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Appendix B: Further discussion

B.1 Genericity

This subsection studies assumptions with which strong and weak detectability are
generic in the one-shot problem. Given (X��i�χ�S), whether strong and weak de-
tectability are satisfied is determined by π ∈ (�(S))|X|×|�i|. Define

SD
(
X��i�χ�S

) ≡ {
π ∈ (

�(S)
)|X|×|�i| :�i is strongly detectable with

(
X��i�χ�S�π

)}
�

WD
(
X��i�χ�S

) ≡ {
π ∈ (

�(S)
)|X|×|�i| :�i is weakly detectable with

(
X��i�χ�S�π

)}
�

Note that SD(X��i�χ�S)⊂ WD(X��i�χ�S) because strong detectability implies weak
detectability. Let L be the Lebesgue measure on (�(S))|X|×|�i| where we normalize
L((�(S))|X|×|�i|)≡ 1. Strong (weak) detectability is generically satisfied with (X��i�χ�S)
if L(SD(X��i�χ�S))= 1 (L(WD(X��i�χ�S))= 1).

Theorem 5. (i) Strong detectability is generically satisfied with (X��i�χ�S) if and only
if ∣∣�i∣∣ ≤ |S|�

(ii) Weak detectability is generically satisfied with (X��i�χ�S) if and only if

min
x∈X

∣∣{θi ∈�i : χ(
θi

) �= x}∣∣ + 1 ≤ |S|�

Note that the inequality

min
x∈X

∣∣{θi ∈�i : χ(
θi

) �= x}∣∣ + 1 ≤ ∣∣�i∣∣ (30)

holds, which implies that weak detectability is generically satisfied whenever strong de-
tectability is. Furthermore, whenever there exist two or more distinct types that lead
to the same allocation (i.e., there exists θi �= θ̂i such that χ(θi)= χ(θ̂i)), (30) is satisfied
with strict inequality. Accordingly, Theorem 5 indicates that weak detectability is generic
under a weaker condition than strong detectability is.
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Figure 2. The empirical probability that strong and weak detectability are satisfied when
(i) |S| = 3, and (ii) π ∈ (�(S))|X|×|�i| and χ ∈X |�i| are drawn uniformly at random.

B.2 Numerical simulations

The Lebesgue measure of WD(X��i�χ�S) is substantially larger than SD(X��i�χ�S).
To illustrate this fact, we compute the Lebesgue measure of WD(X��i�χ�S) and
SD(X��i�χ�S) numerically. We fix |S| = 3, change the variety of agent i’s types (|�i|)
and the variety of possible allocations (|X|), and draw (π�χ) uniformly at random. The
result is shown as Figure 2. Each point in the figure represents the empirical probability
that strong and weak detectability are satisfied when π ∈ (�(S))|X|×|�i| and χ ∈X |�i| are
drawn uniformly at random. The approximation |X| ≈ ∞ indicates that |X| is so large
that a different x is always assigned for a different θi, i.e., χ(θi) �= χ(θ̂i) for θi �= θ̂i with
probability 1. We make the following observations:

(i) The larger the number of agent i’s types (|�i|), the less likely that strong and weak
detectability are satisfied. Note that when |�i| is small and the corresponding di-
mensionality conditions of Theorem 5 are satisfied, strong and weak detectability
are satisfied with probability 1, consistent with their genericity.

(ii) The larger the number of allocations (|X|), the less likely weak detectability is sat-
isfied. In contrast, the larger is |X|, the more likely strong detectability is satisfied.

(iii) As |�i| becomes larger, the chance of having strong detectability decreases much
faster than for weak detectability. For example, in the case of |X| ≈ ∞, (a) the dif-
ference in empirical probabilities that strong and weak detectability are satisfied
is minimized and (b) neither detectability is generic if and only if |�i| > 3. Even
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in this case, when |�i| = 10, strong detectability is satisfied with a probability of
only 0�26 percent, while the probability for weak detectability is 96�07 percent.

Of course, in applications, we rarely presume that (χ�π) is determined uniformly at
random. However, this numerical simulation helps us to understand the extent to which
weak detectability is more likely to be satisfied than strong detectability.

B.3 Connection to the conventional notion of full surplus extraction

One might think that the necessity discussed here is different from the conventional no-
tion. Crémer and McLean (1988) fix a type space and a type distribution (which corre-
spond to (�t�μt)

T+1
t=0 in our setting), and provide a tight necessary and sufficient condi-

tion for full surplus extraction for arbitrary valuation functions. However, in this paper,
we also fix an allocation rule and discuss the possibility of extraction (and implementa-
tion) for arbitrary sequences of flow valuation functions. These two notions for full sur-
plus extraction seem different because we can ignore valuations that make the targeted
allocation rule inefficient if our aim is full surplus extraction (or efficiency). However,
these two necessity notions are equivalent: even when we fix an information structure
and one agent’s valuation function, still every allocation rule can be efficient.

Lemma 3. For all (�t�μt)
T+1
t=0 , (vit)

T
t=0, and (χt)

T+1
t=0 , there exists ((vjt )j �=i)Tt=0 such that

(χt)
T
t=0 is a unique efficient rule with respect to (�t�μt)

T+1
t=0 and to ((vjt )j∈I)Tt=0.

Since we allow interdependent values, we can offset one agent’s payoff by another
agents’. For example, when I = {i�−i}, in period T , to make χT uniquely efficient, we
can set

v−i
T (xT �θT )=

{
−viT (xT �θT )+ 1 if xT = χT (θT )�
−viT (xT �θT ) otherwise�

Similarly, we can choose a sequence of the other agents’ valuation functions, ((vjt )j �=i)Tt=0,
which are not relevant to agent i’s problem, to justify the efficiency of the targeted allo-
cation rule for all t. Therefore, given (�t�μt)

T+1
t=0 , if there exist (χt)

T+1
t=0 and (vit)

T
t=0 such

that we must leave information rent for i, then we cannot extract the full surplus with
((v

j
t )j �=i)Tt=0 that makes (χt)Tt=0 an efficient allocation rule. Likewise, if there exist (χt)

T+1
t=0

and (vit)
T
t=0 such that we cannot satisfy wp-EPIC for i, then we cannot achieve efficiency

with such ((vjt )j �=i)Tt=0.

B.4 Markovization

“Markovity” of the environment largely simplifies our analysis because the true realiza-
tion of the past types θ0:t−1 becomes independent of the period t problem (while the
past reports matter because we use non-Markov payments). As Athey and Segal (2013)
show, we can always “Markovize” the environment by rewriting the problem as one with
a larger state space. However, strong and weak detectability are not independent of
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the state specification. The larger the state space becomes, the less likely these condi-
tions are to be satisfied. Therefore, so as to apply our results to a non-Markov problem,
we need to enlarge the state space until we obtain the Markovity of the environment
(i.e., until the flow valuation function and the transition probability function become
Markov), but no further.

B.5 Non-Markov allocation rule

In the manuscript, we assumed that the allocation rule (χt)
T+1
t=0 is Markov. While

Markovity of valuations and state transitions imply that there exists an efficient Markov
allocation rule, if an inefficient allocation rule is targeted, this assumption is restrictive.
This subsection discusses how our results can be generalized to the case of non-Markov
allocation rules (χt depends not only on θt , but also on θ0:t−1).

For equilibrium payoff control by strong detectability, we need only a slight change.
Since the targeted one-shot allocation rule changes according to the history of reports,
we need to make the signal structure history-dependent; thus, we also need to modify
the definition of backup sets so that they are also history-dependent. However, after
these modifications, Theorem 1 provides a sufficient condition for satisfying the no-
information-rent property.

Weak detectability should be modified more largely. For example, consider a two-
stage problem in which I = {i}, �i0 = {L0�R0}, |�i1| = 1, |X0| = 1, and X1 = {l1� r1}. While
no ex post signal is available, weak detectability is satisfied and any Markov allocation
rule is implementable: (i) the mechanism does not have to distinguish θi0 = L0 or R0

because |X0| = 1 implies that they lead to the same allocation, and (ii) |�i1| = 1 implies
that there is no private information in period 1. However, in this environment, the signal
structure does not guarantee implementability of a non-Markov allocation ruleχ1(L0)=
l1 and χ1(R0)= r1 because no signal is available.

To modify weak detectability to guarantee implementation of non-Markov alloca-
tion rules, we should distinguish type reports that may lead to different allocations not
only in the current period, but also in the future. We incorporate a quotient set P gen-
erated by an equivalent relation ∼ on �i into the definition of weak detectability: �i is
weakly detectable with (X��i�χ�S�π�P) if, for all �̄i ⊂�i, there exists θ̄i ∈ �̄i such that

π
(
χ
(
θ̄i

)
� θ̄i

)
/∈ co

({
π

(
χ
(
θ̄i

)
� θ̂i

)}
θ̂i∈�̄i\[θ̄i]P

)
� (31)

where [θ̄i]P denotes the equivalence class of θ̄i with respect to ∼. If the quotient set P is
generated by the equivalence relation implied by θi ∼ θ̂i if and only if χ(θi)= χ(θ̂i), then
this modified version of weak detectability coincides with the previous one.

