Supplementary Material

Supplement to “Bounding equilibrium payoffs in repeated games with private monitoring”

TAKUO SUGAYA
Graduate School of Business, Stanford University

ALEXANDER WOLITZKY
Department of Economics, MIT

Proof of Proposition 2

We prove that \(\tilde{E}_{\text{talk}}(\delta, p) = \tilde{E}_{\text{med}}(\delta) \). In our construction, players ignore private signals \(y_{i,t} \) observed in periods \(t = 1, 2, \ldots \). That is, only signal \(y_{i,0} \) observed in period 0 is used. Hence we can see \(p \) as an ex ante correlation device. Since we consider two-player games, whenever we say players \(i \) and \(j \), we assume that they are different players: \(i \neq j \).

The structure of the proof is as follows: take any strategy of the mediator, \(\tilde{\mu} \), that satisfies inequality (3) in the text (perfect monitoring incentive compatibility), and let \(\tilde{v} \) be the value when the players follow \(\tilde{\mu} \). Since each \(\tilde{v} \in \tilde{E}_{\text{med}}(\delta) \) has a corresponding \(\tilde{\mu} \) that satisfies perfect monitoring incentive compatibility, it suffices to show that, for each \(\varepsilon > 0 \), there exists a sequential equilibrium whose equilibrium payoff \(v \) satisfies \(\|v - \tilde{v}\| < \varepsilon \) in the following environment:

(i) At the beginning of the game, each player \(i \) receives a message \(m_{i,1}^{\text{mediator}} \) from the mediator.

(ii) In each period \(t \), the stage game proceeds as follows:

(a) Given player \(i \)'s history \(\{m_{t,1}^{\text{mediator}}, (m_{t,2}^{1st}, a_{t,1}, m_{t,2}^{2nd})_{t=1}^{t-1}\} \), each player \(i \) sends the first message \(m_{i,1}^{1st} \) simultaneously.

(b) Given player \(i \)'s history \(\{m_{t,1}^{\text{mediator}}, (m_{t,2}^{1st}, a_{t,2}, m_{t,2}^{2nd})_{t=1}^{t-1}, m_{t,1}^{2nd}\} \), each player \(i \) takes action \(a_{i,1} \) simultaneously.

(c) Given player \(i \)'s history \(\{m_{t,1}^{\text{mediator}}, (m_{t,2}^{1st}, a_{t,2}, m_{t,2}^{2nd})_{t=1}^{t-1}, m_{t,1}^{1st}, a_{t}\} \), each player \(i \) sends the second message \(m_{i,1}^{2nd} \) simultaneously.

We call this environment perfect monitoring with cheap talk.

Takuo Sugaya: tsugaya@stanford.edu
Alexander Wolitzky: wolitzky@mit.edu

Copyright © 2017 The Authors. Theoretical Economics. The Econometric Society. Licensed under the Creative Commons Attribution-NonCommercial License 3.0. Available at http://econtheory.org.
DOI: 10.3982/TE2270
To this end, from $\check{\mu}$, we first create a strict full-support equilibrium μ with mediated perfect monitoring that yields payoffs close to $\check{\nu}$. We then move from μ to a similar equilibrium μ^*, which will be easier to transform into an equilibrium with perfect monitoring with cheap talk. Finally, from μ^*, we create an equilibrium with perfect monitoring with cheap talk with the same on-path action distribution.

Construction and properties of μ

In this subsection, we consider mediated perfect monitoring throughout. Since $W^* \neq \emptyset$, by Lemma 2 in the main text, there exists a strict full-support equilibrium μ^{strict} with mediated perfect monitoring. As in the proof of that lemma, consider the following strategy of the mediator: In period 1, the mediator draws one of two states, R_\emptyset and R_{perturb}, with probabilities $1 - \eta$ and η, respectively. In state R_\emptyset, the mediator’s recommendation is determined as follows: If no player has deviated up to period t, the mediator recommends r_t according to $\hat{\mu}(h^*_m)$; if only player i has deviated, the mediator recommends r^*_i to player j according to α^*_j, and recommends some best response to α^*_j to player i. Multiple deviations are treated as in the proof of Lemma 1. In contrast, in state R_{perturb}, the mediator follows the equilibrium μ^{strict}. Let μ denote this strategy of the mediator. From now on, we fix $\eta > 0$ arbitrarily.

With mediated perfect monitoring, since μ^{strict} has full support, player i believes that the mediator’s state is R_{perturb} with positive probability after any history. Therefore, by perfect monitoring incentive compatibility and the fact that μ^{strict} is a strict equilibrium, it is always strictly optimal for each player i to follow her recommendation. This means that, for each period t, there exist $\varepsilon_t > 0$ and $T_t < \infty$ such that, for each player i and on-path history h^t_{m+1}, we have

$$
(1 - \delta)\mathbb{E}[u_i(r_t) \mid h^t_m, r_t] + \delta \mathbb{E}\left[(1 - \delta)\sum_{t=T_1}^{\infty} \delta^{t-T_1} u_i(h^*_m) \mid h^t_m, r_t, h^t_{m+1}\right] > \max_{a_i \in A_i} (1 - \delta)\mathbb{E}[u_i(a_i, r^*_t) \mid h^t_m, r_t, h^t_{m+1}] + (\delta - \delta^{T_t})\{1 - \varepsilon_t\} \max_{a_i \in A} u_i(\hat{a}_i, \alpha^*_j) + \varepsilon_t \max_{a_i \in A} u_i(a) + \delta^{T_t} \max_{a_i \in A} u_i(a).
$$

That is, suppose that if player i unilaterally deviates from on-path history, then player j virtually minmaxes player i for $T_t - 1$ periods with probability $1 - \varepsilon_t$. (Recall that α^*_j is the minmax strategy and $\alpha^{\varepsilon_t}_j$ is a full-support perturbation of α^*_j.) Then player i has a strict incentive not to deviate from any recommendation in period t on equilibrium path. Equivalently, since μ is a full-support recommendation, player i has a strict incentive not to deviate unless she herself has deviated.

Moreover, for sufficiently small $\varepsilon_t > 0$, we have

$$
(1 - \delta)\mathbb{E}[u_i(r_t) \mid h^t_m, r_t] + \delta \mathbb{E}\left[(1 - \delta)\sum_{t=T_1}^{\infty} \delta^{t-T_1} u_i(h^*_m) \mid h^t_m\right] > (1 - \delta^{T_t})\{1 - \varepsilon_t\} \max_{a_i \in A} u_i(\hat{a}_i, \alpha^{\varepsilon_t}_j) + \varepsilon_t \max_{a_i \in A} u_i(a) + \delta^{T_t} \max_{a_i \in A} u_i(a).
$$

(S2)
That is, if a deviation is punished with probability $1 - \epsilon_t$ for T_t periods including the current period, then player i believes that the deviation is strictly unprofitable.\footnote{If the current on-path recommendation schedule $\Pr^\mu(r_{j,t} | h^\mu_{m}, r_{i,t})$ is very close to a^*_j, then (S1) may be more restrictive than (S1).}

For each t, we fix $\epsilon_t > 0$ and $T_t < \infty$ with (S1) and (S2). Without loss, we can take ϵ_t decreasing: $\epsilon_t \geq \epsilon_{t+1}$ for each t.

