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Forward-looking experimentation of correlated alternatives

Yu Fu Wong
Department of Economics, University of Pittsburgh

This paper studies how a forward-looking decision maker experiments on un-
known alternatives of correlated utilities. The utilities are modeled by a Brown-
ian motion such that similar alternatives yield similar utilities. Experimentation
trades off between the continuation value of exploration and the opportunity cost
of exploitation. The optimal strategy is to continuously explore unknown alter-
natives and then exploit the best known alternative when the one being explored
is found to be sufficiently worse than the best one. The decision maker explores
unknown alternatives more quickly as they prove to be worse than the best known
one. Applied to firm experimentation, my model predicts a conditional version of
Gibrat’s law and a linear relation between firm size and profitability.
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1. Introduction

This paper studies the experimentation problem of a long-lived decision maker who
chooses alternatives of unknown correlated utility. The decision maker learns the utility
of her chosen alternative, which informs her future choices. To capture the correlation,
I model utility as a Brownian motion over a continuum of alternatives such that similar
alternatives yield similar utilities. Prior work on correlated utility, including Jovanovic
and Rob (1990) and Callander (2011), studies short-lived agents who can exploit a better
alternative based on past explorations. My innovation is to study a long-lived decision
maker who can also continue to explore.

The optimal experimentation strategy describes how quickly the decision maker
continuously explores unknown alternatives and when she stops to exploit the best
known one (Theorem 1). The speed of exploration depends on the drawdown, i.e., the
utility difference between the best known alternative and the one being explored, and
the decision maker exploits the best alternative when the drawdown exceeds a thresh-
old.

The innovation of my analysis is the application of time change to the domain of
alternatives. A time change indexes a stochastic process by an increasing sequence of
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stopping times. The experimentation literature on finitely many risky arms, such as
Karatzas (1984), Moscarini and Smith (2001), and Keller, Rady, and Cripps (2005), per-
forms time change in the domain of information that accumulates at a controlled rate.
The most up-to-date information is a sufficient statistic because it encompasses past
information. In my model, the decision maker controls the speed of exploring new al-
ternatives. The alternative being explored is not a sufficient statistic because previously
explored alternatives could be better. I show that the optimal strategy also takes the best
known alternative into account.

The trade-off between the continuation value of exploration and the flow opportu-
nity cost of exploitation implies faster exploration for more negative drawdowns (Propo-
sition 1). On the one hand, faster exploration acquires information more quickly and
realizes the continuation value sooner. When the drawdown becomes more negative,
the impatient decision maker finds it less pressing to realize the decreased continuation
value. On the other hand, faster exploration shortens the duration of exploration as the
flow opportunity cost of exploitation accrues. When the drawdown is more negative, the
increased flow opportunity cost prompts the decision maker to explore in a shorter time.
I show that the opportunity cost incentive always dominates the continuation value in-
centive. This is because the option to exploit partially insures the decision maker from
the drawdown, and so the continuation value is less sensitive to the drawdown than the
flow opportunity cost.

In the time series, i.e., how experimentation evolves over time, the speed’s mono-
tonicity with respect to drawdown implies that the speed of exploration increases over
time under conditions on model parameters (Corollary 1).

I study the comparative statics of the optimal strategy (Proposition 2). Intuitively,
the value of exploration increases when the decision maker is more patient, the cost of
exploration is lower, or the utility has a more positive drift. To realize the increased value,
the decision maker explores alternatives more quickly for any given drawdown and tol-
erates more negative drawdowns, i.e., the drawdown threshold increases. The compar-
ative statics also hold when the utility is more volatile because of the option value of
exploitation.

My model applies to a firm that experiments on its firm size to maximize prof-
its. I interpret the log number of employees as a proxy for firm size and log profit
as a proxy for profitability. Under the Brownian specification, firm-size elasticity of
profitability is modeled to be independent and identically distributed over all firm
sizes.

In the cross section, i.e., how experimentation differs across Brownian realizations,
I derive two results that correspond to predictions on firm dynamics. The first result
is that as the decision maker explores more alternatives, the speed of exploration con-
verges asymptotically in distribution (Proposition 3). In terms of firm dynamics, this
translates to a conditional version of Gibrat’s law: among large firms, the percentage
change in firm size conditional on growth follows essentially the same distribution that
is invariant to absolute firm size. The percentage change depends on absolute size only
through the extensive margin, i.e., firms that stop growing, but not the intensive mar-
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gin, i.e., firms that keep growing. By comparison, the original, unconditional version of

Gibrat’s law states that the distribution is invariant at both the extensive margin and the

intensive margin.

The second result is that the exploited alternative and its utility are asymptotically

linear (Proposition 4). In the context of firm experimentation, this result means that

long-run profitability is proportional to long-run firm size among large firms. The result

highlights an endogenous selection effect: firms choose to operate at large sizes because

they experience increasing profits along the growth path. Therefore, the regression of

firm size on profits may overestimate average profit elasticity.

Related literature

My paper incorporates a long-lived decision maker into the experimentation problem

where the utilities of unknown alternatives are modeled by a Brownian motion. Jo-

vanovic and Rob (1990) analyze such a problem with overlapping generations of short-

lived agents, each of whom can learn the Brownian realization of one alternative before

choosing another for utility. Callander (2011) examines myopic agents who reveal the

utility of an alternative to their choice. Garfagnini and Strulovici (2016) extend Callander

(2011) to agents who live for two periods.1 In these papers, the agents acquire informa-

tion at most once before exploitation and, therefore, do not incorporate the information

value of continued exploration.2 By contrast, the long-lived decision maker in my model

can continue to explore. As a result, past exploration becomes instrumental to future ex-

ploration, and the information value feeds back to the decision maker’s experimentation

strategy.

Urgun and Yariv (2025) considers a related search model in which an agent searches

continuously among alternatives of Brownian utility. The objective is to maximize the

expected discounted utility of the best alternative subject to a search cost. As in my

model, their optimal strategy is to search continuously until the drawdown reaches a

threshold. The optimal speed of search is driven by the continuation value. By contrast,

the objective in my model is to maximize the expected discounted flow utility subject to

a learning cost. The optimal speed of exploration is driven by the flow opportunity cost

in addition to the continuation value.

1Garfagnini and Strulovici (2016) show that the agents may alternate between exploration and exploita-
tion. This is because the current agent’s remaining lifespan is nonstationary in their overlapping genera-
tions model.

2In Garfagnini and Strulovici (2016), the agents can in principle continue to explore in the second pe-
riod. However, it is weakly suboptimal to do so because, under their driftless Brownian specification, the
expected utility is maximized at some known alternative. Therefore, the experiment in the first period
depends on the marginal distribution of utilities only, but not the joint distribution. Consequently, their
optimal strategy can be derived from the Gittins index as in Weitzman (1979), as if the alternatives were
independent.
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The time change enables me to derive the time-series and cross-sectional results
from the literature on Brownian motions that are stopped at a drawdown threshold. Tay-
lor (1975) and Lehoczky (1977) characterize the joint distribution of the running maxi-
mum and the stopping time, for a Brownian motion whose drift and volatility may de-
pend on its value. However, their framework does not accommodate my optimal strat-
egy because both the drift and the volatility in my case depend on the drawdown. To
leverage their results, I apply a time change to the Brownian utility, transforming it from
the time domain to the domain of alternatives. Because the Brownian utility over alter-
natives has constant drift and volatility, their results can be applied to this process, as
the threshold strategy remains invariant under the time change.

The remainder of the paper is organized as follows. Section 2 introduces the exper-
imentation problem. Section 3 derives the optimal experimentation strategy. Section 4
studies the properties of optimal experimentation. Section 5 discusses key modeling
assumptions. The Appendix provides proofs.

2. Experimentation problem

I study the experimentation problem of a forward-looking decision maker who contin-
uously explores new alternatives of unknown and correlated utility subject to a learning
cost.

I model utility as a Brownian motion with drift over the domain of alternatives to
capture their correlation. Let (�, ℱ , ℙ) be a probability space that can support a stan-
dard Brownian motion. The utility process follows

U(ω, x) := μx+ σB(ω, x)

for realization ω ∈ � and alternative x ∈ [0, ∞), where μ ∈ (−∞, ∞) is the drift, σ > 0 is
the volatility, and B is a standard Brownian motion.

An experimentation strategy specifies the choice of alternatives based on past ex-
periments. In realization ω ∈ �, the decision maker chooses alternative xt(ω) at time
t ∈ [0, ∞). As in Callander (2011) and Garfagnini and Strulovici (2016), the decision
maker learns the realized utility U(ω, x) upon her choice via learning-by-doing. There-
fore, her information at time t consists of the history of calendar time, the chosen alter-
natives, and the corresponding utilities, i.e., ℱt := �({(η, xη(ω), U(ω, xη ))}η≤t ), where
�(·) denotes the generated sigma algebra. Let 𝔽 denote the augmented filtration and let
r > 0 denote the decision maker’s discount rate. I define the strategy space as follows.

Definition 1. An experimentation strategy, {xt(ω) : ω ∈ �, t ∈ [0, ∞)}, or simply {xt },
is a stochastic process that satisfies the following conditions.

• Initial condition. For each ω ∈�, x0(ω) = 0.

• Continuous exploration condition. For each ω ∈ �, the frontier Xt :=
supη∈[0,t] xη(ω) is absolutely continuous.

