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Appendix B

Proof of Proposition 2

Since in a pure adverse selection model ũtat ≡ 0 for all t, throughout this section, we
remove at from the arguments of ũt , that is, ũt :�t ×Xt →R. We first inspect the conse-
quences of Assumptions 1 and 2 on the orthogonalized model. Note that since θt does
not depend on xt−1, the ψt inference functions do not depend on the decisions either,
so ψt : E t →�t . The time-separability of the agent’s payoff (part (i) of Assumption 2) is
preserved in the orthogonalized model, except that the flow utility at t, ut : E t ×Xt →R,
now depends on the history of types up to and including time t:

ut(ε
t�xt)= ũt(ψt(εt)�xt)� (S1)

Part (iii) of Assumption 1 implies that the larger is the type history in the orthogonalized
model up to time t, the larger is the corresponding period-t type in the original model.
This, coupled with part (ii) of Assumption 2, implies that ut is weakly increasing in εt−1

and strictly in εt . Monotonicity in xt as well as single crossing (part (iii) of Assumption 2)
are also preserved in the orthogonalized model. We state these properties formally in the
following lemma.

Lemma S1. (i) For all t ∈ {0� � � � �T } and ε̂t � εt ∈ E t ,

ε̂t ≤ εt ⇒ ψt(̂ε
t)≤ψt(εt)� (S2)

and the inequality is strict whenever ε̂t < εt .

(ii) The flow utility, ut defined by (S1), is weakly increasing in εt−1 and xt−1, and
strictly increasing in xt and εt .

(iii) For all t ∈ {0� � � � �T }, utεt (ε
t� xt)≥ utεt (εt� x̂t)whenever xt ≥ x̂t .
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Proof. (i) We have εt = H−1
t (θt |θt−1), therefore ψ0(ε0) = H−1

0 (ε0) and ψt for t > 0 is

defined recursively by ψt(εt)=H−1
t (εt |ψt−1(εt−1)). We prove the statement of this part

by induction. For t = 0, we haveH−1
0 (ε0)≥H−1

0 (̂ε0)whenever ε0 ≥ ε̂0 and the inequality
is strict if ε0 > ε̂0.

Suppose that (S2) holds for t, that is, ψt(̂εt) ≤ ψt(ε
t) whenever ε̂t ≤ εt and the

inequality is strict whenever ε̂t < εt . Note that ψt+1(̂εt+1) = H−1
t+1(̂εt+1|ψt(̂εt)) and

ψt+1(ε
t+1) = H−1

t+1(εt+1|ψt(εt)). Since ψt(̂ε
t) ≤ ψt(ε

t) by the inductive hypothesis,
part (ii) of Assumption 1 implies thatψt+1(̂ε

t+1)≤ψt+1(ε
t+1). In addition, if εt+1 > ε̂t+1,

thenH−1
t+1(εt+1|ψt(εt)) >H−1

t+1(ε
′
t+1|ψt(̂εt)).

(ii) The function ut is strictly increasing in xt and weakly increasing in xt−1 because
of part (ii) of Assumption 2 and (S1). Equalities (S1) and (S2) imply that ut is strictly
increasing in εt and weakly increasing in εt−1.

(iii) Fix a t ∈ {0� � � � �T } and note that by (S1),

utεt (ε
t� xt)= ũtθt (ψt(εt)�xt)

∂ψt(ε
t)

∂εt
�

The result follows from (S2) and part (iii) of Assumption 2. �

Another important consequence of part (i) of Assumption 1 is that for all εt+1 and
ε̂t , there exists a type σt+1(ε

t+1� ε̂t) ∈ Et such that, fixing the principal’s past and fu-
ture decisions as well as the realizations of the agent’s types beyond period t + 1, the
agent’s utility flow from period t + 1 on is the same with type history εt+1 as it is with
(εt−1� ε̂t �σt+1(ε

t+1� ε̂t)). We will show below that σt+1, interpreted in Eső and Szentes
(2007) as the agent’s “correction of a lie,” defines an optimal strategy for the agent at time
t+1 after a deviation from truthtelling in an incentive compatible direct mechanism at t.
This is formally stated in the following lemma.