Construction and properties of μ^*

In this subsection, we again consider mediated perfect monitoring. We further modify μ and create the following mediator’s strategy μ^*: Fix a fully mixed $\hat{\mu} \in \Delta(A)$ with $u(\hat{\mu}) \in \hat{W}^*$. At the beginning of the game, for each i, t, and a^t, the mediator draws $r_{i,t}^{\text{punish}}(a^t)$ according to α^t_i. In addition, for each i and t, she draws $\omega_{i,t} \in \{R, P\}$ such that $\omega_{i,t} = R$ (regular) and P (punish) with probability $1 - p_t$ and p_t, respectively, independently across i and t. We will pin down $p_t > 0$ in Lemma S1. Moreover, given $\omega_t = (\omega_{1,t}, \omega_{2,t})$, the mediator chooses $r_i(a^t)$ for each a^t as follows: If $\omega_{1,t} = \omega_{2,t} = R$, then she draws $r_i(a^t)$ according to $\mu(a^t)(r)$ if $\omega_{1,t} = \omega_{2,t} = R$ for each $\tau \leq t - 1$; and draws $r_i(a^t)$ according to $\hat{\mu}(r)$ if there exists $\tau \leq t - 1$ with $\omega_{1,\tau} = P$ or $\omega_{2,\tau} = P$. If $\omega_{i,t} = R$ and $\omega_{j,t} = P$, then she draws $r_{i,t}(a^t)$ from $\Pr^\mu(r_{j,t} | r_{j,t}^{\text{punish}}(a^t))$ while she draws $r_{j,t}(a^t)$ randomly from $\sum_{a_j \in A_j} \frac{a_j}{|A_j|}$. Finally, if $\omega_{1,t} = \omega_{2,t} = P$, then she draws $r_{i,t}(a^t)$ randomly from $\sum_{a_i \in A_i} \frac{a_i}{|A_i|}$ for each i independently. Since μ has full support, μ^* is well defined.

As will be seen, we will take p_t sufficiently small. In addition, recall that $\eta > 0$ (the perturbation of $\hat{\mu}$ to μ) is arbitrarily. In the next subsection and onward, we construct an equilibrium with perfect monitoring with cheap talk that has the same equilibrium action distribution as μ^*. Since p_t is small and $\eta > 0$ is arbitrary, constructing such an equilibrium suffices to prove Proposition 2.

At the start of the game, the mediator draws ω_t, $r_{i,t}^{\text{punish}}(a^t)$, and $r_i(a^t)$ for each i, t, and a^t. Given them, the mediator sends messages to the players as follows:

(i) At the start of the game, the mediator sends $((r_{i,t}^{\text{punish}}(a^t))_{a^t \in A^t-i})_{t=1}^\infty$ to player i.

(ii) In each period t, the stage game proceeds as follows:

(a) The mediator decides $\bar{\omega}_{i,t}(a^t) \in \{R, P\}$ as follows: if there is no unilateral deviator (defined below), then the mediator sets $\bar{\omega}_i(a^t) = \omega_i$. If instead player i is a unilateral deviator, then the mediator sets $\bar{\omega}_{i,t}(a^t) = R$ and $\bar{\omega}_{j,t}(a^t) = P$.

(b) Given $\bar{\omega}_{i,t}(a^t)$, the mediator sends $\bar{\omega}_{i,t}(a^t)$ to player i. In addition, if $\bar{\omega}_{i,t}(a^t) = R$, then the mediator sends $r_{i,t}(a^t)$ to player i as well.

(c) Given these messages, player i takes an action. In equilibrium, if player i has not yet deviated, then player i takes $r_{i,t}(a^t)$ if $\bar{\omega}_{i,t}(a^t) = R$ and takes $r_{i,t}^{\text{punish}}(a^t)$ if $\bar{\omega}_{i,t}(a^t) = P$, otherwise player i deviates.

\footnote{As will be seen below, if $\omega_{j,t} = P$, then player j is supposed to take $r_{j,t}^{\text{punish}}(a^t)$. Hence, $r_{j,t}(a^t)$ does not affect the equilibrium action. We define $r_{j,t}(a^t)$ so that, when the mediator sends a message only at the beginning of the game (in the game with perfect monitoring with cheap talk), she sends a “dummy recommendation” $r_{j,t}(a^t)$ so that player j does not realize that $\omega_{j,t} = P$ until period t.}
if \(\tilde{\omega}_{i,t}(a') = P \). For notational convenience, let

\[
 r_{i,t} = \begin{cases}
 r_i(a') & \text{if } \tilde{\omega}_{i,t}(a') = R, \\
 r_{i,\text{punish}}(a') & \text{if } \tilde{\omega}_{i,t}(a') = P.
 \end{cases}
\]

be the action that player \(i \) is supposed to take if she has not yet deviated. Her strategy after her own deviation is not specified.

We say that player \(i \) has unilaterally deviated if there exist \(\tau \leq t - 1 \) and a unique \(i' \) such that (i) for each \(\tau' < \tau \), we have \(a_{n,\tau'} = r_{n,\tau'} \) for each \(n \in \{1, 2\} \) (no deviation happened until period \(\tau - 1 \)) and (ii) \(a_{i,\tau} \neq r_{i,\tau} \) and \(a_{j,\tau} = r_{j,\tau} \) (player \(i \) deviates in period \(\tau \) and player \(j \) does not deviate).

Note that \(\mu^* \) is close to \(\mu \) on the equilibrium path for sufficiently small \(p_t \). Hence, on-path strict incentive compatibility for player \(i \) follows from (S1). Moreover, the incentive compatibility condition analogous to (S2) also holds.

Lemma S1. There exists \(\{p_t\}_{t=1}^{\infty} \) with \(p_t > 0 \) for each \(t \) such that it is strictly optimal for each player \(i \) to follow her recommendation: For each player \(i \) and history \(h_{i,t} \equiv \left((\tilde{\omega}_{\tau}(a_{\tau}))_{\tau=1}^t, (\tilde{\omega}_{\tau}(a_{\tau}))_{\tau=1}^t, (r_{i,\tau})_{\tau=1}^t \right) \), if player \(i \) herself has not yet deviated, we have the following two inequalities:

(i) If a deviation is punished by \(\alpha^{e_i}_j \) for the next period \(T_i \) periods with probability

\[
 1 - \varepsilon_t - \sum_{\tau=t}^{t+T_i-1} p_{\tau},
\]

then it is strictly unprofitable:

\[
 (1 - \delta) \mathbb{E}^{\mu^*}[u_i(r_{i,t}, a_{j,t}) | h_{i,t}^r] + \delta \mathbb{E}^{\mu^*} \left[(1 - \delta) \sum_{\tau=t+1}^{\infty} \delta^{\tau-t-1} u_i(r_{i,\tau}, a_{j,\tau}) | h_{i,t}^r, a_{i,t} = r_{i,t} \right] - \max_{a_i \in A} (1 - \delta) \mathbb{E}^{\mu^*}[u_i(a_i, a_{j,t}) | h_{i,t}^r] + (\delta - \delta^{T_i}) \left(1 - \varepsilon_t - \sum_{\tau=t}^{t+T_i-1} p_{\tau} \right) \max_{a_i} u_i(\tilde{a}_i, \alpha^{e_i}_j)
\]