• Measurability condition. Strategy {xt } is predictable with respect to the augmented
filtration 𝔽.
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• Growth condition. There exists k1 ∈ (0, r ) and k2 > 0 such that xt(ω) ≤ k2 exp(k1t )
for all ω ∈� and t ∈ [0, ∞).

An important and immediate consequence of the initial condition and the continu-

ous exploration condition is that the (closure of the) set of explored alternatives at time

t is the interval [0, Xt ].

When the decision maker explores new alternatives, she incurs a flow learning cost

c(st ), where st := d
dtXt is the speed of exploration. The cost function c : [0, ∞) → [0, ∞)

is twice continuously differentiable and strictly convex. It is assumed to satisfy c(0) = 0,

c′(∞) > μ+/r, and the Inada condition, lims→∞ c′(s)s − c(s) = ∞. Note that the cost is

increasing in the speed of exploration and is zero when the speed is zero, e.g., when the

decision maker exploits a previously chosen alternative. Thus, the flow learning cost can

be interpreted as the utility loss incurred by the decision maker when she first learns to

extract utility from a given alternative.

The forward-looking decision maker chooses an experimentation strategy to maxi-

mize the expected discounted Brownian utility from the chosen alternatives net of the

learning cost of exploration. Formally,

max
{xt }

𝔼

[︃∫︂ ∞

0
re−rt

(︁
U(xt ) − c(st )

)︁
dt

]︃
. (1)

I denote the value attained by strategy {xt } as V {xt }, and call {xt } an optimal strategy if it

solves the maximization problem (1).

Remark 1 (Key assumptions). I comment on the key assumptions in the model. First,

the utility process with stationary independent increments allows the recursive formu-

lation of the optimal strategy. In particular, the Brownian specification with constant

drift and volatility lends itself to the well developed mathematics literature. Second, on

the strategy space, the continuous exploration condition permits jumps to known alter-

natives and forbids jumps to unknown alternatives to the right of the frontier. I argue

in Section 5.1 that this condition is without loss of optimality for convex learning costs.

Third, the growth condition rules out strategies with explosive explorations that attain

infinite utility at infinite cost.

3. Optimal experimentation strategy

I derive the optimal experimentation strategy in three steps. First, I show that the objec-

tive function is bounded. Second, I construct a candidate strategy based on several con-

jectures. Third, I prove the optimality of this strategy through verification. The primary

departure from the standard argument is that the strategy {xt } cannot be characterized

by a stochastic differential equation due to the possibility of exploitation.
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3.1 Bounded objective function

Unlike myopic or short-lived agents, the long-lived decision maker might attain infinite
utility by exploring an arbitrarily large set of alternatives for an arbitrarily good alterna-
tive. Because such a strategy would also incur an infinite learning cost, the objective
function would be ill-defined as infinity minus infinity.3

The growth condition guarantees a bounded objective function by limiting explo-
ration in finite time. The decision maker can choose from an exponentially growing,
but bounded, set of alternatives whose running maximum increases at most exponen-
tially in expectation. The restriction on k1 in the condition guarantees that the running
maximum grows at a slower rate than the exponential discounting, leaving the objective
bounded from above.

Lemma 1 (Bounded objective function). Over the set of strategies that satisfy the growth
condition with fixed constants k1 and k2, the objective function (1) is bounded from
above.

3.2 Verification argument

I construct a candidate strategy based on some conjectures and then verify the optimal-
ity of the strategy. The key observation is that, among the many explored alternatives,
the utility of the best known alternative and that of the frontier (i.e., rightmost alterna-
tive) are state variables, due to the Markovian property of Brownian utility.

I first claim that exploitation is a lookback option that gives the running maximum,
Mt := maxx∈[0,Xt ] U(x), when executed. A lookback option is an option with a backward-
looking and history-dependent payoff.4 Because exploitation does not generate infor-
mation or advance the frontier for future experiments, once the decision maker starts to
exploit, she will continue to do so by recalling the best known alternative.

Together with the running maximum, the frontier utility, Wt := UXt , characterizes
the continuation value, i.e., Vt = V (Wt , Mt ). This is because all unknown alternatives
are to the right of Xt . Conditional on available information, the utility distribution of
unknown alternatives depends only on Wt due to the Markov property of Brownian mo-
tion.

Next, I claim that the option value is a function of the drawdown. The option value
is the difference between the continuation value and the value of exploitation, i.e.,
vt := Vt − Mt , and the drawdown is the difference between the frontier utility and the
running maximum, i.e., yt := Wt − Mt . Note that the drawdown is weakly negative by
definition. Suppose that both the frontier utility and the running maximum increase by

3The utility is unbounded only for μ ≥ 0. In such a case, an example strategy (which violates the growth
condition) is

xt =
{︄

2 exp(2rn)
(︁
t − (n− 1)

)︁
for t ∈ [n− 1, n− 1/2)

arg max
{︁
U(x) : x ∈ [︁

0, exp(2rn)
]︁}︁

for t ∈ [n− 1/2, n).

4See Conze and Viswanathan (1991) for a discussion of lookback options in finance.
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the same constant. The utility distribution of unknown alternatives then shifts upward
by the same amount due to the stationary independent increments of Brownian utility.
Therefore, both the value of exploration and the value of exploitation increase by the
same amount, leaving the option value unchanged. The option value function can thus
be written as vt = v(yt ).

I derive the laws of the frontier utility, running maximum, and drawdown by apply-
ing a time change to the utility process.

Lemma 2 (Time change). The frontier utility satisfies Wt := μXt + Zt , where the process
Zt is a continuous square-integrable ℱ-martingale with quadratic variation σ2

∫︁ t
0 sq dη.

The drift and volatility of Wt are both linear in the speed of exploration because the
time change controls how quickly the frontier advances and experiences the variations
in the domain of alternatives. The Dambis–Dubins–Schwarz theorem further implies
that dZt = σ

√
st dB

′
t and, therefore, dWt = μst dt + σ

√
st dB

′
t , where B′

t is a standard
Brownian motion in a possibly enlarged probability space.5 As the time change is con-
tinuous by the continuous exploration condition, the running maximum of explored al-
ternatives equals that of the frontier utility, i.e., Mt = maxη∈[0,t] Wη. When the drawdown
is strictly negative, the running maximum does not increase and, therefore, the draw-
down shares the same law as the frontier utility, i.e., dMt = 0 and dyt = dWt = μst dt+dZt

for yt < 0.
The decision maker executes the option to exploit when the drawdown exceeds a

threshold, i.e., when the opportunity cost of exploitation exceeds the continuation value
of exploration. When the frontier utility decreases, the utility distribution of unknown
alternatives shifts downward due to the stationary independent increments. The con-
tinuation value therefore decreases. At the same time, the opportunity cost increases.
Therefore, there exists a threshold y < 0 such that exploitation is optimal if and only if
y ≤ y. In addition, the stationary independent increments further imply that the thresh-
old does not depend on the frontier utility or the running maximum. I denote by τ the
exploitation time, i.e.,

τ = inf{t ≥ 0 : yt ≤ y}. (2)

I posit that, during exploration, the option value satisfies a Hamilton–Jacobi–
Bellman equation (HJB) that captures the opportunity cost of exploitation and the flow
value of exploration. To maximize the option value, the speed of exploration must max-
imize the Hamiltonian, i.e.,

v = max
s

y − c(s) + 1
r
μv′s + 1

r

σ2

2
v′′s ∀y ∈ (y, 0). (3)

The option value consists of three components. First, the drawdown, y < 0, captures the
opportunity cost of exploring at the frontier instead of exploiting the best known alter-
native. Second, the learning cost, c(s), increases with the speed of exploration. Third,

5I do not use this corollary of Lemma 2 because the optimal strategy it identifies may not be adapted to
the original probability space; i.e., the strategy may be a weak solution to the decision maker’s problem.
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the flow value of exploration characterizes how the option value function changes with
the drawdown. Because dyt = μst dt + dZt for yt < 0, the variation in drawdown trans-
lates to the option value via the drift term 1

r μv
′s and the Itô term 1

r
σ2

2 v′′s. These two
terms are controlled by the speed of exploration via Lemma 2.

The optimal speed of exploration maximizes the flow value of exploration subject to
the learning cost. As the speed controls how quickly the frontier advances in the domain
of alternatives over time, the impatient decision maker can reap the value of exploration
earlier in time by exploring at a higher speed subject to the convex learning cost. The
optimal speed therefore solves the first-order condition (FOC)

c′(s) = 1
r
μv′ + 1

r

σ2

2
v′′, (4)

which equates the marginal learning cost to the marginal value of exploration.
In addition to (3), the option value function should satisfy three standard bound-

ary conditions. First, the value-matching condition defines the drawdown threshold by
equalizing the opportunity cost and the value of exploration. The option value function
therefore vanishes at the threshold, i.e.,

v(y ) = 0. (5)

Second, the smooth-pasting condition characterizes the optimal execution of the
option to exploit. For y < y, the decision maker exploits immediately and so v(y ) =
v′(y ) = 0. If the marginal option value were positive at the threshold, i.e., v′(y ) >

0, the kink would imply a positive infinite flow value of exploration, so the deci-
sion maker would explore more and vice versa. Thus, optimal execution implies
that

v′(y ) = 0. (6)

Third, the super-contact condition determines the marginal value of frontier util-
ity when the decision maker marks a new maximum. Because the running maximum
increases by the same amount as the frontier utility, so does the continuation value,
i.e.,

v′(0) = 1. (7)

By constructing a candidate strategy that satisfies these conditions, I characterize
the value function and the unique optimal strategy by a verification argument.

