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PROOF OF PROPOSITION 2

We prove that E, (8, p) = Emed(6). In our construction, players ignore private signals
¥i: observed in periods t =1, 2, .... That is, only signal y; o observed in period 0 is used.
Hence we can see p as an ex ante correlation device. Since we consider two-player
games, whenever we say players i and j, we assume that they are different players: i # j.

The structure of the proof is as follows: take any strategy of the mediator, 4, that
satisfies inequality (3) in the text (perfect monitoring incentive compatibility), and let
v be the value when the players follow . Since each ¥ € E},¢q(8) has a corresponding
£ that satisfies perfect monitoring incentive compatibility, it suffices to show that, for
each ¢ > 0, there exists a sequential equilibrium whose equilibrium payoff v satisfies
lv— 3|l < & in the following environment:

(i) Atthe beginning of the game, each player i receives a message m?lediator from the
mediator.

(ii) Ineach period ¢, the stage game proceeds as follows:

(@) Given player i’s history (mmediator (mlst g, pm2nd)—t

first message m}s;t simultaneously.

), each player i sends the

t—1

L1, mY, each player i

(b) Given player i’s history (m?‘ediator, (mlst, a,, m2nd)
takes action a; ; simultaneously.

(c) Given player i’s history (m?‘ediator, (mIst, a,, m&d)ZL oy lst

T=1>"""1
sends the second message m%‘tld simultaneously.

,a;), each player i

We call this environment perfect monitoring with cheap talk.
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To this end, from p, we first create a strict full-support equilibrium p with mediated
perfect monitoring that yields payoffs close to v. We then move from u to a similar equi-
librium p*, which will be easier to transform into an equilibrium with perfect monitor-
ing with cheap talk. Finally, from u*, we create an equilibrium with perfect monitoring
with cheap talk with the same on-path action distribution.

Construction and properties of i

In this subsection, we consider mediated perfect monitoring throughout. Since W* # @,
by Lemma 2 in the main text, there exists a strict full-support equilibrium w5t with me-
diated perfect monitoring. As in the proof of that lemma, consider the following strategy
of the mediator: In period 1, the mediator draws one of two states, Ry and Rperturb, With
probabilities 1 — n and 7, respectively. In state Ry, the mediator’s recommendation is
determined as follows: If no player has deviated up to period ¢, the mediator recom-
mends r; according to a(hl,); if only player i has deviated, the mediator recommends
rj,: to player j according to a;’-‘, and recommends some best response to a;f to player i.
Multiple deviations are treated as in the proof of Lemma 1. In contrast, in state Rperturb,
the mediator follows the equilibrium S"ct, Let u denote this strategy of the mediator.
From now on, we fix n > 0 arbitrarily.

With mediated perfect monitoring, since x5t has full support, player i believes that
the mediator’s state is Rperurp With positive probability after any history. Therefore, by
perfect monitoring incentive compatibility and the fact that 5"t is a strict equilibrium,
it is always strictly optimal for each player i to follow her recommendation. This means
that, for each period ¢, there exist &; > 0 and 7; < oo such that, for each player i and
on-path history 4!, we have

(1 — &)EM[ui(re) | By, 1] + SEX [(1 -8 Y 8 lui(u(hy)) ‘ ht . r,-,,]
T=t+1
> max (1 — 8)E[ui(ai, rjs) | hly, ris] (S1)

a,-eAi

+ (86— ST’){(I — &) maxu;(a;, a;‘) + &, max ui(a)} + 8Tt maxu;(a).
a; acA acA
That is, suppose that if player i unilaterally deviates from on-path history, then player
j virtually minmaxes player i for 7, — 1 periods with probability 1 — ;. (Recall that a}f
is the minmax strategy and ai is a full-support perturbation of aj.) Then player i has
a strict incentive not to deviate from any recommendation in period ¢ on equilibrium
path. Equivalently, since u is a full-support recommendation, player i has a strict incen-
tive not to deviate unless she herself has deviated.

Moreover, for sufficiently small ¢, > 0, we have

(1= &)EA[ui(re) | Ay ri] + W[(l —8) Y 7 ui(u(hy)) ‘ i
T=t+1 (S2)

>(1- 6T’)[(1 — gy maxu;(a;, o) + & maxui(a)} + 8T maxu;(a).
aj J acA acA
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That is, if a deviation is punished with probability 1 — &, for T; periods including the
current period, then player i believes that the deviation is strictly unprofitable.!