(ii) If a deviation is punished by \(\alpha^{e_i}_j \) from the current period with probability \(1 - \varepsilon_t - \sum_{\tau=t}^{t+T_i-1} p_{\tau} \), then it is strictly unprofitable:

\[
 (1 - \delta) \mathbb{E}^{\mu^*}[u_i(r_{i,t}, a_{j,t}) | h_{i,t}^r] + \delta \mathbb{E}^{\mu^*} \left[(1 - \delta) \sum_{\tau=t+1}^{\infty} \delta^{\tau-t-1} u_i(r_{i,\tau}, a_{j,\tau}) | h_{i,t}^r, a_{i,t} = r_{i,t} \right] - \max_{a \in A} (1 - \delta) \mathbb{E}^{\mu^*}[u_i(a, a_{j,t}) | h_{i,t}^r] + \delta^{T_i} \max_{a \in A} u_i(a). \]
we have that the difference

\[(1 - \delta^T) \left\{ \left(1 - \epsilon_t - \sum_{\tau = t}^{t+T_t-1} p_{\tau} \right) \max_{\hat{a}_t} u_i(\hat{a}_t, \alpha^{i}_{\tau}) + \left(\epsilon_t + \sum_{\tau = t}^{t+T_t-1} p_{\tau} \right) \max_{a \in A} u_i(a) \right\} + \delta^T \max_{a \in A} u_i(a). \]

Moreover, \(E^{\mu^*} \) does not depend on the specification of player \(j \)'s strategy after player \(j \)'s own deviation, for each history \(h^t_j \) such that player \(i \) has not deviated.

Proof. Given \(\hat{\mu} \), since \(u(\hat{\mu}) \in \hat{W}^* \), for sufficiently small \(\epsilon_t > 0 \), we have

\[
(1 - \delta) E^{\hat{\mu}} \left[u_i(r_t) \mid h^t_m, r_{i,t} \right] + \delta u_i(\hat{\mu}) > \max_{a_i \in A_i} (1 - \delta) E^{\hat{\mu}} \left[u_i(a_i, r_{-i,t}) \mid h^t_m, r_{i,t} \right] + (\delta - \delta^T) \left\{ (1 - \epsilon_t) \max_{\hat{a}_t} u_i(\hat{a}_t, \alpha^{i}_{\tau}) + \epsilon_t \max_{a \in A} u_i(a) \right\} + \delta^T \max_{a \in A} u_i(a)
\]

and

\[
(1 - \delta) E^{\hat{\mu}} \left[u_i(r_t) \mid h^t_m, r_{i,t} \right] + \delta u_i(\hat{\mu}) > (1 - \delta^T) \left\{ (1 - \epsilon_t) \max_{\hat{a}_t} u_i(\hat{a}_t, \alpha^{i}_{\tau}) + \epsilon_t \max_{a \in A} u_i(a) \right\} + \delta^T \max_{a \in A} u_i(a).
\]

Hence (S1) and (S2) hold with \(\mu \) replaced with \(\hat{\mu} \).

Since \(\mu^* \) has full support on the equilibrium path, a player \(i \) who has not yet deviated always believes that player \(j \) has not deviated. Hence, \(E^{\mu^*} \) is well defined without specifying player \(j \)'s strategy after player \(j \)'s own deviation.

Moreover, since \(p_t \) is small and \(\omega_{j,t} \) is independent of \((\omega_{\tau})_{\tau = 1}^{t-1} \) and \(\omega_{i,t} \), given \((\tilde{\omega}_{j,t}(a^t))_{\tau = 1}^{t-1} \) and \(\tilde{\omega}_{i,t}(a') \) (which are equal to \((\omega_{\tau})_{\tau = 1}^{t-1} \) and \(\omega_{i,t} \) on path), player \(i \) believes that \(\tilde{\omega}_{j,t}(a') \) is equal to \(\omega_{j,t} \) and \(\omega_{j,t} \) is equal to \(R \) with a high probability, unless player \(i \) has deviated. Since

\[
Pr^\mu^*(r_{j,t} \mid \tilde{\omega}_{i,t}(a'), \tilde{\omega}_{j,t}(a') = R, h^t_j) = Pr^\mu^*(r_{j,t} \mid a', r_{i,t}),
\]

we have that the difference

\[
E^{\mu^*}[u_i(r_{i,t}, a_{j,t}) \mid h^t_i] - E^\mu[u_i(r_{i,t}, a_{j,t}) \mid r_{i,t}, a', r_{i,t}]
\]

is small for small \(p_t \).

Further, if \(p_{\tau} \) is small for each \(\tau \geq t + 1 \), then since \(\omega_{\tau} \) is independent of \(\omega_{t} \) with \(t \leq \tau - 1 \), regardless of \((\tilde{\omega}_{j,t}(a^t))_{\tau = 1}^{t-1} \), player \(i \) believes that \(\tilde{\omega}_{i,t}(a^t) = \tilde{\omega}_{j,t}(a^t) = R \) with high probability for \(\tau \geq t + 1 \) on the equilibrium path. Since the distribution of the recommendation given \(\mu^* \) is the same as that of \(\mu \) (or \(\hat{\mu} \) given \(a' \) and \((\tilde{\omega}_{i,t}(a^t), \tilde{\omega}_{j,t}(a^t)) \) = \((R, R) \) for each \(\tau \leq t - 1 \) (or \((\tilde{\omega}_{i,t}(a^t), \tilde{\omega}_{j,t}(a^t)) \) = \((R, R) \) for some \(\tau \leq t - 1 \), respectively), we have that

Supplementary Material

Bounding equilibrium payoffs 5
1. for each \(h_i^t\) with \(\tilde{\omega}_{i,t}(a^t) = R\) and \((\tilde{\omega}_{i,t}(a^\tau), \tilde{\omega}_{j,t}(a^\tau)) = (R, R)\) for each \(\tau \leq t - 1\),

\[
\mathbb{E}^{\mu^*}
\left[
(1 - \delta)
\sum_{\tau = t + 1}^{\infty}
\delta^{t - \tau - 1} u_i(r_{i,\tau}, a_{j,\tau})
\mid h_i^t, a_{i,t} = r_{i,t}
\right]
\]

\[
- \mathbb{E}^{\mu}
\left[
(1 - \delta)
\sum_{\tau = t + 1}^{\infty}
\delta^{t - \tau - 1} u_i(r_{i,\tau}, a_{j,\tau})
\mid r_i^t, a^t, r_{i,t}
\right]
\]

is small for small \(p_{\tau}\) with \(\tau \geq t + 1\); and

2. for each \(h_i^t\) with \(\tilde{\omega}_{i,t}(a^t) = R\) and \((\tilde{\omega}_{i,t}(a^\tau), \tilde{\omega}_{j,t}(a^\tau)) \neq (R, R)\) for some \(\tau \leq t - 1\),

\[
\mathbb{E}^{\mu^*}
\left[
(1 - \delta)
\sum_{\tau = t + 1}^{\infty}
\delta^{t - \tau - 1} u_i(r_{i,\tau}, a_{j,\tau})
\mid h_i^t, a_{i,t} = r_{i,t}
\right]
\]

\[
- \mathbb{E}^{\mu_{\tilde{\alpha}}}
\left[
(1 - \delta)
\sum_{\tau = t + 1}^{\infty}
\delta^{t - \tau - 1} u_i(r_{i,\tau}, a_{j,\tau})
\mid r_i^t, a^t, r_{i,t}
\right]
\]

is small for small \(p_{\tau}\) with \(\tau \geq t + 1\).

