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Proof of Proposition 2

We prove that Etalk(δ�p) = Emed(δ). In our construction, players ignore private signals
yi�t observed in periods t = 1�2� � � � . That is, only signal yi�0 observed in period 0 is used.
Hence we can see p as an ex ante correlation device. Since we consider two-player
games, whenever we say players i and j, we assume that they are different players: i �= j.

The structure of the proof is as follows: take any strategy of the mediator, μ̃, that
satisfies inequality (3) in the text (perfect monitoring incentive compatibility), and let
ṽ be the value when the players follow μ̃. Since each v̂ ∈ Emed(δ) has a corresponding
μ̂ that satisfies perfect monitoring incentive compatibility, it suffices to show that, for
each ε > 0, there exists a sequential equilibrium whose equilibrium payoff v satisfies
‖v − ṽ‖< ε in the following environment:

(i) At the beginning of the game, each player i receives a message mmediator
i from the

mediator.

(ii) In each period t, the stage game proceeds as follows:

(a) Given player i’s history (mmediator
i � (m1st

τ � aτ�m
2nd
τ )t−1

τ=1), each player i sends the
first message m1st

i�t simultaneously.

(b) Given player i’s history (mmediator
i � (m1st

τ � aτ�m
2nd
τ )t−1

τ=1�m
1st
t ), each player i

takes action ai�t simultaneously.

(c) Given player i’s history (mmediator
i � (m1st

τ � aτ�m
2nd
τ )t−1

τ=1�m
1st
t � at), each player i

sends the second message m2nd
i�t simultaneously.

We call this environment perfect monitoring with cheap talk.
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To this end, from μ̃, we first create a strict full-support equilibrium μ with mediated
perfect monitoring that yields payoffs close to ṽ. We then move from μ to a similar equi-
librium μ∗, which will be easier to transform into an equilibrium with perfect monitor-
ing with cheap talk. Finally, from μ∗, we create an equilibrium with perfect monitoring
with cheap talk with the same on-path action distribution.

Construction and properties of μ

In this subsection, we consider mediated perfect monitoring throughout. Since W̊ ∗ �= ∅,
by Lemma 2 in the main text, there exists a strict full-support equilibrium μstrict with me-
diated perfect monitoring. As in the proof of that lemma, consider the following strategy
of the mediator: In period 1, the mediator draws one of two states, Rṽ and Rperturb, with
probabilities 1 − η and η, respectively. In state Rṽ, the mediator’s recommendation is
determined as follows: If no player has deviated up to period t, the mediator recom-
mends rt according to μ̃(ht

m); if only player i has deviated, the mediator recommends
rj�t to player j according to α∗

j , and recommends some best response to α∗
j to player i.

Multiple deviations are treated as in the proof of Lemma 1. In contrast, in state Rperturb,
the mediator follows the equilibrium μstrict. Let μ denote this strategy of the mediator.
From now on, we fix η> 0 arbitrarily.

With mediated perfect monitoring, since μstrict has full support, player i believes that
the mediator’s state is Rperturb with positive probability after any history. Therefore, by
perfect monitoring incentive compatibility and the fact that μstrict is a strict equilibrium,
it is always strictly optimal for each player i to follow her recommendation. This means
that, for each period t, there exist εt > 0 and Tt < ∞ such that, for each player i and
on-path history ht+1

m , we have

(1 − δ)Eμ
[
ui(rt) | ht

m� ri�t
] + δEμ

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui
(
μ

(
hτ
m

)) ∣∣∣∣ ht
m� ri�t

]

> max
ai∈Ai

(1 − δ)E
[
ui(ai� rj�t)

∣∣ ht
m� ri�t

]
(S1)

+ (
δ− δTt

){
(1 − εt)max

âi
ui

(
âi�α

εt
j

) + εt max
a∈A

ui(a)
}

+ δTt max
a∈A

ui(a)�

That is, suppose that if player i unilaterally deviates from on-path history, then player
j virtually minmaxes player i for Tt − 1 periods with probability 1 − εt . (Recall that α∗

j

is the minmax strategy and αε
j is a full-support perturbation of α∗

j .) Then player i has
a strict incentive not to deviate from any recommendation in period t on equilibrium
path. Equivalently, since μ is a full-support recommendation, player i has a strict incen-
tive not to deviate unless she herself has deviated.

Moreover, for sufficiently small εt > 0, we have

(1 − δ)Eμ
[
ui(rt) | ht

m� ri�t
] + δEμ

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui
(
μ

(
hτ
m

)) ∣∣∣∣ ht
m

]

(S2)
>

(
1 − δTt

){
(1 − εt)max

âi
ui

(
âi�α

εt
j

) + εt max
a∈A

ui(a)
}

+ δTt max
a∈A

ui(a)�
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That is, if a deviation is punished with probability 1 − εt for Tt periods including the
current period, then player i believes that the deviation is strictly unprofitable.1

For each t, we fix εt > 0 and Tt < ∞ with (S1) and (S2). Without loss, we can take εt
decreasing: εt ≥ εt+1 for each t.