Theorem 1 (Optimal experimentation).

(i) The continuation value satisfies Vt = V (Wt , Mt ) = Mt + v(yt ). The option value
function v is the unique solution to (3) subject to boundary conditions (5)–(7), with
extension v(y ) = 0 for y < y. Moreover, v is increasing and convex.
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(ii) The optimal experimentation strategy {x∗
t } is unique and is given by

x∗
t =

⎧⎪⎪⎨
⎪⎪⎩

∫︂ t

0
s(yη )dη for t < τ

arg max
x≤Xτ

U(x) for t ≥ τ,

where (2) defines exploitation time τ and (4) defines speed of exploration s.

4. Properties of optimal experimentation

I analyze how optimal experimentation evolves over time, depends on model parame-
ters, and differs in the cross section.

4.1 Time-series properties

By analyzing two opposing incentives, I show that the more negative is the drawdown,
the higher is the speed of exploration. The speed controls the drawdown, which in turn
determines the dynamics of exploration.

Proposition 1. The speed of exploration s is higher for the more negative drawdown y.

Define g(s) := sc′(s) − c(s). It is continuously differentiable and strictly increasing,
and so is its inverse g−1, which exists. Plugging (3) into (4), I write the speed of explo-
ration as a function of v − y, i.e.,

s = g−1(v − y ). (8)

The function g−1 maps the sum of the option value and the opportunity cost (recall that
y < 0) to the optimal speed, subject to the convex learning cost. Note that neither v′ nor
v′′ enters (8). This is because the drift and volatility terms in (3) are both linear in the
rate of time change, s, and, therefore, can be substituted by (4) simultaneously.

The intertemporal trade-off between the flow opportunity cost of exploitation and
the continuation value of exploration determines the optimal speed of exploration. On
the one hand, the decision maker incurs the flow opportunity cost, |y|, when she ex-
plores new alternatives instead of exploiting the best known one. To avert the flow cost,
she would like to explore quickly over a short period of time, and more so for more neg-
ative drawdowns when the opportunity cost is higher. On the other hand, the impatient
decision maker would like to realize the continuation value, v, sooner by acquiring more
information. For less negative drawdowns, the value is higher and, therefore, prompts
faster exploration.

The speed of exploration is higher for more negative drawdowns because the oppor-
tunity cost is more sensitive to the drawdown than the continuation value, i.e., v′ < 1.
When the drawdown experiences a negative shock at frontier Xt , the utilities of all alter-
natives to the right of Xt decrease, while those to the left, including the best alternative,
remain unchanged. As a result, the flow opportunity cost increases by the size of the
shock.
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However, the continuation value decreases by a smaller amount because the option
to exploit partially insures against the shock. Given optimal execution of the option
to exploit, the envelope theorem implies6 v′(yt ) = ∫︁ ∞

t re−r(η−t )ℙt[xη ≥ Xt ]dη ∈ [0, 1].
In words, the shock at the current frontier is relevant to the continuation value only
when the chosen alternative in the future, xη, lies to the right of Xt . If the frontier utility
reaches the drawdown threshold before marking a new maximum, the decision maker
will exploit the best alternative, which lies to the left of Xt , and, therefore, she insulates
herself from the negative shock. Only when yt = 0, is alternative Xt the best, and so all
future alternatives chosen during exploration and exploitation will lie to its right. The
negative shock at Xt factors in the decision maker’s flow utility permanently, implying
that v′(0) = 1.

I provide a sufficient condition for the speed of exploration to increase on average in
the time series.

Corollary 1. If μ ≤ 0 and sc′′(s) is decreasing over [s(0), s(y )], then the speed of explo-
ration s(yt ) is a submartingale over [0, τ).

By Proposition 1, the negative drift in drawdown contributes to a higher speed of
exploration over time. The volatility also contributes to it via the Itô term because v is
convex. The condition on c guarantees that g−1 in (8) is convex as well.7 Note that the
change in the running maximum does not factor in the calculation because s′(0) = 0 by
the smooth-pasting condition (6).

4.2 Comparative statics

I derive the comparative statics of the option value function, the speed of exploration,
and the drawdown threshold with respect to model parameters. I write that c increases
if c′(0) increases and c′′ increases pointwise, and that v and, respectively, s increase if v
and s increase pointwise. Moreover, a set of parameters is said to be more favorable if
either the drift μ is higher, the volatility σ2 is higher, the discount rate r is lower, or the
cost function c is lower.

Proposition 2 (Comparative statics). Option value v, speed of exploration s, and draw-
down threshold |y| are increasing in the drift μ and the volatility σ2 of the utility process,
and are decreasing in the discount rate r and the learning cost function c.

Intuitively, the decision maker derives higher value from exploration when it yields
higher utility, the decision maker is more patient, or learning is less costly (Figure 1).
As a result, she also tolerates a more negative drawdown threshold. Moreover, she is
motivated to explore at a higher speed at any given drawdown so as to realize the in-
creased value more quickly. The comparative statics hold when the utility process is
more volatile as well, because the option to exploit insures against negative shocks.

6One can also show v′ < 1 from the super-contact condition (7) and the strict convexity of v.
7The function sc′′(s) is positive and attains 0 at s = 0, and, therefore, it is not decreasing monotonically.
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Figure 1. The option value functions and the speed of exploration functions for two sets of
parameters.

4.3 Cross-sectional properties

In the application of firm experimentation, a firm experiments on its size, x ∈ [0, ∞), to
maximize expected discounted profitability, U(x). I use the log number of employees
as a proxy for firm size and use log profit for profitability. The Brownian specification
means that over all firm sizes, the firm-size elasticity of profitability is independent and
identically distributed. I interpret the learning cost, c, as the loss in profits when a firm
first operating at a given firm size fails to allocate human resources to maximize profit.
Starting at the minimal firm size, the optimal strategy is to grow continuously until the
percentage drawdown, y, exceeds a threshold and then to scale down to exploit the most
profitable size in the long run. The percentage growth rate, s, depends on the percentage
drawdown.

Stochastic utility generates heterogeneous experimentation behaviors in the cross
section under the optimal strategy. In the context of firm experimentation, I obtain two
cross-sectional predictions on firm dynamics: the conditional version of Gibrat’s law
and the linear relation between long-run firm size and profitability.

First, I present the asymptotic convergence of the speed of exploration, which corre-
sponds to the conditional version of Gibrat’s law. With a slight abuse of notation, I index
the drawdown and speed of exploration by the alternative rather than calendar time,
i.e., yx := U(x) − max[0,x] U and sx := s(yx ), by undoing the time change t ↦→ Xt . This is
possible because whether the drawdown has exceeded the threshold is invariant to the
continuous time change, i.e., ys < y ∀s ≤ t ⇔ yx < y ∀x ≤ Xt .

Proposition 3 (Asymptotic convergence). As x → ∞, the speed of exploration condi-
tional on exploration, sx|Xτ > x, converges in distribution.

The proposition concerns the few firms that grow beyond a large size even when
most other firms have already stopped exploration. The growth rate of these remaining
few firms follows a stable distribution regardless of absolute firm size. In other words,
the asymptotic convergence implies the conditional version of Gibrat’s law: among large
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firms, the percentage growth in firm size conditioned on growth is essentially invariant
to absolute firm size.

The conditional version of Gibrat’s law can explain an empirical deviation from the
original law, which states that the percentage growth in firm size is (unconditionally)
invariant to absolute firm size. Daunfeldt and Elert (2013) reject the original, uncondi-
tional version of Gibrat’s law on the aggregate level for Swedish firms during 1998–2004
because small firms on average grow more quickly than large firms. By contrast, the
conditional version of Gibrat’s law suggests that its deviation from the original law de-
rives from the extensive margin: large and old firms are more likely to have stopped
exploration and growth. Moreover, the conditional law weakens the original law parsi-
moniously in that the intensive margin—the percentage growth in firm size conditional
on growth—is invariant.

The proof of Proposition 3 also implies that the decision maker quickly stops explor-
ing.

Corollary 2 (Short exploration). There exist K, α > 0 such that ℙ[τ > t] ≤ Ke−αt for all
t ∈ [0, ∞).

Corollary 2 states that the tail probability is subexponential; i.e., exploration stops
at least exponentially quickly.8 Most firms stop growing and maintain a fixed size soon
after establishment.

My second cross-sectional result is that the exploited alternative is linear in its utility.
This result corresponds to the linear relation between long-run firm size and profitabil-
ity. To present a stark contrast, I restrict attention to a driftless utility process, i.e., μ = 0,
which means that the average elasticity of profit is zero. Denote the exploited alternative
by x∞ := limt→∞ xt = xτ and its utility by M∞ := limt→∞Mt =Mτ =Uxτ .

Proposition 4 (Linear relation). For μ = 0, the pair (x∞, M∞ ) satisfies the linear rela-
tion

𝔼[M∞|x∞ > x] = π2

8
σ2

|y|x+ o(x) as x→ ∞.

Among large established firms, the average firm-size elasticity of profit is π2σ2/8|y|,
which is positive.9

Proposition 4 highlights an endogenous selection effect: large firms choose to op-
erate at large sizes because they experience increasing profits along the growth path.
As a result, the naïve regression of profitability on firm size would estimate a positive
average elasticity despite the zero mean in the profit process, because the estimation
overlooks the selection bias. The proposition implies that the bias persists even for very
large firms.