Hence, \((S1)\) and \((S2)\) (and the same inequalities with \(\mu^*\) replaced with \(\mu_{\tilde{\alpha}}\)) imply that, there exists \(\bar{p}_t > 0\) such that, if \(p_{\tau} \leq \bar{p}_t\) for each \(\tau \geq t\), then the claims of the lemma hold. Hence, if we take \(p_t = \min_{\tau \leq t} \bar{p}_\tau\), then the claims hold. \(\square\)

We fix \(\{p_t\}_{t=1}^{\infty}\) so that Lemma S1 holds. This fully pins down \(\mu^*\) with mediated perfect monitoring.

Construction with perfect monitoring with cheap talk

Given \(\mu^*\) with mediated perfect monitoring, we define the equilibrium strategy with perfect monitoring with cheap talk such that the equilibrium action distribution is the same as \(\mu^*\). We must pin down the following four objects: at the beginning of the game, what message \(m_{1,1}\) player \(i\) receives from the mediator; what message \(m_{1,2}\) player \(i\) sends at the beginning of period \(t\); what action \(a_{i,t}\) player \(i\) takes in period \(t\); and what message \(m_{2,2}\) player \(i\) sends at the end of period \(t\).

Intuitive argument As in \(\mu^*\), at the beginning of the game, for each \(i, t, a^t\), the mediator draws \(r_{i,t}^{\text{punish}}(a^t)\) according to \(a_t^{\text{at}}\). In addition, with \(p_t > 0\) pinned down in Lemma S1, she draws \(\omega_t \in \{R, P\}^2\) and \(r_t(a^t)\) as in \(\mu^*\) for each \(t\) and \(a^t\). She then defines \(\tilde{\omega}_t(a^t)\) from \(a^t, r_t(a^t)\), and \(\omega_t\) as in \(\mu^*\).

Intuitively, the mediator sends all the information about

\[
((\tilde{\omega}_t(a^t), r_t(a^t), r_{1,t}^{\text{punish}}(a^t), r_{2,t}^{\text{punish}}(a^t)), \omega_t | a_t \in A^{t-1})_{t=1}^{\infty}
\]

through the initial messages \((m_{1,1}^{\text{mediator}}, m_{2,1}^{\text{mediator}})\). In particular, the mediator directly sends \((r_{1,t}^{\text{punish}}(a^t))_{a^t \in A^{t-1}}^{\infty}\) to player \(i\) as a part of \(m_{1,1}^{\text{mediator}}\). Hence, we focus on how
we replicate the role of the mediator in μ^* of sending $(\tilde{\omega}_t(a'), r_t(a'))$ in each period, depending on realized history a'.

The key features to establish are (i) player i does not know the instructions for the other player, (ii) before player i reaches period t, player i does not know her own recommendations for periods $\tau \geq t$ (otherwise, player i would obtain more information than the original equilibrium μ^* and thus might want to deviate), and (iii) no player wants to deviate (in particular, if player i deviates in actions or cheap talk, then the strategy of player j is as if the state were $\tilde{\omega}_{j, t} = P$ in μ^*, for a sufficiently long time with a sufficiently high probability).

The properties (i) and (ii) are achieved by the same mechanism as in Theorem 9 of Heller et al. (2012, henceforth HST). In particular, without loss, let $A_t = \{1, \ldots, n_i\}$ be player i’s action set. We can view $r_{i,t}(a')$ as an element of $\{1, \ldots, n_i\}$. The mediator at the beginning of the game draws $r_t(a')$ for each a'.

Instead of sending $r_{i,t}(a')$ directly to player i, the mediator encodes $r_{i,t}(a')$ as follows: For a sufficiently large $N^t \in \mathbb{Z}$ to be determined, we define $p^t = N^t n_i n_j$. This p^t corresponds to p_b in HST. Let $\mathbb{Z}_{p^t} \equiv \{1, \ldots, p^t\}$. The mediator draws $x_{i,t}(a')$ uniformly and independently from \mathbb{Z}_{p^t} for each i, t, and a'. Given them, she defines

$$y_{i,t}(a') \equiv x_{i,t}(a') + r_{i,t}(a') \mod n_i.$$

(S5)

Intuitively, $y_{i,t}(a')$ is the “encoded instruction” of $r_{i,t}(a')$, and to obtain $r_{i,t}(a')$ from $y_{i,t}(a')$, player i needs to know $x_{i,t}(a')$. The mediator gives $((y_{i,t}(a'))_{a' \in A^t})_t \to \infty$ player i as a part of m^mediator_i. At the same time, she gives $((x_{i,t}(a'))_{a' \in A^t})_t \to \infty$ player j as a part of m^mediator_j. At the beginning of period t, player j sends $x_{i,t}(a')$ by cheap talk as a part of m^mediator_{ij}. Based on the realized action a', so that player i does not know $r_{i,t}(a')$ until period t. (Throughout the proof, the superscript of a variable represents who is informed about the variable, and the subscript represents whose recommendation the variable is about.)

To incentivize player j to tell the truth, the equilibrium should embed a mechanism that punishes player i if she tells a lie. In HST, this is done as follows: The mediator draws $\alpha_{i,t}(a')$ and $\beta_{i,t}(a')$ uniformly and independently from \mathbb{Z}_{p^t}, and defines

$$u_{i,t}(a') \equiv \alpha_{i,t}(a') \times x_{i,t}(a') + \beta_{i,t}(a') \mod p^t.$$

(S6)

The mediator gives $x_{i,t}(a')$ and $u_{i,t}(a')$ to player j while she gives $\alpha_{i,t}(a')$ and $\beta_{i,t}(a')$ to player i. In period t, player j is supposed to send $x_{i,t}(a')$ and $u_{i,t}(a')$ to player i. If player i receives $x_{i,t}(a')$ and $u_{i,t}(a')$ with

$$u_{i,t}(a') \neq \alpha_{i,t}(a') \times x_{i,t}(a') + \beta_{i,t}(a') \mod p^t,$$

(S7)

then player i interprets that player j has deviated. For sufficiently large N^t, since player j does not know $\alpha_{i,t}(a')$ and $\beta_{i,t}(a')$, if player j tells a lie about $x_{i,t}(a')$, then with a high probability, player j creates a situation where (S7) holds.
Since HST considers Nash equilibrium, they let player \(i \) minimax player \(j \) forever after (S7) holds. However, since we consider sequential equilibrium, as in the proof of Lemma 2, we will create a coordination mechanism such that, if player \(j \) tells a lie, then with high probability player \(i \) minimaxes player \(j \) for a long time and player \(i \) assigns probability 0 to the event that player \(i \) punishes player \(j \).