Lemma S2. For all t ∈ {0� � � � �T − 1}, εt+1 ∈ E t+1, and ε̂t ∈ Et , there exists a unique
σt+1(ε

t+1� ε̂t) ∈ Et+1 such that for all k= t + 1� � � � �T , all ε̂k ∈ Ek, and x̂k ∈Xk,

uk(ε
t−1� εt� εt+1� ε̂t+2� � � � � ε̂k� x̂

k)= uk(εt−1� ε̂t �σt+1� ε̂t+2� � � � � ε̂k� x̂
k)� (S3)

The function σt+1 is increasing in εt , strictly increasing in εt+1, and decreasing in ε̂t .

Proof. Fix a t ∈ {0� � � � �T − 1}, εt+1 ∈ E t+1, and ε̂t ∈ Et . Let

σt+1 =Ht+1(ψt+1(ε
t+1)|ψt(εt−1� ε̂t))� (S4)

By the full support assumption in part (i) of Assumption 1, it follows that

ψt+1(ε
t+1)=ψt+1(ε

t−1� ε̂t �σt+1)�

that is, the computed time-(t + 1) type of the original model is the same after εt+1 and
(εt−1� ε̂t �σt+1). Therefore, the inferred type in the original model is also the same after
any future observations, that is,

ψk(ε
t−1� εt� εt+1� ε̂t+2� � � � � ε̂k)=ψk(εt−1� ε̂t �σt+1� ε̂t+2� � � � � ε̂k)
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for all k = t + 1� � � � �T , all ε̂k ∈ Ek. This equality and (S1) imply (S3). Also note that
σt+1(ε

t+1� ε̂t), defined by (S4), is increasing in εt , strictly increasing in εt+1 by part (i) of
Lemma S1, and decreasing in ε̂t by part (i) of Lemma S1 and part (iii) of Assumption 1.

It remains to show that there does not exist any other σt+1 that satisfies (S3). This
follows from part (ii) of Lemma S1, which states that ut+1 is strictly increasing in εt+1,
which implies that (S3) with k= t + 1 cannot hold for two different σt+1’s. �

The statement of the previous lemma might appear somewhat complicated at first
glance, but its meaning and its intuitive proof are quite straightforward. Part (i) of As-
sumption 1 requires the support of θt to be independent of θt−1. Therefore, if the type
of the agent is ψt(εt−1� ε̂t) at time t, there is a chance that the period-(t + 1) type will be
ψt+1(εt+1). The type σt+1(ε

t+1� ε̂t) denotes the orthogonalized information of the agent
at t + 1 that induces the transition from ψt(ε

t−1� ε̂t) to ψt+1(ε
t+1), that is,

ψt+1(ε
t−1� ε̂t �σt+1(ε

t+1� ε̂t))=ψt+1(ε
t+1)�

This means that the inferred type in the original model is the same after the histories
(εt−1� ε̂t �σt+1(ε

t+1� ε̂t)) and εt+1. Part (i) of Assumption 1 and part (ii) of Assumption 2
imply that, given the decisions, the flow utilities in the future only depend on current
type, which, in turn, implies (S3).

The decision rule in the orthogonalized model, {xt : E t →Xt}Tt=0, which corresponds
to {̃xt}Tt=0, is defined by xt(εt)= x̃t(ψt(εt)) for all t and εt . Note that, by (S2), if {̃xt}Tt=0 is
increasing in type (x̃t is increasing in θt for all t), then the corresponding decision rule
{xt}Tt=0 in the orthogonalized model is also increasing in type.1

In fact, the monotonicity of {x̃t}Tt=0 implies a stronger monotonicity condition on
{xt}Tt=0. Consider the two type histories εk and (ε1� � � � � εt−1� ε̂t �σt+1(ε

t+1� ε̂t)� εt+2�

� � � � εk). Note that the inferred types in the original model are exactly the same along
these histories except at time t. At time t, the inferred type is smaller after εt if and only
if εt ≤ ε̂t . Since x̃k is increasing in θt , the decision is smaller after εk if and only if εt ≤ ε̂t .
This is formally stated as follows.