We also replace the signal structure in the original problem. We define	t(θ0:t−1� θ
−i
t )

to be the quotient set of �it generated by the equivalence relation

θit ∼ θ̂it if and only if

χτ
(
θ0:t−1� θ

i
t� θ

−i
t � θt+1:τ

) = χτ
(
θ0:t−1� θ̂

i
t � θ

−i
t � θt+1:τ

)
for all τ = t� t + 1� � � � �T + 1�
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We do not distinguish θit and θ̂it if and only if they lead to the same allocation not only
in period t, but also in all future periods. Using 	t(θ0:t−1� θ

−i
t ) as the quotient set for

the modified version of weak detectability (and using modified backup sets discussed
above), we obtain a new version of Theorem 2, which provides a sufficient condition for
implementation of non-Markov allocation rules.

B.6 Full surplus extraction in every period

We have focused on period-0 full surplus extraction. Alternatively, we can consider
mechanisms that extract full expected future surplus at the beginning of each period,
i.e., a mechanism (χt�ψt)

T+1
t=0 that satisfies

V it (θt)+�it(θ0:t )= 0 (32)

for all i ∈ I and θ0:t ∈�0:t .
However, in many cases, there are no such mechanisms because we can no longer

exploit the intertemporal correlation. Recall that wp-EPIC of i at θ0:t is satisfied if and
only if

V it (θt)+�it(θ0:t )

≥ vit
(
χt

(
θ̂it � θ

−i
t

)
� θt

) +ψit(θ0:t−1� θt)

+ δ ·E[
V it+1(θt+1)+�it+1

(
θ0:t−1� θ̂

i
t � θ

−i
t � θt+1

)|χt(θ̂it � θ−i
t

)
� θt

] (33)

for all θ̂it ∈�it . Substituting (32) into (33), wp-EPIC of i at θ0:t is reduced to

0 ≥ vit
(
χt

(
θ̂it � θ

−i
t

)
� θt

) +ψit
(
θ0:t−1� θ̂

i
t � θ

−i
t

)
for all θ̂it ∈ �it . Hence, (χt�ψit)

T+1
t=0 leaves no information rent for i in all periods if and

only if (i) for all t, the period-t static mechanism (χt�ψ
i
t) is ex post incentive compatible,

and (ii) agent i’s on-path ex post payoffs from (χt�ψ
i
t) are zero for every θt ∈ �t . We

cannot expect the existence of such static mechanisms in general.

B.7 Dropping the full-support assumption

We have assumed that all of (μt)
T+1
t=0 have full support. Lemmas 1 and 2 indicate that

under this assumption, the intraperiod correlation is “useless” for construction of a wp-
EPIC mechanism because the intraperiod correlation does not appear in the necessary
and sufficient condition.

In contrast, if (μt)
T+1
t=0 does not satisfy the full-support assumption, the intraperiod

correlation is sometimes helpful to sustain wp-EPIC. This is essentially because harsh
punishments for the reports of zero-probability types are useful to achieve (static) ex
post incentive compatibility. Let

�̂it
(
xt−1� θ

−i
t

) ≡ {
θit ∈�it : ∃θt−1 ∈�t−1 s.t. μt

(
θit� θ

−i
t ;xt−1� θt−1

)
> 0

}
�
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Given (xt−1� θ
−i
t ), θ

i
t /∈ �̂it(xt−1� θ

−i
t ) does not happen with positive probability. There-

fore, when such θit is reported, the central planner can punish agent i without changing
on-path payoffs. In this case, it suffices to consider incentives for truthtelling against
misreports within �̂it(xt−1� θ

−i
t ), rather than �it , for satisfying wp-EPIC. Accordingly, an

intraperiod correlation with shifting support (which is excluded from our main analysis
by assuming full support) is helpful for both within-period ex post implementation and
full surplus extraction, as the realization of θ−i

t restricts the set of potentially profitable
deviations.

B.8 Combining our conditions with Liu (2018)

We have proposed conditions different from Liu (2018). One may think that we can
obtain a further weaker sufficient condition by combining our conditions with Liu’s, and
it may lead us to a necessary and sufficient condition. Examples 3 and 5 indicate that the
former half is true: our theorems guarantee full surplus extraction in an environment in
which Liu’s theorem cannot (Example 3) and vice versa (Example 5). There also exists
an environment in which full surplus extraction is possible, but neither our theorem nor
Liu’s condition is satisfied.

Example 6. This environment is a hybrid of Examples 3 and 5. Consider a three-stage
problem where |�−i

0 | = |�−i
1 | = |�i2| = 1, �i0 = {L0�R0}, �i1 = {A1�B1�C1�D1�M1}, �−i

2 =
{E2�F2�G2}, and |Xt | = 1 for t = 0�1�2. The state transitions μ1 and μ2 are summarized
in Table 3. This environment is a modified version of Example 3: we added a new state
M1 to �i1, which has the role of B1 in Example 5.

Same as Examples 3 and 5, since the allocation space is a singleton, implementability
of the targeted allocation rule is trivial. We consider whether we can detect θi0 without
leaving information rent.

In this example, the assumption of Theorem 1 is not met. Since no ex post signal is
available in period 2, the backup set in period 1 is empty. Since

1
2
[
μ2(A1)+μ2(D1)

] = 1
2
[
μ2(B1)+μ2(C1)

] = μ2(M1)= (0�4�0�3�0�3)� (34)

�i1 is not strongly detectable with �i1(∅). Hence, the assumption of Theorem 1 reduces
to strong detectability with �i0(θ

−i
0 �∅). However, (i) |�i0| = 2 implies that the agent’s type

space is not degenerate, but (ii) |�−i
1 | = 1 implies that the signal space of �i0(θ

−i
0 �∅) is

degenerate. Accordingly,�i0 is not strongly detectable with �i0(∅).
Furthermore, Liu’s way to use distant intertemporal correlations (described in Sec-

tion 6.3) is not applicable either. We can derive that agent i’s belief on θ−i
2 conditional

on θi0 =L0 is

0�1 · [μ2(A1)+μ2(D1)
] + 0�3 · [μ2(B1)+μ2(C1)

] + 0�2 ·μ2(M1) (35)

and agent i’s belief on θ−i
2 conditional on θi0 =R0 is

0�3 · [μ2(A1)+μ2(D1)
] + 0�1 · [μ2(B1)+μ2(C1)

] + 0�2 ·μ2(M1)� (36)
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A1 B1 C1 D1 M1

μ1(·;L0) 0�1 0�3 0�3 0�1 0�2
μ1(·;R0) 0�3 0�1 0�1 0�3 0�2

E2 F2 G2

μ2(·;A1) 0�6 0�2 0�2
μ2(·;B1) 0�4 0�5 0�1
μ2(·;C1) 0�4 0�1 0�5
μ2(·;D1) 0�2 0�4 0�4
μ2(·;M1) 0�4 0�3 0�3

Table 3. The state transitions μ1 :�i0 →�i1 and μ2 :�i1 →�−i
2 .

However, (34) indicates that (35) and (36) take the same value, (0�4�0�3�0�3). Since L0
and R0 generate the same beliefs about the distribution of θ−i

2 , we cannot directly con-
struct a Crémer–McLean lottery from the correlation between θi0 and θ−i

2 .
However, full surplus extraction is possible. For θi1 ∈ {A1�B1�C1�D1} (=�i1 \ {M1}),

μ−i
2

(
θi1

)
/∈ co

({
μ−i

2

(
θ̂i1

)}
θ̂i1∈�i1\{θi1}

)
�

Accordingly, for each θi1 ∈ {A1�B1�C1�D1}, there exists a lottery over θ−i
2 ∈�−i

2 such that
(i) if agent i truthfully reports θi1, his expected payoff is zero, and (ii) if agent i misre-
ports some θ̂i1 ∈�i1 \ {θi1}, he receives a negative expected payoff. Using this lottery, we
can prevent A1, B1, C1, and D1 from misreporting. Hence, we can provide an arbitrary
continuation payoff vector (Ui1(A1)�U

i
1(B1)�U

i
1(C1)�U

i
1(D1)) to agent i, while prevent-

ing him from misreporting his type when his true type is θi1 ∈ {A1�B1�C1�D1}. Further-
more, we can provide some constant subsidies (which are independent of θ−i

2 ) when
θi1 =M1 is reported, to prevent type M1 agent from misreporting his type. Here, every
(Ui1(A1)�U

i
1(B1)�U

i
1(C1)�U

i
1(D1)) is achievable with some Ui1(M).