To this end, we consider the following coordination: First, if and only if \(\bar{\omega}_{i,t}(a') = R \), the mediator defines \(u^i_{t,t}(a') \) as (S6). Otherwise, \(u^i_{t,t}(a') \) is randomly drawn. That is,

\[
\begin{align*}
 u^i_{t,t}(a') & = \begin{cases}
 \alpha^i_{t,t}(a') \times x^i_{t,t}(a') + \beta^i_{t,t}(a') \pmod{p'} & \text{if } \bar{\omega}_{i,t}(a') = R, \\
 \text{uniformly distributed over } \mathbb{Z}_{p'} & \text{if } \bar{\omega}_{i,t}(a') = P.
\end{cases} \tag{S8}
\end{align*}
\]

Since both \(\bar{\omega}_{i,t}(a') = R \) and \(\bar{\omega}_{i,t}(a') = P \) happen with a positive probability, player \(i \) after receiving \(u^i_{t,t}(a') \) with \(u^i_{t,t}(a') \neq \bar{\omega}_{i,t}(a') \times x^i_{t,t}(a') + \beta^i_{t,t}(a') \pmod{p'} \) interprets that \(\bar{\omega}_{i,t}(a') = P \). For notational convenience, let \(\bar{\omega}_{i,t}(a') \in \{ R, P \} \) be player \(i \)'s interpretation of \(\bar{\omega}_{i,t}(a') \). After \(\bar{\omega}_{i,t}(a') = P \), she takes period-\(t \) action according to \(r^\text{punish}_{i,t}(a') \). Given this inference, if player \(j \) tells a lie about \(u^i_{t,t}(a') \) with \(\bar{\omega}_{i,t}(a') = R \), then with a high probability, she induces a situation with \(u^i_{t,t}(a') \neq \bar{\omega}_{i,t}(a') \times x^i_{t,t}(a') + \beta^i_{t,t}(a') \pmod{p'} \), and player \(i \) punishes player \(j \) in period \(t \) (without noticing player \(j \)'s deviation).

Second, switching to \(r^\text{punish}_{i,t}(a') \) for period \(t \) only may not suffice if player \(j \) believes that player \(i \)'s action distribution given \(\bar{\omega}_{i,t}(a') = R \) is close to the minimax strategy. Hence, we ensure that once player \(j \) deviates, player \(i \) takes \(r^\text{punish}_{i,t}(a') \) for a sufficiently long time.

To this end, we change the mechanism so that player \(j \) does not always know \(u^i_{t,t}(a') \). Instead, the mediator draws \(p' \) independent random variables \(\nu^j_{i,t}(n, a') \) with \(n = 1, \ldots, p' \) uniformly from \(\mathbb{Z}_{p'} \). In addition, she draws \(n^i_{t,t}(a') \) uniformly from \(\mathbb{Z}_{p'} \). The mediator defines \(u^i_{t,t}(n, a') \) for each \(n = 1, \ldots, p' \) as

\[
 u^i_{t,t}(n, a') = \begin{cases}
 u^i_{t,t}(a') & \text{if } n = n^i_{t,t}(a'), \\
 u^i_{t,t}(n, a') & \text{if otherwise},
\end{cases}
\]

that is, \(u^i_{t,t}(n, a') \) corresponds to \(u^i_{t,t}(a') \) with (S8) only if \(n = n^i_{t,t}(a') \). For other \(n \), \(u^i_{t,t}(n, a') \) is completely random.

The mediator sends \(n^i_{t,t}(a') \) to player \(i \), and sends \(\{ u^i_{t,t}(n, a') \}_{n \in \mathbb{Z}_{p'}} \) to player \(j \). In addition, the mediator sends \(n^i_{t,t}(a') \) to player \(j \), where

\[
 n^i_{t,t}(a') = \begin{cases}
 n^i_{t,t}(a') & \text{if } \omega_{i,t-1}(a'^{-1}) = P, \\
 \text{uniformly distributed over } \mathbb{Z}_{p'} & \text{if } \omega_{i,t-1}(a'^{-1}) = R
\end{cases}
\]

is equal to \(n^i_{t,t}(a') \) if and only if last-period \(\omega_{i,t-1}(a'^{-1}) \) is equal to \(P \).
Supplementary Material

Bounding equilibrium payoffs

9

In period t, player j is asked to send $x_{i,t}^j(a^t)$ and $u_{i,t}^j(n, a^t)$ with $n = n_{i,t}^j(a^t)$, that is, send $x_{i,t}^j(a^t)$ and $u_{i,t}^j(a^t)$. If and only if player j’s messages $\hat{x}_{i,t}^j(a^t)$ and $\hat{u}_{i,t}^j(a^t)$ satisfy
\[\hat{u}_{i,t}^j(a^t) = \alpha_{i,t}^j(a^t) \times \hat{x}_{i,t}^j(a^t) + \beta_{i,t}^j(a^t) \pmod{p^t}, \]
player i interprets $\hat{\omega}_{i,t}(a^t) = R$. If player i has $\hat{\omega}_{i,t}(a^t) = R$, then player i knows that player j needs to know $n_{i,t+1}^j(a^{t+1})$ to send the correct $u_{i,t+1}^j(n, a^{t+1})$ in the next period. Hence, she sends $n_{i,t+1}^j(a^{t+1})$ to player j. If player i has $\hat{\omega}_{i,t}(a^t) = P$, then she believes that player j knows $n_{i,t+1}^j(a^{t+1})$ and does not send $n_{i,t+1}^j(a^{t+1})$.

Given this coordination, once player j creates a situation with $\hat{\omega}_{i,t}(a^t) = R$ but $\hat{\omega}_{i,t}(a^t) = P$, then player j cannot receive $n_{i,t+1}^j(a^{t+1})$. Without knowing $n_{i,t+1}^j(a^{t+1})$, with a large N^t, with a high probability, player j cannot know which $u_{i,t+1}^j(n, a^{t+1})$ she should send. Then, again, she will create a situation with
\[\hat{u}_{i,t+1}^j(a^{t+1}) \neq \alpha_{i,t+1}^j(a^{t+1}) \times \hat{x}_{i,t+1}^j(a^{t+1}) + \beta_{i,t+1}^j(a^{t+1}) \pmod{p^{t+1}}, \]
that is, $\hat{\omega}_{i,t+1}(a^{t+1}) = P$. Recursively, player i has $\hat{\omega}_{i,\tau}(a^{\tau}) = P$ for a long time with a high probability if player j tells a lie.

Finally, if player j takes a deviant action in period t, then the mediator has drawn $\hat{\omega}_{i,\tau}(a^{\tau}) = P$ for each $\tau \geq t$ for a^{τ} corresponding to the realized history. With $\hat{\omega}_{i,\tau}(a^{\tau}) = P$, so as to avoid $\hat{\omega}_{i,\tau}(a^{\tau}) = P$, player j needs to create a situation
\[\hat{u}_{i,\tau}^j(a^{\tau}) = \alpha_{i,\tau}^j(a^{\tau}) \times \hat{x}_{i,\tau}^j(a^{\tau}) + \beta_{i,\tau}^j(a^{\tau}) \pmod{p^{\tau}} \]
without knowing $\alpha_{i,\tau}^j(a^{\tau})$ and $\beta_{i,\tau}^j(a^{\tau})$ while the mediator’s message does not tell her what is $\alpha_{i,\tau}^j(a^{\tau}) \times x_{i,\tau}^j(a^{\tau}) + \beta_{i,\tau}^j(a^{\tau}) \pmod{p^{\tau}}$ by (S8). Hence, for sufficiently large N^τ, player j cannot avoid $\hat{\omega}_{i,\tau}(a^{\tau}) = P$ with a nonnegligible probability. Hence, player j will be minmaxed from the next period with a high probability.