For each ¢, we fix &, > 0 and 7; < oo with (S1) and (S2). Without loss, we can take &;
decreasing: &, > ¢, for each ¢.

Construction and properties of u*

In this subsection, we again consider mediated perfect monitoring. We further mod-
ify u and create the following mediator’s strategy u*: Fix a fully mixed & € A(A) with
u(f) € W*. At the beginning of the game, for each i, ¢, and a’, the mediator draws
lp:miSh(at ) according to af’. In addition, for each i and ¢, she draws w;; € {R, P} such
that ;= R (regular) and P (punish) with probability 1 — p; and p;, respectively, in-
dependently across i and . We will pin down p; > 0 in Lemma S1. Moreover, given
w; = (w1, wy,), the mediator chooses r;(a’) for each a as follows: If w; ; = wy; =R,
then she draws r;(a") according to u(a’)(r) if w1 = wz . = R foreach 7 < t—1; and draws
ri(a') according to u(r) if there exists 7 < r — 1 with w1 , = P or wy,=P. Ifw;;=Rand
w;j; = P, then she draws r; ,(a’) from Pr#(r; | rE?niSh
domly from ZajeA]_ %.2 Finally, if w1 = wy; = P, then she draws r;,;(a’) randomly

(a")) while she draws r;j,(a") ran-

from}_, 4, |1Lfl_ii| for each i independently. Since u has full support, u* is well defined.

As will be seen, we will take p, sufficiently small. In addition, recall that n > 0 (the
perturbation of { to w) is arbitrarily. In the next subsection and onward, we construct
an equilibrium with perfect monitoring with cheap talk that has the same equilibrium
action distribution as u*. Since p, is small and n > 0 is arbitrary, constructing such an
equilibrium suffices to prove Proposition 2. .

At the start of the game, the mediator draws w;, rffmSh(at ), and r,(a") for each i, 1,
and a'. Given them, the mediator sends messages to the players as follows:

(i) Atthe start of the game, the mediator sends ((rlpfniSh(at ) ate 4-1) 5 to player i.

(ii) Ineach period ¢, the stage game proceeds as follows:

(@) The mediator decides @;(a’) € {R, P}* as follows: if there is no unilateral devi-
ator (defined below), then the mediator sets @;(a') = w,. If instead player i is
a unilateral deviator, then the mediator sets @; ,(a') = R and @; ,(a") = P.

(b) Given @;,(a"), the mediator sends w;((a’) to player i. In addition, if @; ;(a’) =
R, then the mediator sends r; ,(a") to player i as well.

(c) Given these messages, player i takes an action. In equilibrium, if player i has

not yet deviated, then player i takes r; ;(a") if @; ;(a’) = R and takes r} ;H“Sh(at )
11f the current on-path recommendation schedule Pr# (rj,¢ | Bty 7i ) is very close to oz;f, then (S2) may be
more restrictive than (S1).

2As will be seen below, if @;, = P, then player j is supposed to take rﬁltmiSh(at ). Hence, r;,(a") does
not affect the equilibrium action. We define rj,,(a’ ) so that, when the mediator sends a message only at
the beginning of the game (in the game with perfect monitoring with cheap talk), she sends a “dummy

recommendation” 7, ((a") so that player j does not realize that & j,t = P until period ¢.
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if @;,(a") = P. For notational convenience, let

ri(a") if @;/(a") =R,
r‘,t = M L
Tl i sy(at) =P
be the action that player i is supposed to take if she has not yet deviated. Her
strategy after her own deviation is not specified.

We say that player i has unilaterally deviated if there exist 7 < — 1 and a unique i
such that (i) for each 7’ < 7, we have a,  =r, » for each n € {1, 2} (no deviation hap-
pened until period 7 — 1) and (ii) a; - # r; ; and a; . =r; . (player i deviates in period 7
and player j does not deviate).

Note that u* is close to w on the equilibrium path for sufficiently small p,. Hence, on-
path strict incentive compatibility for player i follows from (S1). Moreover, the incentive
compatibility condition analogous to (S2) also holds.

