Supplement to "Equilibria in symmetric games: Theory and applications"

(Theoretical Economics, Vol. 12, No. 3, September 2017, 979-1002)

Andreas Hefti
Department of Economics, University of Zurich and School of Management and Law, Zurich University of Applied Sciences

S.1. A counting rule

If asymmetric equilibria exist, the set of asymmetric equilibria that are permutations of each other with respect to $\{1, \ldots, N\}$ form an equivalence class within the set of all asymmetric equilibria. I refer to a class of equivalent asymmetric equilibria simply as an equivalent asymmetric equilibrium. Consider a symmetric game, where the C^{1} vector field ∇F satisfies that (i) ∇F has only regular zeroes and (ii) ∇F points inward on the boundary of S^{N}. Let \mathcal{I}^{s} denote the sum of the indices of all symmetric equilibria with respect to ∇F.

If a symmetric game satisfies the above index conditions and we can identify a zero with index -1 , then there are multiple equilibria, but we cannot decide without further information whether there are multiple symmetric equilibria or a single symmetric equilibrium but asymmetric equilibria. As the following theorem implies, it is not sufficient, in general, to restrict the candidate zeroes to the symmetric points to exclude the possibility of asymmetric equilibria: It can be the case that there is a single symmetric equilibrium with index +1 , but several asymmetric equilibria, such that the index sum equals $1 .{ }^{1}$

Proposition 6. Consider a symmetric game, where ∇F satisfies the above index conditions.
(a) If $\mathcal{I}^{s}=1$ and there are asymmetric equilibria, then there is more than one equivalent asymmetric equilibrium. If especially $N=2$, then there is an even number of equivalent asymmetric equilibria.
(b) If $\mathcal{I}^{s} \neq 1$, then asymmetric equilibria exist. For $N=2$, the following statements hold:
(i) If $^{s}=3+4 z$ for $z \in \mathbb{Z}$, then there is an odd number of equivalent asymmetric equilibria.

[^0](ii) If $\mathcal{I}^{s}=5+4 z$ for $z \in \mathbb{Z} \backslash\{-1\}$, then there is an even number of equivalent asymmetric equilibria

Proof. Let $\omega \geq 1$ be the (necessarily odd) number of symmetric equilibria. Hence \mathcal{I}^{s} must be a number from $\{ \pm 1, \pm 3, \pm 5, \ldots, \pm \omega\}$. Further, if \mathcal{I}^{a} denotes the index sum of all asymmetric equilibria, we must have $\mathcal{I}^{s}+\mathcal{I}^{a}=1$. Note that all asymmetric equilibria in a given equivalence class have the same index. If $\mathcal{I}^{s}=1$ but there are asymmetric equilibria, then $\mathcal{I}^{a}=0$, which requires the existence of at least two equivalent asymmetric equilibria. If $\mathcal{I}^{s} \neq 1$, we must have $\mathcal{I}^{a} \neq 0$, which implies the existence of asymmetric equilibria. To see the rest, set $N=2$ and note that if asymmetric equilibria exist, there are exactly two asymmetric equilibria within an equivalence class. Let n_{-}denote the number of equivalence classes with index -1 and let n_{+}denote those with index +1 . Then $n_{+}-n_{-}=\left(1-\mathcal{I}^{s}\right) / 2$. If \mathcal{I}^{s} is a number $3+4 z$, the right-hand side of this equation is an odd number. Hence either n_{-}or n_{+}must be odd and the other number must be even or zero. Consequently, $n_{-}+n_{+}$must be odd. For $\mathcal{I}^{s}=5+4 z$ with $z \in \mathbb{Z} \backslash\{-1\}$, the right-hand side must be even and hence $n_{1}+n_{2}$ must also be even. Finally, if $\mathcal{I}^{s}=1$, then $n_{-}=n_{+}=n$. For $n>0$, this implies $n_{-}+n_{+}=2 n$, which is even.

S.2. Symmetric equilibria: Additional results

From Theorem 1, further sufficient conditions for the existence of a single symmetric equilibrium can be deduced.

Corollary 3. If at least one of the next two statements is satisfied, there exists only one symmetric equilibrium. (i) The matrix $\tilde{J}\left(x_{1}\right)$ has a dominant negative diagonal if $x_{1} \in$ $C r^{s}$. (ii) There is a matrix norm $\|\cdot\|$ such that $\left\|\partial \tilde{\varphi}\left(x_{1}\right)\right\|<1$ if $x_{1} \in C r^{s}$.

