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1. Introduction

In many economic settings, decisions are not made on the basis of some fixed prior
information: what to know is itself a choice variable. While information improves
decision-making, acquiring information is also costly, and agents therefore have to bal-
ance the benefits and costs.

A challenge in the study of information acquisition is how to identify the informa-
tion costs an agent faces. These costs determine the amount and type of information
the agent acquires, and are therefore crucial for comparative statics, welfare, and policy
analysis. However, the costs can depend on many factors that are difficult to measure di-
rectly. A prominent example is the recent literature on rational inattention (Sims 1998,
2003), where agents are assumed to have access to an abundance of information and
choose what information to pay attention to. In other words, they solve an information-
acquisition problem where the costs represent factors—such as time, effort, and cogni-
tive resources—that are difficult to observe.1

In this paper, we consider a general model of information acquisition and show how
hidden information costs can be identified from menu-choice data. We take the per-
spective of an agent when she chooses a menu—an opportunity set—“today,” with the
prospect of acquiring information “tomorrow” before selecting an alternative from the
menu. Preferences over menus reveal the trade-off the agent faces when she balances
the benefits of information (which depend on the menu) against the costs of informa-
tion (which are not directly observable). We call the resulting preference relation over
menus a rationally inattentive preference.

We establish that three canonical properties are enough to uniquely identify infor-
mation costs: (i) no information is costless, (ii) Blackwell monotonicity, and (iii) convex-
ity. These are standard properties of information costs used in many applications, such
as the rational inattention literature. We show that the properties impose no observable
restrictions on choice data and therefore constitute a natural benchmark for models of
information acquisition with hidden information costs. Moreover, we provide an ex-
plicit formula showing how the canonical information costs can be constructed with
willingness-to-pay data, which could be collected in dynamic choice environments or
generated in experimental settings.

Figure 1 illustrates the timeline of our framework. Today, the agent chooses a menu
being uncertain about the future state of fundamentals. Tomorrow, a state realizes and

Figure 1. Timeline.

1See, for example, Wiederholt (2010) for a review of the rational inattention literature, and Veldkamp
(2011) for recent developments in the economics of information acquisition.
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information becomes available. The agent is able to acquire information so as to re-
duce uncertainty about the state before choosing an alternative with state-contingent
payoffs. The value of a menu therefore depends on the set of available choices and the
agent’s costs of information. Intuitively, an agent with high costs is willing to pay more
for menus in which not as much information is needed to make a better choice. An
agent with lower costs is willing to pay less, because she is better able to acquire the
information needed to reduce uncertainty about the state.

This framework can be viewed as a “snapshot” of a dynamic choice environment,
where agents make choices every period that affect both current well-being and future
choice opportunities. For example, in the consumption–saving problems studied in the
rational inattention literature (e.g., Sims 2003, Luo 2010, and Tutino 2013), an agent ac-
quires information about a random income source in each period, and then decides how
much to consume and how much to save. The saving decision in a particular period af-
fects future consumption opportunities, and can therefore be viewed as the choice of
a menu of future consumption–saving plans, which is made before information about
future income is acquired. The choice data could also be generated in experimental set-
tings. For example, Gabaix et al. (2006), Caplin and Dean (2014), and Cheremukhin et al.
(2015) suggest experimental designs to study rational inattention in the laboratory, and
our analysis shows how “willingness-to-pay” data collected in such experiments can be
used to infer the hidden information costs of participants.

In addition to our identification result, we provide an axiomatic characterization of
rationally inattentive preferences. The axioms can be used to verify when a menu-choice
data set is consistent with a model of information acquisition, as depicted in Figure 1.
Applying methods developed in Maccheroni et al. (2006), we show that rationally inat-
tentive preferences can be viewed as a class of the costly contemplation preferences in
Ergin and Saver (2010), and a generalization of the subjective-learning preferences in
Dillenberger et al. (2014).

Finally, we use the class of canonical information costs for comparative statics, and
show how information costs and information acquisition—which are both typically not
observable—can be compared across agents with menu-choice data. Information costs
can be compared following a standard approach, where agents rank menus that offer
them flexibility tomorrow versus menus that force them to commit to an alternative to-
day (as in Dekel et al. 2001, Ergin and Saver 2010, Dillenberger et al. 2014). However, such
comparisons are not enough to reveal how much information agents acquire, an impor-
tant question in applications of rational inattention. We therefore introduce a criterion
to evaluate when one menu offers a higher “premium for information” than another (in
the sense that additional information is more valuable), and show that an agent acquires
more information whenever she has a stronger preference for menus with a higher in-
formation premium.

Our analysis complements testable implications of rational inattention developed in
a number of recent papers (e.g., Caplin and Dean 2015, Ellis 2016, Matejka and McKay
2015), which look at an agent’s choices after she acquires information. In particular,
Caplin and Dean (2015) show that canonical information costs are also without loss of
generality for state-dependent stochastic choice data, but whether these properties are
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sufficient to identify a unique cost function with their data remains an open question.
Our framework allows us to obtain a full identification of all model parameters, without
exogenous restrictions on the set of available signals or additional assumptions about
the agent’s utility function or prior beliefs. Moreover, since ex post verification of ra-
tional inattention requires the stochastic choice data corresponding to every state of
world, our analysis highlights a complementary choice data set that can be used to elicit
preference parameters and predict ex post behavior when collecting state-dependent
stochastic data is difficult or infeasible.

The paper is organized as follows. In Section 2, we present our menu-choice frame-
work and relate it to a general model of information acquisition. Section 3 character-
izes the testable implications of the model for menu choice. In Section 4, we present
our identification results: we introduce the canonical properties of an information cost
function, and show that they are necessary and sufficient to identify all model param-
eters. Section 5 shows how menu-choice data reveal how much information agents ac-
quire. Section 6 concludes. Proofs are provided in the Appendix.

2. Preliminaries

In this section, we introduce our choice framework of menus of state-contingent alter-
natives. We then describe a general information-acquisition problem and define the
induce preference relation over menus.

2.1 Framework

There is a finite set � of states and a set X of outcomes, consisting of simple (finite-
support) lotteries on a set of deterministic prizes (such as money or consumption).2 An
(Anscombe–Aumann) act f : �→X is a map from states into outcomes and the set of
all acts is denoted F . A menu F ⊂ F is a finite set of acts and F denotes the collection of
all menus.

For α ∈ [0�1], acts f�g ∈F , and menus F�G ∈ F, we denote by αf + (1−α)g the mixed
act h such that

h(ω)= αf(ω)+ (1 − α)g(ω) ∀ω ∈��
and by αF + (1 − α)G, we denote the mixed menu H such that

H = {
αf + (1 − α)g : f ∈ F and g ∈G}

�

Our primitive is a binary relation � over the set of menus, which represents the pref-
erences of a decision-maker (henceforth, DM). The asymmetric and symmetric parts of
� are denoted � and ∼, respectively. With some abuse of notation, we identify a single-
ton menu {f } with the act f ∈ F , and identify a constant act f such that f (ω)= x for all
ω ∈� with the outcome x ∈X .