Construction and properties of μ∗

In this subsection, we again consider mediated perfect monitoring. We further mod-
ify μ and create the following mediator’s strategy μ∗: Fix a fully mixed μ̊ ∈ 	(A) with
u(μ̊) ∈ W̊ ∗. At the beginning of the game, for each i, t, and at , the mediator draws

r
punish
i�t (at) according to αεt

i . In addition, for each i and t, she draws ωi�t ∈ {R�P} such
that ωi�t = R (regular) and P (punish) with probability 1 − pt and pt , respectively, in-
dependently across i and t. We will pin down pt > 0 in Lemma S1. Moreover, given
ωt = (ω1�t �ω2�t), the mediator chooses rt(a

t) for each at as follows: If ω1�t = ω2�t = R,
then she draws rt(at) according to μ(at)(r) ifω1�τ =ω2�τ =R for each τ ≤ t−1; and draws
rt(a

t) according to μ̊(r) if there exists τ ≤ t − 1 with ω1�τ = P or ω2�τ = P . If ωi�t = R and

ωj�t = P , then she draws ri�t(a
t) from Prμ(ri | rpunish

j�t (at)) while she draws rj�t(a
t) ran-

domly from
∑

aj∈Aj

aj
|Aj | .2 Finally, if ω1�t = ω2�t = P , then she draws ri�t(a

t) randomly

from
∑

ai∈Ai

ai|Ai| for each i independently. Since μ has full support, μ∗ is well defined.
As will be seen, we will take pt sufficiently small. In addition, recall that η > 0 (the

perturbation of μ̃ to μ) is arbitrarily. In the next subsection and onward, we construct
an equilibrium with perfect monitoring with cheap talk that has the same equilibrium
action distribution as μ∗. Since pt is small and η > 0 is arbitrary, constructing such an
equilibrium suffices to prove Proposition 2.

At the start of the game, the mediator draws ωt , r
punish
i�t (at), and rt(a

t) for each i, t,
and at . Given them, the mediator sends messages to the players as follows:

(i) At the start of the game, the mediator sends ((rpunish
i�t (at))at∈At−1)∞t=1 to player i.

(ii) In each period t, the stage game proceeds as follows:

(a) The mediator decides ω̄t(a
t) ∈ {R�P}2 as follows: if there is no unilateral devi-

ator (defined below), then the mediator sets ω̄t(a
t) = ωt . If instead player i is

a unilateral deviator, then the mediator sets ω̄i�t(a
t) =R and ω̄j�t(a

t)= P .

(b) Given ω̄i�t(a
t), the mediator sends ω̄i�t(a

t) to player i. In addition, if ω̄i�t(a
t) =

R, then the mediator sends ri�t(at) to player i as well.

(c) Given these messages, player i takes an action. In equilibrium, if player i has

not yet deviated, then player i takes ri�t(at) if ω̄i�t(a
t)= R and takes rpunish

i�t (at)

1If the current on-path recommendation schedule Prμ(rj�t | ht
m� ri�t ) is very close to α∗

j , then (S2) may be
more restrictive than (S1).

2As will be seen below, if ωj�t = P , then player j is supposed to take r
punish
j�t (at). Hence, rj�t (at) does

not affect the equilibrium action. We define rj�t (a
t) so that, when the mediator sends a message only at

the beginning of the game (in the game with perfect monitoring with cheap talk), she sends a “dummy
recommendation” rj�t (a

t) so that player j does not realize that ωj�t = P until period t.
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if ω̄i�t(a
t)= P . For notational convenience, let

ri�t =
{
ri

(
at

)
if ω̄i�t

(
at

) =R�

r
punish
i�t

(
at

)
if ω̄i�t

(
at

) = P

be the action that player i is supposed to take if she has not yet deviated. Her
strategy after her own deviation is not specified.

We say that player i has unilaterally deviated if there exist τ ≤ t − 1 and a unique i

such that (i) for each τ′ < τ, we have an�τ′ = rn�τ′ for each n ∈ {1�2} (no deviation hap-
pened until period τ − 1) and (ii) ai�τ �= ri�τ and aj�τ = rj�τ (player i deviates in period τ

and player j does not deviate).
Note that μ∗ is close to μ on the equilibrium path for sufficiently small pt . Hence, on-

path strict incentive compatibility for player i follows from (S1). Moreover, the incentive
compatibility condition analogous to (S2) also holds.

Lemma S1. There exists {pt}∞t=1 with pt > 0 for each t such that it is strictly optimal for
each player i to follow her recommendation: For each player i and history

ht
i ≡ (((

r
punish
i�t

(
at

))
at∈At−1

)∞
t=1� a

t�
(
ω̄τ

(
aτ

))t−1
τ=1� ω̄i�t

(
at

)
� (ri�τ)

t
τ=1

)
�

if player i herself has not yet deviated, we have the following two inequalities:

(i) If a deviation is punished by αεt
j for the next period Tt periods with probability

1 − εt − ∑t+Tt−1
τ=t pτ, then it is strictly unprofitable:

(1 − δ)Eμ∗[
ui(ri�t � aj�t) | ht

i

] + δEμ∗
[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(ri�τ� aj�τ) | ht
i� ai�t = ri�t

]

> max
ai∈Ai

(1 − δ)Eμ∗[
ui(ai� aj�t) | ht

i

]

