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A model of weighted network formation

Leonie Baumann
Department of Economics, McGill University

This paper proposes a game of weighted network formation in which each agent
has a limited resource to form links of possibly different intensities with other
agents and to use for private purposes. We show that every equilibrium is either
“reciprocal” or “nonreciprocal.” In a reciprocal equilibrium, any two agents invest
equally in the link between them. In a nonreciprocal equilibrium, agents are par-
titioned into “concentrated” and “diversified” agents, and a concentrated agent is
only linked to diversified agents and vice versa. For every link, the concentrated
agent invests more in the link than the diversified agent. The unweighted relation-
ship graph of an equilibrium, in which two agents are linked if they both invest
positively in each other, uniquely predicts the equilibrium values of each agent’s
network investment and utility level, as well as the ratio of any two agents’ invest-
ments in each other. We show that equilibria are not pairwise stable and are not
efficient due to the positive externalities of investing in a link.
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1. Introduction

A network is a graph that describes the relationships between the network’s members.
A link between two members of a network can represent, for example, friendship, co-
authorship, trade, or communication between them. Most of the literature on network
formation, following the seminal papers by Jackson and Wolinsky (1996) and Bala and
Goyal (2000), assumes that an agent decides whether to form a link, but does not deter-
mine its intensity. However, in many situations agents must choose not only with whom
to interact, but also the intensity of that interaction.

We analyze a symmetric game in which each agent has a limited resource that she
can keep for herself (self-investment) and invest in forming links with other agents.
A strategy of an agent specifies an allocation of her resource across all agents (including
herself). We say that two agents are linked if they both invest positively in each other. An
agent’s utility is the sum of her benefits from self-investment and from each of her rela-
tionships. The benefit from self-investment is represented by an increasing and strictly
concave function. The benefit from her relationship with another agent is increasing
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and strictly concave in the two agents’ investments in each other and is represented by
a function that exhibits strategic complementarity and is homogenous of degree 1.

In the main analysis, we investigate the game’s Nash equilibria. Special attention
is devoted to the (unweighted and undirected) relationship graphs that are induced by
equilibria and that include a link between two agents if they both invest positively in
each other.

We show that every equilibrium is one of two types: reciprocal or nonreciprocal. In
a reciprocal equilibrium, any two linked agents invest the same amount in the link be-
tween them, and all agents choose the same self-investment and derive the same utility.
Using a result from graph theory, we characterize the full set of relationship graphs asso-
ciated with reciprocal equilibria. This set includes, for example, graphs in which every
agent is linked to more than half of the other agents or in which every agent has the same
number of links. The set excludes, for example, graphs in which there is an agent with
only one link. It is possible that two agents have a different number of links and that an
agent has links of varying intensities.

In a nonreciprocal equilibrium, agents are partitioned into two sets: the set of con-
centrated agents and the set of diversified agents. We will see that a diversified agent
maintains more relationships on average than a concentrated agent and can be inter-
preted as more actively networking, outgoing, and free-riding on others’ relationship
efforts. A concentrated agent, to the contrary, can be said to be more introverted and
dedicated to fewer relationships in which she provides the bulk of the relationship ef-
fort. Every link that is formed is between a concentrated and a diversified agent, and
never between two agents of the same set. For all links, the concentrated agent invests
more in the link than the diversified agent. The ratio between the investment of a con-
centrated agent and that of a diversified agent in their link is the same across all links
(and denoted by qt ). All concentrated agents choose the same level of self-investment,
which is higher than the level of self-investment chosen by all diversified agents. Diver-
sified agents derive greater utility than concentrated agents. The ratio of the number of
concentrated agents to the number of diversified agents is positively correlated with qt .

We show that the relationship graphs of reciprocal and nonreciprocal equilibria are
entirely distinct. Thus, knowing only the equilibrium relationship graph is sufficient
to determine whether the equilibrium is reciprocal or nonreciprocal. Furthermore, the
relationship graph of a nonreciprocal equilibrium uniquely determines the partition
into concentrated and diversified agents, the value of qt , and each agent’s level of self-
investment and utility. However, the relationship graph does not always pin down the
equilibrium investments in a link. We demonstrate that many equilibria with different
levels of investment in links can induce the same relationship graph.

We examine the comparative statics of equilibria when relationships become more
valuable relative to self-investment and when each agent’s resource endowment in-
creases. In view of the multiplicity of equilibria, we restrict ourselves to investigate how
the equilibrium values that are uniquely determined by the relationship graph and the
model parameters change when the corresponding model parameter is varied and the
relationship graph is held fixed.
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Additionally, we show that equilibria are not stable against pairwise deviations and
are not efficient, in the sense that they do not maximize the sum of agents’ utilities.
This is due to the positive externality of an agent’s investment in a link that benefits
the other agent in the link. We characterize efficient networks and find that in an effi-
cient network, any two agents invest the same amount in each other, but choose a lower
self-investment than in a reciprocal equilibrium. We show that, nevertheless, the set of
relationship graphs of efficient networks coincides with the set of relationship graphs of
reciprocal equilibria.

Related literature This paper adds to the literature on network formation with weighted
links.

The most closely related articles are Salonen (2015), Griffith (2017), and Brueckner
(2006), which analyze the formation of weighted social networks, and Goyal et al. (2008),
which analyzes a two-stage game in which firms first form weighted links in research
and development (R&D) networks and then compete in a market. These authors focus
on symmetric equilibria. Restricting the analysis in this way limits the possibility of dif-
ferences in link intensities in equilibrium. We extend beyond symmetric equilibria and
identify asymmetric equilibrium structures.

Bloch and Dutta (2009) and Deroïan (2009) analyze the formation of communication
networks, in which agents also derive utility from indirect links, with budget constraints
and without self-investment. Thus, the amount invested in the network is determined
exogenously and is the same for all agents. The possibility of self-investment in our
model gives rise to equilibria in which agents choose different levels of network invest-
ment. Another difference is our assumption that two agents’ investments in their link
are strategic (imperfect) complements. For the main part of their analysis, Bloch and
Dutta (2009) assume that link quality is an additively separable function of two agents’
investments in their link. Deroïan (2009) assumes that an agent’s link investment bene-
fits her, but not her link partner.

Rogers (2006) suggests a different type of network formation game in which agents
invest in links so as to pursue a higher status. An agent’s status is increasing in the status
of agents she is linked to and in the intensity of those links.

Finally, Golub and Livne (2010), Cabrales et al. (2011), Durieu et al. (2011), and Ga-
leotti and Merlino (2014) assume that agents can choose one parameter (quality, effort,
or investment level), which then affects the intensities of all their links equally. Such a
constraint limits the set of weighted networks that can form in equilibrium.

Road map Section 2 introduces the model. Section 3 presents the equilibrium analy-
sis and is divided into the following subsections: Section 3.1 characterizes the equilib-
rium investment strategy profiles and utility levels; Section 3.2 analyzes the relationship
graphs of reciprocal and nonreciprocal equilibria; Section 3.3 discusses the multiplicity
of equilibria; Section 3.4 presents comparative statics results. Section 4 discusses the
pairwise stability of equilibria and characterizes the efficient networks.
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2. The model

There is a set of agents N = {1� � � � � n}. Each agent i possesses resource T > 0 that she can
invest in relations with other agents and in private activity. Her investment in a relation
with agent j �= i is denoted by tij and her investment in private activity (self-investment)
is denoted by tii. An investment strategy of agent i is ti = (ti1� � � � � tin) such that tij ≥ 0
for all j and

∑
j tij ≤ T . The analysis is restricted to pure strategies. A strategy profile is

represented by a matrix t = [tij]i�j and can be interpreted as a weighted directed graph,
with tij being the weight on the link from i to j. We also refer to strategy profile t as
network t.