2We assume that� is finite to simplify the exposition. Appendix A.3 provides the technical modifications
required to accommodate a general measurable space.
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To interpret the framework, we take the perspective of a DM when she chooses her
menu (opportunity set), with the prospect of processing information before she selects
an act (alternative). As a result, F �G should be interpreted as “confronted today with
the choice between menus F andG, the DM (weakly) prefers F toG as her opportunity
set for tomorrow.”

The objective lotteries in X represent an additional source of uncertainty that real-
izes after the DM has chosen an act. Formally, the mixed menu αF + (1 − α)G is just
another set of Anscombe–Aumman acts. However, as in Ergin and Saver (2010), it is use-
ful to provide an interpretation in terms of contingency plans. To illustrate, suppose that
the randomization α represents the toss of a coin (that lands on heads with probability α
and tails with probability (1 −α)). When choosing an act from the menu αF + (1 −α)G,
the DM could make a contingency plan: choose f ∈ F on heads and g ∈G on tails. Cor-
responding to this contingency plan, there is a mixed act αf + (1 − α)g ∈ αF + (1 − α)G
that, in each state ω, yields the outcome that f delivers when the coin lands on heads
and the outcome that g delivers when the coin lands on tails. As such, αf + (1 − α)g can
be interpreted as the contingency plan “choose f if heads and g if tails,” and the menu
αF + (1 − α)G can be interpreted as the set of all contingency plans that can be formed
from menus F andG.

2.2 The information-acquisition problem

We consider a general information-acquisition problem, which describes how the DM
chooses an act from a menu. Before a state of the world is realized, the DM has a prior
p̄ ∈ �(�) that represents her initial beliefs. After a state is realized, the DM can acquire
a noisy signal that conveys additional information about the state. Each possible real-
ization of the signal induces a posterior belief p ∈ �(�) from the prior p̄ via Bayes rule.
Accordingly, a signal leads to a distribution over posteriors π ∈ �(�(�)), which satisfies
the Bayesian requirement that the expected posterior is equal to the prior. As a result,
the collection of all possible signals is given by the set

	(p̄)=
{
π ∈ �(

�(�)
) :

∫
�(�)

pπ(dp)= p̄
}
�

The set of signals	(p̄) is partially ordered in terms of their “informativeness” by the
well known ranking of Blackwell (1951, 1953), which in this context can be defined as
follows.

Definition 1. Signal π ∈	(p̄) is Blackwell more informative than signal ρ ∈	(p̄), de-
noted π � ρ, if ∫

�(�)
ϕ(p)π(dp)≥

∫
�(�)

ϕ(p)ρ(dp)

for every convex continuous function ϕ : �(�)→R.

Given a menu F , extracting a signal allows the DM to make a more informed choice
from F because she can choose an act to maximize expected utility for each posterior
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p ∈ �(�). With a utility function u :X → R, the benefit of information for a signal π ∈
	(p̄) is, therefore,

buF(π)=
∫
�(�)

[
max
f∈F

(∫
�
u
(
f (ω)

)
p(dω)

)]
π(dp)�

Since the integrand in square brackets is a convex continuous function on �(�), the
benefits of information are increasing in the Blackwell order.

A rationally inattentive DM balances the benefit of information from a signal π
against the cost for acquiring that signal. These costs are measured by an information
cost function c :	(p̄)→ [0�∞], which associates a cost c(π) to each signal π ∈	(p̄). In
the information-acquisition problem, the DM therefore chooses a signal π that maxi-
mizes the difference between benefits and costs of information (buF(π)− c(π)).

2.3 Rationally inattentive preferences

In our framework, the DM chooses a menu today with the prospect of acquiring in-
formation tomorrow before she selects an act. We model information acquisition as
illustrated above and study the induced preference relation over menus. A leading in-
terpretation is that the DM is “rationally inattentive”: she has access to an abundance of
information and chooses what to pay attention to. We therefore call the induced prefer-
ence relation over menus a rationally inattentive preference.

Definition 2. A binary relation � over menus is a rationally inattentive preference if it
is represented by a functional V : F→ R, defined by

V (F)= max
π∈	(p̄)

[
buF(π)− c(π)]� (1)

where u : X → R is an unbounded affine utility function, p̄ ∈ �(�) is a prior, and c :
	(p̄)→ [0�∞] is a proper lower-semicontinuous information cost function.3

The assumptions on parameters (u� p̄� c) are standard. Properness (i.e., c(π) <∞
for some π) and lower semicontinuity of c are the minimal assumptions required to
ensure that the maximization over costly signals is well defined. The affinity of u corre-
sponds to the assumption of von Neumann–Morgenstern utility over lotteries. Finally,
the unboundedness of u ensures that the benefit of information is not bounded, which
is important for our identification approach.

The following examples illustrate some special cases of rationally inattentive prefer-
ences, which are relevant in applications.

Constrained information In a constrained-information problem, the DM does not in-
cur a cost of information but is limited to choose a signal from some nonempty compact
set �⊂	(p̄). A constrained-information preference is therefore represented by (u� p̄��),
such that a menu F is evaluated by V (F)= maxπ∈� buF(π). Such preferences are a special
case of Definition 2 where c(π)= 0 if π ∈ � and c(π)= ∞ otherwise.

3The set �(�(�)) is endowed with the weak* topology.
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Subjective learning In a model of subjective learning, the DM acquires an exogenous
signal π∗ ∈	(p̄) and cannot adjust her information depending on the choice problem.
A subjective-learning preference (Dillenberger et al. 2014) is therefore represented by
(u� p̄�π∗), such that a menu F is evaluated by V (F) = buF(π

∗). Such preferences are a
special case of Definition 2 where c(π)= 0 if π = π∗ and c(π)= ∞ otherwise.

Mutual information Sims (1998, 2003) suggests parametrizations of information costs
using Shannon’s mutual information (Cover and Thomas 2006, Chapter 2), which mea-
sures information in terms of expected entropy reduction:

I(π)=
∫
�(�)

(∫
�

log
[
p(ω)/p̄(ω)

]
p(dω)

)
π(dp)�

For example, a linear specification, cλ(π) = λI(π), represents costs in terms of the pa-
rameter λ≥ 0 that measures the unit costs of information, and a constraint specification

cκ(π) =
{

0 if I(π)≤ κ�
∞ otherwise

represents costs in terms of the parameter κ≥ 0 that measures a capacity constraint on
information processing.

3. Characterization

In this section, we show that rationally inattentive preferences can be characterized by a
simple set of axioms from the menu-choice literature. We first present the axioms, then
discuss the representation theorem, and finally characterize some special cases.

3.1 Axioms

In the sequel, we consider a number of axioms from the menu-choice literature. The
first three axioms are standard.

Axiom 1 (Weak order). For all menus F , G, and H, (i) F �G or G� F and (ii) if F �G
andG�H, then F �H.

Axiom 2 (Continuity). For all menus F ,G, andH, the following sets are closed:{
α ∈ [0�1] : αF + (1 − α)G�H

}
and

{
α ∈ [0�1] :H � αF + (1 − α)G}

�

Axiom 3 (Unboundedness). There are outcomes x and y, with x � y, such that for all
α ∈ (0�1), there is an outcome z satisfying either y � αz+ (1 − α)x or αz+ (1 − α)y � x.