+ (
δ− δTt

){(
1 − εt −

t+Tt−1∑
τ=t

pτ

)
max
âi

ui
(
âi�α

εt
j

)
(S3)

+
(
εt +

t+Tt−1∑
τ=t

pτ

)
max
a∈A

ui(a)

}

+ δTt max
a∈A

ui(a)�

(ii) If a deviation is punished by αεt
j from the current period with probability 1 − εt −∑t+Tb−1

τ=t pt , then it is strictly unprofitable:

(1 − δ)Eμ∗[
ui(ri�t � aj�t) | ht

i

]
+ δEμ∗

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(ri�τ� aj�τ) | ht
i� ai�t = ri�t

]
(S4)
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>
(
1 − δTt

){(
1 − εt −

t+Tt−1∑
τ=t

pτ

)
max
âi

ui
(
âi�α

εt
j

) +
(
εt +

t+Tt−1∑
τ=t

pτ

)
max
a∈A

ui(a)

}

+ δTt max
a∈A

ui(a)�

Moreover, Eμ∗
does not depend on the specification of player j’s strategy after player j’s

own deviation, for each history ht
i such that player i has not deviated.

Proof. Given μ̊, since u(μ̊) ∈ W̊ ∗, for sufficiently small εt > 0, we have

(1 − δ)Eμ̊
[
ui(rt) | ht

m� ri�t
] + δui(μ̊)

> max
ai∈Ai

(1 − δ)E
[
ui(ai� r−i�t) | ht

m� ri�t
]

+ (
δ− δTt

){
(1 − εt)max

âi
ui

(
âi�α

εt
j

) + εt max
a∈A

ui(a)
}

+ δTt max
a∈A

ui(a)

and

(1 − δ)Eμ̊
[
ui(rt) | ht

m� ri�t
] + δui(μ̊)

>
(
1 − δTt

){
(1 − εt)max

âi
ui

(
âi�α

εt
j

) + εt max
a∈A

ui(a)
}

+ δTt max
a∈A

ui(a)�

Hence (S1) and (S2) hold with μ replaced with μ̊.
Since μ∗ has full support on the equilibrium path, a player i who has not yet devi-

ated always believes that player j has not deviated. Hence, Eμ∗
is well defined without

specifying player j’s strategy after player j’s own deviation.
Moreover, since pt is small and ωj�t is independent of (ωτ)

t−1
τ=1 and ωi�t , given

(ω̄τ(a
τ))t−1

τ=1 and ω̄i�t(a
t) (which are equal to (ωτ)

t−1
τ=1 and ωi�t on path), player i believes

that ω̄j�t(a
t) is equal to ωj�t and ωj�t is equal to R with a high probability, unless player i

has deviated. Since

Prμ∗(rj�t | ω̄i�t

(
at

)
�
{
ω̄j�t

(
at

) = R
}
�ht

i

) = Prμ∗(rj�t | at� ri�t
)
�

we have that the difference

E
μ∗[

ui(ri�t � aj�t) | ht
i

] −E
μ
[
ui(ri�t � aj�t) | rti � at� ri�t

]
is small for small pt .

Further, if pτ is small for each τ ≥ t + 1, then since ωτ is independent of ωt with
t ≤ τ − 1, regardless of (ω̄τ(a

τ))tτ=1, player i believes that ω̄i�τ(a
τ) = ω̄j�τ(a

τ) = R with
high probability for τ ≥ t + 1 on the equilibrium path. Since the distribution of the rec-
ommendation given μ∗ is the same as that of μ (or μ̊) given aτ and (ω̄i�τ(a

τ)� ω̄j�τ(a
τ)) =

(R�R) for each τ ≤ t − 1 (or (ω̄i�τ(a
τ)� ω̄j�τ(a

τ)) �= (R�R) for some τ ≤ t − 1, respectively),
we have that
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1. for each ht
i with ω̄i�t(a

t) =R and (ω̄i�τ(a
τ)� ω̄j�τ(a

τ)) = (R�R) for each τ ≤ t − 1,

E
μ∗

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(ri�τ� aj�τ) | ht
i� ai�t = ri�t

]

−E
μ

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(ri�τ� aj�τ) | rti � at� ri�t
]

is small for small pτ with τ ≥ t + 1; and

2. for each ht
i with ω̄i�t(a

t) =R and (ω̄i�τ(a
τ)� ω̄j�τ(a

τ)) �= (R�R) for some τ ≤ t − 1,

E
μ∗

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(ri�τ� aj�τ) | ht
i� ai�t = ri�t

]

−E
μ̊

[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(ri�τ� aj�τ) | rti � at� ri�t
]

is small for small pτ with τ ≥ t + 1.

Hence, (S1) and (S2) (and the same inequalities with μ∗ replaced with μ̊) imply that,
there exists p̄t > 0 such that, if pτ ≤ p̄t for each τ ≥ t, then the claims of the lemma hold.
Hence, if we take pt ≤ minτ≤t p̄τ , then the claims hold. �

We fix {pt}∞t=1 so that Lemma S1 holds. This fully pins down μ∗ with mediated perfect
monitoring.