Now we consider agent i’s reporting problem in period 0. Since

μ1(M1;L0)= μ1(M1;R0)= 0�2�

continuation payoffs at (L0�M1) and (R0�M1) do not affect the incentive for reporting
θi0 ∈ �i0 = {L0�R0}. Using continuation payoffs at θi1 ∈ {A1�B1�C1�D1} as a Crémer–
McLean lottery (specifically, providing a larger continuation payoff at (i) B1 andC1 when
L0 is reported, and (ii)A1 andD1 whenR0 is reported), we can detect the state of period
0 without leaving information rent. ♦

B.9 The necessary and sufficient condition

As discussed in Section 6.1, our main theorems do not provide the necessary and suf-
ficient condition for full surplus extraction and the implementability of a targeted al-
location rule because we have decreased the dimension of signal spaces to make the
set of available continuation payoffs a linear space. In contrast, once we specify the set
of achievable continuation payoffs without reducing the dimension, we can derive the
necessary and sufficient conditions.

Theorem 6. Given (vit)
T+1
t=0 and (χt)

T+1
t=0 , define (U it )T+1

t=0 such that the following relation-
ships hold:
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(i) We have U it ⊂R
|�t | for all t.

(ii) For t = T + 1,

U iT+1 ≡ {
UiT+1 ∈ R

|�T+1| :UiT+1
(
θiT+1� θ

−i
T+1

)
=UiT+1

(
θ̂iT+1� θ

−i
T+1

)∀θiT+1� θ̂
i
T+1

}
�

(37)

(iii) For t = 0� � � � �T , if U it+1 = ∅, then U it+1 ≡ ∅; otherwise, Uit ∈ U it if and only if there
exists Uit+1 :�t → U it+1 such that

Uit (θt)= vit
(
χt(θt)� θt

) + δE[
Uit+1(θt� θt+1)|χt(θt)� θt

]
(38)

Uit (θt)≥ vit
(
χt

(
θ̂it � θ

−i
t

)
� θt

) + δE[
Uit+1

(
θ̂it � θ

−i
t � θt+1

)|χt(θ̂it � θ−i
t

)
� θt

]
(39)

for all θ̂it ∈�it�
Then the following statements hold:

(a) There exists (χt�ψit)
T+1
t=0 that satisfies wp-EPIC for i if and only if U i0 �= ∅.

(b) There exists (χt�ψit)
T+1
t=0 that satisfies wp-EPIC and leaves no information rent for i

if and only if (0� � � � �0) ∈ U i0.

Here, U it is the set of (|�t | length vectors of) continuation payoffs that the central
planner can provide, preserving that wp-EPIC is satisfied (using some monetary trans-
fers). However, it is difficult to obtain a necessary and sufficient condition on primitives
because it is difficult to specify (U it )T+1

t=0 .

Appendix C: Infinite horizon

C.1 Overview

In the main body of this paper, we concentrated on a finite horizon. However, the tech-
niques developed in our paper are also applicable to an infinite horizon. In this ap-
pendix, we provide a sufficient condition for full surplus extraction with an infinite hori-
zon.

When we consider an infinite horizon, so as to make the mechanism individually ra-
tional (i.e., make each agent’s on-path continuation payoff nonnegative after every his-
tory), it is important to prevent explosion of the payment. When the worst-case payment
of agents goes to infinity as t → ∞, (i) the one-shot deviation principle is not applica-
ble because agents’ flow payoffs may grow to infinity, potentially at a superexponential
speed, and (ii) we cannot always use the “deposit scheme” to prevent the agents from
leaving at t ≥ 1 because we may need an infinite amount of “deposits” to keep the agents
participating. In this section, we consider only uniformly bounded payment rules to
guarantee that the one-shot deviation principle and the deposit scheme are applicable.
To achieve this, we need a stronger condition to provide a uniform bound.

First, we assume the existence of a uniformly bounded payment rule (git)
∞
t=0 that

implements a targeted allocation rule and consider the revelation of agent i’s initial type
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L R

μit+1(·; l) qt 1 − qt
μit+1(·; r) 1 − qt qt

Table 4. The signal distribution μ−i
t+1 :�it → �(�−i

t+1) discussed in Example 7.

θi0. Even when the time horizon is infinite, we can initiate backward induction from a

certain period, say T <∞, to construct a sequence of backup sets (B−i
t )

T+1
t=1 and obtain

B−i
1 , just as in finite-horizon settings. If strong detectability with �i0(θ

−i
0 �B

−i
1 ) is satisfied

with obtained B−i
1 , we can detect θi0 without leaving information rent. In this manner,

we can obtain a counterpart to Theorem 1 for the infinite-horizon settings (Theorem 7).
To implement an efficient allocation rule in an infinite horizon, we need some ad-

ditional assumptions. It is well known that when the correlation becomes weaker, we
need to scale up the Crémer–McLean lottery to provide a sufficiently strong incentive
for truthtelling. Therefore, when the correlation between agents’ types converges to zero
as t → ∞, it is inevitable that the worst-case payment of the agents goes to infinity. In
this case, we cannot induce truthtelling with a uniformly bounded payment rule. The
following example illustrates this fact.

Example 7. Consider the infinite-horizon environment δ ∈ (0�1), I = {i�−i}, and, for all
t,�it =Xt = {l� r} and�−i

t+1 = {L�R}. The variableχt is independent of θ−i
t and it matches

the allocation with agent i’s type, i.e., χt(l)= l and χt(r)= r. For all t, θit is drawn inde-
pendently and identically distributed (i.i.d.) with equal probability, i.e., μit(l) = μit(r)=
0�5 after every (xt−1� θt−1). In addition, the distribution of θ−i

t+1 depends on θit ; thus, we

can use it as a signal for θit . Specifically, we assume μ−i
t+1(R; r)= μ−i

t+1(L; l)= qt ∈ (1/2�1)
and μ−i

t+1(L; r) = μ−i
t+1(R; l) = 1 − qt (μ−i

t+1 is illustrated in Table 4). Note that qt �= 1/2
implies that, for all t, �it is strongly detectable with �it(θ

−i
t �∅). Finally, we assume that

vit(l� r) = vit(r� l) = 1 and vit(l� l) = vit(r� r) = 0 for all t = {0� � � � �T }, i.e., agent i dislikes
the targeted allocation rule. With this environment, we consider agent i’s incentive for
truthtelling, assuming that agent −i reports θ−i

t truthfully.
Since (i) θit+1 is independent of θit and (ii) θt+2 is independent of θit , θ

−i
t+1 is the only

available signal for inducing truthtelling of θit . Hence, to consider wp-EPIC for i, without
loss of generality, we can focus on payment rules that depend only on (θit � θ

−i
t+1), which

can be written as φit+1 :�it ×�−i
t+1 → R (we set φi0 ≡ 0). Furthermore, taking advantage

of the symmetry of l and r, we focus our attention on (φit)
∞
t=0 that satisfies

φit(r�R)=φit(l�L)= φ̄t�
φit(r�L)=φit(l�R)=φt�

For a while, we assume that the one-shot deviation principle is applicable. Then
(χt�φ

i
t)

∞
t=0 is wp-EPIC for i if and only if

δ
(
qtφ̄t + (1 − qt)φt

) ≥ 1 + δ(qtφt + (1 − qt)φ̄t
)

for all t
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or, equivalently,

φ̄t −φt ≥
1

δ · (2qt − 1)
for all t�

Now, assume qt = (1 + δ2t )/2 so that

δt · 1
δ · (2qt − 1)

= δ−(t+1) → ∞ as t → ∞�

If the time horizon were finite, we could make the payment rule uniformly bounded,
because φ̄t −φt could be bounded by δ−T . As T increases, δ−T also increases. However,
as long as T <∞, δ−T <∞. Hence, the worst-case EPV,Mi ≡ mint�θ0:t [V it (θt)+�it(θ0:t)],
were also bounded, and we could apply the one-shot deviation principle and the deposit
scheme.

However, now, the time horizon is infinite; thus, δt · (φ̄t −φt) is unbounded. Then,
even when flow valuation functions, vit , are uniformly bounded, each agent’s discounted
flow payoff, δt · (vit(xt� θt)+yit ) is unbounded, because of the unboundedness of the pay-
ments, yit . Now we have two problems: First, we cannot apply the one-shot deviation
principle for the case of bounded payoffs; second, even with (a version of) the one-
shot deviation principle, participation constraints in later periods cannot be satisfied
by the deposit scheme. In the above mechanism, the present value of the worst-case
future payment grows to infinity as t → ∞. The deposit scheme is not applicable be-
cause agents can only make a finite payment in each period, while an infinite amount of
deposit is necessary. ♦

In Example 7, δt · (φ̄t −φt) goes to infinity as t → ∞ because the correlation between
θit and θ−i

t+1 vanishes asymptotically; i.e., qt → 1/2 as t → ∞. To avoid this, we first show
that for each lower bound of correlation intensity, we can construct an upper bound
of the incentive payment for the one-shot problem (Lemmas 5 and 6). In Example 7,
the lower bound of correlation intensity corresponds to the value of ε > 0 such that qt >
1/2+ε, and we can obtain the upper bound on the incentive payments that depend on ε.
Using this result for the one-shot problem, we show that if the correlation intensity is
uniformly bounded, then we can provide a sufficiently strong incentive for truthtelling
by a uniformly bound payment rule (Theorem 8).