Axioms 1 and 2 ensure that preferences are complete, transitive, and continuous.
Axiom 3 implies that preferences over outcomes are unbounded (see, e.g., Maccheroni
et al. 2006, Lemma 29). The remaining axioms reflect distinctive features of the
information-acquisition problem that defines a rationally inattentive preference.
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First, in the information-acquisition problem, the DM chooses an optimal act con-
ditional on the information conveyed by signal realizations. As a result, when choosing
a menu, the DM exhibits a preference for flexibility (Kreps 1979): adding an act to a menu
cannot make the DM worse off (since she can always ignore the act if it is not optimal).4

Axiom 4 (Preference for flexibility). For all menus F andG, ifG⊂ F , then F �G.

Second, in the information acquisition problem, the DM chooses a signal to bal-
ance the benefits and costs of information for the specific menu. In our framework, this
flexibility to choose an optimal signal corresponding to a menu is reflected in the DM’s
attitude toward randomization. In a mixed menu αF + (1 − α)G, the DM chooses acts
f ∈ F and g ∈G (i.e., a contingency plan αf + (1 − α)g) not knowing whether the choice
from F orGwill actually determine her final outcome. Since the randomization realizes
after the DM acquires information about the state ω, she is not able to tailor her infor-
mation acquisition to the payoff relevant menu F or G. If the optimal signal differs for
menus F and G, the DM would rather that the randomization over F and G is realized
before she chooses what information to acquire. In particular, if the DM is indifferent
between the menus F and G, she would prefer either one of them to the mixed menu
αF + (1 − α)G, where the randomization over F and G has not yet been resolved. Ergin
and Saver (2010) call this behavior an aversion to contingent planning.5

Axiom 5 (Aversion to contingent planning). For all menus F and G, if F ∼G, then F �
αF + (1 − α)G for all α ∈ (0�1).

However, since information is redundant for singleton menus, the optimal informa-
tion in a mixed menu αF + (1 − α)h depends only on α and F , and does not change if
h is replaced by an the alternative act h′. As a result, the DM’s preferences exhibit an
independence of degenerate decisions (Ergin and Saver 2010).

Axiom 6 (Independence of degenerate decisions). For all menus F andG, acts h and h′,
and α ∈ (0�1),

αF + (1 − α)h� αG+ (1 − α)h ⇒ αF + (1 − α)h′ � αG+ (1 − α)h′�

4A preference for flexibility distinguishes the information-acquisition problem in a rationally inattentive
preference from models where the DM may be “inattentive” to some of the alternatives in a menu (see, e.g.,
Masatlioglu et al. 2012, Manzini and Mariotti 2014, or Ortoleva 2013).

5Axiom 5 could also be interpreted as expressing a desire for early resolution of uncertainty (Ergin and
Sarver 2015). Moreover, Axiom 5 rules out a preference for hedging that, for instance, could arise if the DM
today were uncertain about the information-acquisition technology available tomorrow. Indeed, replacing
aversion to contingent planning with a desire for randomization (i.e., F ∼ G implies αF + (1 − α)G � F )
would characterize a model in which the maximization in (1) is replaced with a minimization. Following
Maccheroni et al. (2006), one could interpret such a model by saying that DM acts “as if” she is playing a
game against a malevolent nature, where nature chooses a signal to minimize the benefits of information
for each menu.
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Finally, in the information-acquisition problem, the DM acquires information only
about the objective state of fundamentals. As a result, her preferences over menus satisfy
a state-by-state dominance axiom (Dillenberger et al. 2014). In particular, adding an act
g to a menu F can make the DM strictly better off only if there is some information about
the objective state that would lead the DM to choose g from F ∪{g}: if F already contains
an act that is preferred to g in all states, adding g to her opportunity set cannot make
her strictly better off.

Axiom 7 (Dominance). For all menus F and acts g, if there exists f ∈ F such that f (ω)�
g(ω) for all ω ∈�, then F ∼ F ∪ {g}.

3.2 Representation theorem

The following theorem shows that Axioms 1–7 characterize all observable implications
of rational inattentive preferences.

Theorem 1. A binary relation � over menus is a rationally inattentive preference if and
only if it satisfies Axioms 1–7.

Theorem 1 shows that the information-acquisition problem in Section 2.2 induces
intuitive behavioral traits that can be observed in our framework. It also establishes a
formal connection between the literature on information acquisition (e.g., models of ra-
tional inattention) and the decision-theory literature on menu choice. Building on the
seminal menu-choice paper by Kreps (1979), Dekel et al. (2001) model choice between
menus of lotteries as that of a DM who exhibits a preference for flexibility because she
expects to learn more about her taste before choosing a lottery from the menu. Ergin
and Saver (2010) establish that relaxing the “set independence” axiom in Dekel et al.
(2001) to aversion to contingent planning admits costly contemplation: the DM acts
as if she is able to exert costly contemplation to reduce uncertainty about her future
tastes before choosing a lottery from the menu. Dillenberger et al. (2014) introduce
objective states into the menu-choice framework and model choice between menus of
Anscombe–Aumann acts as that of a DM who expects to receive an exogenous signal
about the state of the world before choosing an alternative from the menu. To focus on
learning about the objective state, their characterization introduces a dominance axiom
(closely related to our Axiom 7) in addition to axioms in Dekel et al. (2001).

Similar to the way that Ergin and Saver (2010) generalize the independence axiom in
Dekel et al. (2001) to allow for costly contemplation (where learning about tastes is flex-
ible), Theorem 1 relaxes the independence axiom in Dillenberger et al. (2014) to char-
acterize costly information acquisition (where learning about objective states is flexi-
ble). While the axiomatic characterization shows that rationally inattentive preferences
can be viewed as a class of costly contemplation preferences, our proof of Theorem 1
does not start from the representation theorem in Ergin and Saver (2010). In fact, the
additional structure provided by the objective state space and Axiom 7 allows us to fol-
low an alternative approach to the characterization, which uses methods developed in
Maccheroni et al. (2006).
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Maccheroni et al. (2006) pioneered the analysis of choice models with a variational
structure in the context of ambiguity aversion. Our analysis is connected because the
value of information, buF(π) − c(π), is concave and upper semicontinuous in π, and
the optimization over signals therefore corresponds to a variational problem. Especially
important for our approach to the proof of Theorem 1 is that, for rationally inattentive
preferences, every menu F has a certainty equivalent (i.e., a constant act xf ∈ X such
that F ∼ xf ). For the general costly contemplation model in Ergin and Saver (2010),
certainty equivalents do not follow from a natural assumption—such as Axiom 7—on
preferences. The existence of certainty equivalents allows us to impose weaker assump-
tions on primitives (e.g., a weaker continuity axiom) and provide a proof that does not
require the compactness properties Ergin and Saver’s (2010) framework. An additional
advantage is that our proof methods immediately extend to a more general framework
with an infinite state space (see Appendix A.3).

3.3 Special cases

Special cases of rationally inattentive preferences can also be characterized in terms of
the additional restrictions they impose on menu-choice data. For example, constrained-
information acquisition can be characterized by an indifference toward contingency
plans between menus and singletons.