The above argument in total shows that if player j deviates, whether in communication or action, then she will be minmaxed for a sufficiently long time. Lemma S1 ensures that player j does not want to tell a lie or take a deviant action.

Formal construction Let us formalize the above construction: As in μ^*, at the beginning of the game, for each i, t, and a^t, the mediator draws $r_{i,t}^{\text{punish}}(a^t)$ according to $\alpha_{i,t}^{\varepsilon(t)}$; then she draws $\omega_t \in \{R, P\}^2$ and $r_t(a^t)$ for each t and a^t; and then she defines $\hat{\omega}_t(a^t)$ from a^t, $r_t(a^t)$, and ω_t as in μ^*. For each t and a^t, she draws $x_{i,t}^j(a^t)$ uniformly and independently from \mathbb{Z}_{p^t}. Given them, she defines
\[y_{i,t}^j(a^t) \equiv x_{i,t}^j(a^t) + r_{i,t}(a^t) \pmod{n_t}, \]
so that (S5) holds.

The mediator draws $\alpha_{i,t}^j(a^t)$, $\beta_{i,t}^j(a^t)$, $\hat{\alpha}_{i,t}^j(a^t)$, $\hat{\beta}_{i,t}^j(a^t)$, $v_{i,t}^j(n, a^t)$ for each $n \in \mathbb{Z}_{p^t}$, $n_{i,t}^j(a^t)$, and $\hat{n}_{i,t}^j(a^t)$ from the uniform distribution over \mathbb{Z}_{p^t} independently for each player i, each period t, and each a^t.
As in (S8), the mediator defines

$$u^j_{i,t}(a^t) = \begin{cases}
\alpha^j_{i,t}(a^t) \times x^j_{i,t}(a^t) + \beta^j_{i,t}(a^t) \pmod{p^t} & \text{if } \bar{\omega}_{i,t}(a^t) = R, \\
\bar{u}^j_{i,t}(a^t) & \text{if } \bar{\omega}_{i,t}(a^t) = P.
\end{cases}$$

In addition, the mediator defines

$$u^j_{i,t}(n, a^t) = \begin{cases}
u^j_{i,t}(a^t) & \text{if } n = n^j_{i,t}(a^t), \\
u^j_{i,t}(n, a^t) & \text{if otherwise}
\end{cases}$$

and

$$n^j_{i,t}(a^t) = \begin{cases} n^j_{i,t}(a^t) & \text{if } t = 1 \text{ or } \omega_{i,t-1}(a^{t-1}) = P, \\
\bar{n}^j_{i,t}(a^t) & \text{if } t \neq 1 \text{ and } \omega_{i,t-1}(a^{t-1}) = R,
\end{cases}$$

as explained above.

Let us now define the equilibrium:

(i) At the beginning of the game, the mediator sends

$$m^\text{mediator}_i \equiv \begin{pmatrix}
y^j_{i,t}(a^t), \alpha^j_{i,t}(a^t), \beta^j_{i,t}(a^t), r^\text{punish}_{i,t}(a^t),
n^j_{i,t}(a^t), n^j_{j,t}(a^t), (u^j_{i,t}(n, a^t))_{n \in \mathbb{Z}_{p^t}}, x^j_{i,t}(a^t)
\end{pmatrix}_{a^t \in A^{t-1}}$$

to each player i.

(ii) In each period t, the stage game proceeds as follows: In equilibrium,

$$m^\text{1st}_{j,t} = \begin{cases}
u^j_{i,t}(m^\text{2nd}_{j,t-1}(a^t), x^j_{i,t}(a^t)) & \text{if } t \neq 1 \text{ and } m^\text{2nd}_{j,t-1} \neq \{\text{babble}\}, \\
u^j_{i,t}(n^j_{j,t}(a^t), a^t), x^j_{i,t}(a^t) & \text{if } t = 1 \text{ or } m^\text{2nd}_{j,t-1} = \{\text{babble}\}
\end{cases}$$

and

$$m^\text{2nd}_{j,t} = \begin{cases} n^j_{j,t+1}(a^{t+1}) & \text{if } \bar{\omega}_{j,t}(a^t) = R, \\
\{\text{babble}\} & \text{if } \bar{\omega}_{j,t}(a^t) = P.
\end{cases}$$

Note that, since $m^\text{2nd}_{j,t}$ is sent at the end of period t, the players know $a^{t+1} = (a_1, \ldots, a_t)$.

(a) Given player i’s history $(m^\text{mediator}_i, m^\text{1st}_1, a_1, m^\text{2nd}_{t-1}, a_{t-1})$, each player i sends the first message $m^\text{1st}_{i,t}$ simultaneously. If player i herself has not yet deviated, then

$$m^\text{1st}_{i,t} = \begin{cases}
u^j_{i,t}(m^\text{2nd}_{j,t-1}(a^t), x^j_{i,t}(a^t)) & \text{if } t \neq 1 \text{ and } m^\text{2nd}_{j,t-1} \neq \{\text{babble}\}, \\
u^j_{i,t}(n^j_{j,t}(a^t), a^t), x^j_{i,t}(a^t) & \text{if } t = 1 \text{ or } m^\text{2nd}_{j,t-1} = \{\text{babble}\}.
\end{cases}$$

Let $m^\text{1st}_{i,t}(u)$ be the first element of $m^\text{1st}_{i,t}$ (that is, either $u^j_{i,t}(m^\text{2nd}_{j,t-1}(a^t))$ or $u^j_{i,t}(n^j_{j,t}(a^t), a^t)$ on equilibrium), and let $m^\text{1st}_{i,t}(x)$ be the second element $(x^j_{i,t}(a^t)$ on equilibrium). As a result, the profile of the messages $m^\text{1st}_{i,t}$ becomes common knowledge.
If
\[m^1_{i,t}(u) \neq \alpha^i_{i,t}(a^i) \times m^1_{j,t}(x) + \beta^i_{i,t}(a^i) \pmod{p^t}, \] (S10)
then player \(i \) interprets \(\hat{\omega}_{i,t}(a^i) = P \). Otherwise, \(\hat{\omega}_{i,t}(a^i) = R \).

(b) Given player \(i \)'s history \((m^1_{i,1}, m^1_{i,2}, m^1_{i,3}, \ldots, m^1_{i,t})\), each player \(i \) takes action \(a_{i,t} \) simultaneously. If player \(i \) herself has not yet deviated, then player \(i \) takes \(a_{i,t} = r_{i,t} \) with
\[
r_{i,t} = \begin{cases}
 y^i_{i,t}(a^i) - m^1_{j,t}(x) \pmod{n_i} & \text{if } \hat{\omega}_{i,t}(a^i) = R, \\
 r^\text{punish}_{i,t}(a^i) & \text{if } \hat{\omega}_{i,t}(a^i) = P.
\end{cases} \quad \text{(S11)}
\]

Recall that \(y^i_{i,t}(a^i) \equiv x^i_{i,t}(a^i) + r_{i,t}(a^i) \pmod{n_i} \) by (S5). By (S9), therefore, player \(i \) takes \(r^\text{punish}_{i,t}(a^i) \) if \(\hat{\omega}_{i,t}(a^i) = R \) and \(r^\text{punish}_{i,t}(a^i) \) if \(\hat{\omega}_{i,t}(a^i) = P \) on the equilibrium path, as in \(\mu^* \).