Construction with perfect monitoring with cheap talk

Given μ∗ with mediated perfect monitoring, we define the equilibrium strategy with per-
fect monitoring with cheap talk such that the equilibrium action distribution is the same
as μ∗. We must pin down the following four objects: at the beginning of the game, what
message mmediator

i player i receives from the mediator; what message m1st
i�t player i sends

at the beginning of period t; what action ai�t player i takes in period t; and what message
m2nd

i�t player i sends at the end of period t.

Intuitive argument As in μ∗, at the beginning of the game, for each i, t, and at , the

mediator draws r
punish
i�t (at) according to αεt

i . In addition, with pt > 0 pinned down in

Lemma S1, she draws ωt ∈ {R�P}2 and rt(a
t) as in μ∗ for each t and at . She then defines

ω̄t(a
t) from at , rt(at), and ωt as in μ∗.

Intuitively, the mediator sends all the information about

((
ω̄t

(
at

)
� rt

(
at

)
� r

punish
1�t

(
at

)
� r

punish
2�t

(
at

))
at∈At−1

)∞
t=1

through the initial messages (mmediator
1 �mmediator

2 ). In particular, the mediator directly

sends ((r
punish
i�t (at))at∈At−1)∞t=1 to player i as a part of mmediator

i . Hence, we focus on how
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we replicate the role of the mediator in μ∗ of sending (ω̄t(a
t)� rt(a

t)) in each period,
depending on realized history at .

The key features to establish are (i) player i does not know the instructions for the
other player, (ii) before player i reaches period t, player i does not know her own recom-
mendations for periods τ ≥ t (otherwise, player i would obtain more information than
the original equilibrium μ∗ and thus might want to deviate), and (iii) no player wants
to deviate (in particular, if player i deviates in actions or cheap talk, then the strategy of
player j is as if the state were ω̄j�t = P in μ∗, for a sufficiently long time with a sufficiently
high probability).

The properties (i) and (ii) are achieved by the same mechanism as in Theorem 9 of
Heller et al. (2012, henceforth HST). In particular, without loss, let Ai = {1i� � � � � ni} be
player i’s action set. We can view ri�t(a

t) as an element of {1� � � � � ni}. The mediator at the
beginning of the game draws rt(at) for each at .

Instead of sending ri�t(a
t) directly to player i, the mediator encodes ri�t(a

t) as fol-
lows: For a sufficiently large Nt ∈ Z to be determined, we define pt = Ntninj . This pt

corresponds to ph in HST. Let Zpt ≡ {1� � � � �pt}. The mediator draws x
j
i�t(a

t) uniformly
and independently from Zpt for each i, t, and at . Given them, she defines

yii�t
(
at

) ≡ x
j
i�t

(
at

) + ri�t
(
at

)
(modni)� (S5)

Intuitively, yii�t(a
t) is the “encoded instruction” of ri�t(a

t), and to obtain ri�t(a
t) from

yii�t(a
t), player i needs to know x

j
i�t(a

t). The mediator gives ((yii (a
t))at∈At−1)∞t=1 to player i

as a part of mmediator
i . At the same time, she gives ((xji�t(a

t))at∈At−1)∞t=1 to player j as a part

of mmediator
j . At the beginning of period t, player j sends x

j
i�t(a

t) by cheap talk as a part

of m1st
j�t , based on the realized action at , so that player i does not know ri�t(a

t) until pe-
riod t. (Throughout the proof, the superscript of a variable represents who is informed
about the variable, and the subscript represents whose recommendation the variable is
about.)

To incentivize player j to tell the truth, the equilibrium should embed a mechanism
that punishes player i if she tells a lie. In HST, this is done as follows: The mediator draws
αi
i�t(a

t) and βi
i�t(a

t) uniformly and independently from Zpt , and defines

u
j
i�t

(
at

) ≡ αi
i�t

(
at

) × x
j
i�t

(
at

) +βi
i�t

(
at

) (
modpt

)
� (S6)

The mediator gives x
j
i�t(a

t) and u
j
i�t(a

t) to player j while she gives αi
i�t(a

t) and βi
i�t(a

t) to

player i. In period t, player j is supposed to send x
j
i�t(a

t) and u
j
i�t(a

t) to player i. If player

i receives xji�t(a
t) and u

j
i�t(a

t) with

u
j
i�t

(
at

) �= αi
i�t

(
at

) × x
j
i�t

(
at

) +βi
i�t

(
at

) (
modpt

)
� (S7)

then player i interprets that player j has deviated. For sufficiently large Nt , since player
j does not know αi

i�t(a
t) and βi

i�t(a
t), if player j tells a lie about xji�t(a

t), then with a high
probability, player j creates a situation where (S7) holds.
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Since HST considers Nash equilibrium, they let player i minimax player j forever

after (S7) holds. However, since we consider sequential equilibrium, as in the proof of

Lemma 2, we will create a coordination mechanism such that, if player j tells a lie, then

with high probability player i minimaxes player j for a long time and player i assigns

probability 0 to the event that player i punishes player j.

