally, turn to the case of xn ∼ M . We take z0, � � � , z2n such that zj = αjM +
(1 − αj )m, z2j = xj , and U(z2j+1 ) = (U(xj ) + U(xj+1 ))/2, zj closest to m, αj+1 > αj

for all j. We also define m′ = αM + (1 − α)m such that U(m′ ) = (U(M ) + U(m))/2.
By (14), α > 0.5. We have (zj , M ) ∼ (zj+1, m′ ) ∼ (zj+2, m) for all j. By AC convexity,
α(zj , M )+ (1−α)(zj+2, m) ≽ (zj , M ) and, hence, α(zj , M )+ (1−α)(zj+2, m) ≽ (zj+1, m′ ).
Hence, U(αzj + (1 − α)(zj+2 ) ≥ (U(zj ) + U(zj+2 ))/2, whereas α < 0.5. Given that zj+1

was chosen closest to m, αj+1 < 0.5αj + 0.5αj+2. The average increase of U over [zj , zj+1]
strictly exceeds that over [zj+1, zj+2]. This holds for all j. It is in contradiction with
the average increase of U over [z0, z1] strictly being below that over [m, M] (remember,
z0 =m) as follows from (14).

Proof of Proposition 8. In words, we replace all outcomes by their U values, extend
U(𝒞 ) to all of ℝ using positive homogeneity of the Choquet integral, and then follow
Aouani, Chateauneuf, and Ventura (2021).

We may assume that 0 is in the interior of the range of U by setting U(x) > 0 >U(y )
for some outcomes x ≻ y. Define �′ = �, 𝒞′ = ℝ, and ℱ ′ is the set of all measurable
bounded maps from �′ to 𝒞′. Define U ′ on ℱ ′ as the identity function, and let ≽′ on
ℱ ′ maximize CEU′ with respect to U ′ and W ′ = W . Then for all acts X and Y , and new
acts X ′ and Y ′ with U(X(ω)) = X ′(ω) and U(Y (ω)) = Y ′(ω) for all ω, we have X ≽
Y ⇔ X ′ ≽ Y ′. In this way, the new structure agrees with and extends the original one.
By positive homogeneity of CEU′, the new structure satisfies AC convexity if and only if
it does in a neighborhood around the constant new act 0.12 That is, if and only if the
original structure does. Our proposition now follows from Aouani, Chateauneuf, and
Ventura (2021).

Proof of Proposition 9. Equation (8) implies e-cautiousness of W : Assume W (E) >
0. Take outcomes x ≻ y and the act X = xEy. Then CEU(X ) > U(y ). Take 0 < ε <

CEU(X ) −U(y ). By (8), W (Ec ) = 0, as required by e-cautiousness of W .

12Multiply any pair of acts by α > 0 small enough to take them into that small neighborhood and verify
AC convexity there.
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E-cautiousness of W implies (8): Assume, for contradiction, W (U(X ) < CEU(X ) −
ε) > 0 for some ε > 0. Then e-cautiousness of W implies W (U(X ) ≥ CEU(X ) − ε) = 0,
giving the contradiction CEU(X ) ≤ CEU(X ) − ε.

We have shown that (8) is equivalent to e-cautiousness of W , which is trivially equiv-
alent to e-cautiousness of ≽.

Equation (9) implies w-cautiousness of W : Assume E ≠ �. Take outcomes x ≻ y,
X = xEy, and 0 < ε < U(x) − U(y ). By (9), with IU(X ) = U(y ), W (E) ≤ 0.5 and W is
w-cautiousness.

The w-cautiousness of W implies (9): for ε > 0, {ω∈� : U(X(ω)) > IU(X ) + ε} ≠ �

so that, by w-cautiousness, its W value does not exceed 0.5. We have proved (9).
Equation (9) is equivalent to w-cautiousness of W , which is trivially equivalent to

w-cautiousness of ≽.
We have shown equivalence of statements (i), (ii), and (iii) without the AC convexity

claim. We finally show that AC convexity can be added to statement (iii).