The results for the infinite-horizon setting shown in this appendix are looser than
our results for a finite horizon. For example, in Example 7, qt may converge to 1/2 much
slower than the speed that δt goes to 0. In this case, while the worst-case payment may
be unbounded, its present value is bounded; thus, both the one-shot deviation principle
and the deposit scheme are applicable, and we may be able to implement the targeted
allocation rule. However, the current statement is already very complex and we would
not obtain additional qualitative results by dropping these assumptions. Hence, we fo-
cus on the case of the uniformly bounded correlation intensity and construct uniformly
bounded payment rules.
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C.2 Environment

We follow the notation of the manuscript; thus, we mention only the additional assump-
tions made for infinite-horizon settings. Since now we have an infinite horizon, agent i
wants to maximize

∞∑
t=0

δt
[
vit(xt� θt)+ yit

]
�

We additionally assume that δ < 1 and vit is uniformly bounded, i.e., there exists v̄ ∈ R

such that |vit(xt� θt)|< v̄ for all i, t, xt , and θt , so that |∑∞
t=0 δ

tvit(xt� θt)|<∞ is always sat-
isfied. Still the present value of the payment may be infinity, i.e., |∑∞

t=0 δ
tyit | = ∞, if we

consider general payment rules (ψit)
∞
t=0. However, we consider only uniformly bounded

(ψit)
∞
t=0, which ensures that the agents’ discounted payoffs are finite. We also assume

that |Xt | and |�t | are uniformly bounded.
Parallel to the manuscript, given a mechanism (χt�ψt)

∞
t=0, a sequence of past reports

θ̂0:t−1, and a (true) type profile of today θt , EPV terms are defined by

V it
(
θt; (χk)∞k=0

) ≡ E

[ ∞∑
s=t
δs−tvis

(
χs(θs)�θs

)∣∣∣∣(χk)∞k=0� θt

]
�

�it
(
θ̂0:t−1� θt; (χk)∞k=0

) ≡ E

[ ∞∑
s=t
δs−tψis(θ̂0:t−1� θt� θt+1:s)

∣∣∣∣(χk)∞k=0� θt

]
�

Since we assume that vit is uniformly bounded and focus on uniformly bounded ψits, V it
and�it are also uniformly bounded. Finiteness of V it and�it also guarantee that the one-
shot deviation principle used in Definition 1 (wp-EPIC) is also directly applicable to an
infinite horizon. An efficient allocation rule (χt)∞t=0 maximizes E[∑i∈I V i0 (θ0; (χt)∞t=0)].

C.3 Deposit scheme

First, we state the participation constraint we consider.

Definition 7 (wp-EPIR). A mechanism (χt�ψ
i
t)

∞
t=0 is within-period ex post individually

rational (wp-EPIR) for i at θ0:t ∈�0:t if

V it
(
θt; (χk)∞k=0

) +�it
(
θ0:t; (χk)∞k=0

) ≥ 0�

A mechanism (χt�ψ
i
t)

∞
t=0 is wp-EPIR for i if it is wp-EPIR for i for every t and θ0:t ∈�0:t .

As we discussed in Section 3, when we have a finite horizon, whenever wp-EPIR is
satisfied in period 0, we can keep wp-EPIR for every period without increasing informa-
tion rent. To achieve this, the planner should collect a deposit in the initial period and
return it in the last period. As long as T <∞, this scheme does not need any additional
assumptions.
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We need to modify the scheme because the original one returns the deposit in the
last period. However, given that (ψit)

∞
t=0 is uniformly bounded, we can develop a simi-

lar scheme, which ensures that we can satisfy wp-EPIR without increasing information
rents.

Lemma 4. Suppose that (χt�ψit)
∞
t=0 is wp-EPIC for i and (ψit)

∞
t=0 is uniformly bounded.

Then there exists a uniformly bounded (ψ̄it)
∞
t=0 such that (χt� ψ̄it) is wp-EPIC for i, is wp-

EPIR for i, and

�i0(θ0)= �̄i0(θ0) for all θ0 ∈�0�

In brief, since (ψit)
∞
t=0 is uniformly bounded, Mi ≡ inft�θ0:t [V it (θ0:t )+�it(θ0:t )]>−∞.

The central planner collects −Mi as the deposit in the initial period and pays −(1 − δ) ·
Mi as interest in every period, as long as agent i stays in. Agent i does not leave the
mechanism because EPV from the interest is −Mi, which is his worst-case EPV from the
original mechanism, (χt�ψit)

∞
t=0. Note that unless we assume that (ψit)

∞
t=0 is uniformly

bounded, Mi may be −∞, which means that it is impossible to make the agent deposit
−Mi in the initial period.

C.4 Extraction

With an infinite horizon, we cannot initiate the backward induction from the “last”
period. However, we can always initiate backward induction at some time point (say
T < +∞) to construct a sequence of backup sets (B−i

t )
T+1
t=1 . If we can obtain strong de-

tectability with �i0(θ
−i
0 �B

−i
1 ) for every θ−i

0 ∈ �−i
0 , θi0 is detected without leaving infor-

mation rent. Because the part of the payment rule that we use for extraction becomes
zero after T + 1, the uniform boundedness remains to be satisfied. Therefore, if, in ad-
dition, the existence of a uniformly bounded payment rule (git)

∞
t=0 is ensured by some

exogenous schemes, then full surplus extraction is possible. More formally, we have the
following theorem.

Theorem 7. Given (χt)∞t=0, suppose that there exist T <+∞ and (B−i
t )

T+1
t=1 such that

(i) for t = T + 1, B−i
T+1 =∅,

(ii) for t = 1�2� � � � �T , θ−i
t ∈ B−i

t if �it is strongly detectable with �it(θ
−i
t �B

−i
t+1).

Suppose also that there exists uniformly bounded (git)
∞
t=0 that makes (χt� git)

∞
t=0 wp-EPIC

for i and that�it is strongly detectable with �i0(θ
−i
0 �B

−i
1 ) for all θ−i

0 ∈�−i
0 . Then there exists

uniformly bounded (ψit)
∞
t=0 such that the associated mechanism (χt�ψ

i
t)

∞
t=0 is wp-EPIC

and leaves no information rent for i.

The proof is parallel to Theorem 1 in the main paper, so it is omitted. Recall that
Theorem 7 ensures the existence of the uniformly bounded payment rule (ψit)

∞
t=0. Ac-

cordingly, we can apply Lemma 4 to make the mechanism satisfy wp-EPIR for i without
increasing information rents, just as in a finite horizon.



Supplementary Material Extraction in dynamic environments 13

The flow payment of the team mechanism of Athey and Segal (2013), git(θ0:t ) =∑
j �=i vit(χt(θt)� θ

j
t ) is uniformly bounded by (I − 1) · v̄. Therefore, just as in a finite hori-

zon, if we have private values, then the existence of “the uniformly bounded payment
rule (git)

∞
t=0 that makes (χt� git)

∞
t=0 wp-EPIC for i” is guaranteed.

C.5 Strong detectability and correlation intensity

Now we study the one-shot problem to show that the lower bound of the correlation
intensity guarantees the boundedness of the incentive payment. Let ρ be the Euclidean
distance. The type space �i is d-strongly detectable if the Euclidean distance of the
point and the convex hull in the definition of strong detectability is larger than some
fixed d > 0.

Definition 8 (d-Strong detectability). Given d > 0, �i is d-strongly detectable with
(X��i�χ�S�π) if, for all θi ∈�i,

ρ
(
π

(
χ
(
θi

)
� θi

)
� co

({
π

(
χ
(
θi

)
� θ̂i

)}
θ̂i∈�i\{θi}

))
> d� (40)

Note that strong detectability with (X��i�χ�S�π) is not satisfied if and only if the
distance appearing in the left hand side of (40) is equal to zero. In other words, strong
detectability (of Definition 4) corresponds to 0-strong detectability of Definition 8. The
value of d specifies a lower bound of the strength of intertemporal correlations between
agents’ types. If we have stronger correlation, the scale of the Crémer–McLean lottery
can be small. In the following lemma, we show that the payment rule of the one-shot
mechanism has a uniform bound MS(Ū� ū� d), which depends only on the bound of
expected payoffs Ū , the bound of valuations ū, and the lower bound of correlation in-
tensity d.

Lemma 5. There exists MS : R3++ → R++ that satisfies the following statements. Suppose
that �i is d-strongly detectable with (X��i�χ�S�π). Then, for all ui : X × �i → R and
Ui :�i →R such that |ui(x�θi)|< ū for all (x�θi) ∈X×�i and |Ui(θi)|< Ū for all θi ∈�i,
there exists pi :�i × S→ R that satisfies

Ui
(
θi

) = ui(χ(
θi

)
� θi

) + δ ·E[
pi

(
θi� s

)|χ(
θi

)
� θi

]
(41)

for all θi ∈�i,
Ui

(
θi

) ≥ ui(χ(
θ̂i

)
� θi

) + δ ·E[
pi

(
θ̂i� s

)|χ(
θ̂i

)
� θi

]
(42)

for all (θi� θ̂i) ∈�i ×�i, and

∣∣pi(θi� s)∣∣<MS(Ū� ū� d)
for all (θi� s) ∈�i × S.
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C.6 Weak detectability and correlation intensity

Parallel to d-strong detectability, we define the d-weak detectability as follows.