To this end, we consider the following coordination: First, if and only if ω̄i�t(a
t) = R,

the mediator defines uji�t(a
t) as (S6). Otherwise, uji�t(a

t) is randomly drawn. That is,

u
j
i�t

(
at

) ≡
{
αi
i�t

(
at

) × x
j
i�t

(
at

) +βi
i�t

(
at

) (
modpt

)
if ω̄i�t

(
at

) = R�

uniformly distributed over Zpt if ω̄i�t

(
at

) = P�
(S8)

Since both ω̄i�t(a
t) = R and ω̄i�t(a

t) = P happen with a positive probability, player i af-

ter receiving u
j
i�t(a

t) with u
j
i�t(a

t) �= αi
i�t(a

t) × x
j
i�t(a

t) + βi
i�t(a

t) (modpt) interprets that

ω̄i�t(a
t) = P . For notational convenience, let ω̂i�t(a

t) ∈ {R�P} be player i’s interpretation

of ω̄i�t(a
t). After ω̂i�t(a

t) = P , she takes period-t action according to r
punish
i�t (at). Given

this inference, if player j tells a lie about uji�t(a
t) with ω̄i�t(a

t) =R, then with a high prob-

ability, she induces a situation with u
j
i�t(a

t) �= αi
i�t(a

t) × x
j
i�t(a

t) + βi
i�t(a

t) (modpt), and

player i punishes player j in period t (without noticing player j’s deviation).

Second, switching to r
punish
i�t (at) for period t only may not suffice if player j believes

that player i’s action distribution given ω̄i�t(a
t) = R is close to the minimax strategy.

Hence, we ensure that once player j deviates, player i takes r
punish
i�τ (aτ) for a sufficiently

long time.

To this end, we change the mechanism so that player j does not always know

u
j
i�t(a

t). Instead, the mediator draws pt independent random variables v
j
i�t(n�a

t) with

n = 1� � � � �pt uniformly from Zpt . In addition, she draws nii�t(a
t) uniformly from Zpt . The

mediator defines uji�t(n�a
t) for each n = 1� � � � �pt as

u
j
i�t

(
n�at

) =
{
u
j
i�t

(
at

)
if n = nii�t

(
at

)
�

v
j
i�t

(
n�at

)
if otherwise,

that is, u
j
i�t(n�a

t) corresponds to u
j
i�t(a

t) with (S8) only if n = nii�t(a
t). For other n,

u
j
i�t(n�a

t) is completely random.

The mediator sends nii�t(a
t) to player i, and sends {uji�t(n�at)}n∈Zpt

to player j. In

addition, the mediator sends nji�t(a
t) to player j, where

n
j
i�t

(
at

) =
{
nii�t

(
at

)
if ωi�t−1

(
at−1) = P�

uniformly distributed over Zpt if ωi�t−1
(
at−1) = R

is equal to nii�t(a
t) if and only if last-period ω̄i�t−1(a

t−1) is equal to P .
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In period t, player j is asked to send x
j
i�t(a

t) and u
j
i�t(n�a

t) with n = nii�t(a
t), that is,

send x
j
i�t(a

t) and u
j
i�t(a

t). If and only if player j’s messages x̂ji�t(a
t) and û

j
i�t(a

t) satisfy

û
j
i�t

(
at

) = αi
i�t

(
at

) × x̂
j
i�t

(
at

) +βi
i�t

(
at

) (
modpt

)
�

player i interprets ω̂i�t(a
t) = R. If player i has ω̂i�t(a

t) = R, then player i knows that

player j needs to know nii�t+1(a
t+1) to send the correct uji�t+1(n�a

t+1) in the next period.

Hence, she sends nii�t+1(a
t+1) to player j. If player i has ω̂i�t(a

t) = P , then she believes

that player j knows nii�t+1(a
t+1) and does not send nii�t+1(a

t+1).
Given this coordination, once player j creates a situation with ω̄i�t(a

t) = R but
ω̂i�t(a

t) = P , then player j cannot receive nii�t+1(a
t+1). Without knowing nii�t+1(a

t+1),

with a large Nt+1, with a high probability, player j cannot know which u
j
i�t+1(n�a

t+1)

she should send. Then, again, she will create a situation with

û
j
i�t+1

(
at+1) �= αi

i�t+1
(
at+1) × x̂

j
i�t

(
at+1) +βi

i�t

(
at+1) (

modpt+1)�
that is, ω̂i�t+1(a

t+1)= P . Recursively, player i has ω̂i�τ(a
τ)= P for a long time with a high

probability if player j tells a lie.
Finally, if player j takes a deviant action in period t, then the mediator has drawn

ω̄i�τ(a
τ) = P for each τ ≥ t + 1 for aτ corresponding to the realized history. With

ω̄i�τ(a
τ) = P , so as to avoid ω̂i�τ(a

τ)= P , player j needs to create a situation

û
j
i�τ

(
aτ

) = αi
i�τ

(
aτ

) × x̂
j
i�τ

(
aτ

) +βi
i�τ

(
aτ

) (
modpτ

)
without knowing αi

i�τ(a
τ) and βi

i�τ(a
τ) while the mediator’s message does not tell her

what is αi
i�t(a

t) × x
j
i�t(a

t) + βi
i�t(a

t) (modpτ) by (S8). Hence, for sufficiently large Nτ,
player j cannot avoid ω̂i�τ(a

τ) = P with a nonnegligible probability. Hence, player j will
be minmaxed from the next period with a high probability.