Agent i’s utility given network t is the sum of her utilities from relations with others
and from self-investment,

ui(t) =
∑

j �=i

av(tij� tji)+ f (tii)�

where av(tij� tji), a > 0, is i’s utility from her relation with j and f (tii) is her utility from
self-investment. The parameter a determines the value of relationships relative to the
value of self-investment.

The relationship utility v is continuously differentiable. The partial derivative of v
with respect to argument k = 1�2 is denoted by vk, and the second-order partial deriva-
tive of v with respect to arguments k = 1�2 and l = 1�2 is denoted by vkl. Apart from
continuous differentiability, v satisfies the following properties.

Property 1. v(x�0)= v(0� y)= 0 for all x� y ≥ 0. A relationship yields zero benefit if one
agent does not invest in the relationship.

Property 2. For all x� y > 0, v(x� y) is increasing and strictly concave, and
limx→0 v1(x� y) = ∞ for all y > 0. Agent i’s utility from her relationship with j is increasing
and strictly concave in i’s and j’s investments. Marginal utility is infinite if i’s investment
goes to zero and j invests positively.

Property 3. v12(x� y) > 0, v21(x� y) > 0 for all x� y > 0. Two agents’ investments in their
relationship are strategic complements.

Property 4. v(γx�γy) = γv(x� y) for all γ > 0. The relationship utility v is homogenous
of degree 1 and exhibits constant returns to scale.

Property 4 implies that vk is homogenous of degree 0.
For example, a Cobb–Douglas function v(x� y) = xβy1−β with β ∈ (0�1) satisfies

Properties 1–4.
The utility function from self-investment, f , is increasing, strictly concave, and con-

tinuously differentiable, with limx→0 f
′(x) = ∞ and limx→T f ′(x) = 0.

A network t induces an unweighted and undirected (relationship) graph g(t) on N

that describes the relationships with mutual positive investments in t. That is, agents i

and j are linked in g(t) (link ij ∈ g(t)) if tij > 0 and tji > 0.
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We introduce some graph-related definitions that are necessary for the analysis of
the game. In what follows, graph always means an unweighted and undirected graph.
Consider a graph g on N . Agent i’s set of neighbors is Ni := {j|ij ∈ g}. A walk be-
tween agents i and j is a sequence of links i1i2� i2i3� � � � � iK−1iK such that ik−1ik ∈ g for
all k = 2� � � � �K, and i1 = i and iK = j. Two agents are connected if there exists a walk
between them, and g is connected if all agents in N are connected. A component of g is
a maximal connected subgraph of g. This means that all agents in one component are
connected to each other and not linked to any agent outside the component. An agent
without any links (component of size 1) is called an isolated agent. To avoid unneces-
sary complications, we often refer to the links, components, etc. of a network t, when
we mean the links, components, etc. of its graph g(t).

3. Equilibrium networks

The analysis focusses on the Nash equilibria of the network formation game in which all
agents simultaneously choose their investment strategies. A strategy profile t is a Nash
equilibrium if no agent i can strictly increase her utility by deviating to another strategy,
given all other agents’ strategies.

In Section 3.1, we show that every equilibrium is either reciprocal or nonreciprocal.
In a reciprocal equilibrium, any two agents invest the same amount in each other, and
all agents have the same self-investment and utility level. In a nonreciprocal equilib-
rium, agents can be partitioned into two sets C (concentrated agents) and D (diversified
agents). Links exist only between the sets, and never within them. For every link, the
concentrated agent invests more in the link than the diversified agent. The ratio be-
tween the concentrated agent’s investment in the link and the diversified agent’s is the
same across all links. All agents within same set have the same self-investment and util-
ity level.

In Section 3.2, we characterize the relationship graphs of equilibria. We show that
simply by observing an equilibrium relationship graph we can uniquely determine each
agent’s equilibrium self-investment and utility level as well as the ratio of any two agents’
equilibrium investments in each other. In particular, the graph can be used to determine
whether the equilibrium that induced it is reciprocal or nonreciprocal.

In Section 3.3, we discuss the multiplicity of the equilibria. A given relationship
graph can be induced by many equilibria, which feature different link investments. We
propose a simple mechanism by which we can construct multiple equilibria from a
given equilibrium.

In Section 3.4, we investigate the comparative statics of equilibria for the case that
relationships become relatively more valuable (i.e., increase in a) and for the case that
the total resource endowment increases (i.e., increase in T ). Given the multiplicity of
equilibria, we restrict ourselves to analyze the change in the equilibrium values that are
uniquely determined by the relationship graph and the model parameters when the cor-
responding model parameter is varied and the relationship graph remains the same.
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3.1 Investment strategy profiles and utility levels

Note that tij = 0 is the unique optimal choice of agent i if agent j chooses tji = 0 because
self-investment is always utility-enhancing and v(tij�0) = 0 for all tij . Thus, a trivial equi-
librium is the empty network where all agents invest only in themselves.1 More gener-
ally, a network is an equilibrium if and only if the investment choices of the agents in
each component of the network are an equilibrium of the network formation game re-
duced to the agents in that component. Therefore, so as to characterize the full set of
equilibrium networks, we restrict the analysis from now on to connected equilibrium
networks with n > 1.2

The next proposition requires the following definitions. Let σ : R>0 → (0�T ) be the
function defined by the equation f ′(σ(x)) = av1(x�1). Function σ is related to an agent’s
equilibrium self-investment. Note that the properties of f guarantee that the function σ

is well defined. Let μ : R>0 →R be the function defined by μ(x) = (T −σ(x))av(1�1/x)+
f (σ(x)). Function μ is related to an agent’s equilibrium utility level.

Lemma 1. The function σ is strictly increasing and the function μ is strictly decreasing.

The proof of Lemma 1 is relegated to the Appendix.

Proposition 1. For every equilibrium t, there exists qt ≥ 1 such that for every i ∈N , there
exists qi, where qi ∈ {qt�1/qt} and tij/tji = qi for all j ∈ Ni, tii = σ(qi), and ui(t) = μ(qi).
Thus, every equilibrium t fulfills one of the following alternatives:

(i) It is reciprocal (qt = 1), where qi = 1 for all i ∈N .

(ii) It is nonreciprocal (qt > 1), where there is a bipartition (C�D) of N such that if i is
linked to j, then i and j are in different sets. For all i ∈ C and j ∈ D, qi = qt and
qj = 1/qt .

Proof. We start with a lemma that establishes necessary and sufficient conditions on t

for it to be a Nash equilibrium.

Lemma 2. A network t is a Nash equilibrium if and only if, for all i ∈N and all j �= i,

(a)
∑

k tik = T

1This equilibrium always exists in our model.
2This is without loss of generality: (i) Any equilibrium network with n > 1 is the union of its isolated

agents and its components of size larger than 1. Zooming in on a component, the self-investments of agents
in the component and their investment choices toward others in the component constitute an equilibrium
of the game reduced to the agents in the component. Thus, the agents in the component form a connected
equilibrium network among themselves, when viewed in isolation from the rest of the network. (ii) Since
zero investments across components are optimal choices, the union of k connected equilibrium networks
constitutes an equilibrium network with k components.

From (i) and (ii) it follows that a network is an equilibrium if and only if the agents in each of its com-
ponents of size larger than 1 form a connected equilibrium network among themselves, when viewed in
isolation from the rest of the network.
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(b) if tji = 0, then tij = 0

(c) if tji > 0, then tij > 0 and av1(tij� tji) = f ′(tii).

