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S.1. A counting rule

If asymmetric equilibria exist, the set of asymmetric equilibria that are permutations
of each other with respect to {1� � � � �N} form an equivalence class within the set of all
asymmetric equilibria. I refer to a class of equivalent asymmetric equilibria simply as an
equivalent asymmetric equilibrium. Consider a symmetric game, where the C1 vector
field ∇F satisfies that (i) ∇F has only regular zeroes and (ii) ∇F points inward on the
boundary of SN . Let Is denote the sum of the indices of all symmetric equilibria with
respect to ∇F .

If a symmetric game satisfies the above index conditions and we can identify a zero
with index −1, then there are multiple equilibria, but we cannot decide without fur-
ther information whether there are multiple symmetric equilibria or a single symmetric
equilibrium but asymmetric equilibria. As the following theorem implies, it is not suffi-
cient, in general, to restrict the candidate zeroes to the symmetric points to exclude the
possibility of asymmetric equilibria: It can be the case that there is a single symmetric
equilibrium with index +1, but several asymmetric equilibria, such that the index sum
equals 1.1

Proposition 6. Consider a symmetric game, where ∇F satisfies the above index condi-
tions.

(a) If Is = 1 and there are asymmetric equilibria, then there is more than one equiva-
lent asymmetric equilibrium. If especially N = 2, then there is an even number of
equivalent asymmetric equilibria.

(b) If Is �= 1, then asymmetric equilibria exist. For N = 2, the following statements
hold:

(i) If Is = 3 + 4z for z ∈ Z� then there is an odd number of equivalent asymmetric
equilibria.

Andreas Hefti: heft@zhaw.ch
1Proposition 6 is obviously related to the well known “oddness” of the number of equilibria in index

games.
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(ii) If Is = 5 + 4z for z ∈ Z \ {−1}, then there is an even number of equivalent
asymmetric equilibria

Proof. Let ω ≥ 1 be the (necessarily odd) number of symmetric equilibria. Hence Is
must be a number from {±1�±3�±5� � � � �±ω}. Further, if Ia denotes the index sum of all
asymmetric equilibria, we must have Is + Ia = 1. Note that all asymmetric equilibria in
a given equivalence class have the same index. If Is = 1 but there are asymmetric equi-
libria, then Ia = 0, which requires the existence of at least two equivalent asymmetric
equilibria. If Is �= 1, we must have Ia �= 0, which implies the existence of asymmetric
equilibria. To see the rest, set N = 2 and note that if asymmetric equilibria exist, there
are exactly two asymmetric equilibria within an equivalence class. Let n− denote the
number of equivalence classes with index −1 and let n+ denote those with index +1.
Then n+ − n− = (1 − Is)/2. If Is is a number 3 + 4z, the right-hand side of this equation
is an odd number. Hence either n− or n+ must be odd and the other number must be
even or zero. Consequently, n− + n+ must be odd. For Is = 5 + 4z with z ∈ Z \ {−1}, the
right-hand side must be even and hence n1 + n2 must also be even. Finally, if Is = 1,
then n− = n+ = n. For n > 0, this implies n− + n+ = 2n, which is even. �

S.2. Symmetric equilibria: Additional results

From Theorem 1, further sufficient conditions for the existence of a single symmetric
equilibrium can be deduced.

Corollary 3. If at least one of the next two statements is satisfied, there exists only one
symmetric equilibrium. (i) The matrix J̃(x1) has a dominant negative diagonal if x1 ∈
Crs . (ii) There is a matrix norm ‖ · ‖ such that ‖∂ϕ̃(x1)‖< 1 if x1 ∈ Crs .