The above argument in total shows that if player j deviates, whether in communica-
tion or action, then she will be minmaxed for a sufficiently long time. Lemma S1 ensures
that player j does not want to tell a lie or take a deviant action.

Formal construction Let us formalize the above construction: As in μ∗, at the begin-

ning of the game, for each i, t, and at , the mediator draws r
punish
i�t (at) according to αεt

i ;

then she draws ωt ∈ {R�P}2 and rt(a
t) for each t and at ; and then she defines ω̄t(a

t) from
at , rt(at), and ωt as in μ∗. For each t and at , she draws x

j
i�t(a

t) uniformly and indepen-
dently from Zpt . Given them, she defines

yii�t
(
at

) ≡ x
j
i�t

(
at

) + ri�t
(
at

)
(modni)�

so that (S5) holds.
The mediator draws αi

i�t(a
t), βi

i�t(a
t), ũji�t(a

t), vji�t(n�a
t) for each n ∈ Zpt , nii�t(a

t), and

ñ
j
i�t(a

t) from the uniform distribution over Zpt independently for each player i, each
period t, and each at .
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As in (S8), the mediator defines

u
j
i�t

(
at

) ≡
{
αi
i�t

(
at

) × x
j
i�t

(
at

) +βi
i�t

(
at

) (
modpt

)
if ω̄i�t

(
at

) = R�

ũ
j
i�t

(
at

)
if ω̄i�t

(
at

) = P�

In addition, the mediator defines

u
j
i�t

(
n�at

) =
{
u
j
i�t

(
at

)
if n = nii�t

(
at

)
�

v
j
i�t

(
n�at

)
if otherwise

and

n
j
i�t

(
at

) =
{
nii�t

(
at

)
if t = 1 or ωi�t−1

(
at−1) = P�

ñ
j
i�t

(
at

)
if t �= 1 and ωi�t−1

(
at−1) = R�

as explained above.
Let us now define the equilibrium:

(i) At the beginning of the game, the mediator sends

mmediator
i =

⎛
⎝(

yii�t
(
at

)
�αi

i�t

(
at

)
�βi

i�t

(
at

)
� r

punish
i�t

(
at

)
�

nii�t
(
at

)
� nij�t

(
at

)
�
(
uij�t

(
n�at

))
n∈Zpt

� xij�t
(
at

)
)
at∈At−1

⎞
⎠

∞

t=1

to each player i.

(ii) In each period t, the stage game proceeds as follows: In equilibrium,

m1st
j�t =

{
u
j
i�t

(
m2nd

i�t−1� a
t
)
�x

j
i�t

(
at

)
if t �= 1 and m2nd

i�t−1 �= {babble}�
u
j
i�t

(
n
j
i�t

(
at

)
� at

)
�x

j
i�t

(
at

)
if t = 1 or m2nd

i�t−1 = {babble} (S9)

and

m2nd
j�t =

{
n
j
j�t+1

(
at+1) if ω̂j�t

(
at

) = R�

{babble} if ω̂j�t

(
at

) = P�

Note that, since m2nd
j�t is sent at the end of period t, the players know at+1 =

(a1� � � � � at).

(a) Given player i’s history (mmediator
i � (m1st

τ � aτ�m
2nd
τ )t−1

τ=1), each player i sends the
first message m1st

i�t simultaneously. If player i herself has not yet deviated, then

m1st
i�t =

{
uij�t

(
m2nd

j�t−1� a
t
)
�xij�t

(
at

)
if t �= 1 and m2nd

j�t−1 �= {babble}�
uij�t

(
nij�t

(
at

)
� at

)
�xij�t

(
at

)
if t = 1 or m2nd

j�t−1 = {babble}�

Let m1st
i�t (u) be the first element of m1st

i�t (that is, either uij�t(m
2nd
j�t−1� a

t) or

uij�t(n
i
j�t(a

t)� at) on equilibrium), and let m1st
i�t (x) be the second element

(xij�t(a
t) on equilibrium). As a result, the profile of the messages m1st

t becomes
common knowledge.
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If

m1st
j�t (u) �= αi

i�t

(
at

) ×m1st
j�t (x)+βi

i�t

(
at

) (
modpt

)
� (S10)

then player i interprets ω̂i�t(a
t) = P . Otherwise, ω̂i�t(a

t) =R.

(b) Given player i’s history (mmediator
i � (m1st

τ � aτ�m
2nd
τ )t−1

τ=1�m
1st
t ), each player i

takes action ai�t simultaneously. If player i herself has not yet deviated, then
player i takes ai�t = ri�t with

ri�t =
{
yii�t

(
at

) −m1st
j�t (x) (modni) if ω̂i�t

(
at

) = R�

r
punish
i�t

(
at

)
if ω̂i�t

(
at

) = P�
(S11)

Recall that yii�t(a
t) ≡ x

j
i�t(a

t)+ ri�t(a
t) (modni) by (S5). By (S9), therefore, player

i takes rii�t(a
t) if ω̄i�t(a

t) = R and r
punish
i�t (at) if ω̄i�t(a

t) = P on the equilibrium
path, as in μ∗.