8Therefore, the decision maker will eventually stop exploring, as Callander (2011) and Garfagnini and
Strulovici (2016) show in their models with short-lived agents.

9The proof of Proposition 4 establishes that M∞, x∞, and Xτ all exhibit exponential tails. Moreover, the
proof shows that all three variables satisfy pairwise linear relations, and thus implies selection biases in the
pairwise regressions in the long-run profitability, long-run firm size, and historic maximum firm size in the
context of firm experimentation.
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5. Discussions on modeling assumptions

In this section, I discuss how my analysis depends on three modeling assumptions: the
continuous exploration condition, the Inada condition, and the learning cost.

5.1 Continuous exploration condition

The continuous exploration condition in Definition 1 is without loss of optimality un-
der convex learning costs. The idea is that in continuous time, fast continuous explo-
ration approximates discontinuous jumps, and small but frequent jumps can approxi-
mate continuous explorations.

Suppose that the decision maker can explore discontinuously subject to a discrete
learning cost C(Dt ), where Dt is the distance of the chosen alternative from previous ex-
plorations and C : [0, ∞) → [0, ∞) is the discrete cost function. I assume that C(0) = 0
and that C is convex as in Garfagnini and Strulovici (2016). This formulation is consis-
tent with the flow learning cost of continuous exploration because the speed of explo-
ration measures the infinitesimal distance from previous explorations.

I claim that the discrete cost function is effectively linear. Because C is convex, it
suffices to show subadditivity, i.e., C(D) ≤ C(D′ ) + C(D − D′ ) for D′ < D. Instead of
exploring an alternative at distance D in one step, the decision maker can first explore
the middle point at distance D′ and then explore the chosen alternative, now at distance
D−D′. Over an arbitrarily short time lapse, the two-step exploration reveals additional
information at the middle point while accumulating zero flow utility. The cost C(D′ ) +
C(D−D′ ) therefore bounds the effective learning cost from below.

The linearity of the discrete cost function implies the optimality of continuous ex-
ploration. For the case c′(∞) ≤ C ′, the statement follows because the decision maker
can explore continuously at an arbitrarily high speed instead of discontinuously. Such
continuous exploration incurs strictly lower learning cost because of the Inada condi-
tion. Now let us consider the case c′(∞) >C ′. Instead of exploring continuously at speed
s > s := (c′ )−1(C ′ ), the decision maker can mix or “chatter” between exploring continu-
ously at speed s and discontinuously in arbitrarily small steps.10 For the same distance
per unit time, the mixed exploration incurs a flow cost of c(s) + (s − s)C ′, which is lower
than c(s). Because the utility process is continuous, the mixed exploration provides es-
sentially the same information as continuous exploration when the step size vanishes.
The effective flow learning cost function

cE(s) :=
{︄
c(s) for s ≤ s

c(s) + (s − s)C ′ for s > s

falls into the first case described above and so continuous exploration is weakly opti-
mal, but not necessarily strictly so, because the effective cost function fails the Inada
condition.

10Moscarini and Smith (2001) make a related convexification argument and attribute it to Paul Milgrom.



896 Yu Fu Wong Theoretical Economics 20 (2025)

Remark 2. The above argument fails if C is not convex. When the decision maker ex-
plores discontinuously, the (closure of the) set of explored alternatives may no longer
be an interval. In addition to the utility at the rightmost alternative, the decision maker
also needs to take the utility at each boundary point into account. The number of state
variables grows with each discontinuous exploration, leaving the recursive analysis in-
tractable.

5.2 Inada condition

The Inada condition guarantees an interior solution to (4). If the learning cost func-
tion c fails the condition, it may be optimal to explore at infinite speed. Such instanta-
neous exploration realizes the continuation value immediately and, therefore, averts the
flow opportunity cost. The decision maker does so over an interval of alternatives until
the drawdown reaches the threshold or becomes less negative, whereupon the optimal
speed becomes finite again.11 Despite the more involved technicalities, such instanta-
neous explorations yield the same economic insights.

5.3 Learning cost

My analysis extends to the experimentation problem with an adjustment friction in
place of the learning cost. I model the adjustment friction by restricting the chosen al-
ternative to be continuous, with a given Lipschitz constant; in other words, the speed
of change is uniformly bounded. The key difference is that the decision maker can
no longer exploit the best known alternative instantaneously, but can only take time
to backtrack from the frontier.

I denote the highest value from backtracking from a given alternative by the exploita-
tion value. The exploitation value–frontier utility pair can be shown to be a Markov pro-
cess over the domain of alternatives.

Similar to the case with a learning cost, the optimal strategy is to explore until the
generalized drawdown—i.e., the difference between the exploitation value and the fron-
tier utility—exceeds a threshold, and then backtrack to exploit the alternative that at-
tains the exploitation value. While the maximum utility increases monotonically during
exploration, the exploitation value decreases at a rate proportional to the generalized
drawdown, reflecting the lower flow utility when backtracking from the frontier. As a
result, the exploited alternative may differ from the best one.

Appendix: Proofs

A.1 Proof of Lemma 1

By the growth condition, the expectation of the running maximum of U over [0,
k2 exp(k1t )] is bounded from above, i.e.,

𝔼

[︂
sup

[0,k2 exp(k1t )]
U

]︂
≤ μ+k2e

k1t +
√︃

2
π
σ2k2 exp

(︃
k1

2
t

)︃
,

11Technically, the value is not attained; instead, it is approached by continuous exploration at an arbi-
trarily high speed.
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where μ+k2e
k1t is the maximum cumulative drift and

√︁
2σ2k2/π exp(k1t/2) is the ex-

pected running maximum of the driftless Brownian motion σB. Invoking the Fubini
theorem, I bound the objective function from above by

∫︂ ∞

0
e−rt

(︃
μ+k2e

k1t +
√︃

2
π
σ2k2 exp

(︃
k1

2
t

)︃)︃
dt

= μ+k2(r − k1 )−1 +
√︃

2
π
σ2k2

(︃
r − k1

2

)︃−1

<∞.

A.2 Proving Lemma 2

This lemma adapts Proposition 1.1.5 in Chapter V of Revuz and Yor (2013) to my setting
where ℱ is defined over t instead of x. The time change may remind the reader of the cel-
ebrated Dambis–Dubins–Schwarz theorem (see, for example, Theorem 1.1.6 in Chapter
V of Revuz and Yor (2013)). However, my model specifies a standard Brownian motion
Bx (and utility process Ux) as a primitive and then constructs its time-change Wt :=UXt .
By comparison, the theorem specifies a continuous martingale and then shows the exis-
tence of a Brownian motion in a possibly enlarged probability space such that the mar-
tingale is a time-change of that Brownian motion. In particular, my lemma does not
require such enlargement.

Proof of Lemma 2. Define Z :=W −μX. The process Z is continuous by composition
and is adapted to ℱ by the definition of ℱ . For η≥ t, its expectation satisfies

𝔼[Zη|ℱt ] = 𝔼
[︁
Zη|ℱB

Xt

]︁ =Zt ,

where ℱB is the natural filtration of B. The first equality follows because x is predictable
by the measurability condition. The second is due to the optional sampling theorem
because Ux − μx = σBx is a uniformly integrable ℱB-martingale on [0, k2e

k1η] by the
growth condition. Therefore, Z is an ℱ-martingale.

The same argument shows that Z2 −σ2X is an ℱ-martingale, because (Ux −μx)2 −
σ2x is a uniformly integrable ℱB-martingale on [0, k2e

k1η] for all η ≥ 0. Therefore, Z is
squared-integrable and its quadratic variation is σ2X by definition.

A.3 Proving Theorem 1

Following the conjectures in the main text, I construct a candidate strategy (Proposi-
tion 5 and Corollary 3) and then verify its optimality and uniqueness.

Proposition 5. There exist constants y < 0 and v > 0, and a convex function v : [y , 0] →
[0, ∞) with v(0) = v such that v satisfies HJB (3) and boundary conditions (5), (6), and
(7). For such v, the unique maximizer s∗(y ) is given by the FOC (4).
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Proof. I prove the existence to the free boundary problem by the shooting method.
First, I transform the HJB to an autonomous ordinary differential equation (ODE) by a
change of variables. Second, I prove the existence to an initial value problem that omits
the value matching condition and the smooth pasting condition (Lemma 3). Third, I
derive the monotonicity (Lemma 4) and asymptotic properties (Lemma 5 and Lemma 6)
of such solutions. Fourth, I show the two omitted conditions hold for one such solution,
which, therefore, solves the free boundary problem (Lemma 7).

Consider the change of variables φ(y ) := v(y ) − y. By substituting the speed of ex-
ploration (8) into HJB (3), I obtain

φ′′ + μ

σ2/2
φ′ = r

σ2/2
f (φ) − μ

σ2/2
(9)

on y ≤ 0, where f := c′ ◦ g−1 : [0, ∞) → [c′(0), c′(∞)) is increasing. The boundary condi-
tions translate to φ′(0) = 0, φ(y ) = −y, and φ′(y ) = −1.

Define v to be 0 for μ ≤ 0 and f−1(μ/r ) for μ > 0. For v0 > v so that φ′′(0) > 0, con-
sider the initial value problem of ODE (9) with initial conditions φ(0) = v0 and φ′(0) = 0.
Such v0 exists because c′(∞) >μ+/r.

Lemma 3. There exists a unique solution φ to the initial value problem. Moreover, φ′′ > 0.