Definition 9 (d-Weak detectability). Given d > 0, �i is d-weakly detectable with
(X��i�χ�S�π) ,if for all �̄i ⊂�i, there exists θ̄i ∈ �̄i such that

ρ
(
π

(
χ
(
θ̄i

)
� θ̄i

)
� co

({
π

(
χ
(
θ̄i

)
� θ̂i

)}
θ̂i∈�̄i s.t. χ(θ̂i)�=χ(θ̄i)

))
> d�

Again, d represents the correlation intensity, and we can also develop an upper
bound of payments MW (ū�d) and an upper bound of expected payoffs MU(ū�d) that
depend only on the bound of valuations ū and the lower bound of correlation intensity
d.

Lemma 6. There existMU : R2++ →R++ andMW : R2++ →R++ that satisfy the following
statements. Suppose that �i is d-weakly detectable with (X��i�χ�S�π). Then, for all
ui : X × �i → R such that |ui(x�θi)| < ū for all (x�θi) ∈ X × �i, there exist Ui : �i → R

and pi :�i × S→R that satisfy

Ui
(
θi

) = ui(χ(
θi

)
� θi

) + δ ·E[
pi

(
θi� s

)|χ(
θi

)
� θi

]
(41′)

for all θi ∈�i,
Ui

(
θi

) ≥ ui(χ(
θ̂i

)
� θi

) + δ ·E[
pi

(
θ̂i� s

)|χ(
θ̂i

)
� θi

]
(42′)

for all (θi� θ̂i) ∈�i ×�i, ∣∣Ui(θi)∣∣<MU(ū�d)
for all θi ∈�i, and ∣∣pi(θi� s)∣∣<MW (ū�d)
for all (θi� s) ∈�i × S.

C.7 Implementation

We will develop a counterpart of Theorem 2 for an infinite horizon. To construct it, just
as in the main paper, we first construct a dynamic mechanism for a finite horizon. How-
ever, different from the finite-horizon problems, we require that there exists an upper
bound of the payment, which depends only on the intensity of the detectability (d) and
length of the time horizon (T ).

Definition 10 (d-Block). An interval {t� t + 1� � � � � t + T } is a d-block along (χt)
t+T
t=t if

there exists (B−i
t )

t+T+1
t=t+1 such that the following statements hold:

(i) We have B−i
t ⊂�−i

t for every t ∈ {t + 1� � � � � t + T + 1}.

(ii) We have B−i
t+T+1 =∅.
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(iii) For t = t + 1� � � � � t + T , for all θ−i
t ∈ B−i

t , �it is d-strongly detectable with
�it(θ

−i
t �B

−i
t+1).

(iv) For t = t, for all θ−i
t ∈�−i

t , �it is d-strongly detectable with �it(θ
−i
t �B

−i
t+1).

(v) For t = t + 1� � � � � t + T for all θ−i
t ∈ �−i

t \ B−i
t , �it is d-weakly detectable with

�it(θ
−i
t �B

−i
t+1).

Definition 10 involves that the assumptions of Theorems 1 and 2. However, in addi-
tion to Theorems 1 and 2, we explicitly state the lower bound of the correlation inten-
sity, d. We regard each block as a problem with a finite horizon and construct a finite-
horizon mechanism. Since assumptions of Theorems 1 and 2 are satisfied, we can satisfy
wp-EPIC without leaving information rent; in other words, an agent’s EPV in the initial
period of each block can be set to zero. Hence, the beginning of a new block is equiv-
alent to the termination of the world (as in a finite horizon) in the sense that agents’
EPVs are set to zero regardless of the history. Accordingly, solving a finite-horizon prob-
lem for each block, we can implement a targeted allocation rule for an infinite-horizon
problem.

We use Lemmas 5 and 6 instead of Lemmas 1 and 2; thus, we have a guarantee for
the scale of payment rules: the incentive payment for {t� t + 1� � � � � t + T } is bounded by
a constant, say,MB(T�d), that depends only on the lower bound of correlation intensity
d and the length of d-block T . The constant MB(T�d) may go to infinity as the length
of the d-block grows to infinity (i.e., T → ∞). To guarantee that (ψit)

∞
t=0 is uniformly

bounded, we also need to assume the existence of the upper bound of the length of each
d-block.

Theorem 8. Consider an allocation rule (χt)∞t=0. Suppose that there exists d > 0, L ∈
Z++, and a partition P of the time horizon Z+ such that (i) each cell P ∈ P comprises a
d-block and (ii) the length of each d-block is shorter than L, i.e., for all P ∈ P , |P| < L.
Then there exists a payment rule (ψit)

∞
t=0 that makes (χt�ψit)

∞
t=0 wp-EPIC for i and leaves

no information rent.

Appendix D: Proofs

D.1 Proof of Theorem 5

Part (i) (genericity of strong detectability) Suppose that |�i| ≤ |S|. Then it follows from

dim co
({
π

(
χ
(
θi

)
� θ̂i

)}
θ̂i∈�i\{θi}

) ≤ ∣∣�i∣∣ − 2< |S| − 1 = dim�(S)

that the measure of π that fails to satisfy (2) is zero, i.e., L(SD(X��i�χ�S))= 1.
To show that L(SD(X��i�χ�S)) < 1 for |�i| > |S|, construct π as follows (it is de-

picted as Figure 3). Choose θ̄i ∈�i arbitrarily and let x∗ ≡ χ(θ̄i). Let o≡ (1�1� � � � �1)/|S|
be the center of gravity of �(S). Define π(x∗� θ̄i)≡ o. Take r > 0 such that an r-open ball
on �(S) of radius r centered at o, which is denoted by R, satisfies R⊂ �(�−i

t+1). Choose
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Figure 3. The signal distribution π(x∗� ·) constructed in the proof of part (i) of Theorem 5.
Choosing θ̄i for θi of (2), (2) is not satisfied for a ε-neighborhood of π for ε > 0 small enough.

|S| points on the boundary of R whose convex hull forms a (|S| − 1)-dimensional sim-
plex, and set π(x∗� θi) for θi ∈�i \ {θ̄i} to these points so that all of |S| points are assigned
at least one θi (such an assignment is feasible because |�i \{θ̄i}| ≥ |S|). For x �= x∗, π(x� ·)
is defined arbitrarily. Then, for ε > 0 sufficiently small, (2) for θ̄i is not satisfied for an
ε-neighborhood of π . Accordingly, L(SD(X��i�χ�S)) < 1.

Part (ii) (genericity of weak detectability) Suppose that minx∈X |{θi ∈ �i : χ(θi) �= x}| +
1 ≤ |S|. Choose and fix x∗ ∈ arg minx∈X |{θi ∈�i : χ(θi) �= x}|. Then it follows from

arg min
x∈X

∣∣{θi ∈�i : χ(
θi

) �= x}∣∣ = arg max
x∈X

∣∣{θi ∈�i : χ(
θi

) = x}∣∣
that �̂i ≡ {θi ∈ �i : χ(θi) = x∗} �= ∅. Furthermore, |�i \ �̂i| = minx∈X |{θi ∈ �i : χ(θi) �=
x}| ≤ |S| − 1.

If�i is not weakly detectable with (X��i�χ�S�π), there exists �̄i ⊂�i such that, for
all θ̄i ∈ �̄i, (31) is not satisfied. Let C(�̄i) be the set of π such that, for all θ̄i ∈ �̄i, (31) is
not satisfied. Clearly,

⋃
�̄i⊂�i C(�̄

i)= [�(S)]|X|×|�i| \WD(X��i�χ�S) holds.

