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Appendix D: Examples

The lemmas in Appendix C.2 show how requirements R1–R6 are driven by group
strategy-proofness and Pareto efficiency. The following examples further illustrate the
role of the consistency requirements R4–R6.

Requirement R4 is needed to ensure the individual strategy-proofness of the TC
mechanisms. This requirement is also needed to ensure the individual strategy-
proofness of the TTC mechanisms, and it is embedded in Pápai’s (2000) inheritance-tree
construction.49

Example 2 (Why do we need R4 to prevent individual manipulation?). Consider three
agents i1, i2, i3 and three houses h1, h2, h3. Agent i1 owns house h1, and agent i2 owns
houses h2 and h3 at submatching ∅. Suppose that at submatching {(i1�h1)}, agent i3
owns h2 and h3, thus violating R4 for i2. Suppose that all agents rank houses as h1 �i
h2 �i h3. When i2 submits his true preferences, he is matched with h3 in the third round
of the algorithm; indeed, in the first round i1 and h1 are matched, and in the second
round i3 and h2 are matched. When i2 submits the ranking h2 �i h1 �i h3, he is matched
with h2 in the first round. Because i2 prefers h2 to h3, the individual strategy-proofness
is violated. ♦

Requirement R5 states that a brokerage right persists when we move from smaller
to larger submatchings, provided two or more owners from the smaller submatching
remain unmatched at the larger submatching; it also specifies who takes over control
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rights over the brokered house when the broker loses them. The following example il-
lustrates why we need this requirement to keep TC individually strategy-proof.

Example 3 (Why do we need R5 to prevent individual manipulation?). Consider four
agents i1� � � � � i4. Assume that at the empty submatching agent i2 brokers a house and
other agents own one house each. Denote by hk the house controlled by agent ik. We
maintain R1–R4 and R6, and violate R5 by assuming that h2 is owned by i4 at submatch-
ing {(i1�h1)}. R5 is violated because two previous owners, i3 and i4, are unmatched at
{(i1�h1)}, but i2 is no longer a broker. Consider a preference profile such that h1 is i1’s
and i2’s mutual first-choice house, h2 is the first choice of the other agents, and h3 is the
second choice of i2 and i3. Under this preference profile and control-rights structure,
in the first round of the TC algorithm, i1 and i2 point to h1, while i3 and i4 point to h2.
House h1 points to its owner i1 and h2 points to its broker i2. There is a unique cycle
h1 → i1 → h1, and the submatching {(i1�h1)} is matched. In the second round, h2 is
owned by i4, and all remaining agents point to it. There is a unique cycle h2 → i4 → h2,
and i4 is matched with h2. Agent i2 is matched with neither his first nor second choice.
Alternatively, if i2 declares h3 to be his first choice, then in the first round of TC, he would
point to h3, completing a cycle h3 → i3 → h2 → i2 → h3. This misreporting allows i2 to
be matched to his second-choice house, h3. ♦

R6 complements R5 by specifying the rights of a broker who loses his brokerage right
(the broker-to-heir transition). The following two examples illustrate why we need R6 to
keep TC individually strategy-proof and nonbossy.

Example 4 (Why do we need R6 to prevent individual manipulation?). Consider four
agents i1� � � � � i4. Assume that at the empty submatching agent i2 brokers h2, agent
i1 owns h1 and h4, and agent i3 owns h3. At submatching {(i1�h1)}, agent i3 owns h2
and h3. While i2 loses his brokerage rights at {(i1�h1)}, R5 is not violated because there
is a single previous owner unmatched at {(i1�h1)}, and he is i3. We further assume
that at {(i1�h1)� (i3�h2)} agent i4 owns h3. Thus, R6 is violated, as at the submatch-
ing {(i1�h1)� (i3�h2)}, i2 does not own h3. Suppose that, other than this violation, the
control-rights structure satisfies R1–R6. Consider the preference profile at which agents’
first choices are house h1 for agents i1 and i2, house h2 for agent i3, and house h3 for
agent i4. If agent i2’s second choice is h3, then i2 would benefit by ranking h3 first. ♦

Example 5 (Why do we need R6 to prevent bossiness?). Consider the same control-
rights structure as in Example 4. Consider the preference profile at which i1 and i3’s first
choices are h1, and i2 and i4’s first choices are h3, and the second choice of i3 is h2. Agent
i3 is bossy. Indeed, agent i3 receives house h2 both when he ranks h2 first and when he
ranks h1 first and h2 second. However, in the former case, i2 receives h3, while in the
latter case, he receives h4. ♦