Remark S1. If {̃xt}Tt=0 is increasing, then for all k= 1� � � � �T , t < k, εk ∈ Ek,

xk(εk)≤ xk(εt−1� ε̂t �σt+1(ε
t+1� ε̂t)� εt+2� � � � � εk) ⇔ ε̂t ≥ εt� (S5)

Proof. Recall from the proof of Lemma S2 that for all k= t + 1� � � � �T ,

ψk(ε
t+1� εt+2� � � � � εk)=ψk(εt−1� ε̂t �σt+1(ε

t+1� ε̂t)� εt+2� � � � � εk)�

By (S2),ψt(εt)≤ψt(εt−1� ε̂t) if and only if ε̂t ≥ εt . Then (S5) follows from the monotonic-
ity of {̃xt}T0 and the definition of {x}T0 . �

1To see this, note that if vt ≥ v̂t , then xt (̂vt ) = x̃t (ψ
t (̂vt )) ≤ x̃t (ψt(vt)) = xt(v

t), where the inequality fol-
lows from the monotonicity of {x̃t}T0 and (S2).
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To simplify the exposition, we introduce the following notation for t = 0� � � � �T , k≥ t:
ζkt (ε

k� y)= (εt−1� y�εt+1� � � � � εk)

ρkt (ε
k� y� ε̂t)= (εt−1� ε̂t �σt+1(ε

t−1� y�εt+1� ε̂t)� εt+2� � � � � εk)�

The vectors ζkt (ε
k� y) and ρkt (ε

k� y� ε̂t) are type histories up to period k, true or reported,
which are different from εk only at t or at t and t + 1. For k= t these are appropriately
truncated, e.g., ρtt(ε

t� y� ε̂t)= (εt−1� ε̂t).
As we explained, the monotonicity of {x̃t}Tt=0 implies the monotonicity of both{xt}Tt=0

and (S5). Therefore, to prove Proposition 2, it is sufficient to show that any increasing
decision rule in the orthogonalized model that satisfies (S5) can be implemented. In
what follows, fix a direct mechanism with an increasing decision rule {xt}Tt=0 that satis-
fies (S5). Let �t(εt |εt−1) denote a truthful agent’s expected payoff at t conditional on εt ;
that is,

�t(εt |εt−1)=E
[
T∑
k=0

uk(ε
k�xk(εk))−p(εT )

∣∣∣εt]�
Define the payment function, p, such that for all t = 0� � � � �T and εt ∈ E t ,

�t(εt |εt−1)=�t(0|εt−1)+E
[∫ εt

0

T∑
k=t

ukεt (ζ
k
t (ε

k� y)�xk(ζkt (ε
k� y)))dy

∣∣∣εt]� (S6)

It is not hard to show that the integral on the right-hand side of (S6) exists and is finite
because of part (ii) of Assumption 1, part (i) of Assumption 2, and the monotonicity of
xk. It should be clear that it is possible to define p such that (S6) holds.

In this mechanism, let πt(εt� ε̂t |εt−1) denote the expected payoff of the agent at time
t whose type history is εt and who has reported (εt−1� ε̂t). This is the maximum payoff
she can achieve from using any reporting strategy from t + 1 conditional on the type
history εt and on the reports (εt−1� ε̂t). If the mechanism is incentive compatible (IC)
then, clearly,�t(εt |εt−1)= πt(εt� εt |εt−1).

We call a mechanism IC after time t if, conditional on telling the truth before and at
time t − 1, it is an equilibrium strategy for the agent to tell the truth afterward, that is,
from period t on. By Lemma S2, the continuation utilities of the agent with type εt+1

are the same as those of the agent with type (εt−1� ε̂t �σt+1(ε
t+1� ε̂t)) conditional on the

reports and the realization of types after t+ 1. Therefore, if a mechanism is IC after t+ 1,
the agent whose type history is εt+1 and who reported (εt−1� ε̂t) up to time t maximizes
her continuation payoff by reporting σt+1(ε

t+1� ε̂t) at time t + 1 and reporting truthfully
afterward. If this were not the case, then the agent with (εt−1� ε̂t �σt+1(ε

t+1� ε̂t)) would
have a profitable deviation after truthful reports up to and including t, contradicting the
assumption that the mechanism is IC after t + 1. Therefore, in a mechanism that is IC
after t + 1, we have

πt(εt� ε̂t |εt−1)= ut(εt�xt(εt−1� ε̂t))− ut(εt−1� ε̂t � x
t(εt−1� ε̂t))

+
∫
�t+1(σt+1(ε

t+1� ε̂t)|εt−1� ε̂t) dεt+1�
(S7)
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We use (S7) in the following lemma to characterize the continuation payof of the agent
who deviates at t in a mechanism, that is, IC after t.