Lemma 16. The double-cautious model satisfies AC convexity.

Proof. By Proposition 8, it suffices to derive pseudo-convexity of W . Assume disjoint
events A and B are nonempty to avoid triviality. If A∪B = �, then W (A∪B) −W (B) ≤
1 −W (Ac ) follows trivially. Otherwise, it follows from double-cautiousness because 0.5
then is in between. We finally derive W (A) ≤W (A∪B) −W (B). It is trivial if W (A) = 0;
hence, assume W (A) > 0. Then, by double-cautiousness, W (B) = 0. We have W (A ∪
B) −W (B) =W (A∪B) ≥W (A) and we are done.

The proof of Proposition 9 is done.

Proof of nonconvexity in Example 10. First, W violates convexity: take A = [0,
0.58) and B = [0, 0.5) ∪ [0.58, 0.66). Then W (A∪B) +W (A∩B) = √

0.08 + 0 <W (A) +
W (B) = √

0.04 + √
0.04 = 0.4, violating convexity. Further, ≽ also violates convexity:

assume X(ω) = Y (ω) = 2 for all ω < 0.5, X(ω) = 1 for all 0.50 ≤ ω < 0.58, X(ω) = 0
for all ω ≥ 0.58, Y (ω) = 0 for all 0.50 ≤ ω < 0.58, Y (ω) = 1 for all 0.58 ≤ ω < 0.66,
and Y (ω) = 0 for all ω ≥ 0.66. Now CEU(X ) = CEU(Y ) = (g(0.50) − g(0)) × 2 +
(g(0.58) − g(0.50)) × 1 + 0 = 0 + 0.2 + 0 = 0.2. However, CEU((X + Y )/2) = (g(0.66) −
g(0.50)) × 1/2 = √

0.08/2 = √
0.02 < 0.2. Hence, X ∼ Y ≻ (X +Y )/2, violating convexity

of ≽.

Proof of Lemma 11. We assume AC additivity and derive additivity. Write � = {ω1, � � � ,
ωn}.

Step 1 (Additivity for X and its AC −X). Because X and −X are AC,

I(0) = I(0 + 0) = I(0) + I(0) = 0

and

0 = I(0) = I(X −X ) = I(X ) + I(−X ),

implying I(−X ) = −I(X ).
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Step 2 (Comonotonic additivity for X and Y from AC additivity for X +Y and −Y ).
For any comonotonic X and Y , X + Y and Y are comonotonic so that X + Y and −Y

are AC. Hence,

I(X ) = I(X +Y −Y ) = I(X +Y ) + I(−Y ) = I(X +Y ) − I(Y ).

Comonotonic additivity follows.
Step 3 (Additivity for general X and Y by writing them as sums of increasing and

decreasing functions, and then comonotonic and AC additivity pairwise). Consider two
general X and Y . With � = {ω1, � � � , ωn}, we can write X = X↑ +X↓ with X↑(ωi ) weakly
increasing and X↓(ωi ) weakly decreasing in i, and write Y = Y↑ + Y↓ similarly. By
comonotonic additivity (CA) and AC additivity (ACA),

I(X +Y )
(def)===== I

(︁
X↑ +X↓ +Y↑ +Y↓)︁

(ACA)===== I
(︁
X↑ +Y↑)︁ + I

(︁
X↓ +Y↓)︁

(CA)==== I
(︁
X↑)︁ + I

(︁
Y↑)︁ + I

(︁
X↓)︁ + I

(︁
Y↓)︁

(ACA)===== I
(︁
X↑ +X↓)︁ + I

(︁
Y↑ +Y↓)︁ = I(X ) + I(Y ).

This shows that I is additive.

Proof of Proposition 12. This proof uses Theorem 1. We assume AC affinity and
derive affinity under continuity or monotonicity. The reverse implication is triv-
ial.