Example 6 (Why can we not replace R5 and R6 by a simpler (and stronger) persistence
of brokerage?). Consider the following requirement: if |σ ′|< |I| − 1 and agent i brokers
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h1 h2 h3 h4

i1�o i2�o i1�o i4� b

i3�o (i2�h4) ↙ ↘ otherwise i3�o (i1�h1) ↙ ↘ i2 and i3 are matched, and

i1 is matched with h2 or h3

i2�o i4�o i1�o i2�o i2�o i4�o

i4�o i3�o i3�o i4�o i4�o

i4�o i3�o

Figure 1. A control-rights structure with broker-to-heir transition.

house h at σ and is unmatched at σ ′ ⊃ σ , then i brokers h at σ ′ (an analogue of R4
for brokers). The following example shows that we cannot replace R5 and R6 with this
stronger requirement. There are four agents, i1, i2, i3, i4, four houses, h1, h2, h3, h4,
and a TC mechanism ψc�b whose control-rights structure (c�b) is explained below and
illustrated in Figure 1.

Houses h1 and h3 are owned by agent i1 (denoted by “o” next to i1 in the figure); he
continues owning them as long as he is unmatched (R4 is satisfied). When i1 is matched,
the unmatched of the two houses is owned by i3 (if he is still unmatched). When both i1
and i3 are matched and h1 or h3 is unmatched, the house is owned by i2. When all agents
are matched and one of the houses h1 or h3 is unmatched, the house is owned by i4.

House h2 is owned by i2. When i2 is matched but h2 is not, then h2 is inherited by one
of the unmatched agents; who inherits h2 depends on the submatching. If i1 is matched
with h1 and i2 is matched with h4, then the next owners of h2 are i4 and i3, in this order.
In all other cases, the order of next owners of h2 is i1, i3, i4.

House h4 is initially brokered by agent i4 (denoted by “b” next to i4 in the figure).
Agent i4 continues to broker h4 as long as he is unmatched with two exceptions: (i) if i1 is
matched with h1, then i4 loses the brokerage right and h4 becomes an owned house with
the order of owners i2, i4, i3; and (ii) if i4 is the only remaining agent, then he owns h4.
The second exception is dictated by R2. We explain in detail how the first exception oc-
curs and why it is consistent with our conditions. At σ =∅, i4 brokers h4 and i2 owns h2.
At σ ′ = {(i1�h1)}, i2, the only remaining σ-owner, owns h4, and i4 loses his brokerage
rights. At submatching {(i2�h4)}, i4 owns h2 in line with R6 and, by R4, i4 owns h2 at
{(i2�h4)} ∪ σ ′ = {(i1�h1)� (i2�h4)}. This is an instance of the broker-to-heir transition.

The TC mechanism defined by this control-rights structure is different from all TC
mechanisms with consistent control-rights structures in which the simple analogue of
R4 for brokers holds true: if |σ ′| < |I| − 1 and agent i brokers house h at σ and is un-
matched at σ ′ ⊃ σ , then i brokers h at σ ′. Indeed, by way of contradiction, assume that
there is a TC mechanism ψ with a control-rights structure satisfying the above strong
form of brokerage persistence and produces the same allocation as ψc�b for each profile
of agents’ preferences.

First, notice that at the empty submatching, i4 is the broker of h4 in ψ. This is so
because h4 is not owned by any agent at the empty submatching ∅ as (ψ[�])−1(h4) =
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(ψc�b[�])−1(h4) varies with � ∈ P (that is, across profiles at which all agents rank h4
first). Hence, there is an agent who has the brokerage right over h4, and it must be i4,
as ψ[�](i4) = ψc�b[�](i4) = g for all � ∈ P such that all agents rank h4 first and any
g ∈ {h1�h3�h2} second.

Second, consider the submatching σ = {(i1�h1)} and a preference profile � ∈ P such
that i1 ranks h1 first and other agents rank h4, h3, h2, and h1 in this order. In mechanism
ψ, agent i4 would continue to be the broker of h4 at σ , and thus ψ[�](i4)= h3. However,
ψc�b[�](i4)= h2. This contradiction shows that indeed the TC mechanism of the exam-
ple cannot be represented by a control-rights structure in which brokerage satisfies the
analogue of R4 for brokers (in particular, it cannot be represented without brokers). ♦