Lemma S3. Suppose that the mechanism is IC after time t + 1 and (S6) is satisfied. Then,
for all εt and ε̂t ,

πt(εt� ε̂t |εt−1)−πt(̂εt� ε̂t |εt−1)
(S8)

=
T∑
k=t

E

[∫ εt

ε̂t

ukεt (ζ
k
t (ε

k� y)�xk(ρkt (ε
k� y� ε̂t)))dy

∣∣∣εt]�
This lemma is a direct generalization of Lemma 5 of Eső and Szentes (2007).

Proof of Lemma S3. Let γkt (ε
k� ε̂t� y) denote (εt−1� ε̂t � y� εt+2� � � � � εk) for k = t +

1� � � � �T . Suppose first that εt > ε̂t . Then σt+1(ε
t+1� ε̂t) > εt+1, and

πt(εt� ε̂t |εt−1)= ut(εt�xt(εt−1� ε̂t))− ut(εt−1� ε̂t � x
t(εt−1� ε̂t))

+
∫
�t+1(σt+1(ε

t+1� ε̂t)|εt−1� ε̂t) dεt+1

= ut(εt�xt(εt−1� ε̂t))− ut(εt−1� ε̂t � x
t(εt−1� ε̂t))+�t(̂εt |εt−1)

+
T∑

k=t+1

∫
· · ·

∫ ∫ σt+1(ε
t+1 �̂εt )

εt+1

ukεt+1
(γkt (ε

k� ε̂t � y)�

xk(γkt (ε
k� ε̂t� y)))dy dεt+1 · · · dεk

= ut(εt�xt(εt−1� ε̂t))− ut(εt−1� ε̂t � x
t(εt−1� ε̂t))+πt(̂εt� ε̂t |εt−1)

+
T∑

k=t+1

∫
· · ·

∫ ∫ σt+1(ε
t+1 �̂εt )

εt+1

ukεt+1(γ
k
t (ε

k� ε̂t � y)�

xk(γkt (ε
k� ε̂t� y)))dy dεt+1 · · · dεk�

where the first equality is just (S7), the second one follows from (S6), and the third one
follows from �t(̂εt |εt−1)= πt(̂εt� ε̂t |εt−1). So to prove (S8), we only need to show that

ut(ε
t�xt(εt−1� ε̂t))− ut(εt−1� ε̂t � x

t(εt−1� ε̂t))=
∫ εt

ε̂t

utεt (ε
t−t � y�xt(ρtt(εt� ε̂t)))dy (S9)

and

T∑
k=t+1

∫
· · ·

∫ ∫ σt+1(ε
t+1 �̂εt )

εt+1

ukεt+1(γ
k
t (ε

k� ε̂t� y)�x
k(γkt (ε

k� ε̂t� y)))dy dεt+1 · · · dεk

=
T∑

k=t+1

∫
· · ·

∫ ∫ εt

ε̂t

utεt (ζ
k
t (ε

k� y)�xk(ρkt (ε
k� y� ε̂t)))dy dεt+1 · · · dεk�

(S10)
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Equation (S9) directly follows from the fundamental theorem of calculus. We now turn
our attention to (S10). By Lemma S2, σt+1 is continuous and monotone. The image of
σt+1(ε

t+1� y) on y ∈ [̂εt� εt] is [εt+1�σt+1(ε
t+1� ε̂t)]. Hence, after changing the variables of

integration, for all k= t + 1� � � � �T ,∫ σt+1(ε
t+1 �̂εt )

εt+1

ukεt+1(γ
k
t (ε

k� ε̂t� y)�x
k(γkt (ε

k� ε̂t� y)))dy

=
∫ εt

ε̂t

ukεt+1(γ
k
t (ε

k� ε̂t�σt+1(ε
t−1� y�εt+1� ε̂t))� (S11)

xk(γkt (ε
k� ε̂t�σt+1(ε

t−1� y�εt+1� ε̂t))))
∂σt+1(ε

t−1� y�εt+1� ε̂t)

∂y
dy�

Recall that by (S3) the expression

uk(ε
t−1� y�εt+1� � � � � εk�x

k)≡ uk(γkt (εk� ε̂t�σt+1(ε
t−1� y�εt+1� ε̂t))�x

k)

is an identity in y, so by the implicit function theorem,

ukεt (ε
t−1� y�εt+1� � � � � εk�x

k)

= ukεt+1(ε
t−1� ε̂t �σt+1(ε

t−1� y�εt+1� ε̂t)� � � � � εk�x
k)
σt+1(ε

t−1� y�εt+1� ε̂t)

∂y
�

(S12)

Plugging (S12) into (S11) and noting that γkt (ε
k� ε̂t�σt+1(ε

t−1� y�εt+1� ε̂t))= ρkt (εk� y� ε̂t)
yields (S10).