The proof of Lemma 2 is immediate from the standard conditions on each agent’s
utility maximization problem given all other agents’ strategies and, hence, it is omitted.
In any equilibrium, each agent i invests her entire resource and invests positively in j

if and only if j invests positively in i. An agent’s positive investment levels are such that
her marginal utility from investing in any of her links is equal to her marginal utility from
self-investment.

Now consider an equilibrium t and i ∈ N . Note first that v1(tij� tji) = v1(tij/tji�1) for
all j ∈ Ni by Property 4. By Lemma 2(c), v1(tij/tji�1) = v1(tik/tki�1) for all j�k ∈ Ni. Thus,
tij/tji = tik/tki for all j�k ∈ Ni because v is strictly concave. Hence, there is qi > 0 such
that tij/tji = qi for all j ∈ Ni. Then qj = 1/qi for all j ∈ Ni. Let qt = max{qi�1/qi}. Since all
agents are connected, qk ∈ {qt�1/qt} for all k ∈N .

By Lemma 2(c), it then follows with regard to agent i’s self-investment that f ′(tii) =
av1(qi�1) and, hence, tii = σ(qi). Regarding agent i’s utility, observe that ui(t) =∑

j �=i av(tij� tji)+ f (tii) = ∑
j �=i tijav(1� tji/tij)+ f (tii)= (T − tii)av(1�1/qi)+ f (tii) = μ(qi)

because v is homogenous of degree 1 and tii = σ(qi).
In the case of a reciprocal equilibrium in which qt = 1, obviously qk = 1 for all k ∈N .

In the case of a nonreciprocal equilibrium with qt > 1, there exists an agent i ∈ N for
whom qi = qt . For all j ∈ Ni, qj = 1/qi = 1/qt and so on. Thus, because qi = 1/qj for all i
and all j ∈ Ni, there exists a partition (C�D) of N in which all i with qi = qt are in C and
all j with qj = 1/qt are in D, and there are only links across the sets.

It is worthwhile to summarize the observations about equilibria that follow from
Proposition 1. Every equilibrium t is associated with a number qt , which we call the
investment ratio of t. In equilibrium t, for any link that agent i has, the ratio of i’s in-
vestment to her neighbor’s investment in the link is equal to qi. This ratio qi is either qt

or 1/qt . Agent i’s equilibrium self-investment level is a strictly increasing function of qi,
while her equilibrium utility level is a strictly decreasing function of qi.

In any reciprocal equilibrium, every agent’s qi is equal to 1, and every agent chooses
the same level of self-investment and derives the same level of utility. We call the agents
in a reciprocal equilibrium balanced, and denote their self-investment and utility by
tbb := σ(1) and ub := μ(1), respectively.

In any nonreciprocal equilibrium t, there exists a partition of N into two sets C and
D such that links exist only between agents in different sets. We call the agents in C

concentrated and the agents in D diversified. For every concentrated agent i, qi = qt , and
for every diversified agent i, qi = 1/qt . This means that for any link, the concentrated
agent invests more in the link than the diversified agent. Moreover, all agents in the
same set choose the same level of self-investment and derive the same level of utility. We
denote the self-investment of concentrated agents and diversified agents by tcc := σ(qt)

and tdd := σ(1/qt), and denote their utility by uc := μ(qt) and ud := μ(1/qt), respectively.
Since σ is strictly increasing and μ is strictly decreasing, the equilibrium levels of

self-investment and utility are unambiguously ordered for different values of qi. For
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any reciprocal equilibrium t and any nonreciprocal equilibrium t ′, t ′dd < tbb < t ′cc and
u′
d > ub > u′

c . In other words, diversified agents have the lowest self-investment and
highest utility, concentrated agents have the highest self-investment and lowest utility,
and balanced agents have both a self-investment and utility somewhere in between.
Note that the ordering of self-investment levels trivially imposes an ordering on agents’
total equilibrium network investment. A diversified agent chooses the highest total net-
work investment, a concentrated agent chooses the lowest investment, and a balanced
agent chooses somewhere in between.

The divergence of t ′dd and t ′cc from tbb is strictly increasing in qt
′
, as is the divergence

of u′
d and u′

c from ub. Thus, for any equilibrium t, the investment ratio qt is an indication
of the degree of inequality between neighbors in t. Define the degree of inequality be-
tween neighbors i and j in equilibrium t as a weighted sum of the absolute differences
between their self-investments, |tii − tjj|, their utility levels, |ui(t) − uj(t)|, and between
the investment ratio and 1: qt − 1. Note that the degree of inequality is the same across
all pairs of neighbors in a given equilibrium t. If qt = 1, then the degree of inequality
between neighbors is 0, and if qt > 1, then it is strictly positive and strictly increasing
in qt .

Example 1 illustrates a reciprocal equilibrium and two nonreciprocal equilibria with
different investment ratios for a specific configuration of the model.

Example 1. Let n = 5, T = 2, and ui(t) = ∑
j �=i t

β
ij t

1−β
ji + t

β
ii with β ∈ (0�1). By Lemma 2, in

equilibrium, agent i’s marginal utilities from investing in link ij and from self-investment
are equal:

av1(tij� tji) = f ′(tii) ⇔ βt
β−1
ij t

1−β
ji = βt

β−1
ii ⇔ tii = tij/tji�

Thus, in every reciprocal equilibrium t, tbb = 1 and ub = 2. Figure 1 shows an example of
a reciprocal equilibrium t.

In every nonreciprocal equilibrium t, tcc = qt , tdd = 1/qt , uc = (T − qt)(1/qt)1−β +
qt

β, and ud = (T − 1/qt)qt1−β + (1/qt)β. An example of a nonreciprocal equilibrium
t, where qt = 3/2, C = {1�2�3�4}, and D = {5}, is shown in Figure 2(a). An example of a
nonreciprocal equilibrium t ′ with a lower inequality between neighbors, where qt

′ = 8/7,
C ′ = {1�3�5}, and D′ = {2�4}, is shown in Figure 2(b). ♦
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Figure 1. A reciprocal equilibrium t. Bold numbers indicate the identity of each agent (node).
The number at link ij is tij = tji.
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(a) qt = 3/2 (b) qt ′ = 8/7

Figure 2. Two nonreciprocal equilibria t and t ′ with different investment ratios. Bold numbers
indicate the identity of each agent (node). The number next to agent i at link ij is tij .

We conclude this subsection by showing that both a reciprocal and a nonreciprocal
equilibrium always exist in our model.

First, we show that the complete network with equal investments across all links
is a reciprocal equilibrium that always exists. Consider t such that tii ∈ (0�T ), f ′(tii) =
av1(1�1), and tij = (T − tii)/(n − 1) for all j �= i and all i. The assumptions on f and v

guarantee that t exists, and t is a reciprocal equilibrium.
Second, we show that if n ≥ 3, then the star network where the center node invests

equally in all her links is a nonreciprocal equilibrium that always exists. Without loss of
generality (w.l.o.g.) let D = {1} and C = N\{1}. Construct a network t as follows. Take t11
and tjj for all j ∈ C such that f ′(t11) = av1((T − t11)/(n− 1)�T − tjj) and f ′(tjj) = av1(T −
tjj� (T − t11)/(n−1)). By Brouwer’s fixed point theorem, t11 and tjj exist. Our assumptions
on f and v guarantee that 0 < t11 < tjj < T and (T − tjj)(n − 1)/(T − t11) > 1. Finally, let
t1j = (T − t11)/(n − 1), tj1 = T − tjj , and tjk = 0 for all k �= 1� j and all j ∈ C. Then t is a
nonreciprocal equilibrium.