Proof. Consider the decomposition $\tilde{J}=\tilde{A}+\tilde{B}$, where \tilde{A} is a diagonal matrix with $\partial \tilde{\Pi}_{i}\left(x_{1}, x_{1}\right) / \partial x_{1 i}$ as its iith entry. Hence $\operatorname{Det}\left(-\tilde{J}\left(x_{1}\right)\right)>0 \Leftrightarrow \operatorname{Det}\left(I+\tilde{A}^{-1} \tilde{B}\right)>0 \Leftrightarrow$ $\prod_{i=1}^{k}\left(1+\tilde{\lambda}_{i}\right)>0$, where $\tilde{\lambda}$ is an eigenvalue of $\tilde{A}^{-1} \tilde{B}$. But diagonal dominance of \tilde{J} implies that every row sum of the absolute values of the entries of $\tilde{A}^{-1} \tilde{B}$ must be strictly smaller than 1, which by a standard result of matrix analysis implies the spectral radius of $\tilde{A}^{-1} \tilde{B}$ to be less than 1 (Horn and Johnson 1985), and the claim follows from Theorem 1. Similarly, (ii) implies (iii) of Theorem 1 as the spectral radius of $\partial \tilde{\varphi}\left(x_{1}\right)$ is bounded from above by any matrix norm.

S.3. INEXISTENCE OF ASYMMETRIC EQUILIBRIA WITH BOUNDARY SOLUTIONS

Theorem 4 can be extended to the case where $\varphi\left(x_{-1}\right) \in \partial S$ is possible under the assumptions from Section 2. To see how this can be done, let $k=N=2$ and suppose that $\varphi_{2}\left(x_{2}^{0}\right)=\bar{S}_{2}$ for some $x_{2}^{0} \in S$, but $\varphi_{1}\left(x_{2}^{0}\right) \in \operatorname{Int}\left(S_{1}\right)$. Now consider two systems of equations:

> (I) $\Pi_{1}\left(\hat{x}_{11}, \bar{S}_{2}, x_{2}^{0}\right)=0$
> (II) $\Pi_{1}\left(\tilde{x}_{11}, \tilde{x}_{12}, x_{2}^{0}\right)=0, \quad \Pi_{2}\left(\tilde{x}_{11}, \tilde{x}_{12}, x_{2}^{0}\right)=0$

As $\varphi_{1}\left(x_{2}^{0}\right) \in \operatorname{Int}\left(S_{1}\right)$, our assumptions on Π imply that, for fixed $x_{12}=\bar{S}_{2}$, equality (I) implicitly defines a local C^{1} function $\hat{\varphi}_{1}\left(x_{2}\right)$, with $\hat{\varphi}_{1}\left(x_{2}^{0}\right)=\varphi_{1}\left(x_{2}^{0}\right)$.

The technical difficulty that $\varphi_{2}\left(x_{2}^{0}\right) \in \partial S_{2}$ potentially ${ }^{2}$ imposes is that (II) can have a $\operatorname{local} C^{1}$ solution $\left(\tilde{x}_{11}, \tilde{x}_{12}\right)$, with $\tilde{x}_{11}=\tilde{\varphi}_{1}\left(x_{2}\right)$ around x_{2}^{0}, but both $\hat{\varphi}_{1}\left(x_{2}\right) \neq \tilde{\varphi}_{1}\left(x_{2}\right)$ as well as $\partial \hat{\varphi}_{1}\left(x_{2}\right) \neq \partial \tilde{\varphi}_{1}\left(x_{2}\right)$ are possible. If (II) has a solution, both $\hat{\varphi}_{1}\left(x_{2}\right)$ and $\tilde{\varphi}_{1}\left(x_{2}\right)$ are local C^{1} functions around x_{2}^{0}, and $\varphi_{1}\left(x_{2}\right)=\hat{\varphi}_{1}\left(x_{2}\right)$ or $\varphi_{1}\left(x_{2}\right)=\tilde{\varphi}_{1}\left(x_{2}\right)$ around x_{2}^{0}. Together with the previous result, this shows that $\varphi_{1}\left(x_{2}\right)$ may not be differentiable at or around ${ }^{3}$ x_{2}^{0} despite that $\varphi_{1}\left(x_{2}^{0}\right) \in \operatorname{Int}\left(S_{1}\right)$.

With this insight, we can adapt the proof of Theorem 4 to obtain a condition similar to (4). To see how, let $x_{2} \neq x_{2}^{\prime}$, let $\psi(t) \equiv \varphi\left(x_{2}+t\left(x_{2}^{\prime}-x_{2}\right)\right), \hat{\psi}_{1}(t) \equiv \hat{\varphi}_{1}\left(x_{2}+t\left(x_{2}^{\prime}-x_{2}\right)\right)$, and $\tilde{\psi}_{1}(t) \equiv \tilde{\varphi}_{1}\left(x_{2}+t\left(x_{2}^{\prime}-x_{2}\right)\right)$ for $t \in[0,1]$, and assume ${ }^{4}$ that $\psi_{2}(t)=\bar{S}_{2}$ for some t.