LemmA S1. There exists { p;};°, with p,; > 0 for each t such that it is strictly optimal for
each player i to follow her recommendation: For each player i and history

ish S
he= (077" (@) et )iy @' (8(a7)) s @i(a), (rie)iy)
if player i herself has not yet deviated, we have the following two inequalities:

(1) If a deviation is punished by a;’ for the next period T; periods with probability
1-—¢&— Z'+T’_1 P, then it is strictly unprofitable:

T=t

o0
(1= 8)EH [ui(riy, aj,) | hf] + SE# [(1 =8 > 8 ui(ri, aj.) | by ai = ri,t}
T=t+1

> max (1 — B)E“*[ui(ai, ajo) | hil

Ll,'EA,'

t+T,—

1
+(8- 5T’){ (1 —e— Y p7> maxu;(a;, a;') (S3)
T=t 4

t-‘rT[—l
+ <8t + Yy p7> r;leaj(ui(a)}

T=I
+ 8T maxu;(a).
acA

(ii) If a deviation is punished by a;’ from the current period with probability 1 — &; —

f;{b_l s, then it is strictly unprofitable:

(1= 8E* [ui(ris, aje) | bt

o0
+SEM [(1 —8) > & uiri, ape) | B ag = ri’t} -
T=t+1
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[_A'_T[_] t-’th—l
> (1 - 6Tt){ (1 — & — Z p7> n}lailxui(&,-, aje,t) + (s; + Z pT) I;lea/ylcu,-(a)}

7=t T=I

+ 8T max u;(a).
acA

Moreover, E** does not depend on the specification of player j’s strategy after player j’s
own deviation, for each history h! such that player i has not deviated.

PROOE. Given f, since u(f) € W*, for sufficiently small &, > 0, we have

(1= &)EA ui(ro) | By, 1ie] + Sui(f2)
> max (1 — 8)E[u;(a;, r—i) | b, 7i;]

ajeA;

+ (86— 8Tf){(1 — &) maxu;(a;, a') + & max ui(a)} + 8T maxu;(a)
a; J acA acA

and

(1 — )E [ui(re) | By, i) + Sui (1)

> (1- 8T’){(1 — ey maxu;(a;, ai') + & maxu,-(a)} + 8T maxu;(a).
a; J acA acA

Hence (S1) and (S2) hold with u replaced with f.

Since p* has full support on the equilibrium path, a player i who has not yet devi-
ated always believes that player j has not deviated. Hence, E*" is well defined without
specifying player j’s strategy after player j’s own deviation.

Moreover, since p, is small and wj, is independent of (wT)’T_:l1 and w;,, given
(c?)T(aT))tT;l1 and @;((a") (which are equal to (wT)’T;l1 and w;, on path), player i believes
that @; ;(a") is equal to w;, and w;; is equal to R with a high probability, unless player i
has deviated. Since

Pri*(rj ;| @i(a"), {@):(a’) =R}, hY) =Pr**(rj, | a', riy),
we have that the difference
B [ui(riy, aj) | Y] = E*[ui(rig, aj0) 17!, a' rif]

is small for small p;.

Further, if p; is small for each 7 > ¢ + 1, then since o, is independent of w,; with
t <1 —1, regardless of ((I)T(aT))thl, player i believes that w; ;(a") = @ -(a”) = R with
high probability for 7 > ¢ + 1 on the equilibrium path. Since the distribution of the rec-
ommendation given u* is the same as that of w (or ) given a” and (w;,-(a7), wj -(a")) =
(R,R) foreach 7 <t—1 (or (®;,(a"), ®;.(a”)) # (R, R) for some 7 < t — 1, respectively),
we have that
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1. for each ! with &; ,(a’) =R and (&;,(a"), @;:(a")) = (R, R) foreach 7 <7 —1,

o0
E# {(1 =8 Y 8 ui(rig, a50) | b, ai = ri,t}

T=t+1

o0
— Ef‘[(l —8) > 8" ui(ri,aj.) | 1, ri,t}

T=t+1
is small for small p, with 7 > ¢ + 1; and

2. for each ! with ;;(a") = Rand (w;,(a"), ®j,(a")) # (R, R) forsome r <1 —1,

o0
E* [(1 —9) Z 8 ui(rir aj0) | h ai = ri,t:|

T=t+1

o0
—E“[(l—ﬁ) Z ST_Z_lui(ri,ﬂr;aj,r)|rfaa[7ri,t:|

T=t+1
is small for small p, with 7 > ¢+ 1.