3.2 Relationship graphs

In this section, we investigate the graphs of equilibrium networks where a link between
two agents means that both invest positively in each other. We show that simply by
observing the graph of an equilibrium we can uniquely determine qi, tii, and ui(t) for
each agent i, without any other information about the investment profile.

Let GR = {g | g = g(t) for some reciprocal equilibrium t}, that is, GR is the set of
all graphs that are induced by some reciprocal equilibrium, and let GNR = {g | g =
g(t) for some nonreciprocal equilibrium t}, that is, GNR is the set of all graphs that are
induced by some nonreciprocal equilibrium.

We first provide a full characterization of GR.3 Let g[N\U] with U ⊆ N be the sub-
graph induced in g by N\U . Denote by W (U) the set of isolated agents in g[N\U] and
denote by |X| the cardinality of a set X .

Proposition 2. A connected graph g on N is in GR if and only if for every U ⊆ N ,

3Proposition 2 was established in personal discussions with Henning Bruhn-Fujimoto.
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(i) |U | > |W (U)| or

(ii) |U | = |W (U)| and for every link ij ∈ g, if i ∈U , then j ∈W (U).

Proposition 2 states that a connected graph g is induced by some reciprocal equilib-
rium if and only if for every U ⊆ N either (i) the number of agents in U is strictly larger
than the number of isolated agents in g[N\U], or (ii) the number of agents in U and the
number of isolated agents in g[N\U] are the same, and in g, agents in U are only linked
to agents in W (U). We refer to conditions (i) and (ii) of Proposition 2 as conditions 2(i)
and 2(ii).

Proof of Proposition 2: Necessity. Let a connected graph g be in GR and let t be a
reciprocal equilibria t such that g(t) = g.

The total network investment by agents in U is |U |(T − tbb) and by agents in W (U)

is |W (U)|(T − tbb). In g, every i ∈ W (U) is only linked to agents in U ; otherwise, i ∈
W (U) would not be isolated in g[N\U]. Thus, the total network investment by agents in
W (U) must be fully reciprocated by agents in U . Then either |U |(T − tbb) > |W (U)|(T −
tbb), which means |U | > |W (U)|, or |U |(T − tbb) = |W (U)|(T − tbb), which means |U | =
|W (U)| and agents in U must be linked only to agents in W (U) in g. Otherwise, the
network investment by agents in U would not be sufficient to fully reciprocate that by
agents in W (U).

The sufficiency proof of Proposition 2 relies on an existence result for a particular
type of matching in a graph found in Schrijver (2003, p. 584). Because it is largely tech-
nical, the proof is relegated to the Appendix, and only a short outline and intuition are
provided here. In the proof, we first show that for a given graph, there exists a recipro-
cal equilibrium that induces the graph if there exists a certain perfect b-matching with
lower bounds in that graph. The perfect b-matching with lower bounds is an assignment
of numbers to the links of the graph such that (i) each number is above a certain lower
bound and (ii) the sum of numbers assigned to the links incident with a node is equal to
the value b for each node. By appropriately scaling this matching, we obtain a reciprocal
equilibrium. Schrijver (2003, p. 584) provides necessary and sufficient conditions on a
graph for this matching to exist. The second step in the proof shows that if a connected
graph g satisfies the conditions of Proposition 2, then g satisfies the existence condi-
tions in Schrijver (2003, p. 584). Thus, the matching in g exists, as does a reciprocal
equilibrium that induces g.

Proposition 2 provides a tool to determine whether a connected graph g is induced
by some reciprocal equilibrium. For this, it is sufficient to determine whether condition
2(i) or 2(ii) is satisfied when |U | < n/2+1, since, for |U | ≥ n/2+1, condition 2(i) is trivially
satisfied. Some straightforward graph properties simplify this task, as shown below in
Corollary 1.

An agent is a leaf in graph g if she has only one link. A graph g is bipartite or has a
bipartition if there exists a bipartition (A�B) of N such that if ij ∈ g, then i and j are in
different sets of the bipartition.
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Corollary 1. Let g be a connected graph on N .

(a) If |Ni| > n/2 for all i ∈N , then g ∈GR.

(b) If |Ni| = d > 0 for all i ∈N , then g ∈GR.

(c) If n > 2 and g contains a leaf, then g /∈GR.

(d) If g is bipartite with |A| �= |B|, then g /∈GR.

Proof. (a) Given g, |U | > n/2 is necessary to have at least one isolated agent in
g[N\U]. Hence, |U | > |W (U)| for all U and g ∈ GR by Proposition 2.

(b) Given g, every agent in W (U) is linked to d agents in U and, thus, there exist
d|W (U)| links between U and W (U). If every i ∈ U is only linked to agents in
W (U), then d|U | = d|W (U)| and condition 2(ii) is satisfied. If not every i ∈ U is
only linked to agents in W (U), then d|U |> d|W (U)| and condition 2(i) is satisfied.
Thus, g ∈GR by Proposition 2.

(c) Given g, let i be a leaf. Take U = Ni. Then |W (U)| ≥ |U | and the only neighbor of
agent i is not only linked to i, but also to other agents because n > 2. Thus, g /∈GR

by Proposition 2.

(d) Given g, where w.l.o.g. |A| > |B|, take U = B. Then W (U) = A and |W (U)| > |U |.
Thus, g /∈GR by Proposition 2.

Hence, by Corollary 1(a) and (b), any connected graph that is “dense” or “regular” is
induced by some reciprocal equilibrium. By Corollary 1(c) and (d), graphs that contain
leaves (for example, trees) or graphs that are bipartite with two unequally sized sets are
never induced by a reciprocal equilibrium.

We next turn to analyze GNR. In Proposition 3, we present necessary conditions
for a graph to be in GNR. Let ρ : R>1 → R

>1 be the function defined by ρ(x) = x(T −
σ(1/x))/(T − σ(x)). Given that σ is strictly increasing, it is straightforward to show that
ρ(x) > 1 for all x and that ρ is strictly increasing.

Proposition 3. If g ∈ GNR, then g has a unique bipartition (A�B). W.l.o.g. let |A| ≥ |B|.
For any nonreciprocal equilibrium t with g(t) = g, |A|/|B| = ρ(qt) > 1, for every i ∈ A,
qi = qt , and for every j ∈ B, qj = 1/qt and |Nj| > 1.

Proposition 3 makes several statements. Consider any g ∈ GNR. The graph g has
exactly one bipartition and the two sets in that bipartition are of unequal size. For any
nonreciprocal equilibrium that induces g, all concentrated agents are in the larger set of
the bipartition and all diversified agents are in the smaller one. Any leaf is in the larger
set and, thus, is a concentrated agent. There is a strictly increasing correspondence
between the investment ratio qt and the ratio of concentrated to diversified agents.
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Proof of Proposition 3. Let g be in GNR and let t be an equilibrium with g(t) = g. By
Proposition 1, each link is between a member of C (concentrated agents) and a mem-
ber of D (diversified agents). Thus, (C�D) is a bipartition of g. Since g is connected, a
standard result from graph theory implies that the bipartition of g is unique.

For all i ∈ C and j ∈ D, tij/tji = qt if ij ∈ g by Proposition 1. Thus,
∑

i∈C�j∈D tij =
qt

∑
i∈C�j∈D tji, which is equivalent to

∑
i∈C(T − tii) = qt

∑
j∈D(T − tjj). Hence, |C|(T −

tcc) = qt |D|(T − tdd) and |C|/|D| = qt(T − tdd)/(T − tcc)= qt(T −σ(1/qt))/(T −σ(qt)) =
ρ(qt).