A broker’s loss of the brokerage right introduces a subtlety in our otherwise standard
proof of nonbossiness. The cycles of three agents or more are the same under any two
preference profiles � and �′ that differ only in a ranking of an agent assigned the same
house under both of them; this property is implied by R4 and R5. However, the cycles
of one or two agents can be different under these two profiles. This subtlety and its
resolution can be illustrated in the setting of Example 6. Consider a preference profile
in which agents i1 and i3 rank houses h1 �i1�i3 h4 �i1�i3 h2 �i1�i3 h3, and agents i2 and i4
rank houses h4 �i2�i4 h2 �i2�i4 h3 �i2�i4 h1. Under this preference profile, �{i1�i2�i3�i4}, in
the first round, broker i4 obtains object h2 in a cycle i4 → h2 → i2 → h4 → i4. However, if
i2 submitted instead preference ranking �′

i2
identical to �i1�i3 , then i4 and i2 would not

swap houses in the first round. They would both remain unmatched in round 2, and
i4 would have lost his brokerage right; house h4 would now be owned by i2.50 Agent i2
would then match with h4 in round 2. In round 3, agent i4 would become the owner of
h2 (R6’s broker-to-heir transition). Thus, in round 3 agent i4 would match with h2. While
the cycles are different, the allocations are the same. Beyond the example, R6’s broker-
to-heir transition implies that a similar scenario is bound to happen whenever one- or
two-agent cycles are different under � and �′.

Appendix E: Proof of the Pareto efficiency of TC

We prove Pareto efficiency by a simple recursion. Consider the TC algorithm. Each agent
matched in the first round of the algorithm gets his first- or second-choice house and is
matched with a house controlled by an agent matched in the same round. Moreover, if
an agent i gets his second choice, then i’s first choice is being assigned to another agent
for whom it is the first choice; thus, assigning to i his first choice would harm this other
agent.

In general, each agent matched in the rth round of the algorithm is matched with
a house controlled by an agent matched in the same round. Moreover, if any of these
agents does not get his first choice among houses unmatched in this round, then the
house this agent prefers is assigned to another agent for whom it is the first choice. Thus,
if an agent matched in the rth round were given a better house, this would harm some
other agent matched in the same or earlier round.

50Condition R5 requires that i2 owns h4 when i1 becomes matched and i4 loses the brokerage right.



Supplementary Material Allocation and exchange of discrete resources 5

Appendix F: An extension: Relaxing the assumption that there are more

houses than agents

The assumption that there are more houses than agents simplifies the exposition, but
our insights do not hinge on it. In fact, the key insight (Theorem 2) that each house is
either owned or brokered remains true with no change in its proof.

Theorem 7. For any group strategy-proof and Pareto-efficient mechanism, for any sub-
matching σ , and for any house h ∈Hσ , there is either a unique agent who owns* h at σ or
else there is a unique agent who brokers* h at σ .

The owner and broker mechanisms can again be implemented through a recur-
sive trading cycles algorithm. The control-rights structures (c�b) are defined as before.
Consistency requirements R2–R6 are as before, and the consistency requirement R1 is
amended so that for any σ ∈ M we have the following statement:51

(R1) There is at most one brokered house at σ , or |Hσ | = 3 and all remaining houses
are brokered.

As a preparation to implement multiple brokers via trading cycles, recall that in each
round of the basic TC algorithm introduced in Section 3, we force brokers not to point
to their brokered houses. We can equivalently let brokers point to brokered houses but
postpone matching trivial cycles of a broker and his brokered house until there are no
trading cycles that contain only owners. Only then would we force the brokers not to
point to their brokered houses and only when there is an owner who also points to the
brokered house. After forcing the broker to point to his second choice, we would then
clear the broker’s cycle. While this second approach leads to a slower clearing of cycles,
it facilitates running TC with multiple brokers.52

Notice that postponing matching the brokers’ cycles in this way has no impact on
the outcome of the TC algorithm. In general, the order in which we match cycles in the
mechanism of Section 3 does not matter. Indeed, our proof that TC is Pareto efficient
and group strategy-proof does not rely on the order in which we clear cycles; thus any
clearing strategy gives us a Pareto-efficient and group strategy-proof mechanism. The
definitions of owners* and brokers* from the proof of Theorem 1 and the equivalence
argument from Appendix C.3 then show that all of those mechanisms have the same
control-rights structure, and hence are equivalent.53

This preparation allows us to describe the TC algorithm of Section 3 in the following
equivalent way.

51We continue to refer to this requirement as R1 because in the context of Section 3 it is equivalent to
R1 introduced there. Indeed, in Section 3 we assumed that |H|> |I|, and, thus when there are exactly three
houses left unmatched, the number of unmatched agents is strictly less than 3 and, hence, by R3, it is not
possible that all three houses are brokered. See also footnote 31.

52As discussed in earlier drafts of this paper, postponing matching the brokers until there are no owners-
only cycles ensures that TC is group strategy-proof and Pareto efficient in settings with outside options.
Note also that this slower way of running the TC algorithm allows us to dispense with requirement R2.