Axiom 8 (Weak indifference to contingent planning). For all menus F and acts h, F ∼ h
implies F ∼ αF + (1 − α)h for all α ∈ (0�1).

In the general model characterized in Theorem 1, a DM is indifferent to randomizing
over menus F and G if there is a common signal π that is optimal for both of these
menus. A key feature of constrained information is that all signals in the constraint set
�(p̄) are costless, and so all of the signals in this set are optimal for a singleton menu. In
particular, whatever signal is optimal for menu F is also optimal for menu h, and the DM
is therefore indifferent to contingent planning with singletons. The following corollary
shows that this additional axioms characterizes constrained-information preferences.

Corollary 1. A binary relation � over menus is a constrained-information preference if
and only if it satisfies Axioms 1–7 and 8.

Alternatively, subjective learning can be characterized by indifference to contingent
planning for arbitrary menus.

Axiom 5b (Indifference to contingent planning). For all menus F and G, F ∼G implies
F ∼ αF + (1 − α)G for all α ∈ (0�1).

In the subjective-learning model, the DM always acquires the same information. In
particular, she acquires exactly the same signal for any menus F andG, and this feature
of the subjective-learning model is reflected in Axiom 5b. The following corollary shows
that replacing Axiom 5 with Axiom 5b characterizes subjective-learning preferences.
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Corollary 2. A binary relation � over menus is a subjective-learning preference if and
only if it satisfies Axioms 1–4, 5b, 6, and 7.

Dillenberger et al. (2014) provide the first characterization of subjective-learning
preferences and analyze this model in more detail.

4. Identifying parameters

In this section, our main objective is to show how the parameters (u� p̄� c) in the
information-acquisition problem can be identified from menu-choice data. Identify-
ing the utility and prior is straightforward. Our main result in this section (Theorem 2)
shows that information costs can also be identified if we impose some additional prop-
erties to “normalize” the cost function.

4.1 Identifying utility and prior

The following remark first shows that it is straightforward to identify the utility u and
prior p̄ from the DM’s preferences over singletons.

Remark 1. Let � be a rationally inattentive preference represented by (u� p̄� c). Then
(i) every menu F has a certainty equivalent xF ∈X such that F ∼ xF and (ii) for all acts f
and g,

f � g ⇔
∫
�
u
(
f (ω)

)
p̄(dω)≥

∫
�
u
(
g(ω)

)
p̄(dω)�

Moreover, if (u′� p̄′� c′) represents the same preference over menus, then p̄′ = p̄ and
there exist α> 0 and β ∈R such that u′ = αu+β.

The certainty equivalent of a menu in part (i) can be interpreted as the sure amount
the DM would be willing to pay today to have F as her opportunity set tomorrow. In the
classic Anscombe–Aumann framework, certainty equivalents for acts are used to iden-
tify a utility function u (representing the DM’s risk preferences) and a prior p̄ (represent-
ing the DM’s initial beliefs). Part (ii) shows that, in our extension of the Anscombe–
Aumann framework, preferences over singleton menus identify u and p̄ in the same
manner. In the following subsection, we therefore assume that u and p̄ are given, and
focus on how certainty equivalents for menus can be used to identify the DM’s informa-
tion costs.

4.2 Identifying information costs

In Definition 2, we impose only mild regularity conditions on information costs, which
are necessary to ensure that the optimization over signals is well defined. In this gen-
eral form, it is not possible to identify costs uniquely. For instance, assume that (u� p̄� c)
represents a rationally inattentive preference. First, it is clearly possible to add a con-
stant to the cost function c without changing the ordinal ranking over menus. Second,
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if there are signals π � ρ such that c(π) < c(ρ), then the DM would never choose sig-
nal ρ (because buF(π) ≥ buF(ρ) for all menus F), and so changing the value c(ρ) to any
number greater than c(π) would lead to an alternative cost function that induces the
same preferences. Finally, if for some signals π and ρ, and α ∈ (0�1), it is the case
that c(απ + (1 − α)ρ) > αc(π) + (1 − α)c(ρ), then the DM would never choose signal
απ + (1 − α)ρ (because buF(απ + (1 − α)ρ) = αbuF(π) + (1 − α)buF(ρ) for all menus F),
so changing the value c(απ + (1 − α)ρ) to any number greater than αc(π)+ (1 − α)c(ρ)
would, again, lead to an alternative cost function that induces the same preferences.

To rule out these cases, we focus on the following class of canonical information
costs.

Definition 3. An information cost function c : 	(p̄)→ [0�∞] is canonical if the fol-
lowing properties are satisfied:

(i) No information is costless. We have c(π0)= 0, where π0 assigns probability 1 to
the prior p̄.

(ii) Blackwell monotonicity. We have that π � ρ implies c(π)≥ c(ρ).
(iii) Convexity. For all signals π and ρ, and α ∈ (0�1),

c
(
απ + (1 − α)ρ) ≤ αc(π)+ (1 − α)c(ρ)�

Properties (i)–(iii) are satisfied by most information cost functions used in appli-
cations. For example, it is well known that mutual information satisfies these prop-
erties (Cover and Thomas 2006, Chapter 2), and so the cost functions based on mu-
tual information—which are frequently used in the rational inattention literature—are
canonical.6

We can now state our identification result.

Theorem 2. Let � be a rationally inattentive preference such that the restriction of � to
singleton menus is represented by (u� p̄). Then the cost function c :	(p̄)→ [0�∞], defined
by

c(π)= sup
F∈F

[
buF(π)− u(xF)

]
� (2)

is the unique canonical information cost function such that (u� p̄� c) represents �.

As an immediate implication of Theorem 2 and Remark 1, properties (i)–(iii) allow an
identification of all model parameters up to a standard positive affine transformation.

Corollary 3. If (u� p̄� c) and (u′� p̄′� c′) represent the same rationally inattentive prefer-
ence �, and c and c′ are canonical, then there exists α> 0 andβ ∈R such that u′ = αu+β,
p̄′ = p̄, and c′ = αc.

6The linear cost function cλ(π) is an example of a cost function that is not only convex, but also linear in
signals: cλ(απ + (1 − α)ρ)= αcλ(π)+ (1 − α)cλ(ρ) for all signals π and ρ, and α ∈ (0�1).
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Theorem 2 establishes that it is without loss of generality to focus on information
costs satisfying properties (i)–(iii): any rationally inattentive preference � has a repre-
sentation with canonical information costs. More importantly, there is always a unique
information cost function satisfying properties (i)–(iii). As a result, it is not possible to
further restrict the class of information costs, as any additional restriction would have
additional behavioral implications. In that sense, Theorem 2 identifies a canonical class
of information costs, which can be used to assess whether the implications of a partic-
ular model of information acquisition—such as the specific models used in the rational
inattention literature—depend only on the general idea of costly information acquisi-
tion or on specific functional form assumptions.