Suppose, to the contrary, that agent i is a leaf and is in D. Then i’s only link is with
some j ∈ C. This implies, using Lemma 2 and Proposition 1, that tii + tij = T < tjj + tji
and j’s resource constraint is violated.

The fact that each g ∈ GNR is bipartite implies that there exists no graph in GNR that
includes an odd cycle.4  Proposition 3 also provides further insight regarding the invest-
ment strategies of concentrated and diversified agents in a nonreciprocal equilibrium:
A diversified agent has, on average, more links than a concentrated agent, since the net-
work is connected and |C|> |D|.

The next result shows that a reciprocal equilibrium and a nonreciprocal equilibrium
never induce the same graph. Moreover, some graphs cannot be induced by any equi-
librium.

Proposition 4. For every n ≥ 2, GR ∩ GNR = ∅, and for every n ≥ 4, there exists a con-
nected graph g on N such that g /∈GR ∪GNR.

Proof. By Corollary 1(d), there exists no g ∈ GR with a bipartition where the two sets
of the bipartition are of unequal size. By Proposition 3, every g ∈ GNR has a bipartition
with the two sets of unequal size. Thus, GR ∩GNR =∅.

Let n ≥ 4 and consider the following graph. Agents 1, 2, and 3 form a triangle. Every
other agent is only linked to agent 1. Thus, g includes an odd cycle and, hence, g /∈GNR.
Moreover, g contains a leaf and, hence, g /∈GR.

Another family of graphs (in addition to the one described in the proof above) that
cannot be induced by any equilibrium is one in which two leaves are connected via an
odd number of links: If such a graph were in GR, it would not include a leaf, and if it
were in GNR, both leaves would be in C and, thus, would have to be connected via an
even number of links.

Propositions 3 and 4 imply that the information about the graph g induced by an
equilibrium t is sufficient to determine qi, tii, and ui(t) for all i in equilibrium t. If g has
a bipartition (A�B), where A and B are of unequal size and w.l.o.g. |A| > |B|, then any
equilibrium t that induces g is nonreciprocal, where qt = ρ−1(|A|/|B|) and for all i ∈ A,
qi = qt , and for all i ∈ B, qi = 1/qt . Otherwise, any equilibrium that induces g is recipro-
cal, and qi = 1 for all i. Self-investment and utility levels follow from Proposition 1.

4An odd cycle is a sequence of links i1i2� � � � � iK−1iK , where ij �= ik for k /∈ {1�K}, i1 = iK , and K > 2 is even.
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3.3 Equilibrium multiplicity

We now turn to equilibrium multiplicity. Based on the previous section, equilibria that
induce the same graph must feature the same values of qi, tii, and ui(t) for all i because
the equilibrium graph uniquely determines those values. However, equilibria that in-
duce the same graph may feature different levels of investments in links and those are,
therefore, not always uniquely determined by the graph. In the next proposition, we
capture the multiplicity with a simple mechanism that derives an equilibrium t ′ from an
equilibrium t. The mechanism relies on appropriately shifting link investment levels in
t on an even-length cycle.

The intuition behind the mechanism is the following. Take as given the self-
investments and individual investment ratios qi of some equilibrium. Any allocation
of link investments such that each i faces the given investment ratio qi across all her
links together with given self-investments constitutes an equilibrium. Our mechanism
derives from one such equilibrium allocation of link investments: an alternative one.
Given an equilibrium, increase two agents’ investments in their link while keeping the
ratio of these link investments and self-investments unchanged. Then each agent’s
marginal utility from investing in this link is still equal to that from self-investment since
the link utility function v is homogenous of degree 1. Increasing an agent’s investment
in one link while keeping her total investment in links unchanged requires decreasing
investment in another link. Thus, by appropriately increasing and decreasing link in-
vestments alternately on an even-length cycle, we reach another equilibrium allocation
of link investments.

Proposition 5. Let n ≥ 4 and let t be an equilibrium with g(t) = g. Then the following
strategy profile t ′ is also an equilibrium.

First, let S be a sequence of distinct agents i1� i2� � � � � iK−1 and iK = i1 such that K > 4
is an odd integer, ikik+1 ∈ g for odd k, and if qt > 1, then ik ∈ C and ik+1 ∈ D for odd k.
Second, let t ′ be equal to t, except for t ′ikik+1

= tikik+1 + x > 0 and t ′ikik−1
= tikik−1 − x > 0 for

all k ∈ {1� � � � �K − 1}, where x = −h if k is odd, x= l if k is even, and h/l = qt .

Proof. Consider agent ik. The only change in agent ik’s strategy from t to t ′ is a shift of
her investment by an amount x between agents ik−1 and ik+1. Thus, agent ik’s budget
constraint remains binding in t ′. The only investments by other agents in agent ik that
have changed from t to t ′ are those of agents ik−1 and ik+1. Thus, t ′ikj = t ′jik = 0 if ikj /∈ g(t)

and t ′ikj/t
′
jik

= qik if ikj ∈ g(t) for all j �= ik−1� ik+1. We next show that t ′ikj/t
′
jik

= qik also
for j = ik−1� ik+1. If k is odd and j = ik+1, then qik = qt and

t ′ik�ik+1
/t ′ik+1�ik

= (tik�ik+1 − h)/(tik+1�ik − l)

= (
qt(tik�ik+1 − h)

)
/
(
qt(tik+1�ik − l)

)

= qt(tik�ik+1 − h)/
(
(tik�ik+1/tik+1�ik)tik+1�ik − (h/l)l

)

= qt(tik�ik+1 − h)/(tik�ik+1 − h)

= qt�
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Similarly, for j = ik−1 and then also for even k.
For any agent i not in the sequence S, t ′i = ti and the investments in i are the same in

both t ′ and t. Thus, t ′ is an equilibrium by Lemma 2.

In Example 2, we apply the mechanism provided in Proposition 5.

Example 2. Consider the environment of Example 1. In Figure 3, t is a reciprocal equi-
librium, and in Figure 4, t is a nonreciprocal equilibrium with qt = 8/7. In both, t ′ is an
equilibrium obtained from t by applying the mechanism described in Proposition 5. ♦
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3.4 Comparative statics

In this section, we present the comparative statics of the equilibria for the changes
(i) when the investment in a relationship becomes more valuable relative to self-
investment (i.e., an increase in a) and (ii) the total resources available for investment
increase (i.e., an increase in T ). Given the multiplicity of equilibria, we limit ourselves
to the following comparative statics exercise: Consider a particular graph induced by
an equilibrium. Assuming that the graph remains unchanged, what is the effect of a
change in the model parameters on those equilibrium values of the strategy profile that
are uniquely determined by the graph and the parameters?

Note that previously we assumed for simplicity that limx→T f ′(x) = 0 so as to guaran-
tee that every agent chooses a self-investment less than T in any equilibrium. Keeping
this assumption and altering T would change the function f and render the compara-
tive statics for T impossible. In this section, we assume that f is fixed and that all values
of T satisfy f ′(T) < v1(n − 1�1). That is, f ′(T) is low enough to guarantee equilibrium
self-investments less than T for all T .

Proposition 6. (a) Consider a < â. Let t be an equilibrium given a and let t̂ be an equi-
librium given â, where t and t̂ induce the same graph (g(t) = g(t̂)).

If qt = 1, then q̂t = 1 and tbb > t̂bb.
If qt > 1, then q̂t > 1, |C|/|D| = |Ĉ|/|D̂|, tcc > t̂cc , and tdd > t̂dd .

(b) Consider T < T̂ and suppose that f = f̂ with f ′(T) < v1(n− 1�1). Let t be an equi-
librium given T and let t̂ be an equilibrium given T̂ , where g(t) = g(t̂).