Proof. Consider the decomposition J̃ = Ã + B̃, where Ã is a diagonal matrix with
∂�̃i(x1�x1)/∂x1i as its iith entry. Hence Det(−J̃(x1)) > 0 ⇔ Det(I + Ã−1B̃) > 0 ⇔∏k
i=1 (1 + λ̃i) > 0, where λ̃ is an eigenvalue of Ã−1B̃. But diagonal dominance of J̃ im-

plies that every row sum of the absolute values of the entries of Ã−1B̃ must be strictly
smaller than 1, which by a standard result of matrix analysis implies the spectral radius
of Ã−1B̃ to be less than 1 (Horn and Johnson 1985), and the claim follows from Theo-
rem 1. Similarly, (ii) implies (iii) of Theorem 1 as the spectral radius of ∂ϕ̃(x1) is bounded
from above by any matrix norm. �

S.3. Inexistence of asymmetric equilibria with boundary solutions

Theorem 4 can be extended to the case where ϕ(x−1) ∈ ∂S is possible under the assump-
tions from Section 2. To see how this can be done, let k = N = 2 and suppose that
ϕ2(x

0
2) = S̄2 for some x0

2 ∈ S, but ϕ1(x
0
2) ∈ Int(S1). Now consider two systems of equa-

tions:

(I) �1
(
x̂11� S̄2�x

0
2

) = 0�

(II) �1
(
x̃11� x̃12�x

0
2

) = 0� �2
(
x̃11� x̃12�x

0
2

) = 0�
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As ϕ1(x
0
2) ∈ Int(S1), our assumptions on � imply that, for fixed x12 = S̄2, equality (I) im-

plicitly defines a local C1 function ϕ̂1(x2), with ϕ̂1(x
0
2)= ϕ1(x

0
2).

The technical difficulty that ϕ2(x
0
2) ∈ ∂S2 potentially2 imposes is that (II) can have a

localC1 solution (x̃11� x̃12), with x̃11 = ϕ̃1(x2) around x0
2, but both ϕ̂1(x2) �= ϕ̃1(x2) as well

as ∂ϕ̂1(x2) �= ∂ϕ̃1(x2) are possible. If (II) has a solution, both ϕ̂1(x2) and ϕ̃1(x2) are local
C1 functions around x0

2, and ϕ1(x2) = ϕ̂1(x2) or ϕ1(x2) = ϕ̃1(x2) around x0
2. Together

with the previous result, this shows that ϕ1(x2) may not be differentiable at or around3

x0
2 despite that ϕ1(x

0
2) ∈ Int(S1).

With this insight, we can adapt the proof of Theorem 4 to obtain a condition similar
to (4). To see how, let x2 �= x′

2, let ψ(t)≡ ϕ(x2 + t(x′
2 − x2)), ψ̂1(t)≡ ϕ̂1(x2 + t(x′

2 − x2)),
and ψ̃1(t)≡ ϕ̃1(x2 + t(x′

2 − x2)) for t ∈ [0�1], and assume4 that ψ2(t)= S̄2 for some t.
Suppose that A0 ≡ψ1(0) > ψ1(1)≡A1. We want to show that there is t ∈ (0�1) such

that either ψ̂′
1(t)≤ψ1(1)−ψ1(0) or ψ̃′

1(t)≤ψ1(1)−ψ1(0). By contradiction, assume that
ψ̂′

1(t) > ψ1(1)−ψ1(0) and ψ̃′
1(t) > ψ1(1)−ψ1(0) whenever these objects exist. Geomet-

rically, this means that the functions ψ̂1 and ψ̃1 are less steep (perhaps even increasing)
than the line connectingA0 andA1. That is, for any t0 ∈ (0�1), there is a perfect interval
B = (t0 − ε� t0 + ε) such that ψ̂1 or ψ̃1 is moving away from the line connecting A0 and
A1 as t increases on B whenever these functions are well defined at t0.

The fact that ψ1(t0) corresponds either to ψ̂1(t0) or to ψ̃1(t0) whenever ψ1(t0) ∈
Int(S1) then implies that if ψ1(t0) ∈ Int(S1), the function ψ1(t) must always be moving
away from the line connecting A0 with A1, which, by continuity, makes ψ1(1)=A1 im-
possible, a contradiction.