Proof. By the Picard–Lindelöf theorem, there exists a unique solution to the initial
value problem on φ ≥ 0, where f (φ) is well defined.

To show φ′′ > 0 by contradiction, I suppose ỹ := sup{y ∈ (−∞, 0) : φ′′(y ) = 0} > −∞.
For [ỹ, 0], I have φ ≥ 0 because φ′′ > 0 by continuity. The supremum is attained also by
continuity. Moreover, I have φ′(y ) = 0 + ∫︁ y

0 φ′′ < 0 and, thus, φ(y ) = φ(0) + ∫︁ y
0 φ′ >φ(0).

Differentiating ODE (9) at ỹ, I obtain

φ′′′ = r

σ2/2
f ′(φ)φ′ − μ

σ2/2
φ′′ = r

σ2/2
f ′(φ)φ′ < 0.

Therefore, φ′′(ỹ + ϵ) < 0 for sufficiently small ϵ > 0, which is a contradiction.
Because φ′′ > 0 implies φ> 0, the solution exists and is unique on (−∞, 0].

Lemma 4. The function φ(y; v0 ) is continuously differentiable with respect to v0, and its
v0 derivative is positive and strictly decreasing in y.

Proof. Because f ∈ 𝒞1, the derivative of φ with respect to v0 is the solution to the vari-
ational equation

z′′ + μ

σ2/2
z′ = r

σ2/2
f ′(φ)z

with initial conditions z(0) = 1 and z′(0) = 0. It then suffices to show that z′ < 0 on
(−∞, 0).

To obtain a contradiction, I suppose ỹ := sup{y < 0 : z′(y ) = 0} > −∞. The supremum
is attained because z′′(0) = r

σ2/2
f ′(φ(0)) > 0. I have z′(y ) < 0 for y ∈ (ỹ, 0) and z(y ) > 0

for y ∈ [ỹ, 0]. At ỹ, I have z′′ = (2r/σ2 )f (φ)z − (2μ/σ2 )z′ > 0 as f (φ) > 0. Therefore,
z′(ỹ + ϵ) > z′(ỹ ) = 0 for sufficiently small ϵ > 0, which is a contradiction.
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Lemma 5. For v0 sufficiently close to v, the solution φ(·; v0 ) intersects with the 45-degree
line, −y.

Proof. For the case of μ ≤ 0, I have v = 0. The initial conditions satisfy φ(0; 0) = 0 and
φ′(0; 0) = 0 >−1. Moreover, φ′′(0; 0) = (2r/σ2 )f (0) − (2μ/σ2 ) ≥ 0 and so φ exists and is
unique in a neighborhood of 0. I have φ(y; v) <−y for some y < 0 close enough to zero.

For the case of μ > 0, I have v := f−1(μ/r ). The solution is the constant function
φ(·; v) = v. It satisfies φ(y; v) = v < −y for some y < −v.

In either case, I have φ(y; v) <−y for some y < 0. By the continuity of φ with respect
to v0, I have φ(y; v + ϵ) < −y for sufficiently small ϵ > 0. Because φ(0; v + ϵ) ≥ ϵ > 0,
φ(·; v + ϵ) intersects with −y by the intermediate value theorem.

Lemma 6. For sufficiently large v0, the solution φ(·; v0 ) does not intersect with the 45-
degree line, −y.

Proof. For the case of μ≤ 0, define

L := inf
{︃
l ∈ (0, ∞) :

r

σ2/2
f (l) − μ

σ2/2
> l−1

}︃
.

The infimum is finite and strictly positive because the left-hand side of the inequality is
increasing, and the right-hand side is decreasing and spans (0, ∞). For v0 >L, I have

φ′′ = r

σ2/2
f (φ) − μ

σ2/2
− μ

σ2/2
φ′ > r

σ2/2
f (v0 ) − μ

σ2/2
> v−1

0 .

Therefore, φ′(−v0 ) = ∫︁ −v0
0 φ′′ <

∫︁ −v0
0 v−1

0 = −1. On [−v0, 0), I have φ > v0 > −y since
φ′′ > 0 and φ′(0) = 0; on (−∞, −v0 ), I also have φ>−y because φ′(−v0 ) <−1 and φ′′ >
0. The lemma therefore obtains.

For the case of μ> 0, define

L := inf
{︃
l ∈ (0, ∞) :

r

σ2/2
f (l) > l−1

}︃
.

As in the previous case, the infimum is finite and strictly positive. For v0 > L, I show
φ′(−v0 ) <−1 by contradiction. Suppose otherwise. I have

φ′′ = r

σ2/2
f (φ) − μ

σ2/2

(︁
φ′ + 1

)︁
>

r

σ2/2
f (v0 ) > v−1

0 .

Therefore, φ′(−v0 ) = ∫︁ −v0
0 φ′′ <

∫︁ −v0
0 v−1

0 = −1, which is a contradiction. On [−v0, 0], I
have φ > v0 ≥ −y; on (−∞, −v0 ), I have φ > −y because φ′(−v0 ) < −1. The lemma
therefore obtains.

Lemma 7. There exist v > v and y < 0 such that φ(y; v) ≥ −y on [y, 0] with equality at y
and φ′(y; v) = −1.
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Proof. Let v be the supremum of solutions of initial values v0 that intersect with the
45-degree line. It exists by Lemma 5 and Lemma 6. Let φ := φ(·; v) denote the cor-
responding solution. Let {vn : n ∈ ℕ} denote a maximizing sequence. For each n, let
φn :=φ(·; vn ) denote the solution for vn and let yn := max{y : φn(y ) = −y} < 0 denote the
first intersection. The sequence {yn} is uniformly bounded by L by the proof of Lemma 6
and, therefore, admits a converging subsequence. With a slight abuse of notation, let
{vn, yn} denote the converging subsequence. Define y := infn yn.

For all n, I have φ′
n(yn ) ≥ −1 because φn intersects −y from above. In addition, {φ′

n}
is uniformly bounded from below by −1 on [y , 0], because φ′

n is increasing in the initial
value vn and decreasing in y by Lemma 4.

The first derivative {φ′
n} is uniformly bounded by [−1, 0] and so {φn} is uniformly

Lipschitz. Moreover, {φn} is uniformly bounded by L+|y| on [y, 0] because φ′
n ≥ −1. The

Arzelà–Ascoli theorem therefore implies that the sequence admits a uniformly converg-
ing subsequence. The uniqueness of the initial value problem further implies that the
limit is φ. Moreover, the uniform convergence implies φ(y ) = limn φn(yn ) = limn −yn =
−y; i.e., φ intersects with the 45-degree line. It also implies that φ(y ) >−y on (y , 0]

I show that {φ′′
n} is uniformly bounded on [y , 0]. For the case of μ ≤ 0, I have

φ′′
n = r

σ2/2
f (φn ) − μ

σ2/2
− μ

σ2/2
φ′
n <

r

σ2/2
f (−y ) − μ

σ2/2

because φ′
n < 0. For the case of μ> 0, I have

φ′′
n = r

σ2/2
f (φn ) − μ

σ2/2

(︁
φ′
n + 1

)︁ ≤ r

σ2/2
f (−y )

because φ′
n is bounded from below by −1.

The uniformly bounded {φ′′
n} implies that {φ′

n} is uniformly Lipschitz. Because
the first derivative is uniformly bounded between [−1, 0], the Arzelà–Ascoli theorem
implies that {φ′

n} admits a uniformly converging subsequence. By the uniqueness of
the initial value problem, the limit is φ

′
. Moreover, the uniform convergence implies

φ
′
(y ) = limn φ

′
n(yn ) ≥ −1.

It remains to show φ
′
(y ) ≤ −1. Suppose φ

′
(y ) > −1. I have φ(y − δ) < −(y − δ) for

sufficiently small δ > 0. By the continuity of the initial value problem, φ(y − δ; v + ϵ) <
−(y − δ), so φ(·; v + ϵ) intersects the 45-degree line, which contradicts the fact that v is
the supremum.

Because φ(·; v) solves ODE (9) and the corresponding boundary conditions, I obtain
the desired function v by reverting the change of variables via v :=φ− y.

Proposition 5 allows me to extend the construction from [y , 0] to (−∞, 0].

Corollary 3. Any function v defined in Proposition 5, with the extension of value 0 for
y ∈ (−∞, y ), solves the HJB equation

max
{︃

max
s

−rv + ry − rc(s) +μv′s + σ2

2
v′′s, 0

}︃
= 0 for y ∈ (−∞, 0]

subject to the super-contact condition v′(0) = 1.
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Remark 3. When μ = 0, the solution to the free boundary problem can also be charac-
terized by

∫︂ v(y )+y

v(0)

(︃
2

∫︂ a

v(0)

2r

σ2 f
−1(b)db

)︃− 1
2

da= −y ∀y ∈ (y , 0).

This integral equation characterization is possible because the first-order derivative
vanishes in HJB (9).

Proof of Part (i) of Theorem 1. Define the candidate continuation value function
as V (W , M ) := M + v(W − M ) for W ≤ M . Note that the function is convex. Recall that
Z :=W −μX.