Formula (2) for the information cost is also of practical relevance, because it shows
how the canonical costs can be constructed from menu-choice data. Consider a ratio-
nally inattentive DM with preference relation � represented by (u� p̄� c). By Remark 1,
the restriction of � to singleton menus identifies (u� p̄), and so preferences over sin-
gletons can be used to construct (u� p̄) in the standard way. Now suppose the objec-
tive is to measure the cost the DM incurs to extract a particular signal π ∈ 	(p̄). Since
a rationally inattentive DM chooses signals optimally, we know that for any menu F ,
V (F) ≥ buF(π)− c(π) (where V is the preference functional in Definition 2). Using the
certainty equivalent in Remark 1, this inequality gives a lower bound of buF(π)− u(xF)

on the information cost c(π). By varying the menu F , one tightens the lower bound
and, therefore, achieves an increasingly precise estimate of the DM’s information cost
for signal π. Theorem 2 shows exactly what these lower bounds are approximating: it is
the unique canonical information cost.7

Identification results related to Theorem 2 are given for variational preferences in
other settings by Maccheroni et al. (2006) (in the context of ambiguity aversion) and
Ergin and Saver (2010) (for costly contemplation). However, Theorem 2 is concep-
tually and technically different from these existing identification results. Maccheroni
et al. (2006) study variational preferences over Anscombe–Aumann acts and show that
unboundedness of the utility index is sufficient to identify a unique cost function—
interpreted as an ambiguity index in their model—that is grounded and convex. Ergin
and Saver (2010) restrict the set of contemplation strategies to a “minimal” set. This
identification approach is natural when the state space is subjective (see, e.g., Dekel
et al. 2001), but is less appealing when there are objective states and the set of signals
	(p̄) is objectively given. From a practical point of view, it is also more straightforward
to verify properties of a cost function than to check that a set of signals is minimal.

We therefore take a different approach to the identification problem using the addi-
tional structure in our framework and adapting an argument in Sarver (2014). In partic-
ular, a distinctive feature of our analysis is the interaction between the variational nature
of preferences and the Blackwell order, which plays a crucial role in Theorem 2 and has
no counterpart in Maccheroni et al. (2006) or Ergin and Saver (2010).

7Caplin and Dean (2014), Gabaix et al. (2006), and Cheremukhin et al. (2015) propose experimental de-
signs to study rational inattention that could be adapted to measure hidden information costs using the
insights from Theorem 2.
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To illustrate the role of the Blackwell order, we provide a brief outline of the proof
of Theorem 2. Fix some parameters (u� p̄� c) representing a rationally inattentive prefer-
ence �. The first step of the proof shows that it is without loss of generality to assume
that c is canonical. The second step is to show that if c is canonical, it is uniquely iden-
tified by formula (2). For this part of the proof, we first identify each menu F with a
support function ϕF , which (in our context) is defined on the set of posteriors:

ϕF(p)= max
f∈F

∫
�
u
(
f (ω)

)
p(dω) ∀p ∈ �(�)�

Support functions ϕF are continuous and convex, and the DM’s preference over menus
can be associated with a value function V over support functions by

V (ϕF)= max
π∈	(p̄)

∫
�(�)

ϕF(p)π(dp)− c(π)�

This value function can be extended to the set of all continuous functions ϕ : �(�)→ R

in the obvious way, and since c is convex and lower semicontinuous, an application of
the Fenchel–Moreau theorem gives that

c(π)= sup
ϕ

∫
�(�)

ϕ(p)π(dp)− V (ϕ) ∀π ∈	(p̄)�

where the supremum is taken over all continuous functions ϕ : �(�)→ R. The core of
the proof (a separation argument) uses Blackwell monotonicity to show that the same
supremum is achieved if we consider only support functions ϕF corresponding to the
menus F in our framework, thereby establishing (2) and connecting the canonical infor-
mation cost function directly with observable menu-choice data.

4.3 Comparing information costs

Finally, the uniqueness of canonical information costs allows us to ask how a change
in costs translates into observable changes in behavior. To formalize such comparative
statics, consider two DMs, DM1 and DM2, with rationally inattentive preferences �1 and
�2 represented by (u1� p̄1� c1) and (u2� p̄2� c2), respectively, where c1 and c2 are canon-
ical. To isolate the affect of information costs, we assume a common prior and utility
function, and say that DM1 has lower information costs than DM2 if (u1� p̄1)= (u2� p̄2)

and c1 ≤ c2. The following corollary shows how lower information costs are revealed by
observable menu-choice behavior.

Corollary 4. The following conditions are equivalent:

(i) DM1 has lower information costs than DM2.

(ii) For all menus F and acts h,

h�1 F ⇒ h�2 F�
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For a binary relation �, h � F implies that the flexibility of choosing an act f ∈ F is
not desirable enough for the DM to prefer menu F to the singleton menu h. Part (ii)
therefore indicates that DM1 has a stronger desire for flexibility than DM2 (Dekel et al.
2001, Ergin and Saver 2010, and Dillenberger et al. 2014). As a result, Corollary 4 provides
a behavioral interpretation for measures of information commonly used in applications.
For instance, in the context of Example 2.3, a stronger desire for flexibility reveals when
DM1 has a lower unit cost of information (λ) or a higher capacity constraint (κ).

5. Information acquisition

In this section, we further demonstrate the connection between menu choice and mod-
els of costly information acquisition by showing how a DM’s preferences reveal the
amount of information she acquires, an important question in applications.

To formalize this question, we observe that, in addition to a preference relation over
menus (Definition 2), the information-acquisition problem with parameters (u� p̄� c) in-
duces a choice correspondence C : F⇒	(p̄) over signals:

C(F)= arg max
π∈	(p̄)

[
buF(π)− c(π)]�

The choice correspondence C is of primary interest in many applications, but is gener-
ally not directly observable. For example, in models of rational inattention, the signal
an agent acquires is interpreted as a reflecting her choice about what information to pay
attention to, which depends on hidden information costs. Alternative choice data must
therefore be used to evaluate when one DM acquires more information than another.8

In the following discussion, we fix (u� p̄) and consider two canonical information
cost functions c1 and c2. Denote by �i the preference relation over menus and denote
by Ci the choice correspondence over signals, induced by (u� p̄� ci) for i = 1�2. Intu-
itively, given two DMs (with cost functions c1 and c2), we want to say that DM1 acquires
more information than DM2 if she acquires Blackwell more informative signals for every
menu. Since Ci(F)may not be a singleton, formalizing this idea requires an extension of
the Blackwell order to sets of signals.

Definition 4. The set of signals 	1 is more informative than	2, denoted 	1 �	2, if

sup
π∈	1

∫
�(�)

ϕ(p)π(dp)≥ sup
ρ∈	2

∫
�(�)

ϕ(p)ρ(dp)

for every convex continuous functions ϕ : �(�)→R.

Definition 4 is a natural generalization of the Blackwell order to sets of signals: if 	1

is more informative than 	2, a DM with any payoff function ϕ over posteriors would

8Caplin and Dean (2015) analyze how this can be done by looking at ex post data, i.e., the stochastic
state-dependence choice of acts from menus after the decision-maker acquires signals. We show below
that this can also be done with menu choices, which provides an alternative data set that may be useful
when state-dependent stochastic choice data are not available.



636 de Oliveira, Denti, Mihm, and Ozbek Theoretical Economics 12 (2017)

prefer to have access to the set of signals 	1 than the set of signals in 	2 (in particu-
lar, the restriction to singleton sets coincides with the usual Blackwell order on signals,
explaining our abuse of notation).