53This observation is analogous to the well known fact that in TTC the order in which we match the
cycles of agents does not matter (cf. Roth and Postlewaite 1977). 2010 and 2011 drafts of the present paper
proved this observation by noticing that if different orders of eliminating cycles changed the outcome of
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The TC algorithm (extended version). The algorithm starts with empty submatch-
ing σ0 = ∅, and in each round r = 1�2� � � � it matches some agents with houses. By σr−1

we denote the submatching of agents matched before round r. If σr−1 ∈ M, then the
algorithm proceeds with the following steps of round r.

Step 1: Pointing. Each house h ∈Hσr−1 points to the agent who controls it at σr−1.
Each agent i ∈ Iσr−1 points to his most preferred outcome inHσr−1 .

Step 2(a): Matching simple trading cycles. A cycle

h1 → i1 → ·· · → hn → in → h1

in which n ∈ {1�2� � � �}, agents i� ∈ Iσr−1 point to houses h�+1 ∈Hσr−1 , and houses h� point
to agents i� is simple when one of the agents is an owner (here � = 1� � � � � n and super-
scripts are added modulo n). Each agent in each simple trading cycle is matched with
the house he is pointing to.

Step 2(b): Forcing brokers to downgrade their pointing. If there are no simple trading
cycles in the preceding Step 2(a), and only then, we proceed as follows (otherwise we
proceed to Step 3):

• If there is a cycle in which a broker i points to a brokered house and there is an-
other broker or owner who points to this house, then we force broker i to point to
his next choice and we return to Step 2(a).54

• Otherwise, we clear all trading cycles by matching each agent in each cycle with
the house he is pointing to.

Step 3. Submatching σr is defined as the union of σr−1 and the set of newly matched
agent–house pairs. When all agents or all houses are matched under σr , then the algo-
rithm terminates and gives matching σr as its outcome.

The analogue of Theorem 1 holds true:

Theorem 8. A mechanism is group strategy-proof and Pareto efficient if and only if it is
a TC mechanism.

The proof of this result follows the same steps as the proof of Theorem 1, except that
one needs to check the case of three houses and three agents in our inductive arguments;
see Appendix G below.

The analogues of Theorems 3, 4, and 5 and Corollaries 1 and 2 remain true with no
changes in their statements.55 The proofs of Theorems 3, 4, and 5 go through word-
for-word (with Theorem 8 in lieu of Theorem 1). The proof of Corollary 1 goes through

the algorithm, then there would be a group of agents who would be able to improve their outcomes by
submitting preferences in which they put houses they could not obtain at the top and thus endogenously
affecting the order in which cycles are cleared.

54Broker i is unique by R1.
55As mentioned in Section 2, our insights also extend to the case with outside options and any numbers

of agents and houses. The analogue of Theorem 2 remains true, and all group strategy-proof and Pareto-
efficient mechanisms can be implemented via recursive trading among brokers and owners. To get a sense
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after we recognize that in any neutral trading-cycles mechanism ψc�b there is at most
one broker in every round of TC. This is so because, by R1, the only other possibility is
|Hσ | = 3 and three brokers, in which case ψc�b is not neutral as its allocation depends
on the relabeling of houses when the unmatched agents submit the same preference
ranking. The proof of Corollary 2 goes through after we recognize that any TC mech-
anism with three brokers at some σ such that |Hσ | = 3 violates reallocation-proofness.
Indeed, suppose that i, j, k are σ-brokers of houses hi�hj�hk ∈ Hσ , respectively, and
consider a preference profile � ∈ P[σ] such that �i ∈ Pi[σ;hk], �j ∈ Pj[σ;hj�hi], and
�k ∈ Pk[σ;hj�hi]. Then the deviation �′

i ∈ Pi[σ;hj�hk] and �′
j ∈ Pj[σ;hk�hi] violates

reallocation proofness.
We finish this appendix with an example illustrating how the TC algorithm is run

when there are multiple brokers.

Example 7. SupposeH = {h1�h2�h3} and I = {i1� i2� i3}. Consider a TC mechanism such
that i� brokers h� for each � ∈ {1�2�3} at submatching ∅. Suppose the preferences of
agents are given as

�i1 �i2 �i3
h1 h2 h1

h2 h1
���

h3 h3
Then the only round of the TC algorithm runs as follows:

Step 1. Agents i1 and i3 point to h1, while i2 points to h2.
Step 2 (First iteration). There are two trading cycles h1 → i1 → h1 and h2 → i2 → h2,

and neither one is simple. Because there were no simple cycles in Step 2(a), we enter
Step 2(b). Broker i1 and another broker point to house h1 brokered by i1, and thus
broker i1 is forced to point to his second choice h2, and we return to Step 2.