If qt = 1, then q̂t = 1 and tbb = t̂bb.
If qt > 1, then qt < q̂t , |C|/|D| = |Ĉ|/|D̂|, tcc < t̂cc , T − tcc < T̂ − t̂cc , and tdd > t̂dd .

Before presenting the proof, it is worthwhile to restate Proposition 6. Consider part
(a). Unsurprisingly, since investment in a relationship is more valuable under â than
under a, the self-investment of all types of agents is lower under â than under a. If t is a
nonreciprocal equilibrium, then the ratio of concentrated to diversified agents remains
the same, and the effect on the investment ratio is not uniquely determined.

Consider part (b). As the resource endowment increases, the self-investment level of
balanced agents remains the same and, therefore, their network investment increases.
If t is a nonreciprocal equilibrium, then the ratio of concentrated to diversified agents
remains unchanged. Both a concentrated agent’s self-investment and her network in-
vestment are increasing in the resource endowment, whereas a diversified agent’s self-
investment decreases and, thus, her network investment increases by a larger amount
than the increase in the resource endowment. An increase in the resource endowment
also increases the ratio of a concentrated agent’s investment to that of a diversified agent
in the link between them.

Proof of Proposition 6(a). (The proof for part (b) proceeds similarly and is relegated
to the Appendix.) Consider qt = 1. Then g(t) ∈ GR. The set GR is independent of a by
Proposition 2. Therefore, g(t̂) ∈ ĜR and q̂t = 1. By Proposition 1, f ′(tbb) = av1(1�1).
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Then, by the implicit function theorem, ∂tbb/∂a = v1(1�1)/f ′′(tbb), which is strictly neg-
ative because f is strictly concave and v is strictly increasing. Thus, tbb > t̂bb.

Next consider qt > 1. Then g(t) = g(t̂) /∈ GR = ĜR and, thus, q̂t > 1. By Propo-
sition 3, the bipartition of g(t) is unique and, thus, |C|/|D| = |Ĉ|/|D̂|. By Proposi-
tions 1 and 3, t̂ is such that (i) f ′(t̂cc) = âv1(q̂

t�1), (ii) f ′(t̂dd) = âv1(1/q̂t�1), and (iii)
|C|/|D| = q̂t(T − t̂dd)/(T − t̂cc), and the analogous conditions hold for t. Suppose, to
the contrary, that t̂cc ≥ tcc . Then q̂t > qt by (i). This implies that t̂dd < tdd by (ii). Then
|C|/|D| < q̂t(T − t̂dd)/(T − t̂cc), contradicting (iii). The proof that t̂dd < tdd proceeds
analogously.

4. Stability and efficiency

In this section, we show that Nash equilibria are not “stable” if pairwise deviations are
allowed, and are not efficient, in the sense that they do not maximize the sum of agents’
utilities. This is due to the positive externalities of an agent’s network investment on her
neighbors, which are not incorporated into an agent’s individual utility maximization.

4.1 Equilibrium stability

Following Bloch and Dutta (2009), we say that a strategy profile t is strongly pairwise
stable if it is a Nash equilibrium and if there are no two agents (i� j) who would both
be strictly better off by a joint deviation from (ti� tj) to (t ′i� t

′
j), given all other agents’

strategies.

Proposition 7. No strategy profile t is strongly pairwise stable.

Proof. We show that for any equilibrium, there exist two agents who gain from re-
ducing their self-investment and establishing or intensifying a reciprocal relationship
between them. Suppose t is an equilibrium. Consider any i ∈ N and any j �= i. If i

reduces her self-investment by c > 0, and i and j each invest c so as to intensify or
establish a reciprocal link between them, then i’s change in utility is 	ui(c) = f (tii −
c) − f (tii) + cav(1�1). If i is a balanced or concentrated agent, then there is c > 0 such
that 	ui(c) is positive because [∂	ui/∂c](0) = −f ′(tii) + av(1�1) and f ′(tii) < av(1�1) =
a(v1(1�1)+ v2(1�1)) for tii ∈ {tbb� tcc}. If qt = 1, then there exist two balanced agents, and
if qt > 1, then there exist two concentrated agents; therefore, in each case, there is a pair
with a strict incentive to jointly deviate.

4.2 Efficient networks

Following Jackson and Wolinsky (1996), we say that a strategy profile t is efficient if t
maximizes

∑
i∈N ui(t) such that

∑
j tij = T for all i.

We see that the set of efficient networks and the set of equilibrium networks do not
intersect. However, there is no distinction between the set of all graphs that are induced
by some efficient network and the set of all graphs that are induced by some reciprocal
equilibrium.
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Proposition 8. A network t is efficient if and only if tij = tji,
∑

k tik = T , and f ′(tii) =
av(1�1) for all i and all j �= i. A graph is induced by an efficient network if and only if each
of its components is induced by some reciprocal equilibrium of the network formation
game reduced to the agents in that component.

Proposition 8 states that in every efficient network any two agents invest the same
amount in each other. Moreover, any agent’s self-investment is such that her marginal
utility from self-investment equals the marginal increase in the sum of her own and her
neighbor’s utility from her investment in their reciprocal link. Thus, the efficient level of
self-investment accounts for the positive externalities from network investment and is
lower than the level of self-investment in a reciprocal equilibrium. Since every agent’s
self-investment is less than T (as implied by the assumptions on f ), there is no isolated
agent in an efficient network. In particular, the set of all graphs of efficient networks is
identical to the set of all graphs of equilibrium networks that consist only of reciprocal
equilibrium components.

Proof of Proposition 8. Let t be efficient. Then every agent’s resource constraint is
binding, since self-investment is always beneficial. Moreover, for all i and j �= i, tii > 0,
and tij = 0 if and only if tji = 0. By the first-order conditions on t to maximize the sum
of utilities, any positive link investments tii, tij , and tji must satisfy f ′(tii) = av1(tij� tji)+
av2(tji� tij) = av1(tij/tji�1) + av2(1� tij/tji) for all j ∈ Ni and all i. In other words, agent i’s
investment in her link with agent j is such that its marginal impact on the sum of utilities
equals agent i’s marginal utility from self-investment.

We next show that any link is reciprocal, that is, tij = tji for all tij� tji > 0. Sup-
pose, to the contrary, that link ij is nonreciprocal and w.l.o.g tij/tji > 1. Hence, f ′(tii) =
av1(tij/tji�1) + av2(1� tij/tji) < f ′(tjj) = av1(tji/tij�1) + av2(1� tji/tij) by the concavity of v
and tii > tjj by the concavity of f . Since tij + tii > tji + tjj and i’s resource constraint must
bind, j must have another link to some agent k �= i. By efficiency and the strict con-
cavity of v, tji/tij = tjk/tkj < 1, and tkl/tlk = tim/tmi > 1 for all l ∈ Nk and m ∈ Ni, which
implies that i and k are not linked and tik = tki = 0. Now consider strategy profile t ′ �= t,
where the self-investment of both i and k is reduced by c and a reciprocal link between
them is established with an investment of c by each. As in the proof for Proposition 7,
we can show that there is c > 0 such that ui(t ′)− ui(t) > 0 and uk(t

′)− uk(t) > 0. More-
over, ul(t ′) = ul(t) for all l �= i�k and no agent’s resource constraint has been affected by
moving from t to t′. Hence, a nonreciprocal link cannot exist in an efficient network.

Thus, tij = tji for all i and j, and av1(1�1) + av2(1�1) = av(1�1) = f ′(tii) for all i who
have a link. It remains to show that every agent has a link.