Suppose that $A_{0} \equiv \psi_{1}(0)>\psi_{1}(1) \equiv A_{1}$. We want to show that there is $t \in(0,1)$ such that either $\hat{\psi}_{1}^{\prime}(t) \leq \psi_{1}(1)-\psi_{1}(0)$ or $\tilde{\psi}_{1}^{\prime}(t) \leq \psi_{1}(1)-\psi_{1}(0)$. By contradiction, assume that $\hat{\psi}_{1}^{\prime}(t)>\psi_{1}(1)-\psi_{1}(0)$ and $\tilde{\psi}_{1}^{\prime}(t)>\psi_{1}(1)-\psi_{1}(0)$ whenever these objects exist. Geometrically, this means that the functions $\hat{\psi}_{1}$ and $\tilde{\psi}_{1}$ are less steep (perhaps even increasing) than the line connecting A_{0} and A_{1}. That is, for any $t_{0} \in(0,1)$, there is a perfect interval $\mathbb{B}=\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ such that $\hat{\psi}_{1}$ or $\tilde{\psi}_{1}$ is moving away from the line connecting A_{0} and A_{1} as t increases on \mathbb{B} whenever these functions are well defined at t_{0}.

The fact that $\psi_{1}\left(t_{0}\right)$ corresponds either to $\hat{\psi}_{1}\left(t_{0}\right)$ or to $\tilde{\psi}_{1}\left(t_{0}\right)$ whenever $\psi_{1}\left(t_{0}\right) \in$ $\operatorname{Int}\left(S_{1}\right)$ then implies that if $\psi_{1}\left(t_{0}\right) \in \operatorname{Int}\left(S_{1}\right)$, the function $\psi_{1}(t)$ must always be moving away from the line connecting A_{0} with A_{1}, which, by continuity, makes $\psi_{1}(1)=A_{1}$ impossible, a contradiction.

The consequence of this argument is that if $\varphi\left(x_{2}\right) \in \partial S$ can occur, we must apply the reasoning in the proof of Theorem 4 to the function $\hat{\varphi}_{1}\left(x_{2}\right)$ as well. In practice this means that we have to determine the slopes in condition (4) not only by applying the IFT to the system (II) (this is sufficient if we know that best replies are always interior) but also by applying the IFT to the FOC with boundary points. For example, applying the IFT to $\Pi_{1}\left(x_{11}, x_{12}, x_{2}\right)=0$, where $x_{12}=0$ or $x_{12}=\bar{S}_{2}$ are held fixed, gives the slopes

$$
\begin{array}{ll}
\hat{\alpha}_{1}=\frac{\partial x_{11}\left(\bar{S}_{2}, x_{21}, x_{22}\right)}{\partial x_{21}}, & \hat{\beta}_{1}=\frac{\partial x_{11}\left(\bar{S}_{2}, x_{21}, x_{22}\right)}{\partial x_{22}} \\
\hat{\alpha}_{2}=\frac{\partial x_{11}\left(0, x_{21}, x_{22}\right)}{\partial x_{21}}, & \hat{\beta}_{2}=\frac{\partial x_{11}\left(0, x_{21}, x_{22}\right)}{\partial x_{22}}
\end{array}
$$

The same argument applied to Π_{2} gives four additional slopes $\hat{\gamma}_{1}, \hat{\gamma}_{2}, \hat{\delta}_{1}, \hat{\delta}_{2}$. Now, working through the same steps as in the proof of Theorem 4 shows that if the statement in (4) additionally holds for any combination of these new slopes (where we replace α by $\hat{\alpha}_{1}, \beta=\hat{\beta}_{2}, \ldots$) evaluated at all $x_{2}, x_{2}^{\prime} \in S$, this is sufficient to rule out the possibility of asymmetric equilibria in the game.

[^1]
S.4. Uniqueness in almost symmetric games

A natural question is whether uniqueness in a symmetric game is a property that extends, at least, to almost symmetric games, i.e., games where the ex ante asymmetries are small. The answer to this question is yes (for $k \geq 1$), provided that the symmetric equilibrium is regular. ${ }^{5}$

Proposition 7. Suppose that the joint best reply satisfies $\phi(\cdot, \cdot) \in C\left(S^{N} \times \mathcal{P}^{N}, S^{N}\right)$ and consider a symmetric game $\Gamma(c)$ with a unique, symmetric and regular equilibrium $x^{*} \in$ $\operatorname{Int}\left(S^{N}\right)$. Then $\exists \delta>0$ such that $\Gamma\left(c^{\prime}\right)$ has a unique equilibrium for any $c^{\prime} \in \mathbb{B}(c, \delta)$.

See Section 4.3 for the notation. The proof of this proposition builds on the following lemma.