For �̄i such that �̄i ∩ �̂i �= ∅, for π to be in C(�̄i), it is necessary that for all θ̄i ∈
�̄i ∩ �̂i,

π
(
x∗� θ̄i

) ∈ co
({
π

(
x∗� θ̂i

)}
θ̂i∈�̄i s.t. χ(θ̂i)�=x∗

)
� (43)

However, by assumption on x∗,

dim co
({
π

(
x∗� θ̂i

)}
θ̂i∈�̄i s.t. χ(θ̂i)�=x∗

) ≤ dim co
({
π

(
x∗� θ̂i

)}
θ̂i∈�i s.t. χ(θ̂i)�=x∗

)
≤ ∣∣�i \ �̂i∣∣ − 1

≤ (|S| − 1
) − 1

< dim�(S)�

indicating that the right hand side of (43) degenerates. Accordingly, L(C(�̄i))= 0.
For �̄i such that �̄i ∩ �̂i = ∅, it follows from �̄i ⊂�i \ �̂i that |�̄i| ≤ |�i \ �̂i| ≤ |S| − 1

holds. Take an arbitrary θ̄i ∈ �̄i. Then, for π to be in C(�̄i), it is necessary that (31) is not
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Figure 4. The signal distribution π constructed in the proof of part (ii) of Theorem 5. If we
define π(x� ·) in this manner for all x ∈ X , for �̄i = �i, for all θ̄i ∈ �i, (5) is not satisfied for an
ε-neighborhood of π for ε > 0 small enough.

satisfied with θ̄i. However,

dim co
({
π

(
χ
(
θ̄i

)
� θ̂i

)}
θ̂i∈�̄i s.t. χ(θ̂i)�=χ(θ̄i)

) ≤ ∣∣�̄i∣∣ − 2

≤ (|S| − 1
) − 2

< dim�(S)�

indicating that the right hand side of (31) degenerates. Accordingly, L(C(�̄i))= 0.
Finally,

0 ≤L((
�(S)

)|X|×|�i| \WD
(
X��i�χ�S

)) =L
( ⋃
�̄i⊂�i

C
(
�̄i

)) ≤
∑
�̄i⊂�i

L
(
C
(
�̄i

)) = 0

implies that L(WD(X��i�χ�S))= 1.
To show that L(WD(X��i�χ�S)) < 1 for minx∈X |{θi ∈�i : χ(θi) �= x}| + 1> |S|, con-

struct π as follows (it is depicted as Figure 4). Again, let o≡ (1�1� � � � �1)/|S| be the center
of gravity of �(S), and take r > 0 such that an r-open ball on �(S) of radius r centered
at o, which is denoted by R, satisfies R ⊂ �(S). For each x ∈ X , for θi ∈ �i such that
χ(θi)= x, defineπ(x�θi)= o. Choose |S| points on the boundary ofRwhose convex hull
forms an (|S|−1)-dimensional simplex, and setπ(x�θi) for θi ∈�i such that χ(θi) �= x to
these points so that all of the |S| points are assigned at least one θi (such an assignment is
feasible because |{θi ∈�i : χ(θi) �= x}| ≥ |S| for all x, by assumption). Then, for ε > 0 suf-
ficiently small, taking �̄i =�i, (31) is not satisfied for all θ̄i ∈ �̄i for an ε-neighborhood
of π. Accordingly, L(WD(X��i�χ�S)) < 1.

D.2 Proof of Lemma 3

Choose some k ∈ I \ {i} arbitrarily. Define vjt (xt� θt) ≡ 0 for all j ∈ I \ {i�k}, t, xt , θt .
Denoting the continuation value of the social welfare from period t + 1 by

Wt+1(θt+1)≡ E

[
T∑

s=t+1

δs−(t+1){vis(χs(θs)�θs) + vks
(
χs(θs)�θs

)}∣∣∣∣θt+1; (χs)Ts=t+1

]
�

(χt)
T
t=0 is a unique efficient allocation rule if and only if{

χT (θT )
} = arg max

xT∈XT
{
viT (xT �θT )+ vkT (xT �θT )

}
(44)
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holds for all θT ∈�T and

{
χt(θt)

} = arg max
xt∈Xt

{
vit(xt� θt)+ vkt (xt� θt)+ δE[

Wt+1(θt+1)|xt�θt
]}

(45)

holds for all t ∈ {0�1� � � � �T − 1} and θt ∈�t .
We construct (vkt )

T
t=0 backward. For period T , define vkT :XT ×�T →R by

vkT (xT �θT )≡
{

−viT (xT �θT )+ 1 if xT = χT (θT )�
−viT (xT �θT ) otherwise�

Then viT (xT �θT )+ vkT (xT �θT )= 1 if xT = χT (θT ) and viT (xT �θT )+ vkT (xT �θT )= 0 other-
wise. Therefore, (44) is satisfied for all θT .

After constructing (vks )
T
s=t+1 to satisfy (44) for T and (45) for t + 1� � � � �T − 1, we can

specify the value ofWt+1. For period t, define vkt :Xt ×�t →R by

vkt (xt� θt)≡
{

−vit(xt� θt)− δE[
Wt+1(θt+1)|xt�θt

] + 1 if xt = χt(θt)�
−vit(xt� θt)− δE[

Wt+1(θt+1)|xt�θt
]

otherwise�

Then

vit(xt� θt)+ vkt (xt� θt)+ δE[
Wt+1(θt+1)|xt�θt

] =
{

1 if xt = χt(θt)�
0 otherwise�

Therefore, (45) is satisfied for all�t .
Iterating this procedure, finally we obtain ((vjt )j �=i)Tt=0 such that (44) holds for θT ∈

�T , and (45) holds for all t ∈ {0�1� � � � �T − 1} and θt ∈�t . With such ((vjt )j �=i)Tt=0, (χt)Tt=0
is a unique efficient allocation rule.

D.3 Proof of Theorem 6

If part Suppose that U i0 �= ∅. Then U it �= ∅ for all t ∈ {0�1� � � � �T + 1}. Take some
Ui0 ∈ U i0 arbitrarily. Then there exists Ui1 : �0 → U i1 such that (38) and (39) hold with
t = 0. Similarly, for each θ0 ∈ �0, there exists Ui2(·;θ0) : �1 → U i2 such that (38) and
(39) hold with t = 1. Iterating this process, finally we obtain UiT+1(·;θ0:T ) ∈ U iT+1 such

that UiT+1(θ
i
T+1� θ

−i
T+1) = UiT+1(θ̂

i
T+1� θ

−i
T+1) for all θiT+1� θ̂

i
T+1 ∈ �iT+1. Define ψit = 0 for

t = 0�1� � � � �T and ψiT+1(θ0:T+1)=UiT+1(θT+1;θ0:T ).
Because agent i’s period-T + 1 payment does not depend on agent i’s report,(χt�

ψit)
T+1
t=0 satisfies wp-EPIC in period T + 1. Furthermore, (38) and (39) in t ensures wp-

EPIC in t because, by construction of ψiT+1,

Uit (θt;θ0:t−1)= V it (θt)+�it(θ0:t−1� θt)

holds for all (θ0:t−1� θt).
To prove part (ii), we should take Ui0 ≡ (0� � � � �0) at the beginning and then, finally,

we obtain V i0 (θ0)+�i0(θ0)=Ui0(θ0)= 0 for all θ0.
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Only if part Suppose that there exists (χt�ψit)
T+1
t=0 that is wp-EPIC for i. Then consider

(χt� ψ̄
i
t)
T+1
t=0 such that ψ̄it = 0 for t = 0�1� � � � �T and

ψ̄iT+1(θ0:T+1)=
T+1∑
t=0

δt−(T+1)ψit(θ0:t )�

By definition of wp-EPIC, (χt� ψ̄it)
T+1
t=0 is also wp-EPIC for i.

In period T + 1, |XT+1| = 1 and viT+1(xT+1� θT+1) = 0 for all θT+1 by assumption.

Hence, wp-EPIC for i at (θ0:T �θT+1) and (θ0:T � θ̂iT+1� θ
−i
T+1) implies

�̄iT+1(θ0:T �θT+1)= �̄iT+1
(
θ0:T � θ̂iT+1� θ

−i
T+1

)
for all θiT+1� θ̂

i
T+1 ∈ �iT+1. Together with the fact that V iT+1 = 0, we obtain V iT+1(·) +

�̄iT+1(θ0:T � ·) ∈ U iT+1, where U iT+1 is as defined in (37).

Suppose that V it+1(·)+ �̄it+1(θ0:t � ·) ∈ U is for all θ0:t ∈�0:t . Then, by definition of wp-

EPIC, V it (·)+ �̄it(θ0:t−1� ·) ∈ U it holds for all θ0:t−1 ∈�0:t−1, where U it is as defined in (38)
and (39).

Iterating this process, we can verify that U it �= ∅ for all t ∈ {0�1� � � � �T + 1}. In partic-
ular, if (χt�ψit)

T+1
t=0 leaves no information rent,

V i0 (θ0)+�i0(θ0)= V i0 (θ0)+ �̄i0(θ0)= 0

for all θ0 and V i0 (·)+ �̄i0(·) ∈ U i0 implies that (0� � � � �0) ∈ U i0.