Hence, (S1) and (S2) (and the same inequalities with u* replaced with £) imply that,
there exists p, > 0 such that, if p, < p, for each 7 > ¢, then the claims of the lemma hold.
Hence, if we take p, < min,<; p,, then the claims hold. O

We fix { p}72, so that Lemma S1 holds. This fully pins down u* with mediated perfect
monitoring.

Construction with perfect monitoring with cheap talk

Given p* with mediated perfect monitoring, we define the equilibrium strategy with per-
fect monitoring with cheap talk such that the equilibrium action distribution is the same
as u*. We must pin down the following four objects: at the beginning of the game, what
message m?’ediamr player i receives from the mediator; what message m ! player i sends
at the beginning of period ¢; what action a; ; player i takes in period ; and what message
m%?d player i sends at the end of period .

Intuitive argument As in p*, at the beginning of the game, for each i, ¢, and d, the
f}miSh(a’ ) according to «;'. In addition, with p; > 0 pinned down in
Lemma S1, she draws w; € {R, P}? and r;(a’) as in u* for each ¢ and a’. She then defines
w¢(a’) from a’, r;(a'), and w, asin u*.

Intuitively, the mediator sends all the information about

((@(a"). ri(a"). rE3™" (@), 53 (0) e i)

through the initial messages (m‘lnediator, m‘znediator). In particular, the mediator directly
punish
it

mediator draws r

t : diat
sends ((r (@") e 4-1)72, to player i as a part of m;"*“°f. Hence, we focus on how
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we replicate the role of the mediator in u* of sending (®,(a'), r,(a’)) in each period,
depending on realized history a’.

The key features to establish are (i) player i does not know the instructions for the
other player, (ii) before player i reaches period ¢, player i does not know her own recom-
mendations for periods 7 > ¢ (otherwise, player i would obtain more information than
the original equilibrium u* and thus might want to deviate), and (iii) no player wants
to deviate (in particular, if player i deviates in actions or cheap talk, then the strategy of
player j is as if the state were @; , = P in u*, for a sufficiently long time with a sufficiently
high probability).

The properties (i) and (ii) are achieved by the same mechanism as in Theorem 9 of
Heller et al. (2012, henceforth HST). In particular, without loss, let 4; = {1;,..., n;} be
player i’s action set. We can view r; ;(a’) as an element of {1, ..., n;}. The mediator at the
beginning of the game draws r;(a") for each a’.

Instead of sending r; ;(a") directly to player i, the mediator encodes r;,(a’) as fol-
lows: For a sufficiently large N’ € Z to be determined, we define p’ = N'n;n;. This p’
corresponds to pj in HST. Let Z ,» = {1, ..., p'}. The mediator draws x{’t(at ) uniformly
and independently from Z , for each i, ¢, and a’. Given them, she defines

yf’t(a’) = x{’t(a’) +ri(a’) (modn). (S5)

Intuitively, yl.i [(a’ ) is the “encoded instruction” of r;,(a'), and to obtain r;,(a’) from
yi (a"), player i needs to know x{’[(a’). The mediator gives ((y!(a')) ¢ 4-1)%2, to player i
asapartof m?“ediator. At the same time, she gives ((x{ t(at Natear-1)72, to player j as a part
of m}ne‘“awr. At the beginning of period ¢, player j sends x{ ,(a") by cheap talk as a part

of m}stt, based on the realized action a’, so that player i does not know r; ;(a’) until pe-

riod 7. (Throughout the proof, the superscript of a variable represents who is informed
about the variable, and the subscript represents whose recommendation the variable is
about.)