Step 2 (Second iteration). The only cycle is h2 → i2 → h2 and it is not simple. Because
again there were no simple cycles in Step 2(a), we again enter Step 2(b). Broker i2 and

of why our insights are robust, consider the simple extension in which we allow for outside options but the
domain of preferences is restricted so that all agents prefer any house to being unmatched. In this case,
Theorems 1/8, 3, 4, and 5 remain true with no changes in their statements or their proofs. Theorem 2/7
remains true when restricted to submatchings on the path of the candidate TC mechanism. The empty
submatching is on the path of any TC mechanism, and at this submatching we can identify the control
rights in the same way as in Appendix C.1. Knowing the control rights at the empty submatching allows us
to replicate the analysis of Appendix C and to identify the submatchings that may form in the first round
of the candidate TC mechanism for any profile of preferences �. Any subset σ of such a first-round sub-
matching is on the path, and the observation σ ⊆φ[�] for � ∈ P[σ] holds true. This observation allows us
to replicate the argument of Appendix C.1 and identify the control rights at any subset σ of a first-round
submatching. We then establish what submatchings may form by the second round of the candidate TC for
any �. Proceeding in this way, we define a submatching σ to be on the path if there exists a profile � such
that σ ⊆φ[�] matches all agents matched under the candidate TC before some round r = 1�2� � � � and some
(possibly none) agents matched in round r, and no other agents. The above observation holds true for all
submatchings on the path and allows us to replicate the arguments of Appendix C for such submatchings.
The general analysis of outside options from earlier drafts will form the core of a companion paper. See also
Pycia and Ünver (2011, 2014).
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another broker point to house h2 brokered by i2, and thus broker i2 is forced to point
to his second choice h1, and we again return to Step 2.

Step 2 (Third iteration). The only cycle is h1 → i1 → h2 → i2 → h1 and it is not simple.
Because again there were no simple cycles in Step 2(a), we again enter Step 2(b). Bro-
kers i2 and i3 point to h1; among them i2 is in the cycle of h1, and thus i2 is forced to
point to his third choice h3, and we again return to Step 2.

Step 2 (Fourth iteration). The only cycle is h1 → i1 → h2 → i2 → h3 → i3 → h1 and it is
not simple. We enter Step 2(b), and we clear this cycle because no broker in this cycle
is pointing to a house that is pointed to by another broker or owner.

Step 3. The algorithm terminates with outcome σ1 = {(i1�h2)� (i2�h3)� (i3�h1)}. ♦

Appendix G: Proof of Theorem 8

The proof incorporates the possibility of three brokers in one round of TC into the proof
of Theorem 1. An inspection of Step 2 of the TC algorithm tells us that if there are three
brokers in a round, then this is the last round. Because our arguments are by recursion
on the rounds of TC, we only need to adjust the proof of Theorem 1 in instances with
exactly three relevant agents and houses, and the straightforward verification of cases
is sufficient. To highlight the trading-cycles structure of the problem, we proceed in a
more analytical way.

Lemma 19. No broker is forced to downgrade his pointing more than twice in a round. If
two or more brokers point to the same house h at some step of a round, then exactly one of
these brokers continues to point to h until the end of this round and is assigned h. If agent
i pushes j to downgrade his pointing, then j does not push i to downgrade his pointing in
the same round; and if i pushes j to downgrade and j pushes k to downgrade, then k does
not push i in the same round.

Proof. Suppose there are three unmatched houses and three brokers, as otherwise the
lemma is immediate. Consider the round from its beginning. If no two brokers point
to the same house, then the round ends and the lemma obtains. If all three brokers
point to h, then the broker of h is pushed to downgrade his pointing, and then there
remain two brokers who point to h. Suppose, thus, that exactly two brokers point to h in
a Step 2(b) of the algorithm.

Let j be the broker who is forced to stop pointing to house h, let i be the other broker
who points to h, and let k be the third broker. We may assume that, having downgraded
his pointing, j points to a house h′ that broker k also points to; indeed, otherwise the
round ends and the lemma is true. Since j was forced to downgrade his pointing, either
(i) k is the broker of h and points to the object brokered by j or (ii) j is the broker of h.
In the former case, j is then forced to downgrade his pointing, there is no conflict after
this downgrade, and the lemma obtains. In the latter case, if h′ is brokered by i, then
k is outside the cycle, and again j downgrades his pointing, there is no conflict after
the downgrade, and the lemma obtains. If h′ is brokered by k, then k downgrades her
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pointing, and either there is no conflict after the downgrade and the lemma obtains or
k points to h after the downgrade. In the latter case, k is in the cycle and hence is forced
to downgrade her pointing again; after this downgrade there is no further conflict and
the lemma obtains. �

Lemma 20. If broker i1 points to house h2 brokered by i2, and i2 points to house h3 bro-
kered by the third broker, then TC assigns h2 to i1 and h3 to i2.