Lemma 4. Suppose that $\phi(\cdot, \cdot) \in C\left(S^{N} \times \mathcal{P}^{N}, S^{N}\right)$ and consider a symmetric game $\Gamma\left(c_{0}\right)$, $c_{0} \in \mathcal{P}^{N}$. Suppose that $\left(x^{n}\right)$ is a sequence of FPs, i.e., $\phi\left(x^{n}, c^{n}\right)=x^{n}$. If $\left(x^{n}, c^{n}\right) \rightarrow\left(x_{0}, c_{0}\right)$, then x_{0} is an equilibrium of $\Gamma\left(c_{0}\right)$.

Proof. Define $z(x, c) \equiv \phi(x, c)-x$ and note that x is a FP of ϕ if and only if $z(x, c)=0$. As $\left(x^{n}, c^{n}\right) \rightarrow\left(x_{0}, c_{0}\right)$, continuity of $z \operatorname{implies} \lim _{n \rightarrow \infty} z\left(x^{n}, c^{n}\right)=z\left(x_{0}, c_{0}\right)$. But $z\left(x^{n}, c^{n}\right)=$ $z^{n} \rightarrow 0$ implies that $z\left(x_{0}, c_{0}\right)=0$.

Proof of Proposition 7. As $x^{*} \in \operatorname{Int}\left(S^{N}\right)$ is regular, $\nabla F\left(x^{*}, c\right)=0$, and $\nabla F(\cdot, \cdot)$ is continuously differentiable around $\left(x^{*}, c\right)$, the IFT asserts that for any c^{\prime} in some neighborhood $U \subset \mathcal{P}^{N}$ of c, the equation system $\nabla F\left(x, c^{\prime}\right)=0$ has a locally unique solution $x=h\left(c^{\prime}\right)$, where $h \in C^{1}(U, V)$ and $V \subset S^{N}$ is a neighborhood of x^{*}, which shows existence and local uniqueness of an equilibrium for parameters $c \in U$. Let $E(c)$ denote the set of equilibria of the game with parameter vector c. To see global uniqueness, suppose by contradiction that for every $\delta>0 \exists c^{n} \in \mathbb{B}(c, \delta)$ such that $E\left(c^{n}\right)$ is multivalued. Hence there is a sequence $\left(c^{n}\right)$ with $\lim _{n \rightarrow \infty} c^{n}=c$ such that $E\left(c^{n}\right)$ is multivalued for any $n \in \mathbb{N}$. Consequently, we can find two sequences $\left(x^{n}\right)$ and (y^{n}) with $x^{n} \neq y^{n}$ and $\phi\left(x^{n}, c^{n}\right)=x^{n}$, $\phi\left(y^{n}, c^{n}\right)=y^{n}$, and $x^{n} \rightarrow x^{*}$. Define $z(x, c) \equiv \phi(x, c)-x$. Because $z(\cdot, \cdot)$ is continuous, the set $z^{-1}(\{0\}) \subset S^{N} \times \mathcal{P}^{N}$ is compact. As $\left(y^{n}, c^{n}\right)$ is a sequence in $z^{-1}(\{0\})$, there is a convergent subsequence ($y^{n_{t}}, c^{n_{t}}$): hence also $y^{n_{t}} \rightarrow y^{*}$. But then Lemma 4 and the fact that x^{*} is unique imply $y^{*}=x^{*}$, which by the regularity of x^{*} means that there is a T such that $y^{n_{t}}=x^{n_{t}}$ for all $t \geq T$, a contradiction.

Reference

Horn, Roger A. and Charles R. Johnson (1985), Matrix Analysis. Cambridge University Press, Cambridge. [2]

Co-editor Johannes Hörner handled this manuscript.
Manuscript received 10 April, 2015; final version accepted 25 July, 2016; available online 8 August, 2016.

[^2]
[^0]: Andreas Hefti: heft@zhaw. ch
 ${ }^{1}$ Proposition 6 is obviously related to the well known "oddness" of the number of equilibria in index games.

 Copyright © 2017 The Author. Theoretical Economics. The Econometric Society. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http: //econtheory .org. DOI: 10.3982/TE2151

[^1]: ${ }^{2}$ If the point $\left(\varphi_{1}\left(x_{2}^{0}\right), \bar{S}_{2}\right)$ is not a solution of (II), then $\varphi_{1}\left(x_{2}\right)$ is implicitly defined by (I) as a C^{1} function around x_{2}^{0}. In sloppy terms this means that the boundary solution $\varphi_{2}\left(x_{2}\right)=\bar{S}_{2}$ is "strict" and the following problem does not emerge.
 ${ }^{3}$ If $k>1$ and there are boundary solutions, nondifferentiable points need not be locally isolated.
 ${ }^{4}$ The following argument can easily be adjusted to capture the case where $\psi_{2}(t)=0$ may also occur.

[^2]: 5 "Regular" means $\operatorname{Det}(J(x)) \neq 0$, where $J(x)$ is the Jacobian of $\nabla F(x)$.