(c) Given player i’s history (mmediator
i � (m1st

τ � aτ�m
2nd
τ )t−1

τ=1�m
1st
t � at), each player i

sends the second message m2nd
i�t simultaneously. If player i herself has not yet

deviated, then

m2nd
i�t =

{
nii�t+1

(
at+1) if ω̂i�t

(
at

) = R�

{babble} if ω̂i�t

(
at

) = P�

As a result, the profile of the messages m2nd
t becomes common knowledge.

Note that ω̄t(a
t) becomes common knowledge as well on equilibrium path.

Incentive compatibility

The above equilibrium has full support: Since ω̄t(a
t) and rt(a

t) have full support,
(mmediator

1 �mmediator
2 ) have full support as well. Hence, we are left to verify player i’s in-

centive not to deviate from the equilibrium strategy, given that player i believes that
player j has not yet deviated after any history of player i.

Suppose that player i followed the equilibrium strategy until the end of period t − 1.
First, consider player i’s incentive to tell the truth about m1st

i�t . In equilibrium, player i

sends

m1st
i�t =

{
uij�t

(
m2nd

j�t−1� a
t
)
�xij�t

(
at

)
if m2nd

j�t−1 �= {babble}�
uij�t

(
nij�t

(
at

)
� at

)
�xij�t

(
at

)
if m2nd

j�t−1 = {babble}�
The random variables possessed by player i are independent of those possessed by

player j given (m1st
τ � aτ�m

2nd
τ )t−1

τ=1, except that (i) u
j
i�t(a

t) = αi
i�t(a

t) × x
j
i�t(a

t) + βi
i�t(a

t)

(modpt) if ω̄i�t(a
t) =R, (ii) uij�t(a

t) = α
j
j�t(a

t)× xij�t(a
t)+β

j
j�t(a

t) (modpt) if ω̄j�t(a
t) =R,

(iii) nji�τ(a
τ) = nii�τ(a

τ) if ωi�τ−1(a
τ−1)= P while n

j
i�τ(a

τ)= ñii�τ(a
τ) if ωi�τ−1(a

τ−1) =R, and

(iv) nij�τ(a
τ) = n

j
j�τ(a

τ) if ωj�τ−1(a
τ−1) = P while nij�τ(a

τ) = ñ
j
j�τ(a

τ) if ωj�τ−1(a
τ−1) = R.
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Since αi
i�t(a

t), βi
i�t(a

t), ũji�t(a
t), vji�t(n�a

t) nii�t(a
t), and ñ

j
i�t(a

t) are uniform and indepen-
dent, player i cannot learn ω̄i�τ(a

τ), ri�τ(aτ), or rj�τ(aτ) with τ ≥ t. Hence, player i believes
at the time when she sends m1st

i�t that her equilibrium value is equal to

(1 − δ)Eμ∗[
ui(at) | ht

i

] + δEμ∗
[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(at) | ht
i

]
�

where ht
i is as if player i observed (r

punish
i�t (at))∞

at∈At−1t=1
, at , (ω̄τ(a

τ))t−1
τ=1, and ri�t(a

t), and
believed that rτ(aτ) = aτ for each τ = 1� � � � � t − 1 with μ∗ with mediated perfect moni-
toring.

Alternatively, for each e > 0, for a sufficiently large Nt , if player i tells a lie in at least
one element m1st

i�t , then with probability 1 − e, player i creates a situation

m1st
i�t (u) �= α

j
j�t

(
at

) ×m1st
i�t (x)+β

j
j�t

(
at

) (
modpt

)
�

Hence, (S10) (with indices i and j reversed) implies that ω̂j�t(a
t)= P .

Moreover, if player i creates a situation with ω̂j�t(a
t) = P , then player j will send

m2nd
j�t = {babble} instead of njj�t+1(a

t+1). Unless ω̄j�t(a
t) = P , since n

j
j�t+1(a

t+1) is inde-

pendent of player i’s variables, player i believes that njj�t+1(a
t+1) is distributed uniformly

over Zpt+1 . Hence, for each e > 0, for sufficiently large Nt , if ω̂j�t(a
t) = R, then player i

will send m1st
i�t+1 with

m1st
i�t+1(u) �= α

j
j�t+1

(
at+1) ×m1st

i�t+1(x)+β
j
j�t+1

(
at+1) (

modpt+1)
with probability 1 − e. Then, by (S10) (with indices i and j reversed), player j will have
ω̂j�t+1(a

t+1) = P .
Recursively, if ω̄j�τ(a

τ) = R for each τ = t� � � � � t + Tt − 1, then player i will induce
ω̂j�τ(a

τ)= P for each τ = t� � � � � t +Tt − 1 with a high probability. Hence, for εt > 0 and Tt

fixed in (S1) and (S2), for sufficiently large N̄t , if Nτ ≥ N̄t for each τ ≥ t, then player i will
be punished for the subsequent Tt periods regardless of player i’s continuation strategy
with probability no less than 1 − εt − ∑t+Tt−1

τ=t pτ. (
∑t+Tt−1

τ=t pτ represents the maximum
probability of having ω̄i�τ(a

τ) = P for some τ for subsequent Tt periods.) Equation (S4)
implies that telling a lie gives a strictly lower payoff than the equilibrium payoff. There-
fore, it is optimal to tell the truth about m1st

i�t . (In (S4), we have shown interim incentive
compatibility after knowing ω̄i�t(a

t) and ri�t , while here we consider ht
i before ω̄i�t(a

t)

and ri�t . Taking the expectation with respect to ω̄i�t(a
t) and ri�t , (S4) ensures incentive

compatibility before knowing ω̄i�t(a
t) and ri�t .)