Proof. Either the third broker j points to the house brokered by i1 and the three brokers
swap or the third broker j points to one of h2 or h3. Broker j is then in cycle and is forced
to point to a lower ranked house. If j then points to another house in {h2�h3}, he is
again in cycle and is forced to downgrade his pointing. Eventually, there is a three-agent
swap. �

Proof of Theorem 8. TC is Pareto efficient and group strategy-proof. Our argument for
Pareto efficiency goes through once we notice that a broker is only forced to downgrade
his pointing when another agent points to the brokered object.

To adapt the argument for individual strategy-proofness, notice that R4, R5, and R6
imply that if there are no three brokers at min{s� s′}, then this control-rights assignment
cannot happen as long as i is unmatched. Thus, we only need to consider the case when
there are three brokers in round min{s� s′} and the algorithm terminates in this round
under both � and �′. By way of contradiction, suppose i obtains house h under �′ and
i prefers h over his outcome under �. This implies that under �, i was a broker who
pointed to h and was downgraded: some other agent j pointed to h and i was in the
cycle of h. By Lemma 19, under � broker i neither pushed j to downgrade his pointing
nor pushed the third broker who then pushed j; hence under �′, agent j still points to
h at some step. Being pushed to downgrade below h under �, agent i either brokers h
or the broker of h points to the house brokered by i, and, by Lemma 3, the same control
rights obtain under �′. In the former case, iwould still be pushed to downgrade below h,
contrary to him getting it. In the latter case, let k be the broker of h and note that k �= j.
Because j points to h at some step, for i to obtain h he needs to push j to downgrade
because k cannot do it as the broker of h. Thus, at the step i is pushing j to downgrade,
k points to the house brokered by j. In effect, either under �′ or under �, k is pushed by
another broker to downgrade her pointing below the house brokered by i or j, respec-
tively. Such a push under �′ would mean that k and j point to the house brokered by i,
and i points to h; but then j would never point to h, a contradiction. Similarly, such a
push under � would mean that k and i point to the house brokered by j, and j points
to h; but then again i would never point to h. This contradiction concludes the proof of
individual strategy-proofness.

Similarly, to adapt the argument for nonbossiness, we only need to consider the case
with three brokers in round s = min{s� s′} and the case with three brokers in the inductive
round. In the inductive assumption, we modify the three possibilities by adding the
claim that each of the cycles involves at least one owner, and we add a fourth possibility
that three brokers are matched in the same round under � (not necessarily in the same
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cycle) if and only if these three agents are matched in the same round under �′ and
obtain the same houses.

If there are three brokers in round s, then i∗ is one of them, s = s′, and Lemma 19
implies that i∗ pushed no one or the same single agent in round s = s′ (under both rank-
ings), and hence all other agents obtain the same outcomes.

In the inductive step, suppose there are three brokers i1, i2, i3 and three houses h1,
h2, h3 in round r. As before, t is the round in which the first σr−1[�] broker or bro-
kered house is matched under �′, and ν = σr−1[�] ∪ σt−1[�′] is a submatching. Be-
cause σr−1[�] brokers i1, i2, i3 are unmatched at σt−1[�′], we conclude that ν = σr−1[�].
At σt−1[�′], one of these agents or one of the houses is matched in a cycle C. If there
are three brokers at this submatching, then they have the same control rights at ν, and,
hence, at σr−1[�], and the inductive step is proven. Otherwise, the cycle C contains
an owner. By the inductive assumption, this owner is unmatched at σr−1[�]. By R4,
this owner remains an owner at ν, a contradiction that concludes the proof of nonbossi-
ness.

Every group strategy-proof and Pareto-efficient mechanism is TC. The lemmas and
proofs from Appendices C.1 and C.2 go through unchanged, except that the statement
of Lemma 12 and its proof need to be adjusted to reflect the relaxed R1.

In Appendix C.3, we only need to modify the proof of Claim 3. In particular, the
inductive assumption and the statement of Claim 3 are unchanged. If there is a single
broker removed in round r, then the proof from Appendix C.3 applies. There is now
the additional possibility that three brokers are removed in round r and matched with
the only three houses left. Let i1, i2, i3 be these brokers, let h1, h2, h3 be their bro-
kered houses, and let g1, g2, g3 be the houses they are assigned under ψc�b[�], respec-
tively.

Claim. It is not possible that h1 → i1 → h1 is a removed cycle and i1 ranks some g�

for � �= 1 higher than g1. By way of contradiction, suppose this happens. Then i1 points
to g2 or g3 before pointing to g1 = h1. By symmetry, suppose i1 first points to g2. At the
step he is pushed to point to a lower choice, i1 must be in a two-agent cycle. But then
the other broker in this cycle points to h1, and Lemma 19 ensures that i1 is forced not to
point to h1. Since i1 was assigned h1 under ψc�b[�], this is a contradiction.