D.4 Proof of Lemma 4

Suppose that (χt�ψit)
∞
t=0 is wp-EPIC and leaves no information rent for i, and (ψit)

∞
t=0 is

uniformly bounded. Define

Mi ≡ inf
t�θ0:t∈�0:t

[
V it (θt)+�it(θ0:t )

]
�

ψ̄i0(θ0)≡ψi0(θ0)+Mi − (1 − δ)Mi�

ψ̄it(θ0:t )≡ψit(θ0:t)− (1 − δ)Mi�

Note that Mi <∞ because the uniform boundedness of (ψit)
∞
t=0 implies |�it(θ0:t )| <∞

for all t and θ0:t ∈�0:t . Hence, clearly, (ψ̄it)
∞
t=0 is uniformly bounded. Then, for t = 0,

�̄i0(θ0)=�i0(θ0)+Mi − (1 − δ)
∞∑
t=0

δtMi

=�i0(θ0)+Mi −Mi

=�i0(θ0)�
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Furthermore, for t ≥ 1,

�̄it(θ0:t )=�it(θ0:t)− (1 − δ)
∞∑
s=0

δsMi

=�it(θ0:t)−Mi�

Hence,

�̄i0(θ0)=�i0(θ0)

for all θ0 ∈�0. Moreover,

V it (θt)+ �̄it(θ0:t)= V it (θt)+�it(θ0:t )−Mi ≥ 0

for all t ≥ 1 and θ0:t ∈ �0:t by construction of Mi. Finally, since (χt� ψ̄it)
∞
t=0 is identical

to (χt�ψit)
∞
t=0 up to constants, wp-EPIC of (χt�ψit)

∞
t=0 guarantees wp-EPIC of (χt� ψ̄it)

∞
t=0.

D.5 Proof of Lemma 5

The construction of Ui and pi is the same as that shown in the sufficiency part of
Lemma 1. We will develop the bound of them.

Fix an arbitrary θi ∈ �i. Since co({π(χ(θi)� θ̂i)}θ̂i∈�i\{θi}) is compact, there exists

m(θi) ∈ �(S) that satisfies

m
(
θi

) ∈ arg min
ξ∈�(S)

ρ
(
ξ�π

(
χ
(
θi

)
� θi

))
s.t. ξ ∈ co

({
π

(
χ
(
θi

)
� θ̂i

)}
θ̂i∈�i\{θi}

)
�

Define b :�i → �(S) by

b
(
θi

) ≡ π
(
χ
(
θi

)
� θi

) −m(
θi

)
ρ
(
π

(
χ
(
θi

)
� θi

)
�m

(
θi

)) �
Then, clearly, ‖b(θi)‖ ≡ √

b(θi) · b(θi)= 1. Furthermore,

b
(
θi

) · [π(
χ
(
θi

)
� θi

) −m(
θi

)]
= ρ(π(

χ
(
θi

)
� θi

)
�m

(
θi

))
= ρ(m(

θi
)
� co

({
π

(
χ
(
θi

)
� θ̂i

)}
θ̂i∈�i\{θi}

))
> d

(46)

by d-strong detectability. Furthermore, since m(θi) is closest to π(χ(θi)� θi), π(χ(θi)�
θi)−m(θi) and π(χ(θi)� θ̂i)−m(θi) cannot make an acute angle. Therefore, for all θ̂i ∈
�i,

b
(
θi

) · [π(
χ
(
θi

)
� θ̂i

) −m(
θi

)] ≤ 0� (47)
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Combining (46) and (47), we have

b
(
θi

) · [π(
χ
(
θi

)
� θi

) −π(
χ
(
θi

)
� θ̂i

)]
> d�

Define λ(θi� ·) : S→R by

λ
(
θi� s

) ≡ b(θi� s) − b(θi) ·π(
χ
(
θi

)
� θi

)
�

Then, clearly, E[λ(θi� s)|χ(θi)� θi)] = 0 and E[λ(θi� s)|χ(θi)� θ̂i]<−d holds for all θ̂i ∈�i \
{θi}. In addition, since ‖b(θi)‖ = 1, |λ(θi� s)| ≤ 2 for any s.

Following the sufficiency part of Lemma 1, let

pi
(
θi� s

) ≡ δ−1[Ui(θi) − ui(χ(
θi

)
� θi

)] + α · λ(θi� s)�
Then (41) is always satisfied.

Finally, we determine the level of α. If agent i makes a truthful report, his expected
payoff is Ui(θi� θ−i). If he reports θ̂i, it would be

Ui
(
θ̂i

) + ui(χ(
θ̂i

)
� θi

) − ui(χ(
θ̂i

)
� θ̂i

)
+ δ · α ·E[

λ
(
θ̂i� s

)|χ(
θ̂i

)
� θi

]
�

Hence, setting

α≡ 2Ū + 2ū
δd

�

(42) is clearly maintained.
Now we have

∣∣pi(θi� s)∣∣ ≤ δ−1(Ū + v̄)+ 2 · 2Ū + 2ū
δd

�

≡MS(Ū� ū� d)

for all (θi� s) ∈�i × S, as desired.

D.6 Proof of Lemma 6

By an argument similar to the proof of Lemmas 2 and 5, we can construct a ordered par-
tition {H(k)}Kk=1 of�i and corresponding payment rules {λ(k� ·) : S→R}Kk=1 that satisfy,
for each k= 1� � � � �K, for all θi ∈H(k),

E
[
λ(k� s)|χ(

θi
)
� θ̂i

] ≥ 0 for θ̂i ∈H(k)�

E
[
λ(k� s)|χ(

θi
)
� θ̂i

]
<−d for θ̂i ∈

K⋃
l=k+1

H(l)

and |λ(k� s)| ≤ 2 for all k and s ∈ S.



22 Shunya Noda Supplementary Material

We specifyUi and pi in the same manner as the proof of Lemma 2. For k=K, we set

Ui
(
θi

) = ui(χ(
θi

)
� θi

)
for all θi ∈H(K)�

pi
(
θi�x

) = 0 for all
(
θi� s

) ∈H(K)× S�
Defining p̆(K) ≡ 1, |pi(θi� s)| < p̆(K) holds for all (θi� s) ∈ H(K) × S. We also define
Ui(θi) for θi ∈H(K) by (41). Then it follows from

Ui
(
θi

) = ui(χ(
θi

)
� θi

)
that |Ui(θi)|< ū≡ Ŭ(K) holds for any θit ∈H(K).

Suppose that pi : ⋃K
l=k+1H(l)× S→ R and Ui : ⋃K

l=k+1H(l)→ R are constructed to
satisfy (41) for θi ∈ ⋃K

l=k+1H(l) and (42) for (θit� θ̂
i
t) ∈ ⋃K

l=k+1H(l)× ⋃K
l=k+1H(l), and

∣∣pi(θi� s)∣∣< p̆(k+ 1) for all
(
θi� s

) ∈
(

K⋃
l=k+1

H(l)

)
× S�

∣∣Ui(θi)∣∣< Ŭi(k+ 1) for all θi ∈
K⋃

l=k+1

H(l)�

For θi ∈H(k), let

pi
(
θi� s

)
≡ max
θ̌i∈H(k)�θ̂i∈⋃K

l=k+1H(l)

{
δ−i[ui(χ(

θ̂i
)
� θ̌i

) − ui(χ(
θ̌i

)
� θ̌i

)] +E
[
pi

(
θ̂i� s̃

)|χ(
θ̂i

)
� θ̌i

]}

+ α · λ(k� s)�
We should choose α ∈ R++ sufficiently large to prevent upward misreports, i.e., any θi ∈⋃K
l=k+1H(l) has no incentive to misreport θ̂i ∈ H(k). If agent i sincerely reports θi ∈⋃K
l=k+1H(l), his expected payoff is Ui(θi) > −Ŭi(k + 1). If he reports θ̃i ∈ H(k), his

expected payoff would be

ui
(
χ
(
θ̃i

)
� θi

)
+ δ · max

θ̌i∈H(k)�θ̂i∈⋃K
l=k+1H(l)

{
δ−1[ui(χ(

θ̂i
)
� θ̌i

) − ui(χ(
θ̌i

)
� θ̌i

)] +E
[
p

(
θ̂i� s

)|χ(
θ̂i

)
� θ̌i

]}

+ δ · α ·E[
λi(k� s)|χ(

θ̃i
)
� θi

]
�

Therefore, if we set

α≡ Ŭ(k+ 1)+ 3ū+ δp̆(k+ 1)
δd

�

such misreports are prevented and then (42) is satisfied for (θi� θ̂i) ∈ (⋃K
l=kH(l)) ×

(
⋃K
l=kH(l)). Furthermore,

∣∣Ui(θi)∣∣< 3ū+ δp̆(k+ 1)≡ Ŭ(k) for all θi ∈
K⋃
l=k
H(l)�
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∣∣pi(θi� s)∣∣< p̆(k+ 1)+ 2δ−1ū+ 2 · Ŭ(k+ 1)+ 3ū+ δp̆(k+ 1)
δd

≡ p̆(k) for all
(
θi� s

) ∈
(
K⋃
l=k
H(l)

)
× S�

The sequence of (Ŭ(k)� p̆(k))1k=K is determined by these first-order recurrence
equations. Furthermore, it is clear that Ŭ and p̆, are decreasing sequences. Let M�i

be the largest number of the states, i.e., the uniform upper bound of (|�it |)∞t=0. Then it is
also an upper bound ofK, i.e.,K ≤M�i always holds. Defining

MW (Ū�d)≡ Ŭ(K −M�)�
MU(Ū�d)≡ p̆(K −M�)�

we have

∣∣pi(θi� s)∣∣< p̆(1)≤MW (Ū�d) for all
(
θi� s

) ∈�i × S�∣∣Ui(θi)∣∣< Ŭ(1)≤MU(Ū�d) for all θi ∈�i

as desired.