An identical argument can be used to deal with the case where ε̂t > εt . �

We are now ready to prove Proposition 2.

Proof of Proposition 2. To prove that the transfers defined by (S6) implement
{xt}Tt=0, it is enough to prove that the mechanism is IC after all t = 0� � � � �T − 1. We prove
this by induction. For t = T −1 this follows from the standard result in static mechanism
design with the observation that xT is monotone and (S6) is satisfied for T . Suppose now
that the mechanism is IC after t + 1. We show that the mechanism is IC after t, that is,
the agent has no incentive to lie at t if she has told the truth before t.

Consider an agent with type history εt and report history εt−1 who is contemplating
to report ε̂t < εt . We have to show that πt(εt� ε̂t |εt−1)−πt(εt� εt |εt−1)≤ 0, which can be
written as

πt(εt� ε̂t |εt−1)−πt(̂εt� ε̂t |εt−1)+πt(̂εt� ε̂t |εt−1)−πt(εt� εt |εt−1)≤ 0�

By (S6) and (S8), the previous inequality can be expressed as

T∑
k=t

E

[∫ εt

ε̂t

ukεt (ζ
k
t (ε

k� y)�xk(ζkt (ε
k� y)))dy

∣∣∣εt]

≥
T∑
k=t

E

[∫ εt

ε̂t

ukεt (ζ
k
t (ε

k� y)�xk(ρkt (ε
k� y� ε̂t)))dy

∣∣∣εt]�
(S13)
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To prove this inequality it is enough to show that the integrand on the left-hand side is
larger than the integrand on the right-hand side. By part (iii) of Lemma S1, to show this,
we only need that xk(ρkt (ε

k� y� ε̂t)) ≤ xk(ζkt (ε
k� y)) on y ∈ [̂εt� εt], which follows from

Remark S1. An identical argument can be used to rule out deviation to ε̂t > εt . �

From the proof of Proposition 2 it is clear that in the environment satisfying As-
sumptions 1 and 2 (i.e., with Markov types and a well behaved agent payoff function),
a decision rule {x̃t}Tt=0 is implemented by transfers satisfying (S6) if and only if condi-
tion (S13) holds in the orthogonalized model.2 But (S6) is also a necessary condition
of implementation (differentiate it in εt and compare that with the condition in Propo-
sition 1); therefore, condition (S13) is indeed the necessary and sufficient condition of
implementability of a decision rule in the regular, Markov environment. This is formally
stated in the following remark.

Remark S2. Suppose that Assumptions 1 and 2 hold. Then a decision rule, {x̃t}T0 , is
implementable if and only if (S13) holds in the model with orthogonalized information.

Implementability in the Benchmark Case. Suppose that the principal can observe
ε1� � � � � εT . Then, using arguments in standard static mechanism design, a decision rule
{xt}T0 can be implemented if and only if, for all ε̂0� ε0 ∈ E0, ε̂0 ≤ ε0,

E

[
T∑
k=0

∫ ε0

ε̂0

ukε0(y�ε
k
−0�x

k(y�εk−0))dy
∣∣∣ε0

]
≥E

[
T∑
k=0

∫ ε0

ε̂0

ukε0(y�ε
k
−0�x

k(̂ε0� ε
k
−0))dy

∣∣∣ε0

]
�

This inequality is obviously a weaker condition than (S13), so the principal can imple-
ment more allocations in the benchmark case.

Proof of Proposition 5

To be able to refer to the additional restrictions required by the proposition, we state the
strict single-crossing properties in the following assumption.

Assumption 6. (i) For all t ∈ {0� � � � �T }, θt ∈ �t , and at ∈ At , ũtθt (θt� at� xt) > ũtθt (θt�
at� x̂

t) whenever xt > x̂t .