We use this extension of the Blackwell order to sets of signals to formally define when
DM1 acquires more information than DM2.

Definition 5. DM1 acquires more information than DM2 if C1(F) � C2(F) for all
menus F .

Our objective is to translate the above condition into observable choice behavior.
To do so, we start from the intuition that a DM who anticipates being more informed
will have a stronger preference for menus that offer a higher premium for information
(i.e., menus for which information is more valuable). Of course, in general, DMs can
disagree about the information premium offered by different menus, so we must first
identify pairs of menus where all DMs should agree about which one has the higher
information premium. Since information is not valuable for singleton menus, we start
by observing that a singleton menu h has a lower information premium than any other
menu G. Now suppose a coin is tossed, so that the final choice of an act will come from
a common menu F with probability α and either menu G or h otherwise. In the menu
αF + (1 − α)h, information has value only if the final choice comes from F , while in
the menu αF + (1 − α)G, the same information may allow the DM to choose a better
alternative from both menu F and menu G. Thus, we argue that any DM should regard
menu αF+(1−α)G as offering a higher information premium than menu αF+(1−α)h.
Accordingly, the following Theorem 3 shows that DM1 acquires more information than
DM2 if and only if whenever DM2 prefers a menu with a higher information premium,
DM1 does likewise.

Theorem 3. The following conditions are equivalent:

(i) DM1 acquire more information than DM2.

(ii) For all menus F andG, acts h, and α ∈ (0�1),

αF + (1 − α)h�1 αF + (1 − α)G ⇒ αF + (1 − α)h�2 αF + (1 − α)G�

Theorem 3 translates comparative statics on unobservable signal choices (how
much information DMs acquire) into a comparative statics criterion on observable
choice data (preferences for an information premium). In particular, part (ii) can be
interpreted in terms of the primitive behavioral traits in Section 3. While it is sufficient
to consider the DMs’ desires for flexibility to compare their information costs (Corol-
lary 4), comparing how much information the DMs acquire depends on both their de-
sire for flexibility and their aversion to contingency planning. Consider a DM comparing
menus αF + (1 − α)G and αF + (1 − α)h. On one hand, menu G offers more flexibility
to adjust to new information than the singleton menu h. On the other hand, the ran-
domization in mixed menu αF + (1 − α)G does not allow the DM to target her choice
of a signal specifically to the menu that determines her final payoffs. As such, the DM
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faces a trade-off between her preference for flexibility and her aversion to contingency
planning. Theorem 3 therefore reflects the intuition that if DM1 anticipates that she will
acquire more information than DM2, she is better able to exploit the flexibility offered
by menu αF + (1 −α)G and is also less affected by the need to make contingency plans.

6. Conclusion

In this paper, we show how menu-choice data can be used to study models of costly in-
formation acquisition with hidden information costs. Such models have recently gained
prominence with the rational inattention literature (Sims 1998, 2003), where costs of in-
formation are interpreted as representing limitations on attention and are therefore not
directly observable. We complement applied research on rational inattention by provid-
ing a theory for how such models of individual behavior can be tested, and how hidden
information costs can be identified and elicited with observable choice data.

Our framework takes the perspective of an agent when she chooses a menu—an op-
portunity set—with the prospect of acquiring an informative signal about the state of
the world before selecting an alternative. Preferences over menus reveal the trade-off
the DM faces when she balances the benefits of information against the cost of signals
that convey information about the state. We show that three properties—(i) acquiring
no information is costless, (ii) Blackwell monotonicity, and (iii) convexity—are sufficient
to identify information costs from menu-choice data. Moreover, an explicit formula re-
lates the unique canonical information cost to the DM’s willingness to pay for differ-
ent menus, suggesting a specific procedure by which hidden information costs can be
elicited from data in dynamic choice environments or experimental settings. We also
provide a theory of comparative statics, which shows how menu-choice data can be used
to compare information costs, and reveal how much information rationally inattentive
agents acquire.

Our analysis also provides a natural starting point for research on the behavioral
foundations of dynamic models of rational inattention. Extending on our analysis, fu-
ture research in these direction has the potential to support much needed empirical
analysis of the implications of costly information acquisition in a variety of economic
environments.

Appendix

In this section, we prove the results in Sections 3–5.

A.1 Preliminaries

We first introduce some additional notation and preliminary results required for the
proofs.

Niveloids Denote by C(�(�)) the linear space of real-valued continuous functions de-
fined on �(�), and denote by ca(�(�)) the linear space of signed measures of bounded
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variation on �(�) (Aliprantis and Border 2006, p. 399). For each π ∈ ca(�(�)) and for
each ϕ ∈ C(�(�)), let

〈ϕ�π〉 =
∫
�(�)

ϕ(p)π(dp)�

The linear space C(�(�)) is endowed with the supnorm and ca(�(�)) is endowed with
the weak* topology. Therefore ca(�(�)) can be identified with the continuous dual
space of C(�(�)) (Aliprantis and Border 2006, Corollary 14.15), and C(�(�)) can be
identified with the continuous dual space of ca(�(�)) (Aliprantis and Border 2006,
Theorem 5.93).

Let � be a subset of C(�(�)) and consider a function V :�→ R. We say that V is
normalized if V (α) = α for each constant function α ∈ �, is monotone if V (ϕ) ≥ V (ψ)

for all ϕ�ψ ∈� such that ϕ≥ψ, is translation invariant if V (ϕ+ α)= V (ϕ)+ α for each
ϕ ∈� and α ∈R such that ϕ+α ∈�, and is a niveloid if V (ϕ)−V (ψ)≤ sup{ϕ(p)−ψ(p) :
p ∈ �(�)} for each ϕ�ψ ∈�.

Niveloids are studied in detail in Cerreia-Vioglio et al. (2014), who prove also the fol-
lowing results. If V is a niveloid, then it is monotone and translation invariant, while
the converse is true whenever � =�+ R. Moreover, if V is a niveloid, then V is (Lips-
chitz) continuous. If � is a convex set and V is a convex niveloid, then there is a convex
niveloid that extends V to C(�(�)).

Notation and auxiliary results Let � be the set of convex functions belonging to
C(�(�)): � is a closed convex cone such that 0 ∈ �. Denote by �∗ the dual cone of
�, that is,

�∗ = {
π ∈ ca

(
�(�)

) : 〈ϕ�π〉 ≥ 0 for all ϕ ∈�}
�

The set �∗ is also a closed convex cone such that 0 ∈ �∗. Moreover � = �∗∗ (see
Aliprantis and Border 2006, Theorem 5.103), that is,

�= {
ϕ ∈ C(

�(�)
) : 〈ϕ�π〉 ≥ 0 for all π ∈�∗}�

Let u : X → R be an affine function. Denote by �F (�F , �X ) the set of functions ϕF :
�(�)→R (ϕf : �(�)→R,ϕx : �(�)→ R) such that for some menuF (act f , outcome x),

ϕF(p)= max
f∈F

∫
�
u
(
f (ω)

)
p(dω)

(
ϕf (p)=

∫
�
u
(
f (ω)

)
p(dω)�ϕx(p)= u(x)

)

for all p ∈ �(�).
Observe that u(X)=�X ⊂�F ⊂�F ⊂�. Moreover, αϕF + (1 − α)ϕG = ϕαF+(1−α)G

for each pair of menus F andG, and α ∈ [0�1]. Hence, in particular, �F is convex.
Recall that, for a rationally inattentive preference, u(X) is unbounded. The following

additional properties of �F and �F hold when u(X) is unbounded above (analogous
properties hold when u(X) is unbounded below):

(i) We have �F + [0�∞)=�F.