Second, consider player i’s incentive to take the action ai�t = ri�t according to (S11)
if player i follows the equilibrium strategy until she sends m1st

i�t . If she follows the equi-
librium strategy, then player i believes at the time when she takes an action that her
equilibrium value is equal to

(1 − δ)Eμ∗[
ui(at) | ht

i

] + δEμ∗
[
(1 − δ)

∞∑
τ=t+1

δτ−t−1ui(at) | ht
i

]
�
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where ht
i is as if player i observed (r

punish
i�t (at))∞

at∈At−1t=1
, at , (ω̄τ(a

τ))t−1
τ=1, ω̄i�t(a

t), and
ri�t , and believed that rτ(aτ) = aτ for each τ = 1� � � � � t − 1 with μ∗ with mediated perfect
monitoring. (Compared to the time when player i sends m1st

i�t , player i now knows ω̄i�t(a
t)

and ri�t on the equilibrium path.)
If player i deviates from ai�t , then ω̄j�τ(a

τ) = P by definition for each τ ≥ t + 1 and
aτ that is compatible with at (that is, aτ = (at� at� � � � � aτ−1) for some at� � � � � aτ−1). To
avoid being minmaxed in period τ, player i needs to induce ω̂j�τ(a

τ) = R although

ω̄j�τ(a
τ) = P . Given ω̄j�τ(a

τ) = P , since αi
i�t(a

t), βi
i�t(a

t), ũji�t(a
t), vji�t(n�a

t) nii�t(a
t), and

ñ
j
i�t(a

t) are uniform and independent (conditional on the other variables), regardless of
player i’s continuation strategy, by (S10) (with indices i and j reversed), player i will send
m1st

i�τ with

m1st
i�τ (u) �= α

j
j�τ

(
aτ

) ×m1st
i�τ (x)+β

j
j�τ

(
aτ

) (
modpτ

)
with a high probability.

Hence, for sufficiently large N̄t , if Nτ ≥ N̄t for each τ ≥ t, then player i will be pun-
ished for the next Tt periods regardless of player i’s continuation strategy with probabil-
ity no less than 1 − εt . By (S3), deviating from ri�t gives a strictly lower payoff than her
equilibrium payoff. Therefore, it is optimal to take ai�t = ri�t .

Finally, consider player i’s incentive to tell the truth about m2nd
i�t . Regardless of m2nd

i�t ,
player j’s actions do not change. Hence, we are left to show that telling a lie does not
improve player i’s deviation gain by giving player i more information.

On the equilibrium path, player i knows ω̄i�t(a
t). If player i tells the truth, then

m2nd
i�t = nii�t+1(a

t+1) �= {babble} if and only if ω̄i�t(a
t) =R. Moreover, player j sends

m1st
j�t+1 =

{
u
j
i�t+1

(
m2nd

i�t � at+1)�xji�t+1

(
at+1) if ω̄i�t

(
at

) = R�

u
j
i�t+1

(
n
j
i�t+1

(
at+1)� at+1)�xji�t+1

(
at+1) if ω̄i�t

(
at

) = P�

Since n
j
i�t+1(a

t+1) = nii�t+1(a
t+1) if ω̄i�t(a

t) = P , in total, if player i tells the truth, then

player i knows uij�t+1(m
i
i�t+1(a

t+1)�at+1) and xij�t+1(a
t+1). This is sufficient information

to infer ω̄i�t+1(a
t+1) and ri�t+1(a

t+1) correctly.
If she tells a lie, then player j’s messages are changed to

m1st
j�t+1 =

{
u
j
i�t+1

(
m2nd

i�t � at+1)�xji�t+1

(
at+1) if m2nd

i�t �= {babble}�
u
j
i�t+1

(
n
j
i�t+1

(
at+1)� at+1)�xji�t+1

(
at+1) if m2nd

i�t = {babble}�

Since αi
i�t+1(a

t+1), βi
i�t+1(a

t+1), ũji�t+1(a
t+1), vji�t+1(n�a

t+1) nii�t+1(a
t+1), and ñ

j
i�t+1(a

t+1)

are uniform and independent conditional on ω̄i�t+1(a
t+1) and ri�t+1(a

t+1), uji�t+1(n�a
t+1)

and x
j
i�t+1(a

t+1) are not informative about player j’s recommendation from period
t + 1 on or player i’s recommendation from period t + 2 on, given that player i knows
ω̄i�t+1(a

t+1) and ri�t+1(a
t+1). Since telling the truth informs player i of ω̄i�t+1(a

t+1) and
ri�t+1(a

t+1), there is no gain from telling a lie.
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