For any strategy {xt }, Itô’s lemma gives

e−rtV (Wt , Mt )

= V (W0, M0 ) +
∫︂ t

0
e−rη

(︃
−rV dη+μV W dXη + 1

2
V WW d⟨Z⟩η + V W dZη + V M dMη

)︃

= V (W0, M0 ) +
∫︂ t

0
e−rη

(︃(︃
−r(Mη + v) +μv′s + σ2

2
v′′s

)︃
dη+ v′ dZη + (︁

1 − v′)︁dMη

)︃

= V (W0, M0 ) +
∫︂ t

0
e−rη

(︃(︃
−r(Mη + v) +μv′s + σ2

2
v′′s

)︃
dη+ v′ dZη

)︃
(10)

for any t ∈ℝ+. In the first equality, the Itô terms for M are zero because M is an increas-
ing process. The quadratic variation of Z in the second equality follows from Lemma 2.
In the third equality, the dMη term vanishes because both its components are zero:∫︂ t

0
e−rη

(︁
1 − v′)︁dMη =

∫︂ t

0
e−rη

(︁
1 − v′)︁1Wη=Mη dMη +

∫︂ t

0
e−rη

(︁
1 − v′)︁1Wη<Mη dMη.

The first component on the right-hand side is identically zero by the super-contact con-
dition. The second component is also zero according to the Skorokhod equation; i.e.,
the maximum of a continuous process does not increase when the process is away from
its maximum.

Taking expectation (over ℱ ) of (10), I obtain

𝔼0
[︁
e−rtV (Wt , Mt )

]︁ = V (W0, M0 ) +𝔼0

[︃∫︂ t

0
e−rη

(︃
−r(Mη + v) + 1

2
sv′′

)︃
dη

]︃
.

The expectation of the dZη term vanishes because it is a martingale.
Including the flow utility and learning costs over [0, t] and taking expectations, I ob-

tain

𝔼0

[︃
e−rtV (Wt , Mt ) +

∫︂ t

0
re−rη

(︁
U(xη ) − c(sη )

)︁
dη

]︃

= V (W0, M0 ) +𝔼0

[︃∫︂ t

0
e−rη

(︃
−rv + r

(︁
U(xη ) −Mη

)︁ − rc(sη ) +μv′sη + σ2

2
v′′sη

)︃
dη

]︃
.
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For sη > 0, the chosen alternative is at the frontier xη = Xη and so U(xη ) = Wη. In
this case, Corollary 3 implies that the integrand is weakly negative. For sη = 0, I have
U(xη ) ≤Mη. The integrand is also weakly negative since v is weakly positive.

By construction, {x∗
t } attains the maximum integrand (at zero) over all s because it

satisfies the HJB equation in Corollary 3. For this strategy, the speed is bounded and so
the learning cost is uniformly integrable. As t → ∞, the terminal value, e−rtV (Wt , Mt ),
vanishes and so the value of {x∗

t } is given by V {x∗
t } = V (W0, M0 ).

Consider an arbitrary strategy {xt }. The growth condition implies that e−rηU(xη ) is
uniformly integrable. Fatou’s lemma gives

𝔼0

[︃∫︂ ∞

0
re−rη

(︁
U(xη ) − c(sη )

)︁
dη

]︃

≤ V (W0, M0 )

+ lim sup
t→∞

𝔼0

[︃∫︂ t

0
e−rη

(︃
−rv + r

(︁
U(xη ) −Mη

)︁ − rc(sη ) +μv′sη + σ2

2
v′′sη

)︃
dη

]︃

≤ V (W0, M0 ), (11)

where the second inequality follows from Corollary 3. Therefore, V = V and {x∗
t } is an

optimal strategy.

Proof of Part (ii) of Theorem 1. For any optimal strategy, the integrand in (11) is
zero t-almost everywhere with probability 1. Within the threshold Wt − Mt ∈ (y, 0], it
is uniquely maximized by st = s∗(Wt − Mt ). Beyond the threshold Wt − Mt < y, the
integrand is maximized if and only if st = 0 and U(xt ) = Mt . Therefore, the process
Xt = ∫︁ t

0 sη dη is unique. Within the threshold, xt = Xt and is, therefore, unique. For
the unique X , the threshold is reached only when t ≥ τ. Then xt ∈ arg max[0,Xt ] U =
arg max[0,Xτ ] U is unique almost surely.

A.4 Proof of Proposition 2

The proof of Proposition 2 relies on two single-crossing lemmata about the solution to
initial value problem (9) with respect to model parameters (Lemma 9 and Lemma 10).
They imply the monotonicity of v and y (Corollary 4 and Corollary 5). Given the mono-
tonic endpoints, the single-crossing lemmata strengthen the monotonicity results to the
functions v (Lemma 11) and s pointwise (Lemma 12).

Consider two sets of parameters labeled by i = 1, 2 that are identical except either
r1 > r2, c1 > c2, μ1 <μ2, or σ2

1 <σ2
2 . Recall that f := c′ ◦ g−1.

Lemma 8. If c1 > c2, then f1 > f2 pointwise.

For the proof, see the proof of Proposition 5(c) in Moscarini and Smith (2001).
For i = 1, 2, let φi denote the solution to ODE (9) subject to initial condition φi(0) =

vi > vi and φ′
i(0) = 0 from y = 0 until φ′

i ≥ −1, for parameters i.
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Lemma 9 (Single crossing, starting from 0).

• If v1 ≥ v2, then φ1 >φ2 and φ′
1 <φ′

2 for all y < 0.

• If v1 < v2, then there is at most one y < 0 such that φ1(y ) =φ2(y ). Moreover, φ1 >φ2

and φ′
1 <φ′

2 for all y < y.

Proof. I first prove the lemma for either r1 > r2 or c1 > c2. By Lemma 8, r1f1 > r2f2

pointwise.
For the case of v1 ≥ v2, I prove φ1 >φ2 on (−∞, 0) by showing φ′

1 <φ′
2 there. Sup-

pose to the contrary that ỹ := sup{y < 0 : φ′
1(y ) = φ′

2(y )} > −∞. It is attained by conti-
nuity of φ′s and φ′

1 <φ′
2 in the neighborhood of 0, because φ′′

1(0) = (2r1/σ
2 )f1(v1(0)) −

2μ/σ2 > (2r2/σ
2 )f2(v2(0)) − 2μ/σ2 = φ′′

2(0). Moreover, φ1 >φ2 on [ỹ, 0) because φ′
1 <

φ′
2 there. At ỹ, I have

φ′′
1 = r1

σ2/2
f1(φ1 ) − μ

σ2/2

(︁
1 +φ′

1
)︁
>

r2

σ2/2
f2(φ2 ) − μ

σ2/2

(︁
1 +φ′

2
)︁ =φ′′

2.

Therefore, φ′
1(ỹ + ϵ) >φ′

2(ỹ + ϵ), which is a contradiction.
For the case of v1 < v2, I show that φ1 and φ2 crosses at most once. Let y := max{y <

0 : φ1(y ) = φ2(y )} denote the first crossing. Because φ1(0) < φ2(0), I have φ′
1(y ) ≤

φ′
2(y ). Whenever φ′

1(y ) = φ′
2(y ), I have φ′′

1(y ) = (2r1/σ
2 )f1(φ1 ) − (2μ/σ2 )(1 + φ′

1 ) >
(2r2/σ

2 )f1(φ2 ) − (2μ/σ2 )(1 +φ′
2 ) = φ′′

2(y ), and so φ′
1(y − ϵ) <φ′

2(y − ϵ) for sufficiently
small ϵ > 0.12 I continue to show φ1 >φ2 for all y < y by showing φ′

1 <φ′
2 there. Suppose

to the contrary that ỹ := sup{y < y : φ′
1(y ) = φ′

2(y )} > −∞. It is attained by continuity of
φs. In addition, I have either φ′

1 < φ′
2 or φ′

1 = φ′
2 and φ′′

1 > φ′′
2. Moreover, φ1 > φ2 on

[ỹ, y ) because φ′
1 <φ′

2 there. At ỹ, I have

φ′′
1 = r1

σ2/2
f1(φ1 ) − μ

σ2/2

(︁
1 +φ′

1
)︁
>

r2

σ2/2
f2(φ2 ) − μ

σ2/2

(︁
1 +φ′

2
)︁ =φ′′

2.

Therefore, φ′
1(ỹ + ϵ) >φ′

2(ỹ + ϵ), which is a contradiction.
The proofs for single crossing with respect to μ and σ2 are analogous: the only dif-

ference lies in the derivation of the ordering between φ′′s. For μ, I obtain the ordering
by noting φ′ > −1 and, thus, 1 + φ′ > 0 for all interior y. For σ2, I note φ′′ > 0 and so
rf (φ) −μ(1 +φ′ ) > 0.

Corollary 4. Let vi denote the option value at 0 for parameters i. Then v1 < v2.

Proof. Suppose otherwise. I have φ1 > φ2 by Lemma 9. Because φ2 touches the 45-
degree line, the function φ1 will never intersect the line, which is a contradiction.

For i = 1, 2, let φi denote the solution to ODE (9) for parameters i from y = yi un-
til φ′

i ≤ 0, subject to initial conditions φi(yi ) = −yi and φ′
i(yi ) = −1, where yi < 0. The

solution exists at least for yi = y
i

by construction in Proposition 5.

12If y is the left endpoint of one of the φs, then the lemma already obtains.
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Lemma 10 (Single crossing, starting from yi).

• If |y1| ≥ |y2|, then φ1 >φ2 and φ′
1 >φ′

2 for y ∈ (y2, 0].

• If |y1| < |y2|, then there exists at most one y ∈ (y1, 0] such that φ1(y ) = φ2(y ). More-
over, φ1 >φ2 and φ′

1 >φ′
2 for y ∈ (y, 0).