(c) Given player \(i \)'s history \((m^1_{i,1}, m^1_{i,2}, m^1_{i,3}, \ldots, m^1_{i,t}, a_t)\), each player \(i \) sends the second message \(m^2_{i,t} \) simultaneously. If player \(i \) herself has not yet deviated, then
\[
m^2_{i,t} = \begin{cases}
 n^2_{i,t+1}(a^i + 1) & \text{if } \hat{\omega}_{i,t}(a^i) = R, \\
 \{\text{babble}\} & \text{if } \hat{\omega}_{i,t}(a^i) = P.
\end{cases}
\]

As a result, the profile of the messages \(m^2_{i,t} \) becomes common knowledge. Note that \(\hat{\omega}_{i,t}(a^i) \) becomes common knowledge as well on equilibrium path.

Incentive compatibility

The above equilibrium has full support: Since \(\hat{\omega}_i(a^i) \) and \(r_i(a^i) \) have full support, \((m^1_{i,1}, m^2_{i,1}, a_t, m^2_{i,2}, \ldots)\) have full support as well. Hence, we are left to verify player \(i \)'s incentive not to deviate from the equilibrium strategy, given that player \(i \) believes that player \(j \) has not yet deviated after any history of player \(i \).

Suppose that player \(i \) followed the equilibrium strategy until the end of period \(t - 1 \). First, consider player \(i \)'s incentive to tell the truth about \(m^1_{i,t-1} \). In equilibrium, player \(i \) sends
\[m^1_{i,t-1} = \begin{cases}
 u^1_{i,t}(m^2_{i,t-1}, a^i), x^i_{i,t}(a^i) & \text{if } m^2_{i,t-1} \neq \{\text{babble}\}, \\
 u^1_{i,t}(n^j_{i,t}(a^j), a^i), x^i_{i,t}(a^i) & \text{if } m^2_{i,t-1} = \{\text{babble}\}.
\end{cases} \]

The random variables possessed by player \(i \) are independent of those possessed by player \(j \) given \((m^1_{i,1}, a_t, m^2_{i,2}, \ldots)\), except that (i) \(u^1_{i,t}(a^i) = \alpha^i_{i,t}(a^i) \times x^i_{i,t}(a^i) + \beta^i_{i,t}(a^i) \pmod{p^t} \) if \(\hat{\omega}_{i,t}(a^i) = R \), (ii) \(u^1_{i,t}(a^i) = \alpha^j_{i,t}(a^j) \times x^i_{i,t}(a^i) + \beta^j_{i,t}(a^i) \pmod{p^t} \) if \(\hat{\omega}_{i,t}(a^i) = R \), (iii) \(n^j_{i,t}(a^i) = n^j_{i,t}(a^i) \) if \(\omega_{i,t-1}(a^{i-1}) = P \) while \(n^j_{i,t}(a^i) \) if \(\omega_{i,t-1}(a^{i-1}) = R \), and (iv) \(n^j_{i,t}(a^i) = n^j_{i,t}(a^i) \) if \(\omega_{j,t-1}(a^{j-1}) = P \) while \(n^j_{i,t}(a^i) \) if \(\omega_{j,t-1}(a^{j-1}) = R \).
Since \(\alpha^j_i(a') \), \(\beta^j_i(a') \), \(\bar{u}^j_i(a') \), \(v^j_i(n, a') \), \(m^j_{i,t}(a') \), and \(n^j_{i,t}(a') \) are uniform and independent, player \(i \) cannot learn \(\hat{\bar{\omega}}_{i,t}(a') \), \(r_i(a^\tau) \), or \(r_j(a^\tau) \) with \(\tau \geq t \). Hence, player \(i \) believes at the time when she sends \(m^1_{i,t} \) that her equilibrium value is equal to

\[
(1 - \delta) \mathbb{E}^\mu^*[u_i(a_i) \mid h^j_i] + \delta \mathbb{E}^\mu^* \left[(1 - \delta) \sum_{\tau=t+1}^\infty \delta^{\tau-t-1} u_i(a_t) \mid h^j_i \right],
\]

where \(h^j_i \) is as if player \(i \) observed \((r^\text{punish}_{i,t}(a'))_{a' \in A^t}^{\infty}, a', (\hat{\omega}_\tau(a^\tau))_{\tau = 1}^{\tau-1}, \) and \(r_{i,t}(a') \), and believed that \(r_\tau(a^\tau) = a_\tau \) for each \(\tau = 1, \ldots, t - 1 \) with \(\mu^* \) with mediated perfect monitoring.

Alternatively, for each \(\epsilon > 0 \), for a sufficiently large \(N^t \), if player \(i \) tells a lie in at least one element \(m^1_{i,t} \), then with probability \(1 - \epsilon \), player \(i \) creates a situation

\[
m^1_{i,t}(u) \neq \alpha^j_{i,t}(a') \times m^1_{i,t}(x) + \beta^j_{i,t}(a') \mod p^t.
\]

Hence, \(\text{(S10)} \) (with indices \(i \) and \(j \) reversed) implies that \(\hat{\omega}_{i,t}(a') = P \).

Moreover, if player \(i \) creates a situation with \(\hat{\omega}_{j,t}(a') = P \), then player \(j \) will send \(m^2_{j,t} = \{\text{babble}\} \) instead of \(n^j_{j,t+1}(a^{t+1}) \). Unless \(\hat{\omega}_{j,t}(a') = P \), since \(n^j_{j,t+1}(a^{t+1}) \) is independent of player \(i \)'s variables, player \(j \) believes that \(n^j_{j,t+1}(a^{t+1}) \) is distributed uniformly over \(\mathbb{Z}_{\mu^t+1} \). Hence, for each \(\epsilon > 0 \), for sufficiently large \(N^t \), if \(\hat{\omega}_{j,t}(a') = R, \) then player \(i \) will send \(m^1_{i,t+1} \) with

\[
m^1_{i,t+1}(u) \neq \alpha^j_{i,t+1}(a^{t+1}) \times m^1_{i,t+1}(x) + \beta^j_{i,t+1}(a^{t+1}) \mod p^{t+1}
\]

with probability \(1 - \epsilon \). Then, by \(\text{(S10)} \) (with indices \(i \) and \(j \) reversed), player \(j \) will have \(\hat{\omega}_{j,t+1}(a^{t+1}) = P \).