The consequence of this argument is that if ϕ(x2) ∈ ∂S can occur, we must apply
the reasoning in the proof of Theorem 4 to the function ϕ̂1(x2) as well. In practice this
means that we have to determine the slopes in condition (4) not only by applying the
IFT to the system (II) (this is sufficient if we know that best replies are always interior)
but also by applying the IFT to the FOC with boundary points. For example, applying
the IFT to �1(x11�x12�x2)= 0, where x12 = 0 or x12 = S̄2 are held fixed, gives the slopes

α̂1 = ∂x11(S̄2�x21�x22)

∂x21
� β̂1 = ∂x11(S̄2�x21�x22)

∂x22
�

α̂2 = ∂x11(0�x21�x22)

∂x21
� β̂2 = ∂x11(0�x21�x22)

∂x22
�

The same argument applied to �2 gives four additional slopes γ̂1� γ̂2� δ̂1� δ̂2. Now,
working through the same steps as in the proof of Theorem 4 shows that if the statement
in (4) additionally holds for any combination of these new slopes (where we replace α
by α̂1, β= β̂2, . . . ) evaluated at all x2�x

′
2 ∈ S, this is sufficient to rule out the possibility

of asymmetric equilibria in the game.

2If the point (ϕ1(x
0
2)� S̄2) is not a solution of (II), then ϕ1(x2) is implicitly defined by (I) as a C1 function

around x0
2. In sloppy terms this means that the boundary solution ϕ2(x2)= S̄2 is “strict” and the following

problem does not emerge.
3If k> 1 and there are boundary solutions, nondifferentiable points need not be locally isolated.
4The following argument can easily be adjusted to capture the case where ψ2(t)= 0 may also occur.
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S.4. Uniqueness in almost symmetric games

A natural question is whether uniqueness in a symmetric game is a property that ex-
tends, at least, to almost symmetric games, i.e., games where the ex ante asymmetries
are small. The answer to this question is yes (for k ≥ 1), provided that the symmetric
equilibrium is regular.5

Proposition 7. Suppose that the joint best reply satisfies φ(·� ·) ∈ C(SN × PN�SN) and
consider a symmetric game �(c) with a unique, symmetric and regular equilibrium x∗ ∈
Int(SN). Then ∃δ > 0 such that �(c′) has a unique equilibrium for any c′ ∈ B(c�δ).

See Section 4.3 for the notation. The proof of this proposition builds on the following
lemma.

Lemma 4. Suppose that φ(·� ·) ∈ C(SN ×PN�SN) and consider a symmetric game �(c0),
c0 ∈ PN . Suppose that (xn) is a sequence of FPs, i.e., φ(xn� cn)= xn. If (xn� cn)→ (x0� c0),
then x0 is an equilibrium of �(c0).

Proof. Define z(x� c)≡φ(x� c)− x and note that x is a FP of φ if and only if z(x� c)= 0.
As (xn� cn)→ (x0� c0), continuity of z implies limn→∞z(xn� cn)= z(x0� c0). But z(xn� cn)=
zn → 0 implies that z(x0� c0)= 0. �

Proof of Proposition 7. As x∗ ∈ Int(SN) is regular, ∇F(x∗� c)= 0, and ∇F(·� ·) is con-
tinuously differentiable around (x∗� c), the IFT asserts that for any c′ in some neigh-
borhood U ⊂ PN of c, the equation system ∇F(x� c′) = 0 has a locally unique solution
x = h(c′), where h ∈ C1(U�V ) and V ⊂ SN is a neighborhood of x∗, which shows exis-
tence and local uniqueness of an equilibrium for parameters c ∈U . Let E(c) denote the
set of equilibria of the game with parameter vector c. To see global uniqueness, suppose
by contradiction that for every δ > 0 ∃cn ∈ B(c�δ) such that E(cn) is multivalued. Hence
there is a sequence (cn) with limn→∞cn = c such that E(cn) is multivalued for any n ∈ N.
Consequently, we can find two sequences (xn) and (yn)with xn �= yn andφ(xn� cn)= xn,
φ(yn� cn)= yn, and xn → x∗. Define z(x� c)≡ φ(x� c)− x. Because z(·� ·) is continuous,
the set z−1({0}) ⊂ SN × PN is compact. As (yn� cn) is a sequence in z−1({0}), there is a
convergent subsequence (ynt � cnt ): hence also ynt → y∗. But then Lemma 4 and the fact
that x∗ is unique imply y∗ = x∗, which by the regularity of x∗ means that there is a T such
that ynt = xnt for all t ≥ T , a contradiction. �
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5“Regular” means Det(J(x)) �= 0, where J(x) is the Jacobian of ∇F(x).
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