To incentivize player j to tell the truth, the equilibrium should embed a mechanism
that punishes player i if she tells a lie. In HST, this is done as follows: The mediator draws
o (a') and B} (a') uniformly and independently from Z ,, and defines

ul (o) = a (a') x ] (') + B (') (mod p'). (56)

The mediator gives x{’t(at ) and u{ ,(a") to player j while she gives ! (') and B!, (a") to
player i. In period ¢, player j is supposed to send x{ ((a") and u{ ,(a") to player i. If player

i receives x} (a') and u! (a") with

ul (a") # ol (a') x x],(a') + BL (a') (mod p'), S7)

then player i interprets that player j has deviated. For sufficiently large N, since player
j does not know ai’[(at) and Bf,[(a’), if player j tells a lie about x/ (a"), then with a high
probability, player j creates a situation where (S7) holds.
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Since HST considers Nash equilibrium, they let player i minimax player j forever
after (§7) holds. However, since we consider sequential equilibrium, as in the proof of
Lemma 2, we will create a coordination mechanism such that, if player j tells a lie, then
with high probability player ; minimaxes player j for a long time and player i assigns
probability 0 to the event that player i punishes player j.

To this end, we consider the following coordination: First, if and only if @; ,(a’) = R
the mediator defines u{ t(a’ ) as (S6). Otherwise, uf:,t(at ) is randomly drawn. That is,

|y o) ) B ) (o) W) =R
uniformly distributed over Z if @ ((a") =P

Since both w;, t(at) = R and w, H(a)=P happen with a posmve probability, player i af-
ter receiving u; t(a’) with ul [(a") # a; t(at) X x; t(at) + B ,(a") (mod p") interprets that
wi(a") = P. For notational convenience, let @; ;(a’) € {R, P} be player i’s interpretation

punlsh

of @;(a"). After &;,(a") = P, she takes perlod t action according to ri (a"). Given

this inference, if player j tells a lie about ul., t(a ) with @; ;(a’) = R, then Wlth a high prob-
ability, she induces a situation with uit(a’) + afyt(at) X xit(a’) + Bf,t(a[) (mod p!), and
player i punishes player j in period t (without noticing player j’s deviation).

Second, switching to rpu ish (a") for period ¢ only may not suffice if player j believes
that player i’s action distribution given @;,(a’) = R is close to the minimax strategy.

pun ish

Hence, we ensure that once player j deviates, player i takes r; (a™) for a sufficiently

long time.
To this end, we change the mechanism so that player j does not always know
,(a’ ). Instead, the mediator draws p’ independent random variables v’/ ii(n,a "y with
n=1,...,p unlformly from Z . In addition, she draws nl’t(a ) uniformly from Z .. The

mediator defines u [(n,a "foreachn=1,..., p'as

- I (a')  ifn=ni(d
”f,z(n,at)—{zw(a) if n=nj (a'),

! (n,a") if otherwise,

that is, u{t(n,a’) corresponds to u{t(a’) with (S8) only if n = nft(a’). For other n,
u{ ((n, a') is completely random.
The mediator sends nf t(at) to player i, and sends {uft(n, a‘)}nezp, to player j. In

addition, the mediator sends n{ ,(a") to player j, where

>

j (a') = l”f,t(at) if “’i,lfl(“t_l)

P
uniformly distributed over Z,«  if w; ;1 (a' _1) R

is equal to nf’t(a’) if and only if last-period @; ,_1(a’"!) is equal to P.
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In period ¢, player j is asked to send x{’t(at) and u{,t(n, a’) with n = nf,t(at), that is,

send x{’t(af) and u{,t(at). If and only if player j’s messages fc{,t(a’) and ﬁ{’[(a’) satisfy

2], (a') = af (a) x 3] (a) + B} (') (mod p"),

player i interprets @;,(a’) = R. If player i has @;,(a") = R, then player i knows that
player j needs to know n} _, (a"™!) to send the correct u , ,(n, a"!) in the next period.
Hence, she sends n§ 41 (a't1) to player j. If player i has ®;(a') = P, then she believes
that player j knows ”f,z+1(“t+l) and does not send nfytH(at“).

Given this coordination, once player j creates a situation with @;,(a’) = R but
®;,(a") = P, then player j cannot receive n! .  (a't!). Without knowing n} _,(a't!),
with a large N'*!, with a high probability, player j cannot know which uf (™
she should send. Then, again, she will create a situation with

a?,z+1(at+1) # aé,t+1(at+l) X fcf,t(”H_l) + Bf,t(atﬂ) (mod PH_I)’

thatis, ®; ;41 (a'thy =P. Recursively, player i has @; -(a™) = P for a long time with a high
probability if player j tells a lie.