(ii) For all t ∈ {0� � � � �T }, θt ∈ �t , at ∈ At , and xt ∈ Xt , ũtθtxτ (θt� at� x
t)ftat (θt� at) >

ũtatxτ (θt� at� x
t)ftθt (θt� at).

Recall that in the proof of Proposition 4 we decomposed the gain from any devia-
tion strategy into the sum of two parts. The first part is the difference between the pay-
off from deviating and truth-telling in the hypothetical model where y is contractible.
The second part is the difference between the payoff from the misreporting strategy but

2Note that condition (S13) is a joint restriction on {xt}T0 and the marginal utility of the agent’s type, and
it is implied by the monotonicity of the decision rule in the environment of Assumptions 1 and 2.
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matching the actions with the misreports and the payoff from misreporting and alter-
ing the actions optimally. Then we appealed to Proposition 2 to conclude that the first
part is negative and proved that the second part is small. The key to the proof of this
proposition is to show that if the deviation strategy leads to a decision rule that is far
away from (̃xT � ỹT ), then the first part of the decomposed payoff is not only negative,
but also large relative to the possible gain corresponding to the second part. To do so,
we follow the standard argument in static mechanism design to estimate the deviation
payoffs. This estimation is based on the single-crossing property and we have derived
the key formula, (S13), in the orthogonalized model.

In what follows, we use the notation introduced in the proof of Proposition 4. Recall
that the payoff difference corresponding to the first part of the decomposition is

EθT

[
T∑
t=0

wt(θt� ỹt (θt)� x̃t (θt))− p(θT )
∣∣∣θ0

]

−EθT
[
T∑
t=0

wt(θt� ỹt (ρt(θt))� x̃t (ρt(θt))− p(ρT (θT ))
∣∣∣θ0

]
�

(S14)

Since (S13) is derived in the orthogonalized model, we rewrite the previous inequality in
terms of the orthogonalized information structure. To this end, let (̃xt � ãt )

T
t=0 denote the

allocation corresponding to (̃xt � ãt )Tt=0, that is, (̃xt (ε
t)� ãt (ε

t)) ≡ (̃xt (ψt(εt))� ãt (ψt(εt)))
for all t, εt . Similarly, define ỹ

t
(εt) and p

t
(εt) to be ỹt (ψt(εt)) and p(ψt(εt)), respec-

tively, for all t and εt . Let ρ
t
(εt) denote the deviation strategy, that is, ρ

t
(εt)= ρt(ψt(εt)).

Finally, letωt(εt� y�x)≡wt(ψt(εt)� y�x) for all t = 0� � � � �T . It is not hard to prove that by
Assumption 6 it follows that there exists an m̃ ∈ R+, such that for all t ∈ {0� � � � �T } and
εt ∈�t ,

ωtεt (ε
t� yt� x

t)−ωtεt (εt� ŷt � x̂t)≥ m̃‖(yt� xt)− (̂yt � x̂t)‖ (S15)

whenever (yt� xt)≥ (̂yt � x̂t) and (yt� xt)� (̂yt� x̂t) ∈ {(̃y
t
(εt)� x̃t (εt)) : εt ∈ E t}.

Using these notations, we can rewrite (S14) as

EεT

[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρt(ε

t))� x̃t (ρt(εt))− p(ρT (εT ))
∣∣∣ε0

]
�

Observe that it is without the loss of generality to assume that there exists a K > 0 such
that ∥∥(̃y

t
(εt)� x̃t (εt))− (̃y

t
(ε′t )� x̃t (ε′t ))

∥∥ ≤K‖εt − ε′t‖ (S16)

for all t ∈ {0� � � � �T } and εt ∈ E t because any increasing allocation rule can be approx-
imated arbitrarily well in the L2 norm with a decision rule that satisfies the previous
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inequality. Also note that the set {(̃y
t
(εt)� x̃t (εt)) : εt ∈ E t} is bounded. For notational

convenience, we assume that

‖(̃y
t
(εt)� x̃t (εt))‖ ≤ 1

2 (S17)

for all t ∈ {0� � � � �T } and εt ∈ E t .
Next, we show that for all δ̃ > 0 and τ = 0� � � � �T , we can construct payment rules so

that

Eεt
∥∥(̃y

t
(εt)� x̃t (ε

t))− (̃y
t
(ρ(εt)))� x̃t (ρ(ε

t))
∥∥2
<

δ̃

T + 1
(S18)

for all t ≤ τ. We prove this statement by induction. Consider τ = 0. As we mentioned
before, we use (S13) to estimate the loss from a deviation. In particular, we estimate
this loss by the difference between the first term of the summation on the left-hand side
and the first term of the summation on the right-hand side of (S13). In other words,
we approximate the loss due to a time t deviation by the instantaneous loss and ignore
future losses. Hence, by (S13),