Assume there exist at least two isolated agents i and j. Then tii = tjj = T by efficiency.
However, by the same argument as in the proof of Proposition 7, the sum of utilities can
be increased if their self-investment is decreased and a reciprocal link between them is
established.

Assume there exists only one isolated agent i. Let agents j and k be linked to each
other. In this case, the sum of utilities can be increased as follows: Decrease i’s self-
investment by 2ε > 0 and decrease the investments of j and k in their link jk by ε each,
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and establish the reciprocal links ij and ik, with t ′ij = t ′ji = t ′ik = t ′ki = ε. For ε small
enough, i’s utility strictly increases and the utility of no other agent changes, by v’s ho-
mogeneity of degree 1.

Let t be such that tij = tji,
∑

k tik = T , and f ′(tii) = av(1�1) for all i and all j �= i.
Then agent i’s utility is ui(t) = ∑

j �=i av(tij� tji) + f (tii) = ∑
j∈Ni

av(tij� tji) + f (tii) =∑
j∈Ni

atijv(1� tji/tij) + f (tii) = ∑
j∈Ni

a(T − tii)v(1�1) + f (tii). Thus, the sum of utilities
for any such t is the same and, hence, any such t is efficient. This concludes the first part
of the proof of Proposition 8.

To prove the second part, first observe that we know from the first part of Proposi-
tion 8 that in an efficient network, every agent belongs to a component of at least two
agents who are connected via reciprocal links.

The result then follows from the observation that a connected graph g is induced by
an efficient network if and only if g is induced by a reciprocal equilibrium: Let t be an
efficient network that induces a connected graph g. Thus, tij = tji > 0 for all ij ∈ g, tij =
tji = 0 for all ij /∈ g,

∑
j∈Ni

tij = T − tii for all i, and f ′(tii)= av(1�1). Then the following t ′ is
a reciprocal equilibrium that induces g. Let t ′ be such that t ′ij = t ′ji = tij(T − t ′ii)/(T − tii)

for all ij ∈ g, t ′ij = t ′ji = 0 for all ij /∈ g, and f ′(t ′ii) = av1(1�1).
Let t ′ be a reciprocal equilibrium that induces a connected graph g. Thus, t ′ij = t ′ji > 0

for all ij ∈ g, t ′ij = t ′ji = 0 for all ij /∈ g,
∑

j∈Ni
t ′ij = T − t ′ii for all i, and f ′(t ′ii) = av1(1�1). Then

the following t is a connected efficient network that induces g. Let t be such that tij =
tji = t ′ij(T − tii)/(T − t ′ii) for all ij ∈ g, tij = tji = 0 for all ij /∈ g, and f ′(tii) = av(1�1).

5. Concluding comments

We analyzed a game of weighted network formation in which agents simultaneously
decide how to allocate a limited budget between building links of possibly different in-
tensities with other agents and self-investment. Expanding the discussion of network
formation from unweighted to weighted networks enlarges the strategy space of agents.
Nevertheless, we obtained results about the structure of the game’s equilibria. In partic-
ular, we showed that an equilibrium must have one of two structures, i.e., either recip-
rocal or nonreciprocal, and we characterized their properties.

Some of the results are consistent with empirical findings. First, note that in both re-
ciprocal and nonreciprocal equilibria, two agents’ investments in the link between them
are predicted to be positively correlated. Griffith (2017) finds support for this property in
his analysis of a weighted social network among school girls. He shows that the weights
assigned by two girls to their relationship are positively (though not perfectly) corre-
lated.

The presence of reciprocal and nonreciprocal relationships is investigated in Wang
et al. (2013). They find that in a mobile phone communication network, 72% of all links
are such that the two linked agents call each other with significantly different probabil-
ities. They further suggest that the presence of reciprocal relations is more likely when
the total network investment (number of calls made) by an agent is positively correlated
across linked agents. This is in line with our theoretical findings: In a reciprocal equilib-
rium, each agent chooses the same total network investment that is thus predicted to be
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perfectly and positively correlated across agents, while in a nonreciprocal equilibrium,
the level of total network investments by a concentrated agent is negatively correlated
with that by a diversified agent.

We also characterized the properties of the graphs for reciprocal and nonrecipro-
cal equilibria. We showed, for example, that any sufficiently “dense” graph, where den-
sity is measured by the number of links in the graph, or a “regular” graph, in which ev-
ery agent has the same number of neighbors, is only induced by reciprocal equilibria
(Corollary 1(a) and 1(b)). Some empirical studies provide evidence for a positive corre-
lation between reciprocity and network density and/or regularity (for example, Kovanen
et al. (2011) and Wang et al. (2013) for mobile phone communication networks). We also
found that in graphs of nonreciprocal equilibria, diversified agents have, on average,
more links than concentrated agents. This again resonates with Wang et al. (2013), who
suggest that “networked systems that induce anti-correlation in the number of neigh-
bors of each vertex [agent] in a dyad [link] should—all else being equal—be character-
ized by high levels of non-reciprocity.”

On an anecdotal level, the three types of agents that arise in our model’s equilibria
can perhaps be observed in real life. Diversified agents are more popular and outgoing;
they more actively network and free-ride on the efforts of other agents. Concentrated
agents rely more on themselves, are more introverted, provide greater effort in relation-
ships, and are exploited. Balanced agents are in give-and-take relationships and share
responsibilities equally.

An avenue for further research would be to introduce heterogeneity between agents,
and to investigate how this affects the existence and properties of reciprocal and non-
reciprocal equilibria. A first step could be to differentiate between two types of agents,
where linking to one of the types is more profitable than linking to the other. Griffith
(2020) has started to analyze equilibrium networks in the presence of agent heterogene-
ity for the case that link utility is given by v(tij� tji) = tαij t

β
ji with α�β > 0. Heterogeneity is

introduced by scaling link utilities with agent-specific weights and by allowing individu-
als to have different costs of self-investment. For α+β = 1, a special case of our model,
the author finds that in equilibrium, agent heterogeneity must be somewhat limited rel-
ative to the network graph. When heterogeneity is continuously distributed and, hence,
infinite, these limits are violated with probability 1 for many graphs that occur in equi-
librium in our model. Thus, the set of equilibrium networks depends on the degree of
heterogeneity among agents. The effect of agent heterogeneity on equilibrium networks
merits further investigation.

Appendix

Proof of Lemma 1. Since f and v are both increasing and strictly concave, it immedi-
ately follows that σ is strictly increasing.

We next show that ∂μ/∂x is strictly negative:

∂μ/∂x = −σ ′(x)av(1�1/x)− (
T − σ(x)

)
av2(1�1/x)/x2 + f ′(σ(x)

)
σ ′(x) (1)

= −σ ′(x)av(1�1/x)− (
T − σ(x)

)
av2(1�1/x)/x2 + av1(x�1)σ ′(x) (2)
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= −(
T − σ(x)

)
av2(1�1/x)/x2 + σ ′(x)

[
av1(x�1)− av(1�1/x)

]
(3)

= −(
T − σ(x)

)
av2(1�1/x)/x2

+ σ ′(x)
{
av1(1�1/x)− a

[
v1(1�1/x)+ v2(1�1/x)/x

]}
(4)

= −(
T − σ(x)

)
av2(1�1/x)/x2 − σ ′(x)av2(1�1/x)/x (5)

< 0� (6)

To get from (1) to (2), we use f ′(σ(x)) = v1(x�1); from (3) to (4), we use Euler’s theo-
rem and that v1 is homogeneous of degree 0; from (5) to (6), we use σ ′(x) > 0.

Proof of Proposition 2: Sufficiency. In the following discussion we prove that
there exists a reciprocal equilibrium t with g(t) = g and, hence, g ∈ GR if g is connected
and is such that for every U ⊆N , condition 2(i) or 2(ii) is satisfied.