D.7 Proof of Theorem 8

First, we show that for each d-block, we can construct a “finite-horizon mechanism” that
implements the targeted allocation rule without leaving information rent and whose
payment rule is bounded byMB(T�d).

Lemma 7. Suppose that {t� t + 1� � � � � t + T } is a d-block along (χt)
t+T
t=t and there exists a

mechanism (χt� g
i
t)

∞
t=t+T+1, such that (i) (χt� git)

∞
t=t+T+1 is wp-EPIC for i for t = t + T +

1� � � � , (ii) (git)
∞
t=t+T+1 is independent of θ0:t+T , and (iii) (χt� git)

∞
t=t+T+1 satisfies

V it+T+1(θt+T+1)+Git+T+1(θt+T+1)= 0 for all θt+T+1 ∈�t+T+1�

Then there exists (φit)
t+T+1
t=t such that the following statements hold:

(a) We have that (φit)
t+T+1
t=t is independent of θ0:t−1.

(b) There exist an upper bound of (φit)
t+T+1
t=t that only depends on T and d, i.e.,

∣∣φit(θt:t)∣∣<MB(T�d) for all t ∈ {t� � � � � t + T + 1} and θt:t ∈�t:t �

(c) The combined mechanism (χt�ψ
i
t)

∞
t=t such that ψit ≡ φit for t ∈ {t� t + 1� � � � � t + T },

ψit+T+1 ≡ φit+T+1 + git+T+1, and ψit ≡ git for t ∈ {t + T + 1� � � �} is wp-EPIC for i for
t = t� t + 1� � � � .
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(d) The combined mechanism (χt�ψ
i
t)

∞
t=t satisfies

V it (θt)+�it(θt)= 0 for all θt ∈�t�

Proof. The construction of the mechanism is the same as that of Theorems 1 and 2.
We will show the existence of the upper bound of the payments. For notational conve-
nience, we prove only the case of t = 0. (For the case of t �= 0, we can replace period t
with period t + t.)
Period T First consider the period-T problem. Suppose that to resolve the period-T −1
problem, we need to achieve some EPV that is no larger than Ū0 when θ−i

T ∈ B−i
T . In this

case, as in the proof of Theorem 1, we take

uiT
(
xT �θ

i
T ;θ0:T−1� θ

−i
T

) = viT (xT �θT )

and ∣∣viT (xT �θT )∣∣< v̄�
Therefore, by Lemma 5, the constructed incentive payment satisfies

∣∣φiT+1
(
θ0:T �θ−i

T+1

)∣∣<MS(Ū� v̄;d)≡MS0(Ū;d)�

When θ−i
T ∈�−i

T \ B−i
T realizes, as in the proof of Theorem 2, we apply Lemma 6 (in-

stead of Lemma 2). Again

uiT
(
xT �θ

i
T ;θ0:T−1� θ

−i
T

) = viT (xT �θT )�

Therefore, the constructed incentive payment satisfies

∣∣φiT+1
(
θ0:T �θ−i

T+1

)∣∣<MW (v̄;d)≡MW0(d)�

Furthermore, agent i’s EPV from θ−i
T ∈�−i

T \B−i
T satisfies

∣∣viT (
χT (θT )�θT

) + δE[
φiT+1

(
θ0:T �θ−i

T+1

)|χT (θT )�θT ]∣∣
= ∣∣V iT (θT )+ δE[

�iT+1(θ0:T+1)|χT (θT )�θT
]∣∣

<MU(v̄;d)≡MU0(d)�

Period T − k (where k≥ 1) Make the following suppositions:

(i) If we specify the EPV that is no larger than Ūk−1 in period T − (k − 1) when
θ−i
T−(k−1) ∈ B−i

T−(k−1) realizes, then

∣∣φit(θ0:t−1� θ
−i
t

)∣∣<MSk−1(Ūk−1;d)
for t ≥ T − (k− 1)whenever θ−i

T−(k−1) ∈ B−i
T−(k−1)�
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(ii) We have

∣∣φit(θ0:t−1� θ
−i
t

)∣∣<MWk−1(d)

for t ≥ T − (k− 1)whenever θ−i
T−(k−1) ∈�−i

T−(k−1) \B−i
T−(k−1)�

(iii) We have

∣∣V iT−(k−1)(θ0:T−(k−1))+ δE[
�iT−(k−2)(θ0:T−(k−2))|χT−(k−1)(θT−(k−1))� θT−(k−1)

]∣∣
<MUk−1(d) whenever θ−i

T−(k−1) ∈�−i
T−(k−1) \B−i

T−(k−1)�

Suppose also that when θ−i
T−k ∈ B−i

T−k realizes, we specify some EPV that is not larger

than Ūk. Then, for each θ−i
T−k ∈ B−i

T−k, we apply Lemma 8 to obtainφT−k+1 by specifying

uiT−k
(
xT−k�θiT−k;θ0:T−k−1� θ

−i
T−k

)
= viT−k(xT−k�θT−k)

+ δE[
1{θ−i

T−(k−1) /∈B−i
T−(k−1)}

(
V iT−(k−1)(θ0:T−(k−1))

+ δE[
�iT−(k−2)(θ0:T−(k−2))|χT−(k−1)(θT−(k−1))� θT−(k−1)

])|
χT−k(θT−k)�θT−k

]
�

(48)

Hence, ∣∣uiT−k
(
xT−k�θiT−k;θ0:T−k−1� θ

−i
T−k

)∣∣< v̄+ δMUk−1(d)�

Accordingly, the obtained one-shot payment rule piT−k+1 satisfies

∣∣piT−k+1
(
θiT−k�θT−k+1;θ0:T−k−1� θ

−i
T−k

)∣∣<MS(Ūk� v̄+ δMUk−1(d);d
)

and, therefore,

∣∣φit(θ0:t−1� θ
−i
t

)∣∣
<max

{
MS

(
Ūk� v̄+ δMUk−1(d);d

)
�

MSk−1
(
MS

(
Ūk� v̄+ δMUk−1(d);d

);d)�MWk−1(d)
}

≡MSk(Ūk;d) for t ≥ T − k�whenever θ−i
T−k ∈ B−i

T−k�

When θ−i
T−k ∈�−i

T−k \ B−i
T−k realizes, we also specify uiT−k by (48) to apply Lemma 6.

Hence, the obtained piT−k+1 and UiT−k satisfy

∣∣piT−k+1
(
θiT−k�θT−k+1;θ0:T−k−1� θ

−i
T−k

)∣∣<MW (
v̄+ δMUk−1(d);d

)
�∣∣UiT−k

(
θiT−k;θ0:T−k−1� θ

−i
T−k

)∣∣<MU(
v̄+ δMUk−1(d);d

)
�
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Hence, we have

∣∣φit(θ0:t−1� θ
−i
t

)∣∣
<max

{
MW

(
v̄+ δMUk−1(d);d

)
�

MSk−1
(
MW

(
v̄+ δMUk−1(d);d

);d)�MWk−1(d)
}

≡MWk(d) for t ≥ T − k�whenever θ−i
T−k ∈�−i

T−k \B−i
T−k

and

∣∣V iT−k(θ0:T−k)+ δE[
�iT−(k−1)(θ0:T−k)|χT−k(θT−k)�θT−k

]∣∣
<MU

(
v̄+ δMUk−1(d);d

)
�

≡MUk(d) whenever θ−i
T−k ∈�−i

T−k \B−i
T−k�

Period 0 The argument is similar to the analysis for period T − k, but we specify the
EPV to be zero (i.e., Ū0 = 0) for all θ−i

0 ∈�−i
0 . Hence,

∣∣φit(θ0:t−1� θ
−i
t

)∣∣
<max

{
MS

(
0� v̄+ δMUT−1(d);d

)
�

MST−1
(
MS

(
0� v̄+ δMUT−1(d);d

);d)�MWT−1(d)
}

≡MB(T�d) for all t and
(
θ0:t−1� θ

−i
t

) ∈�0:t−1 ×�−i
t �

as desired.

Proof of Theorem 8 For each d-block, we apply Lemma 7 to construct a finite-horizon
mechanism that leaves no information rent. Then the EPV starting from t̄, which is the
initial period of the next d-block, is fixed to zero for all θ0:t̄ ∈�0:t̄ , i.e.,

V it̄ (θ0:t̄ )+ δE[
�it̄+1(θ0:t̄+1)|χt̄(θt̄)� θt̄

] = 0 for all θ0:t̄ ∈�0:t̄ �

Accordingly, wp-EPIC of the finite-horizon mechanisms guarantees wp-EPIC of the
combined infinite-horizon mechanism. Furthermore, by Theorem 7, the constructed
infinite-horizon payment rule is uniformly bounded byMB(L�d), as desired.
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