Finally, if player j takes a deviant action in period ¢, then the mediator has drawn
w;,(a”) = P for each 7 >t + 1 for a” corresponding to the realized history. With
w;,(a™) =P, soastoavoid &; -(a”) = P, player j needs to create a situation

il (@) = ol (a7) x &, (a") + B (@) (mod p7)

without knowing af ,(a™) and ,Bﬁ ,(a”) while the mediator’s message does not tell her

what is ! (a") x x! (a") + B! ,(a’) (mod p7) by (S8). Hence, for sufficiently large N7,
player j cannot avoid c?),;f(af)’: P with a nonnegligible probability. Hence, player j will
be minmaxed from the next period with a high probability.

The above argument in total shows that if player j deviates, whether in communica-
tion or action, then she will be minmaxed for a sufficiently long time. Lemma S1 ensures
that player j does not want to tell a lie or take a deviant action.

Formal construction Let us formalize the above construction: As in p*, at the begin-
ning of the game, for each i, ¢, and a’, the mediator draws r}’);mis
then she draws w, € {R, P}? and r;(a’) for each ¢ and a’; and then she defines @;(a’) from
a', ri(a"), and w, as in u*. For each ¢ and a’, she draws x{,t(at) uniformly and indepen-

dently from Z pt- Given them, she defines

h(a‘ ) according to a}";

viia) =], (') +ris(a') (modny),
so that (S5) holds. _ '
The mediator draws ait(a‘), ,Bif’t(at), i (a), vf’t(n, a') foreachn e Z,, nil(a‘), and

ﬁ{ ,(a") from the uniform distribution over Z,: independently for each player i, each
period ¢, and each a'.
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As in (S8), the mediator defines

ui,t(a

) = {ait(a ) x ( )+:Bz ((a') (mod p') if@;(a’) =R,
i (a") if®;,(a") =P

In addition, the mediator defines

v (n,a") if otherwise

: ] t i = l t
ul (n,a") = l”l.,t(a) ifn=n,(a),
and

L

n] (at) = ni:?[(at) ifr=1or wi’t_l(atil) = P’
' i (") ifr#1and w;1(a""") =R,

as explained above.
Let us now define the equilibrium:

(i) Atthe beginning of the game, the mediator sends

i h
ppetior _ (1) fa). 1, (a). )
l ( )’nj’t( ),( ( ))neZ r’x], (a) ate A1

o]

t=1
to each player i.

(ii) In each period ¢, the stage game proceeds as follows: In equilibrium,

1st iu{t(mlz?fl, a'), x{,[(at) ift#1and mlzrl’d1 # {babble}, S9)
u

Bt f’t(nit(a’), a'), x{,t(at) iff=1or mzrt‘d1 = {babble}
and
m2nd — nj‘,z+1 (atH) if ‘:’J'J(at) =R,
7' | (babble}  if&j,(a’) =P.

Note that, since mjzr;d is sent at the end of period ¢, the players know a'*! =
(ag,...,ar).

(a) Given player i’s history (mnf‘echa“’r (m1St ar, m 2n01) 1), each player i sends the
first message m1St simultaneously. If player i herself has not yet deviated, then

lst_ u] (mlzrlldl, a'), x;:’t(at) ift#1and m?I}dl +# {babble},
bt u; ,(n j't(a‘) a'), x;’t(a[) ift=1or mzr}dl = {babble}.

Let mlst(u) be the first element of m1St (that is, either u} t(mf‘}dl, a') or
]’[(nm(a ),a’) on equilibrium), and let mllftt(x) be the second element

(x; ,(a") on equilibrium). As a result, the profile of the messages m}st becomes
common knowledge.
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If
mi$(u) # o (a") x mi¥(x) + B (a) (mod p), (S10)
then player i interprets @; ,(a’) = P. Otherwise, @; ;(a") =R

(b) Given player i’s history (mlr.nediator, (msta,, an)r—p misY), each player i
takes action g; ; simultaneously. If player i herself has not yet deviated, then
player i takes a; ; = r; ; with

i) = mf) (modny) it y(a’) =R,
1,1 —
P

TP ) if &7, (a") =

(S11)

Recall that yf’t(a‘ )= x{ (@) +ri(a") (modn;) by (S5). By (S9), therefore, player
i takes rl’ft(a’) if ;,(a') =R and r})?niSh(a’) if @; ;(a") = P on the equilibrium
path, as in u*.