For the proof, we draw on Theorem 35.1 in Schrijver (2003, p. 584), which states nec-
essary and sufficient conditions for a perfect b-matching to exist for a graph g. A perfect
b-matching for g is a function that assigns a value to each link such that the sum of the
values of links incident at one node is equal to the b-value of that node.

We first show that if a perfect b-matching for a connected graph g exists, then a re-
ciprocal equilibrium t with g(t) = g exists, and, second, that if g is connected and is such
that for all U ⊆N , either condition 2(i) or 2(ii) is true, then a perfect b-matching for g ex-
ists (for the second part, we use the theorem in Schrijver (2003)). This proves sufficiency
for Proposition 2.

Consider a graph g on N . Let Eg be the set of all links in g and let Eg[X�Y ] be the set
of links xy ∈ g with x ∈ X ⊆ N , y ∈ Y ⊆ N , and X ∩ Y = ∅. Let Eg[Y ] be the set of links
ij ∈ g with i� j ∈ Y ⊆ N . Denote by δ(i) the set of links incident at node i ∈N . Let g[Y ] be
the subgraph induced in g by Y ⊆ N . For every vector w ∈ R

Y with vector components
wy , let w(U) := ∑

y∈U wy for any U ⊆ Y . The set of integers is denoted by Z.
Considering just a special case, Theorem 35.1 in Schrijver (2003, p. 584) can be re-

duced to the following statement.

Special case of Theorem 35.1 in Schrijver (2003, p. 584). Let g be a graph on N ,
and let b ∈ Z

N and c ∈ Z
Eg

with every cij > 1. Then there exists an x ∈ Z
Eg

such that (i) 1 ≤
xij ≤ cij for all ij ∈ Eg and (ii) x(δ(i)) = bi for all i ∈ N if and only if for each partition
{T�V �Y } of N , the number of components K of g[T ] with

b(K)+ c
(
Eg[K�Y ]) + ∣∣Eg[K�V ]∣∣ (35.2)

odd is at most

b(V )− 2
∣∣Eg[V ]∣∣ − ∣∣Eg[T�V ]∣∣ − b(Y)+ 2c

(
Eg[Y ]) + c

(
Eg[T�Y ])� (35.3)

Let every cij = γ with γ extremely large and every bi = β with β sufficiently large. If
g is connected and x given g exists, then a reciprocal equilibrium t with g(t) = g is such
that tij = tji = (xij/β)(T − tbb) for all ij ∈Eg and tij = tji = 0 for all ij /∈Eg.

Let g be connected and such that for all U ⊆ N , with W (U) being the set of isolates
in g[N\U], either
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(a) |U | > |W (U)| or

(b) |U | = |W (U)| and for every link ij ∈Eg, if i ∈ U , then j ∈W (U).

We next show by contradiction that x exists given g.
Suppose x does not exist. Then, by the theorem in Schrijver (2003, p. 584), there

must be a partition {T�V �Y } of N such that the number of components K of g[T ] with
(35.2) odd is greater than (35.3); otherwise x would exist.

For any partition with Eg[Y ] �= ∅ and/or Eg[T�Y ] �= ∅, the number of components
K with (35.2) odd is always smaller than (35.3) because γ is extremely large and the num-
ber of components K is finite. Then there must be a partition with Eg[Y ] =Eg[T�Y ] = ∅

with a number of components K with (35.2) odd greater than (35.3).
For every partition {T�V �Y } with Eg[Y ] = Eg[T�Y ] = ∅, it must be true that every

i ∈ Y has links to nodes in V only and that every i ∈ Y has at least one link to nodes in
V because g is connected. Then Y is a subset of the set of isolates in g[N\V ]. Hence,
Y ⊆ W (U) for U = V . We know that in g for all U ⊆ N , either (a) |U | > |W (U)| or (b)
|U | = |W (U)| and for every link ij ∈ Eg, if i ∈ U , then j ∈ W (U). This implies that, for
any V , either (a) |V | > |Y | or (b) |V | = |Y | and for every link ij ∈ Eg, if i ∈ V , then j ∈ Y .
Thus, there does not exist a partition {T�V �Y } of N for which Eg[Y ] =Eg[T�Y ] =∅ and
|V | < |Y |.

Then there must be a partition {T�V �Y } of N for which Eg[Y ] = Eg[T�Y ] = ∅ and
|V | ≥ |Y | such that the number of components K with (35.2) odd is greater than (35.3).

For any partition with Eg[Y ] = Eg[T�Y ] = ∅ and |V | > |Y |, the number of compo-
nents K with (35.2) odd is always smaller than (35.3) because β is chosen sufficiently
large.

For any partition with Eg[Y ] = Eg[T�Y ] = ∅ and |V | = |Y |, we know that for every
link ij ∈ Eg, if i ∈ V , then j ∈ Y . (The reason is that if |U | = |W (U)|, then for every link
ij ∈ Eg with i ∈ U , it is true that j ∈ W (U), and for U = V in this case W (U) = Y .) Then
Eg[V ] = Eg[T�V ] = Eg[T�Y ] = ∅. This implies that T = ∅. If T were not empty, nodes
in T would not be connected to either V or Y , and g would not be connected, a contra-
diction. From T = ∅, it follows that the number of components K is zero. Expression
(35.3) is also zero. Hence, the number of components K is not greater than (35.3).

Thus, there does not exist any partition {T�V �Y } of N such that the number of com-
ponents K with (35.2) odd is greater than (35.3). This is a contradiction and, therefore, x
must exist. Thus, there also exists a reciprocal equilibrium t with g(t) = g.

Proof of Proposition 6(b). First, suppose that qt = 1. Then g(t) ∈ GR. The set GR

is independent of T by Proposition 2. Thus g(t̂) ∈ ĜR and q̂t = 1. By Proposition 1,
f ′(tbb) = av1(1�1). Thus, tbb is independent of T and, therefore, tbb = t̂bb.

Second, suppose that qt > 1. Then g(t) = g(t̂) /∈ GR = ĜR and, thus, q̂t > 1. By
Proposition 3, the bipartition of g(t) is unique and, therefore, |C|/|D| = |Ĉ|/|D̂|.

By Propositions 1 and 3, (i) f ′(t̂cc) = av1(q̂
t�1), (ii) f ′(t̂dd) = av1(1/q̂t�1), and (iii)

|C|/|D| = q̂t(T̂ − t̂dd)/(T̂ − t̂cc). The analogous conditions hold for t. Applying the
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implicit function theorem to the equation |C|/|D| = qt(T − tdd)/(T − tcc), we get

∂qt/∂T = −[((
T − σ

(
qt

)) − (
T − σ

(
1/qt

)))
/
(
T − σ

(
qt

))2]

× [(
T − σ

(
1/qt

))
/
(
T − σ

(
qt

)) + qt
(
σ ′(1/qt

)(
T − σ

(
qt

))
/qt

2

+ (
T − σ

(
1/qt

))
σ ′(qt

))
/
(
T − σ

(
qt

))2]−1
�

It is straightforward to show—keeping in mind that σ is strictly increasing—that the nu-
merator is negative and the denominator is positive, and, therefore, ∂qt/∂T > 0.

Thus, q̂t > qt , t̂cc > tcc by (i) and t̂dd < tdd by (ii). Hence T̂ − t̂dd > T − tdd . From
q̂t > qt , it follows that

(T̂ − t̂cc)/(T̂ − t̂dd) > (T − tcc)/(T − tdd)

and, therefore, T̂ − t̂cc > T − tcc .
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