EεT

[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρ
t
(εt))� x̃t (ρ

t
(εt))− p(ρT (εT ))

∣∣∣ε0

]

≥Eε0

[∫ ρ(ε0)

ε0

ω0ε0(z� ỹ
0
(z)� x̃0(z))−ω0ε0(z� ỹ

0
(ρ
t
(ε0))� x̃0(ρ

t
(ε0)))dz

]
�

By (S15), the right-hand side of the previous inequality is weakly larger than

m̃Eε0

[∫ ρ(ε0)

ε0

∥∥(̃y
0
(ε0)� x̃0(ε0))− (̃y

0
(ρ
t
(ε0))� x̃0(ρ

t
(ε0)))

∥∥dz]�
Furthermore, by (S16), the previous expression is larger than

m̃Eε0

[‖(̃y
0
(ε0)� x̃0(ε0))− (̃y

0
(ρ
t
(ε0))� x̃0(ρ

t
(ε0)))‖2

2K

]
�

Recall that in the proof of Proposition 4, we proved that for each δ > 0 it is possible to
construct payments so that the second part of the decomposed gain from deviation is
less than δ. Therefore, to guarantee that the deviation (ρt)t is profitable it must be that

m̃Eε0

[‖(̃y
0
(ε0)� x̃0(ε0))− (̃y

0
(ρ
t
(ε0))� x̃0(ρ

t
(ε0)))‖2

2K

]
< δ�

that is,

Eε0

[∥∥(̃y
0
(ε0)� x̃0(ε0))− (̃y

0
(ρ
t
(ε0))� x̃0(ρ

t
(ε0)))

∥∥2]
<

2Kδ
m̃

� (S19)
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So, choosing δ= m̃δ̃/(2K(T + 1)) yields the claim in (S18) for τ = 0.
Suppose that the claim in (S18) is true for τ ≥ 0. We show that this claim is also true

for τ+ 1. The difficulty with the inductive step is that (S13) can only be used to estimate
the time-(τ + 1) loss due to a deviation if there were no deviations in previous periods.
Let us explain how we overcome this problem. By the inductive hypothesis, there are
payments so that the optimal deviation strategy induces a decision rule that is arbitrar-
ily close to the decision rule generated by truth-telling in time periods 0�1� � � � � τ. There-
fore, we can approximate the optimal deviation by a misreporting strategy that specifies
truth-telling until period τ and then coincides with the optimal deviation. According
to this approximating deviation strategy, the first deviation occurs in period τ + 1 and
hence, we can use (S13) to estimate the loss due to this deviation once again. To this
end, let ρτ

t
(εt) be defined as

ρτ
t
(εt)=

{
εt if t ≤ τ
ρ
t
(εt) if t > τ�

that is, {ρτ
t
}t is a deviation strategy that prescribes truth-telling until period t and after

period t, it coincides with {ρ
t
}t . Using this notation,

EεT

[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρ
t
(εt))� x̃t (ρ

t
(εt))− p(ρT (εT ))

∣∣∣ε0

]

=EεT
[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρτ
t
(εt))� x̃t (ρτ

t
(εt))− p(ρτT (εT ))

∣∣∣ε0

]

+EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρτ
t
(εt))� x̃t (ρτ

t
(εt))− p(ρτT (εT ))

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρ
t
(εt))� x̃t (ρ

t
(εt))− p(ρT (εT ))

∣∣∣ε0

]
�

By the inductive hypothesis and the Lipschitz continuity of payoffs, for all δ� δ̃ > 0, there
are payment rules so that∣∣∣∣∣EεT

[
T∑
t=0

ωt(εt�y
t
(ρτ
t
(εt))� x̃t(ρτ

t
(εt))− p(ρτT (εT ))