(c) Given player i's history (mPediator (plst g m2ndy7l imlst q,) each player i

=1’
sends the second message man simultaneously. If player i herself has not yet
deviated, then

an nit+1 (aH'l) if (;)i’t(az) :R,
* 7 |{babble}  ifd;(a')=P

As a result, the profile of the messages m?"d becomes common knowledge.
Note that @,(a’) becomes common knowledge as well on equilibrium path.

Incentive compatibility

The above equilibrium has full support: Since w(a’) and r,(a’) have full support,
(mimediator ,mediator) haye full support as well. Hence, we are left to verify player i’s in-
centive not to deviate from the equilibrium strategy, given that player i believes that
player j has not yet deviated after any history of player i.

Suppose that player i followed the equilibrium strategy until the end of period 7 — 1.
First, consider player i’s incentive to tell the truth about mllstt In equilibrium, player i
sends

Ist _ ”;',t(mjz-f}d_l,at),x;,t(at) f‘}dﬁé{babble},
)t 2 e

The random variables possessed by player i are independent of those possessed by
player j given (m!s, a,, m 2nd)T 1 except that (i) u{t(at) = ai[(a’) X xit(a[) + ,Bf,t(a’)
(modp )if @i ((a") =R, (ii) u] [(a) = a; t(a’) X xj [(a) + B t(a[) (mod p") if @; ;(a’) =R
(iii) n (@)= n (@) ifw; (a1 = Pwhllen (@)= ,T(aT) ifw;,_1(a™ ') =R, and

(iv) nm(af) - nj,T(aT) if wj, (™) =P while ni (a7) = fziT(aT) if w;, (a1 =R
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Since a! (a"), B ,(a"), zli'[(a’), v{t(n, a') nt (a"), and ﬁ{[(a’) are uniform and indepen-
dent, player i cannotlearn w; -(a”), r;,-(a”), orr;j ;(a™) with 7 > ¢. Hence, player i believes
at the time when she sends m]3' that her equilibrium value is equal to

(1= B [ui(ar) | hj] + SE* [(1 —8) Y 8 uitan | hﬁ},

T=t+1

where A! is as if player i observed (rpumSh( N it 1,a , (&-(a™))! ), and r;(a"), and
beheved that r,(a") = a, foreach =1, ..., ¢t — 1 with u* with medlated perfect moni-
toring.

Alternatively, for each e > 0, for a sufficiently large N', if player i tells a lie in at least
one element m1St then with probability 1 — e, player i creates a situation

mi5 ) # af (a) x miS'x) + B, (a') (mod p').

Hence, (S10) (with indices i and j reversed) implies that o, H(ay=P
Moreover, if player i creates a situation with @;,(a’) = P, then player j will send
znd = {babble} instead of n; t+1(at+1) Unless @, t(a ) = P, since n; t+1(a’+1) is inde-

pendent of player i’s variables, player i believes that 7’ i+ (a'+1) is distributed uniformly
over Z 1. Hence, for each e > 0, for sufficiently large N, if ®;,(a") = R, then player i
will send m1St L with

miS ) # o (@) xmlSt 00 + B, () (mod p'tY)

with probability 1 — e. Then, by (S10) (with indices i and j reversed), player j will have
&)j,t+1 (aH_l) =P

Recursively, if @;.(a”) = R for each 7 =1¢,...,t + T, — 1, then player i will induce
wj,(a")=Pforeachr=t,...,t+T;—1with a high probability. Hence, for &; > 0 and T;
fixed in (S1) and (S2), for sufficiently large N! if N™ > N! for each 7 > ¢, then player i will
be punished for the subsequent 7; periods regardless of player i’s continuation strategy
with probability no less than 1 — g, — [TtT’ Pr- (ZHTf pr represents the maximum
probability of having @; -(a™) = P for some 7 for subsequent 7; periods.) Equation (54)
implies that telling a lie gives a strictly lower payoff than the equilibrium payoff. There-
fore, it is optimal to tell the truth about m}j‘. (In (S4), we have shown interim incentive
compatibility after knowing @, ;(a’) and r;;, while here we consider 4! before &;(a")
and r; ;. Taking the expectation with respect to w;,(a’) and r;,, (§4) ensures incentive
compatibility before knowing @; ;(a’) and r; ;.)