Recursively, if \(\hat{\omega}_{j,t}(a^\tau) = R, \) for each \(\tau = t, \ldots, t + T - 1 \), then player \(i \) will induce \(\hat{\omega}_{j,\tau}(a^\tau) = P \) for each \(\tau = t, \ldots, t + T - 1 \) with a high probability. Hence, for \(\epsilon_t > 0 \) and \(T \) fixed in \(\text{(S1)} \) and \(\text{(S2)} \), for sufficiently large \(N^t \), if \(N^\tau \geq N^t \) for each \(\tau \geq t \), then player \(i \) will be punished for the subsequent \(T \) periods regardless of player \(i \)'s continuation strategy with probability no less than \(1 - \epsilon_t - \sum_{\tau=t}^{t+T-1} p_\tau \). \(\sum_{\tau=t}^{t+T-1} p_\tau \) represents the maximum probability of having \(\hat{\omega}_{i,t}(a^\tau) = P \) for some \(\tau \) for subsequent \(T \) periods.) Equation \(\text{(S4)} \) implies that telling a lie gives a strictly lower payoff than the equilibrium payoff. Therefore, it is optimal to tell the truth about \(m^1_{i,t} \). In \(\text{(S4)} \), we have shown interim incentive compatibility after knowing \(\hat{\bar{\omega}}_{i,t}(a^\tau) \) and \(r_{i,t} \), while here we consider \(h^j_i \) before \(\hat{\bar{\omega}}_{i,t}(a^\tau) \) and \(r_{i,t} \). Taking the expectation with respect to \(\hat{\bar{\omega}}_{i,t}(a^\tau) \) and \(r_{i,t}, \) \(\text{(S4)} \) ensures incentive compatibility before knowing \(\hat{\bar{\omega}}_{i,t}(a^\tau) \) and \(r_{i,t} \).

Second, consider player \(i \)'s incentive to take the action \(a_{i,t} = r_{i,t} \) according to \(\text{(S11)} \) if player \(i \) follows the equilibrium strategy until she sends \(m^1_{i,t} \). If she follows the equilibrium strategy, then player \(i \) believes at the time when she takes an action that her equilibrium value is equal to

\[
(1 - \delta) \mathbb{E}^\mu^*[u_i(a_t) \mid h^j_i] + \delta \mathbb{E}^\mu^* \left[(1 - \delta) \sum_{\tau=t+1}^\infty \delta^{\tau-t-1} u_i(a_t) \mid h^j_i \right],
\]
where h_t^i is as if player i observed $(r_t^{\text{punish}}(a^t))_{a^t \in A^t-1}^{t=1} a^t$, $(\tilde{w}_t(\pi_t^i(t)))_{t=1}^{\infty}$, \(\tilde{w}_{i,t}(a^t)\), and $r_{i,t}$, and believed that $r_t(\pi_t^i) = a_r$ for each $\tau = 1, \ldots, t-1$ with μ^* with mediated perfect monitoring. (Compared to the time when player i sends $m_{i,t}^{1\text{st}}$, player i now knows $\tilde{w}_{i,t}(a^t)$ and $r_{i,t}$ on the equilibrium path.)

If player i deviates from $a_{i,t}$, then $\tilde{w}_{i,t}(a^t) = P$ by definition for each $\tau \geq t+1$ and a^t that is compatible with a^t (that is, $a^t = (a^t, a_t, \ldots, a_{t-1})$ for some a_t, \ldots, a_{t-1}). To avoid being minmaxed in period τ, player i needs to induce $\tilde{w}_{i,t}(a^t) = R$ although $\tilde{w}_{i,t}(a^t) = P$. Given $\tilde{w}_{i,t}(a^t) = P$, since $a_{t,t}(a^t)$, $\beta_{t,t}(a^t)$, $\tilde{u}_{t,t}(a^t)$, $\nu_{t,t}(n,a^t)$ $n_{t,t}(a^t)$, and $\tilde{n}_{t,t}(a^t)$ are uniform and independent (conditional on the other variables), regardless of player i’s continuation strategy, by (S10) (with indices i and j reversed), player i will send $m_{i,t}^{1\text{st}}$ with

\[
m_{i,t}^{1\text{st}}(u) \neq \alpha_{i,t}^j(a^t) \times m_{i,t}^{1\text{st}}(x) + \beta_{i,t}^j(a^t) \pmod{p^r}
\]

with a high probability.

Hence, for sufficiently large \tilde{N}, if $N^t \geq \tilde{N}$ for each $\tau \geq t$, then player i will be punished for the next T_i periods regardless of player i’s continuation strategy with probability no less than $1 - \epsilon_i$. By (S3), deviating from $r_{i,t}$ gives a strictly lower payoff than her equilibrium payoff. Therefore, it is optimal to take $a_{i,t} = r_{i,t}$.

Finally, consider player i’s incentive to tell the truth about $m_{i,t}^{2\text{nd}}$. Regardless of $m_{i,t}^{2\text{nd}}$, player j’s actions do not change. Hence, we are left to show that telling a lie does not improve player i’s deviation gain by giving player i more information.

On the equilibrium path, player i knows $\tilde{w}_{i,t}(a^t)$. If player i tells the truth, then $m_{i,t}^{2\text{nd}} = n_{i,t+1}(a^t+1) \neq \text{(babble)}$ if and only if $\tilde{w}_{i,t}(a^t) = R$. Moreover, player j sends

\[
m_{j,t+1}^{1\text{st}} = \begin{cases} u_{j,t+1}(m_{i,t}^{2\text{nd}}, a^t+1), x_{j,t+1}^i(a^t+1) & \text{if } \tilde{w}_{i,t}(a^t) = R, \\ u_{j,t+1}(n_{i,t+1}(a^t+1), a^t+1), x_{j,t+1}^i(a^t+1) & \text{if } \tilde{w}_{i,t}(a^t) = P. \end{cases}
\]

Since $n_{j,t+1}^i(a^t+1) = n_{i,t+1}^j(a^t+1)$ if $\tilde{w}_{i,t}(a^t) = P$, in total, if player i tells the truth, then player i knows $u_{j,t+1}(m_{i,t}^{2\text{nd}}(a^t+1), a^t+1)$ and $x_{j,t+1}^i(a^t+1)$. This is sufficient information to infer $\tilde{w}_{i,t+1}(a^t+1)$ and $r_{i,t+1}(a^t+1)$ correctly.

If she tells a lie, then player j’s messages are changed to

\[
m_{j,t+1}^{1\text{st}} = \begin{cases} u_{j,t+1}(m_{i,t}^{2\text{nd}}, a^t+1), x_{j,t+1}^i(a^t+1) & \text{if } m_{i,t}^{2\text{nd}} \neq \text{(babble)}, \\ u_{j,t+1}(n_{i,t+1}(a^t+1), a^t+1), x_{j,t+1}^i(a^t+1) & \text{if } m_{i,t}^{2\text{nd}} = \text{(babble)}. \end{cases}
\]

Since $\alpha_{i,t+1}(a^t+1)$, $\beta_{i,t+1}(a^t+1)$, $\tilde{u}_{i,t+1}(a^t+1)$, $\nu_{i,t+1}(n,a^t+1)$ $n_{i,t+1}(a^t+1)$, and $\tilde{n}_{i,t+1}(a^t+1)$ are uniform and independent conditional on $\tilde{w}_{i,t+1}(a^t+1)$ and $r_{i,t+1}(a^t+1)$, $u_{i,t+1}(n,a^t+1)$ and $x_{j,t+1}^i(a^t+1)$ are not informative about player j’s recommendation from period $t + 1$ on or player i’s recommendation from period $t + 2$ on, given that player i knows $\tilde{w}_{i,t+1}(a^t+1)$ and $r_{i,t+1}(a^t+1)$. Since telling the truth informs player i of $\tilde{w}_{i,t+1}(a^t+1)$ and $r_{i,t+1}(a^t+1)$, there is no gain from telling a lie.

Co-editor George J. Mailath handled this manuscript.

Manuscript received 26 August, 2015; final version accepted 25 April, 2016; available online 25 April, 2016.