We now define �∗. Note that the above claim implies that, subject to a renaming of
agents, one of the following cases obtains.

Case 1. Each i� ranks g� higher than any other house {h1�h2�h3} − {g�} at �. Then let
�∗ = �.

Case 2. The cycles h1 → i1 → h2 → i2 → h1 and h3 → i3 → h3 are the removed cycles,
and i1 ranked some g� for � �= 1 higher than g1. Then g3 = h3 cannot be ranked higher
than g1 = h2 under �∗

i1
, as then i3 would never get g3 under ψc�b[�]. Thus, g2 = h1 is the

only unmatched house at σr−1 that is ranked higher than g1 = h2 in �i1 : h1 �i1 h2 �i1 h3.
We also have h3 �i3 h1�h2 by the above claim. Moreover, by the symmetric argument
for i1 applied to i2, we have h1 �i2 h3. If h2 �i2 h1, then i2 and i1 could swap their as-
signments h1 and h2, respectively, under ψc�b[�] and improve, contradicting the Pareto
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efficiency of ψc�b[�]. Thus, we also have h1 �i2 h2�h3. Let �∗ be a monotonic transfor-
mation of � under ψc�b such that �∗

i = �i for i ∈ I − {i1� i2� i3} and

h1 �∗
i1
h2 = g1 �∗

i1
h3

h1 = g2 �∗
i2
h3 �∗

i2
h2 (3)

h3 = g3 �∗
i3
h1 �∗

i3
h2�

and otherwise �∗
i ranks houses the same way as �i for i= i1� i2� i3.

Case 3. The three brokered houses are removed all in one cycle. Then let �∗ = �.
By Maskin monotonicity, ψc�b[�∗](i�) = g� for � = 1�2�3 in all three cases. The

inductive assumption implies that ϕ[�∗](i) = ψc�b[�∗](i) for all i ∈ Ir′ for all r ′ < r.
Hence, by Maskin monotonicity, to prove that ϕ[�](i�) = g�, it is enough to show that
ϕ[�∗](i�) = g� for � = 1�2�3. In Case 1, the inductive assumption and Maskin mono-
tonicity give ϕ[�∗](i�)= g�. It remains to consider Cases 2 and 3.

Case 2 (continued). Let e� ∈ {h1�h2�h3} refer to i�’s assignment under ϕ[�∗]. By way
of contradiction, suppose that at least one e� �= g�. Then (3) implies that e3 �= h1, as
otherwise Pareto efficiency would be violated (any of the other two agents can swap
with i3 and both improve). We have two subcases: e3 = h2 or e3 = h3.

Subcase e3 = h2. Then e1 �= h3 by Pareto efficiency, as otherwise i1 and i3 could
swap to improve. We have e1 = h1 and e2 = h3. Then, at submatching σr−1, a pro-
file �h1�h3�h2

is a monotonic transformation of �∗ under ϕ. By Maskin monotonic-
ity, ϕ[�h1�h3�h2] = ϕ[�∗]. Alternatively, by construction of control rights (c�b) and
Lemma 11, ϕ[�h1�h3�h2](i1)= h3, ϕ[�h1�h3�h2](i2)= h1, and ϕ[�h1�h3�h2](i3)= h2, contra-
dicting the previous statement.

Subcase e3 = h3. Then e1 = h1 and e2 = h2 because e� �= g� for at least one �. By con-
struction of control rights (c�b) and Lemma 11, for any �h3�h1�h2

, ϕ[�h3�h1�h2](i1) = h2,
ϕ[�h3�h1�h2](i2) = h3, and ϕ[�h3�h1�h2](i3) = h1. Then the inductive assumption and
Maskin monotonicity imply that ϕ[�h3�h1�h2

i2��∗
−i2] = ϕ[�h3�h1�h2]. This contradicts

strategy-proofness of ϕ, as i2 improves by reporting � h3�h1�h2

i2
at �∗.

Case 3 (continued). At �∗, for at least one agent i�, house g� is his top choice among
houses h1, h2, h3 as otherwise the three agents or two of them can swap houses and
improve their outcome, contradicting the Pareto efficiency of ϕ. Because at �∗, g1 is not
i1’s top choice among these three houses, we may assume that i3 prefers g3 over other
houses h1, h2, h3. Because we have a single cycle matching all three agents, g3 �= h3, and
there are two subcases.