∣∣∣ε0

]
(S20)
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−EεT
[
T∑
t=0

ωt(εt�y
t
(ρ
t
(εt))� x̃t (ρ

t
(εt))− p(ρT (εT ))

∣∣∣ε0

]∣∣∣∣∣ ≤ δ�

Eετ+1
[∥∥(̃y

τ+1
(ρ
τ+1
(ετ+1))� x̃τ+1(ρ

τ+1
(ετ+1)))

(S21)
− (̃y

τ+1
(ρτ
t
(ετ+1))� x̃τ+1(ρτ

τ+1
(ετ+1)))

∥∥σ] ≤ m̃δ

2K

for σ = 1�2 and (S18) is satisfied for all t ≤ τ. Therefore, by (S20),

EεT

[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρ
t
(εt))� x̃t (ρ

t
(εt))− p(ρT (εT ))

∣∣∣ε0

]

≥EεT
[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρτ
t
(εt))� x̃t (ρτ

t
(εt))− p(ρτT (εT ))

∣∣∣ε0

]
− δ�

Note that according to the deviation strategy {ρτ
t
}t , the first deviation occurs in period

τ + 1. Therefore, we appeal to (S13) once again, and using the same arguments leading
to (S19), we conclude that

EεT

[
T∑
t=0

ωt(εt� ỹ
t
(εt)� x̃t (εt))− p(εT )

∣∣∣ε0

]

−EεT
[
T∑
t=0

ωt(εt� ỹ
t
(ρτ
t
(εt))� x̃t (ρτ

t
(εt))− p(ρτT (εT ))

∣∣∣ε0

]

≥ m̃Eετ+1

[‖(̃y
τ+1
(ετ+1)� x̃τ+1(ετ+1))− (̃y

τ+1
(ρτ
τ+1
(ετ+1))� x̃τ+1(ρτ

τ+1
(ετ+1)))‖2

2K

]

≥ m̃Eετ+1

[‖(̃y
τ+1
(ετ+1)� x̃τ+1(ετ+1))− (̃y

τ+1
(ρ
τ+1
(ετ+1))� x̃τ+1(ρ

τ+1
(ετ+1)))‖2

2K

]
− 3δ�

where the last inequality follows from (S21) and (S17). Hence, to guarantee that the
deviation strategy (ρt)t is profitable, we need that

Eετ+1
[∥∥(̃y

τ+1
(ετ+1)� x̃τ+1(ετ+1))− (̃y

τ+1
(ρ
τ+1
(ετ+1))� x̃τ+1(ρ

τ+1
(ετ+1)))

∥∥2] ≤ 2K(5δ)
m̃

�

So, choosing δ= m̃δ̃/(10K) yields the claim in (S18) for τ+ 1.
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By the proof of Proposition 4, the payment rule can be defined so that

EεT

T∑
t=0

∥∥ft(ρt(ψt(εt))�αt(ψt(εt)))− y
t
(ρ
t
(εt))

∥∥σ ≤ δ̃ (S22)

for σ = 1�2. Define (xt (ψt(εt))�at (ψt(εt))) ≡ (̃xt (ρt(ε
t))� ãt (ρt(ε

t))) for all t = 0� � � � �T .
Then∥∥(̃yt (θt)� x̃t (θt))− (yt (θt)�xt (θt))

∥∥
≤ ∥∥(y

t
(εt)� x̃t (ε

t))− (y
t
(ρ
t
(εt))� x̃t (ρt(ε

t)))
∥∥

+ ∥∥ft(ρt(ψt(εt))�αt(ψt(εt)))− y
t
(ρ
t
(εt))

∥∥�
Notice that summing up the inequalities in (S18) for t = 0� � � � �T yields

EεT

T∑
t=0

∥∥(y
t
(εt)� x̃

t
(εt))− (y

t
(ρ
t
(εt))� x̃t (ρt(ε

t)))
∥∥2
< δ̃�

By (S17), the previous inequality, and (S22), we conclude that

EθT

T∑
t=0

∥∥(̃yt (θt)� x̃t (θt))− (yt (θt)�xt (θt))
∥∥2 ≤ 4δ̃�

Therefore, the allocation (xt �at )t satisfies desired inequality in the statement of Propo-
sition 5. Finally, note that (xt �at )t is implementable because it results from the agent’s
optimal deviation strategy in the mechanism (̃xT � ãT � p̃). �
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