We may assume 0 ∈ intD and I(0) = 0. To see this point, take a constant k∈intD.
Define D′ =D−k: D′ contains all acts resulting from subtracting k from acts in D. Next
define I′ on D′ correspondingly: I ′(X ) = I(X + k) − I(k). These I ′ and D′ share all rele-
vant properties, including AC, with I and D. It suffices to prove our results for I′ and D′.
We may omit primes.

The functional I is positively homogeneous: For each 0 <α< 1 and X ∈D,

I(αX ) = I
(︁
αX + (1 − α)0

)︁ = αI(X ) + (1 − α)I(0) = αI(X ),

using AC of X and 0.
We next extend I to I∗ defined on the whole vector space B(�, ℱ ) using positive ho-

mogeneity. That is, for each X ∈ B(�, ℱ ), we can find α > 0 so small that αX ∈ D, and
then define I∗(X ) = I(αX )/α. By associativity of scalar multiplication, I∗ is well defined
(independent of the particular α chosen) and positively homogeneous. Further, I∗ is
AC affine because AC and AC affinity are compatible with multiplication by a common
scalar. We next derive AC additivity of I∗. Consider AC X , Y ∈ B(�, ℱ ). Using positive
homogeneity,

I∗(X +Y ) = 2I∗(X/2 +Y/2) = 2
(︁
I∗(X )/2 + I∗(Y )/2

)︁ = I∗(X ) + I∗(Y ).

AC additivity holds for I∗.
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Continuity of I on D implies continuity of I∗ on B(�, ℱ ), and monotonicity of I sim-
ilarly extends to I∗. Hence, under continuity, I∗ is linear by Theorem 1. Under mono-
tonicity, I∗ is linear by Proposition 13 applied to the normalization of I∗ (dividing it by
I∗(1)). Affinity of I∗ and I follows.

Proof of Proposition 13. This proof uses Theorem 1. It is direct that I = 𝔼P implies
the conditions of I. We, therefore, assume those conditions and derive I = 𝔼P .

For any fixed finite partition, AC additivity implies linearity for the simple acts de-
fined on that partition. This follows from Theorem 1. Linearity follows for all simple acts
because any pair of simple acts is measurable with respect to a joint finite partition. To
obtain the 𝔼P representation for all simple acts, define P(E) = I(1E ) for all E, which is
nonnegative by monotonicity. It uniquely determines P . We have P(�) = 1 because I is
normalized. Linearity implies additivity of P , and I = 𝔼P for all simple functions.

Next, by standard integration techniques, the expectation is extended to all bounded
acts: Each can be sandwiched between dominating and dominated simple acts. Its I

value is the limit of the I values of the limiting simple acts, that is, 𝔼P , as we show in
the remainder of this proof. For some ε > 0 and simple acts X and Y , assume |X(ω) −
Y (ω)| ≤ ε for all ω. Then

⃓⃓
I(X ) − I(Y )

⃓⃓ = ⃓⃓
I(X −Y )

⃓⃓ ≤ I
(︁|X −Y |)︁ ≤ I(ε)

by monotonicity, and the latter tends to 0 for ε tending to 0 by linearity of I on simple
(including constant) acts.

Proof of Proposition 15. This proof uses Proposition 13. EV directly implies the
other conditions. We next assume the other conditions and derive EV. To derive AC
additivity of the certainty equivalent (CE) functional (uniquely defined given that ≽
coincides with ≥ on outcomes), assume X and Y are AC. Then X ∼ CE(X ) implies
X + Y ∼ CE(X ) + Y and Y ∼ CE(Y ) implies Y + CE(X ) ∼ CE(Y ) + CE(X ). By tran-
sitivity, X +Y ∼ CE(X ) + CE(Y ). Thus, CE is AC additive. Furthermore, it is monotonic
and normalized. By Proposition 13, it is 𝔼P . It represents ≽.
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