Second, consider player i’s incentive to take the action a;; = r;; according to (S11)
if player i follows the equilibrium strategy until she sends m1St If she follows the equi-
librium strategy, then player i believes at the time when she takes an action that her
equilibrium value is equal to

(1—8)EF [ui(ay) | h] + SE# [(1 -8 > 8" lui(ay) | hﬁ},

T=t+1
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. . . ish - 1 -
where A! is as if player i observed (rsfms (a’))ZfeAt_ltz], at, (wT(aT))’Tzll, wi(a"), and

ri.t, and believed that r-(a™) = a, foreach r =1, ..., t — 1 with u* with mediated perfect
monitoring. (Compared to the time when player i sends m}jt, player i now knows @, ;(a’)
and r;; on the equilibrium path.)

If player i deviates from a;,, then ; .(a”) = P by definition for each 7 > ¢ 4 1 and
a” that is compatible with 4 (that is, a™ = (a’, a;, ..., a,_1) for some a;,...,a,_1). To
avoid being minmaxed in period 7, player i needs to induce &;,(a”) = R although
®;j-(a") = P. Given @;.(a") = P, since of (a'), Bi (a"), iil, (a"), v} (n,a") ni (a'), and
fz{ ,(a") are uniform and independent (conditional on the other variables), regardless of
pl’ayer i’s continuation strategy, by (§10) (with indices i and j reversed), player i will send
mllsTt with

miSw) # o) (") x mf3x) + B} (a7) (mod p7)

with a high probability.

Hence, for sufficiently large N! if N™ > N! for each 7 > ¢, then player i will be pun-
ished for the next T; periods regardless of player i’s continuation strategy with probabil-
ity no less than 1 — &,. By (83), deviating from r; ; gives a strictly lower payoff than her
equilibrium payoff. Therefore, it is optimal to take a; ;, =r; ;.

Finally, consider player i’s incentive to tell the truth about m?ft‘d. Regardless of mi‘tld,
player j’s actions do not change. Hence, we are left to show that telling a lie does not
improve player i’s deviation gain by giving player i more information.

On the equilibrium path, player i knows @;,(a’). If player i tells the truth, then

2nd i t+1 ; i =~ t i
ml.f; = n;JH(a *1) # {babble} if and only if ®; ;(a’) = R. Moreover, player j sends
J ond 41\ J t+1 A
mlst = {ui,t+1(mi,t ,a'tl), xi,t+1(a ) if@;(a') =R,
LT ) g J S A A P P A
U; 141 (”i,z+1 (a )’ a )’ X1 (” ) if "’l,t(” ) =P.

Since n{’tH(at“) = nitH(a’“) if @;,(a’) = P, in total, if player i tells the truth, then
player i knows ”;,t+1 (mi,tﬂ (a'th), a't1y and x;'.’tH (a't1). This is sufficient information
to infer @; ., 1(a'™) and r; ;11 (a'*1) correctly.

If she tells a lie, then player j’s messages are changed to

1st

mist  — uj (m.zz,rtld’“t+1>’x{,t+1(at,+1> ifm%’?d;é{babble},
i+ o (! (at+1)’at+1) 5 (at—i-l) ifm%?dz{babble}.

i, t+1\"" 41 > Vit

: i t+1 i +1y ) t+1 J t+1y i +1 ~] t+1
Since «; , 1 (a"™), B (@), g (@), v (0@ g (@), and 7 (@)

are uniform and independent conditional on @; ;1 (a'*!) and r; ;41 (a’*1), u] 1 (n,a™h

and x{’[ +1(a’“) are not informative about player j’s recommendation from period
t + 1 on or player i's recommendation from period ¢ + 2 on, given that player i knows
@;+1(a'™) and r; 11 (a'*1). Since telling the truth informs player i of @; ,,1(a’"") and
rir+1(a’1), there is no gain from telling a lie.
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