The proof is analogous to Lemma 9. The only difference is the starting point y in-
stead of 0. For |y1| > |y2|, I have φ1(y2 ) > y2 = φ2(y2 ) and φ′

1(y2 ) > −1 = φ′
2(y2 ) by the

convexity of φ1. The reverse goes for |y1| < |y2|.

Corollary 5. Let y
i

denote the drawdown threshold for parameter i. Then |y
1
| < |y

2
|.

Proof. Suppose otherwise. I have 0 =φ′
1(0) >φ′

2(0) = 0, a contradiction.

Lemma 11. Let vi denote the option value for parameters i. Then v1 < v2 pointwise.

Proof. It suffices to show that φ1 <φ2 pointwise.
Suppose otherwise. There exists y < 0 such that φ1(y ) = φ2(y ) by the intermediate

value theorem. By Lemma 9, I have φ1 >φ2 and so φ1 does not intersect the 45-degree
line on [y

2
, 0]. Moreover, φ′

1(y
2

) <φ′
2(y

1
) = −1 and so the convex φ1 does not intersect

the 45-degree line on (−∞, y
2

). Therefore, φ1 does not intersect with the 45-degree line,
which is a contradiction.

Lemma 12. Let si denote the speed of exploration for parameters i. Then s1 < s2 pointwise.

Proof. By (8), the monotonicity of s with respect to μ, σ2, and r follows directly from
that of φ. With respect to c, Lemma 8 implies that g−1 and, therefore, s = g−1(φ) are
both decreasing pointwise.

A.5 Proof of Corollary 1

Define h := g−1. It is increasing because g is increasing. Moreover, elementary calculus
shows that h′ is decreasing whenever sc′′(s) is increasing.

Applying Itô’s lemma to (8) gives

ds = h′(v − y )
(︁
v′ − 1

)︁
dy + 1

2

(︁
h′′(v − y )

(︁
v′ − 1

)︁2 + h′(︁v′ − y
)︁
v′′)︁d⟨y⟩

=
(︃
h′(v − y )

(︁
v′ − 1

)︁
μ+ σ2

2

(︁
h′′(v − y )

(︁
v′ − 1

)︁2 + h′(v − y )v′′)︁)︃s dt
− h′(︁v(0) − 0

)︁(︁
v′(0) − 1

)︁
dM + h′(v − y )

(︁
v′ − 1

)︁
dZ,

where the second equality follows from Lemma 2 and the fact that 1y<0 dM = 0 by the
Skorokhod equation. The three dt terms are positive because (i) h is increasing, v′ ≤ 1,
and μ < 0, (ii) h′ is decreasing because sc′′(s) is increasing by the hypothesis, and (iii) v
is convex. The dM term vanishes because v′(0) = 1 by the smooth pasting condition (6).
Therefore, the corollary obtains because Z is a martingale by Lemma 2.
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A.6 Proof of Proposition 3

Lemma 13. Let z denote a Brownian motion with drift μ and volatility σ2 reflected at
z = 0. Then the pairs of processes (U −M , M ) and (z, 2Lz(0)) share the same law, where
Lz(0) is the local time of z at 0.

For the proof, see Peskir (2006).

Proof of Proposition 3. Lemma 13 implies that the measure ℙ[yx ∈ ·, Xτ > x] is ab-
solutely continuous and its density p(t, ·) satisfies the Kolmogorov forward equation

∂xp= σ2

2
∂2
yp−μ∂yp ∀t > 0, y ∈ (y , 0)

subject to boundary conditions p(x, y ) = 0 and ∂yp(x, 0) = (2μ/σ2 )p(x, 0), and initial
condition p(0, y ) = δ0(y ).

This diffusion-drift problem with absorption/reflection boundary conditions can be
solved by Fourier series. See Chapter 4 of Strauss (2007). The solution converges asymp-
totically to the leading eigenfunction, denoted by q(y ) ≥ 0, exponentially at the rate of
the leading eigenvalue, denoted by λ > 0.

I note that λ = π2σ2/8|y|2 for μ= 0.

A.7 Proof of Corollary 2

The proof of Proposition 3 implies that the distribution of Xτ decays to zero exponen-
tially at rate λ. Because Xτ = ∫︁ τ

0 st dt, I have Xτ/s(y ) ≤ τ ≤Xτ/s(0). Therefore, the distri-
bution of τ also decays to zero exponentially at rate λ.

A.8 Proof of Proposition 4

Similar to Proposition 3, I index the utility process U by the alternatives instead of time
by undoing the time change Xt . Because the threshold strategy is invariant to the con-
tinuous time change, the utility process is stopped at the alternative x = Xτ , where
yx = y.

I prove Proposition 4 by establishing the linear relationship between Xτ and M∞,
and then translating the relationship from Xτ to x∞. I first approximate the tail distri-
bution of x∞ (Lemma 14). I continue to derive the expectation of x∞ conditional on M∞,
using that of Xτ conditional on M∞ (Lemma 15). I use this indirect method because x∞
is not adapted to the natural filtration ℱB, but Xτ is. Finally, I translate the conditional
expectation to M∞ conditional on x∞ by the marginal distribution of x∞ approximated
in Lemma 14 and the Markov inequality.

Lemma 14. Suppose μ= 0. Then x∞ has an exponential tail with exponent λ.

Proof. Proposition 3 implies that Xτ has an exponential tail, and so there exist
K1, K2 > 0 such that K1e

−λx ≤ ℙ[Xτ > x] ≤ K2e
−λx. Because x∞ < Xτ , the tail proba-

bility of x∞ is bounded from above by ℙ[x∞ > x] ≤K2e
−λx.
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The difference z :=Xτ −x∞ is independent of x∞ due to the strong Markov property.
Recall that Brownian motion near an extrema follows a Bessel-3 process starting at zero.
Therefore, z follows the distribution of hitting time at |y|/σ2 of that process. Its density
follows an exponential distribution asymptotically.13 Because the stopping alternative
is distributed as the hitting time at |y|/σ2 of a Bessel-1 process, i.e., reflected Brownian
motion, z has a thinner exponential tail than Xτ . Because x∞ and z are independent
and sum to Xτ , the tail of x∞ must be at least as thick as the tail of Xτ .

Lemma 15. Suppose μ= 0. Then x∞ and M∞ satisfy

𝔼[x∞|M∞ >m] = 2
3

|y|
σ2 m+ 2

3

y2

σ2 ∀m ≥ 0.

Proof. Because yx∞ = 0 by definition, Xτ − x∞ is independent of (x∞, M∞ ) due to the
strong Markov property of Brownian motion. Therefore, it suffices to compute 𝔼[Xτ −
x∞] and 𝔼[Xτ|M∞ >m].

First, I compute 𝔼[Xτ − x∞]. To simplify notation, I will compute it under the
normalization σ2 = 1. For standard Brownian motion starting at y ∈ (z, 0), let H de-
note the exit time from (z, 0). The expectation of e−βH conditional on exiting at z is14

𝔼y[e−βH|BH = z] = z sinh(x
√

2β)/x sinh(z
√

2β). Because H|BH = z has finite expecta-
tion, the dominated convergence theorem applies and the conditional expectation of H
is given by 𝔼y[H|BH = z] = −∂β𝔼y[e−βH|BH = z] = 1

3 (z2 − y2 ).
Due to the quadratic variation of Brownian motion, the escape time converges to

Xτ − x∞ almost surely as y → 0. By the dominated convergence theorem, the condi-
tional expectation converges as well, i.e., 𝔼[Xτ − x∞] = limy→0 𝔼y[H|BH = z] = 1

3z
2.

Second, I compute 𝔼[Xτ|M∞ >m]. For a standard Brownian motion and β > 0, the
conditional Laplace transform satisfies

𝔼
[︁
e−βXτ |LXτ (0) = l

]︁ = z
√︁

2β

sinh(z
√︁

2β)
exp

(︃
− 1

2z

(︁
z
√︁

2β coth(z
√︁

2β) − 1
)︁
l

)︃
,

where LXτ (0) is the local time at zero.15 Because Xτ has finite expectation by Propo-
sition 3, the dominated convergence theorem implies that the conditional expectation
of Xτ is 𝔼[Xτ|LXτ (0) = l] = −∂β𝔼[e−βXτ |LXτ (0) = l]|β→0 = zl/3 + z2/3. Lemma 13 im-
plies that the running maximum is twice the local time at zero; thus, 𝔼[Xτ|M∞ = m] =
𝔼[Xτ|LXτ (0) = 2m] = 2zm/3 + z2/3.

Lehoczky (1977) shows that M∞ is exponentially distributed with mean |y|. Using
his result, I obtain the tail conditional expectation of Xτ by integrating the conditional
expectation

𝔼[Xτ|M∞ >m] =

∫︂ ∞

m
𝔼[Xτ|M∞ = η]ℙ[M∞ ∈ dη]∫︂ ∞

m
ℙ[M∞ ∈ dη]

= 2
3
zm+ z2.

13See Formula 2.0.2, Chapter 4, Part II of Borodin and Salminen (2012) for the exact distribution.
14See Formula 3.0.4(b) and Formula 3.0.5(b) of Chapter 1, Part II in Borodin and Salminen (2012).
15See Formula 2.3.4 together with Formula 2.3.2 of Chapter 3, Part II in Borodin and Salminen (2012).
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Therefore, the tail conditional expectation of x∞ is 𝔼[x∞|M∞ >m] = 𝔼[Xτ|M∞ >m] −
𝔼[Xτ − x∞] = 2zm/3 + 2z2/3.