(ii) The inequality ϕF ≥ 0 implies αϕF ∈�F for every α ∈ [1�∞).
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(iii) The relation 0 ∈ u(X) implies αϕF ∈�F for every α ∈ [0�1).

(iv) If u(X) is open, for each menu F , there is α> 1 such that αϕF ∈�F.

(v) The term �F +R is dense in �.

Properties (i)–(iv) are easily verified. To show that property (v) holds, letϕ ∈�. By adding
a constant to ϕ, we can assume without loss of generality that the image of ϕ lies in the
interior of u(X). By Theorem 1.7.1 in Schneider (1993), there exists a compact, convex
setK ⊂ u(X)� such that

ϕ(p)= max
k∈K

∫
�
k(ω)p(dω)�

By Theorem 1.8.16 in Schneider (1993), for any ε > 0, there exists a finite set H ⊂ R
�

such that H ⊂ K ⊂ co(H)+ εB, where B is the unit ball in R
�. For ε sufficiently small,

there exists a menu F ∈ F such thatH = u(F), and so ϕF ≤ ϕ≤ ϕF + ε.

A.2 Proofs

For simplicity, we assume that utility functions are unbounded above (the case where
they are unbounded below is analogous and is omitted).

Proof of Theorem 1 It is straightforward to show that a rationally inattentive preference
� satisfies Axioms 1–7, so we omit this direction of the proof. To prove the converse, we
start by establishing an implication of Axioms 4 and 7 that we will use throughout the
proof.

Claim 1. For menus F andG, suppose that for each g ∈G, there is f ∈ F such that f (ω)�
g(ω) for all ω. Then F �G.

Proof. Let F = {f1� � � � � fn} andG= {g1� � � � � gm}. By Axiom 4,

F ∪G� · · · � {f1� f2} ∪G� {f1} ∪G�G�

By Axiom 7,

F ∼ F ∪ {g1} ∼ F ∪ {g1� g2} ∼ · · · ∼G∪ F�
Hence, we conclude that F �G, as wanted. �

Claim 2. Every menu F has a certainty equivalent xF ∈X such that xF ∼ F .

Proof. Since F and � are finite, we can let x be a best outcome and let y be a worst
outcome that may occur in any act in F . By Claim 1 we have x � F � y. Now consider
the two sets

A= {
α ∈ [0�1] : αx+ (1 − α)y � F}

and B= {
α ∈ [0�1] : F � αx+ (1 − α)y}�

ThenA∪B= [0�1] and, by Axiom 2,A and B are closed. Since [0�1] is connected, there
exists α ∈A∩B such that αx+ (1 − α)y ∼ F . So let xF be equal to αx+ (1 − α)y. �
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Claim 3. There exist an affine utility function u :X → R with unbounded range and a
prior probability measure p̄ over� such that the preference � over F is represented by the
function U :F → R defined by

U(f)=
∫
�
u
(
f (ω)

)
p̄(dω) ∀f ∈ F �

Proof. Take f�g ∈ F and fix α ∈ [0�1]. Suppose that f ∼ g. By Axiom 5, f = αf +
(1 − α)f � αg + (1 − α)f . By Axiom 6, αf + (1 − α)g � αg + (1 − α)g = g. By Axiom 5,
g = αg + (1 − α)g � αf + (1 − α)g. So we conclude that f ∼ g ∼ αf + (1 − α)g. The
remainder of the proof then follows from Maccheroni et al. (2006, Corollary 20 and
Lemma 29). �

It is without loss of generality to let 0 ∈ u(X) and assume that u(x)≥ 0 for each x ∈X
whenever u(X) is lower bounded and closed.

Now, with some abuse of notation, define the functional V : �F → R such that
V (ϕF)=U(xF), where xF is a certainty equivalent of F .9 If xF and yF are two certainty
equivalents of F , then xF ∼ yF and soU(xF)=U(yF). To conclude that V is well defined,
we need to show that ϕF = ϕG implies F ∼G for each pair of menus F and G. The next
two claims will accomplish this goal.

Claim 4. Consider a pair of menus F andG. If ϕF ≥ ϕG, then for each g ∈G, there exists
f ∈ coF (where coF is the convex hull of F) such that f (ω)� g(ω) for each ω ∈�.

Proof. We prove the contrapositive. Assume that there is g ∈ G such that for all
f ∈ coF , we have g(ω) � f (ω) for some ω ∈ �. Consider u(coF). By affinity of u,
co(u(F)) = u ◦ (coF), so that u(coF) is convex, closed, and bounded. Let E = {e ∈ R

� :
e≥ u ◦ g}. Then E is closed convex cone. Clearly, u(coF) and E are disjoint. By a sepa-
rating hyperplane theorem (Rockafellar 1970, Corollary 11.4.2), there exists somep ∈R

�

such that ∫
�
u
(
f (ω)

)
p(dω) <

∫
�
e(ω)p(dω) ∀e ∈E and ∀f ∈ F�

Since u ◦ g belongs to E, we have

max
f∈F

∫
�
u
(
f (ω)

)
p(dω) <

∫
�
u
(
g(ω)

)
p(dω)�

Hence, since E is a cone, it is possible to choose p ∈ �(�) so that ϕF(p) < ϕG(p). �

Claim 5. Consider a pair of menus F andG. IfG⊂ coF , then F �G.

9For convenience we use V to denote both the representation over menus and the induced representa-
tion over support functions.



Theoretical Economics 12 (2017) Rationally inattentive preferences 641

Proof. LetG= {g1� � � � � gn} ⊂ coF . For all i= 1� � � � � n, we can write each gi = ∑mi
j=1 α

i
jf
i
j

for αi1� � � � �α
i
mi

≥ 0 summing up to 1, and f i1� � � � � f
i
mi

∈ F . Hence

G⊂
m1∑
j=1

· · ·
mn∑
j′=1

α1
j · · ·αnj′F =

l∑
k=1

βkF�

By Axiom 4 we have that
∑l
k=1βkF �G, so it is enough to check that F ∼ ∑l

k=1βkF . We
show this by induction on l. If l = 1, then

∑l
k=1βkF = F ∼ F . Suppose now the claim is

true for l− 1. Observe that

l∑
k=1

βkF = βlF + (1 −βl)
(
l−1∑
k=1

βk
1 −βl F

)
�

Moreover, by inductive assumption, F ∼ ∑l−1
k=1(βk/(1 − βl))F . Therefore, by Axiom 5,

F �
∑l
k=1βkF . Since F ⊂ ∑l

k=1βkF , by Axiom 4 we obtain
∑l
k=1βkF � F . Therefore,

F ∼ ∑l
k=1βkF , as wanted. �

By Claim 4, if ϕF ≥ ϕG, then there exists a subset H ⊂ coF such that for each g ∈G
there exists h ∈H such that h(ω) � g(ω) for all ω ∈ �. By Claim 5, F is preferred to H,
which, by Claim 1, is preferred to G. This shows that V is well defined (and monotone).
Moreover, notice that V represents � in the sense that F � G if and only if V (ϕF) ≥
V (ϕG).