Subcase g3 = h2. Then g1 = h3 and g2 = h1 because there is a single cycle. To
show that h1 �∗

i2
h3, suppose, to the contrary, that h3 �∗

i2
h1. By Pareto efficiency of TC

and the assumption that the best choice of i1 among the remaining houses is not g1,
we would have h2 �∗

i1
h3 �∗

i1
h1. By Lemma 20, g1 = h2 and g2 = h3, a contradic-

tion. By construction of control rights (c�b) and Lemma 11, for any �h2�h1�h3
we have

ϕ[�h2�h1�h3](i1) = h3(= g1), ϕ[�h2�h1�h3](i2) = h1(= g2), and ϕ[�h2�h1�h3](i3) = h2(= g3).
The inductive assumption and Maskin monotonicity imply that ϕ[�∗] = ϕ[�h2�h1�h3],
and, hence, ϕ[�∗] =ψc�b[�∗], as required.
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Subcase g3 = h1. Then g1 = h2 and g2 = h3 because there is a single cycle. To show
that h3 �∗

i2
h1, suppose to the contrary that h1 �∗

i2
h3. If i1 ranked g1 = h2 first among the

three remaining houses, the TC outcome would not change by Maskin monotonicity. By
Lemma 20, i1 and i3 could at least secure h2 and h1, respectively, improving i3 and keep-
ing i1 indifferent, contradicting the group-strategy-proofness of TC and establishing that
h3 �∗

i2
h1. Two subcases are possible:

• Subcase h3 �∗
i2
h2. By the construction of control rights (c�b) and Lemma 11, for

any �h3�h1�h2
at σr−1, ϕ[�h3�h1�h2](i1) = h2(= g1), ϕ[�h3�h1�h2](i2) = h3(= g2), and

ϕ[�h3�h1�h2](i3) = h2(= g3). The inductive assumption and Maskin monotonicity
together imply that ϕ[�∗] = ϕ[�h3�h1�h2], and, hence, ϕ[�∗] =ψc�b[�∗] as required.

• Subcase h2 �∗
i2
h3. We have h2 �∗

i2
h3 = g2 �∗

i2
h1. By Pareto efficiency of TC,

h2 = g1 �∗
i1
h3. Because the first choice of i1 is not g1 among the three houses

(by assumption), we have h1 �∗
i1
h2 = g1 �∗

i1
h3. By Claim 7 of Lemma 11’s proof,

we have ϕ[�h1�h2

{i1�i3}��∗
−{i1�i3}](i1) = h2 and ϕ[�h1�h2

{i1�i3}��∗
−{i1�i3}](i3) = h1. Moreover, if

the three agents i1, i2, and i3 had ranked h2, h3, and h1 as their first choices among
the three houses, respectively, then they would get those respective houses un-
der ϕ by Pareto efficiency. Therefore, by group strategy-proofness, we also have

ϕ[�h1�h2

{i1�i3}��∗
−{i1�i3}](i2) = h3. Maskin monotonicity and the inductive assumption

imply that ϕ[�∗] = ϕ[�h1�h2

{i1�i3}��∗
−{i1�i3}], and, hence, ϕ[�∗] =ψc�b[�∗] as required.

This completes the proof of Claim 3 and the proof of the theorem. �

Appendix H: Properties of strategy-proof and efficient mechanisms

Knowing that all group strategy-proof and Pareto-efficient mechanisms are trading-
cycles mechanisms allows us to derive properties common to all such mechanisms.

We start by noticing that in any trading-cycles mechanism, and for any preference
profile, there is a group of agents—the decisive group—each of whom can get one of
their three top choices irrespective of the preferences submitted by agents not in the
group.

Corollary 3 (Decisive group). Fix a group strategy-proof and Pareto-efficient mech-
anism φ. For any preference profile �, there is a group of agents I1 ⊆ I such that
(i) all agents from I1 get one of their three top choices and (ii) the allocation of agents
from I1 does not depend on preferences of agents not in I1, that is, for all �′ we have
φ[�]|I1 =φ[�I1��′

I−I1]|I1 .

We further observe that all strategy-proof and efficient mechanisms have a recursive
structure: the agents in the decisive group determine their allocation; given their pref-
erences there is another group of agents who obtain one of their top three choices and
who can determine their allocation irrespective of the preferences of others, etc. For
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instance, in a serial dictatorship (Satterthwaite and Sonnenschein 1981, Svensson 1994,
1999, Ergin 2000), which is a special case of trading cycles, the first dictator chooses his
most preferred object, then a second dictator chooses his most preferred object among
the objects that were not chosen by the prior dictator, and so on until all agents have
objects.

Corollary 4 (Recursive structure). Fix a group strategy-proof and Pareto-efficient
mechanism φ. For every preference profile �, there is a partition I1� � � � � Ik of the set of
agents such that (i) all agents from I� get one of their three top choices among objects un-
matched at φ[�](I1 ∪ · · · ∪ I�−1) and (ii) the allocation of agents from I� does not depend
on preferences of agents not in I1 ∪ · · · ∪ I�−1 ∪ I�.

References
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