For the utility process U with σ > 0, the Brownian scaling property implies that the
conditional expectation for volatility σ2 and threshold σz is

𝔼
[︁
x∞|M∞ >σm′]︁|σ2,σz = 𝔼

[︁
x∞|M∞ >m′]︁|1,z = 2

3
zm′ + 2

3
z2.

I obtain the desired equality by taking z = |y|/σ and m′ = m/σ .

Proof of Proposition 4. Note that the coefficient of x is, in fact, π2σ2/8|y| = |y|λ. See
the proof of Proposition 3.

I first show 𝔼[M∞|x∞ > x] ≤ |y|λx + o(x). The Markov inequality applied to
Lemma 15 yields

xℙ[x∞ > x|M∞ >m] ≤ 𝔼[x∞|M∞ >m] = 2
3

|y|
σ2 m+ 2

3

y2

σ2 ∀x≥ 0.

Substituting the tail probability for M∞ from Lehoczky (1977), I obtain

ℙ[M∞ >m|x∞ > x] ≤
(︃

2
3

|y|
σ2

m

x
+ 2

3

y2

σ2

1
x

)︃
e
− m

|y|
ℙ[x∞ > x]−1 =: P(m).

The integral over [0, ∞) gives∫︂ ∞

0
ℙ[M∞ >m|x∞ > x]dm≤

∫︂ ∞

0
min

{︁
P(m), 1

}︁
dm.

As both sides are integrable, the boundary terms from the integration by parts vanish,

−
∫︂ ∞

0
mdℙ[M∞ >m|x∞ > x] ≤ −

∫︂ ∞

m∗
mdP(m),

where m∗ is defined by

m∗ := sup
{︁
r : P(r ) ≥ 1

}︁ = |y|λx+ o(x).

It is well defined for sufficiently large x. The approximation is due to Lemma 14. The
conditional expectation is therefore, bounded by

𝔼[M∞|x∞ > x] = −
∫︂ ∞

0
mdℙ[M∞ >m|x∞ > x]

≤ −
∫︂ ∞

m∗
mdP(m)

= ℙ[x∞ > x]−1
∫︂ ∞

m∗
m

(︃
2
3

1

σ2

m

x
+ 2

3

|y|
σ2

1
x

)︃
e
− m

|y| dm

= ℙ[x∞ > x]−1e
−m∗

|y|
(︃

2
3

|y|
σ2

(︁
m∗)︁2

x
+ 1

x
o
(︁(︁
m∗)︁2)︁)︃
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= P
(︁
m∗)︁(︁m∗ + o

(︁
m∗)︁)︁

= |y|λx+ o(x).

I continue to show 𝔼[M∞|x∞ > x] ≥ |y|λx + o(x). For a standard Brownian motion
stopped at drawdown z > 0, the Laplace transform of Xτ conditional on M∞ satisfies16

𝔼
[︁
e−βXτ |M∞ = m

]︁ = z
√︁

2β

sinh(z
√︁

2β)
exp

(︃
− 1

4z

(︁
z
√︁

2β coth(z
√︁

2β) − 1
)︁
m

)︃
.

For the utility process with volatility σ2 stopped at |y|, I take β = x−2 to obtain

𝔼
[︁
e−Xτ/x

2
|M∞ =m

]︁ = 1 − 1
6

|y|
σ

m

x2 + o

(︃
1
x

+ m

x2

)︃
.

The independence between (x∞, M∞ ) and Xτ − x∞ implies

𝔼
[︁
e−x∞/x2

|M∞
]︁ = 𝔼

[︁
e−Xτ/x

2
|M∞

]︁
/𝔼

[︁
e−(Xτ−x∞ )/x2]︁ = 1 − 1

6
|y| m

x2 + o

(︃
1
x

+ m

x2

)︃
.

The Markov inequality applied to e−x∞/x2
conditional on M∞ reads kℙ[e−x∞/x2

>

k|M∞] ≤ 𝔼[e−x∞/x2
|M∞]. The tail probability is then bounded by

ℙ[x∞ > x|M∞ ∈ dm] ≥ 1 − e1/x
𝔼

[︁
e−x∞/x2

|M∞ ∈ dm
]︁ = 1

6
|y| m

x2 + o

(︃
1
x

+ m

x2

)︃
dm.

Given the distribution of M∞ in Lehoczky (1977), the density of M∞ conditional on
x∞ > x is bounded by

ℙ[M∞ ∈ dm|x∞ > x] ≥ ℙ[x∞ > x]−1 1
|y|e

− m
|y| (︁1 − e1/x

𝔼
[︁
e−x∞/x2

|M∞ ∈ dm
]︁)︁
dm

=: q(m)dm.

Define Q(m) := ∫︁ ∞
m q(m)dm and m̃ :=Q−1(1) = |y|λx+ o(x). Integration by parts yields

𝔼[M∞|x∞ > x] ≥
∫︂ ∞

m̃
mq(m)dm= Q(m̃)

(︁
m̃+ o(m̃)

)︁ = |y|λx+ o(x).

References

Borodin, Andrei N. and Paavo Salminen (2012), Handbook of Brownian Motion: Facts
and Formulae. Birkhäuser. [0906, 0908]

Callander, Steven (2011), “Searching and learning by trial and error.” American Economic
Review, 101, 2277–2308. [0883, 0885, 0886, 0894]

Conze, Antoine and Vish Viswanathan (1991), “Path dependent options: The case of
lookback options.” Journal of Finance, 46, 1893–1907. [0888]

16See Formula 2.3.4 and Formula 2.3.2 of Chapter 3, Part II in Borodin and Salminen (2012).

https://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/callander2011searching&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/callander2011searching&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/conze1991path&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/conze1991path&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B


Theoretical Economics 20 (2025) Experimentation of correlated alternatives 909

Daunfeldt, Sven-Olov and Niklas Elert (2013), “When is Gibrat’s law a law?” Small Busi-
ness Economics, 41, 133–147. [0894]

Garfagnini, Umberto and Bruno Strulovici (2016), “Social experimentation with inter-
dependent and expanding technologies.” Review of Economic Studies, 83, 1579–1613.
[0885, 0886, 0894, 0895]

Jovanovic, Boyan and Rafael Rob (1990), “Long waves and short waves: Growth through
intensive and extensive search.” Econometrica, 58, 1391–1409. [0883, 0885]

Karatzas, Ioannis (1984), “Gittins indices in the dynamic allocation problem for diffusion
processes.” Annals of Probability, 12, 173–192. [0884]

Keller, Godfrey, Sven Rady, and Martin Cripps (2005), “Strategic experimentation with
exponential bandits.” Econometrica, 73, 39–68. [0884]

Lehoczky, John P. (1977), “Formulas for stopped diffusion processes with stopping times
based on the maximum.” Annals of Probability, 5, 601–607. [0886, 0906, 0907, 0908]

Moscarini, Giuseppe and Lones Smith (2001), “The optimal level of experimentation.”
Econometrica, 69, 1629–1644. [0884, 0895, 0902]

Peskir, Goran (2006), “On reflecting Brownian motion with drift.” In Proceedings of the
ISCIE International Symposium on Stochastic Systems Theory and Its Applications, vol-
ume 2006 of The ISCIE Symposium on Stochastic Systems Theory and Its Applications,
1–5. [0905]

Revuz, Daniel and Marc Yor (2013), Continuous Martingales and Brownian Motion, vol-
ume 293. Springer. [0897]

Strauss, Walter A. (2007), Partial Differential Equations: An Introduction. Wiley. [0905]

Taylor, Howard M. (1975), “A stopped Brownian motion formula.” Annals of Probability,
3, 234–246. [0886]

Urgun, Can and Leeat Yariv (2025), “Contiguous search: Exploration and ambition on
uncharted terrain.” Journal of Political Economy, 133. [0885]

Weitzman, Martin L. (1979), “Optimal search for the best alternative.” Econometrica, 47,
641–654. [0885]

Co-editor Simon Board handled this manuscript.

Manuscript received 6 July, 2021; final version accepted 29 December, 2024; available online 23
January, 2025.

https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/daunfeldt2013gibrat&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/daunfeldt2013gibrat&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/garfagnini2016social&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/garfagnini2016social&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/jovanovic1990long&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/jovanovic1990long&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/karatzas1984gittins&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/karatzas1984gittins&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/keller2005strategic&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/keller2005strategic&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/lehoczky1977formulas&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/lehoczky1977formulas&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/moscarini2001optimal&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/moscarini2001optimal&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/taylor1975stopped&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/taylor1975stopped&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/urgun2023contiguous&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/urgun2023contiguous&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/weitzman1979optimal&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/weitzman1979optimal&rfe_id=urn:sici%2F1933-6837%282025%2920%3A3%3C883%3AFLEOCA%3E2.0.CO%3B2-B

	Introduction
	Related literature

	Experimentation problem
	Optimal experimentation strategy
	Bounded objective function
	Verification argument

	Properties of optimal experimentation
	Time-series properties
	Comparative statics
	Cross-sectional properties

	Discussions on modeling assumptions
	Continuous exploration condition
	Inada condition
	Learning cost

	Appendix: Proofs
	Proof of Lemma 1
	Proving Lemma 2
	Proving Theorem 1
	Proof of Proposition 2
	Proof of Corollary 1
	Proof of Proposition 3
	Proof of Corollary 2
	Proof of Proposition 4

	References