Claim 6. The functional V is a monotone, normalized, convex niveloid.

Proof. The monotonicity of V comes immediately from Claims 4 and 5. Moreover,
observe that the set of constant functions in�F is�X , and for every outcome x, we have
V (ϕx)= u(x)= ϕx, so that V is normalized.

We next show that V is translation invariant. Using Axiom 6, the obvious adaptation
of the argument in Maccheroni et al. (2006, Proof of Lemma 28) provides that whenever
k belongs to u(X), we have for any ϕF ∈�F,

V
(
βϕF + (1 −β)k) = V (βϕF)+ (1 −β)k ∀β ∈ (0�1)�

Pick γ > 1, so that γϕF ∈�F. Then

V

(
1
γ
(γϕF)+ γ− 1

γ

(
γ

γ− 1
k

))
= V

(
1
γ
(γϕF)

)
+ γ− 1

γ

(
γ

γ− 1
k

)
∀α> 0�

This implies that V (ϕF +k)= V (ϕF)+kwhenever k> 0. Now fix ϕF ∈�F. For any k< 0
such that ϕF + k ∈�F,

V (ϕF)= V (ϕF + k− k)= V (ϕF + k)− k ⇒ V (ϕF)+ k= V (ϕF + k)�

Hence, V is translation invariant on �F.
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To show that V is convex, suppose V (ϕF) = V (ϕG). Then F ∼G and, by Axiom 5,
F � αF + (1 − α)G. Hence,

αV (ϕF)+ (1 − α)V (ϕG)= V (ϕF)≥ V (ϕαF+(1−α)G)= V (
αϕF + (1 − α)ϕG

)
�

Now suppose V (ϕG) > V (ϕF) and define β= V (ϕG)− V (ϕF) > 0. Since ϕF +β ∈�F,

V (ϕF +β)= V (ϕF)+β= V (ϕF)+ V (ϕG)− V (ϕF)= V (ϕG)�
where the first equality holds by translation invariance. Therefore,

V (ϕG)≥ V (
α(ϕF +β)+ (1 − α)ϕG

) = V (
αϕF + (1 − α)ϕG

) + αβ
= V (

αϕF + (1 − α)ϕG
) + α(

V (ϕG)− V (ϕF)
)
�

so that V (αϕF + (1 − α)ϕG)≤ αV (ϕF)+ (1 − α)V (ϕG), and V is convex.
Since V is translation invariant on�F, we can extend V uniquely to�F +R by defin-

ing V (ϕ)= V (ϕ+k)−k for anyϕ ∈�F+R andk ∈R such thatϕ+k ∈�F. This extension
preserves not only translation invariance, but also monotonicity and convexity. Hence
the extension of V is a convex niveloid on �F +R and a fortiori on �F.

To complete the proof we apply the well known Fenchel–Moreau theorem (adapted
to our framework). �

Claim 7. There exists a proper, lower-semicontinuous cost function c : 	(p̄) → [0�∞]
such that

V (ϕF)= max
π∈	(p̄)

〈ϕF�π〉 − c(π) ∀F ∈ F�

Proof. Since �F is convex and V is a convex niveloid, there is a real-valued func-
tional W defined on C(�(�)) that is a convex niveloid extending V (see Section A.1).
Since W is a niveloid, it is continuous. Since W is continuous, convex, and real-
valued, by Rockafellar (1974, Theorem 11) the subdifferential of W is nonempty at each
ϕ ∈ C(�(�)), that is, for each ϕ there is π ∈ ca(�(�)) such that

〈ϕ�π〉 −W (ϕ)≥ 〈ψ�π〉 −W (ψ) ∀ψ ∈ C(
�(�)

)
� (3)

Moreover, since W is a niveloid, it is monotone and translation invariant, so by
Ruszczyński and Shapiro (2006, Theorem 2.2) we can choose π to be in �(�(�)). Define
V ∗ : �(�(�))→ (−∞�∞] such that

V ∗(π)= sup
F∈F

〈ϕF�π〉 − V (ϕF) ∀π ∈ �(
�(�)

)
�

Thus, for all ϕF and π, V ∗(π) ≥ 〈ϕF�π〉 − V (ϕF) and hence V (ϕF) ≥ 〈ϕF�π〉 − V ∗(π).
Moreover, by (3), for any ϕF , there exists a π ∈ �(�(�)) such that 〈ϕF�π〉 − V (ϕF) =
V ∗(π). As a result,

V (ϕF)= max
π∈�(�(�))

〈ϕF�π〉 − V ∗(π) ∀F ∈ F�
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We want c to be the restriction of V ∗ to	(p̄). To do so, we need to show that (i) V ∗ ≥
0, (ii) V ∗ is proper and lower semicontinuous, and (iii) V ∗(π) < ∞ implies π ∈ 	(p̄).
First, since V is normalized and 0 ∈ �F, 〈0�π〉 − V (0) = 0, it follows that V ∗ ≥ 0. Next,
observe that

〈ϕF� p̄〉 = max
f∈F

∫
�
u
(
f (ω)

)
p̄(dω) ∀F ∈ F�

By Axiom 4, F is preferred to any f ∈ F . Therefore, V ∗(π0) ≤ 0 and hence V ∗(π0) = 0.
This implies that V ∗ is proper. Lower semicontinuity comes from the fact that V ∗ is the
pointwise supremum of a family of continuous functions. Finally, suppose that V ∗(π) <
∞. For each n ∈ N, choose consequences x and y such that u(x) = n and u(y) = 0. Fix
ω ∈� and consider an act f taking value x on ω and y otherwise. Then

〈ϕf �π〉 − V ∗(π)= n
∫
�(�)

p(ω)π(dp)− V ∗(π)≤ V (ϕf )= np̄(ω)�

Since the above inequality holds for each n, as long as V ∗(π) <∞, it follows that∫
�(�)

p(ω)π(dp)≤ p̄(ω) ∀ω ∈��

and so, since
∫
�(�) pπ(dp) ∈ �(�), it follows that

∫
�(�) p(ω)π(dp)= p̄(ω) for all ω ∈�.

Hence,

V (ϕF)= max
π∈	(p̄)

〈ϕF�π〉 − V ∗(π) ∀F ∈ F�

and we can let c be the restriction of V ∗ to	(p̄), as desired. �

The following lemma, which isused in the proof of Corollary 2, shows when the DM
will choose different signals for different menus.

Lemma 1. Let � be a rationally inattentive preference represented by V : F→R. Then for
all finite collection of menus F1� � � � �Fn , and α1� � � � �αn > 0 summing to 1, the following
statements are equivalent:

(i) We have α1V (F1)+ · · · + αnV (Fn)= V (α1F1 + · · · + αnFn).
(ii) We have C(α1F1 + · · · + αnFn)⊂ C(Fi) for all i= 1� � � � � n.

(iii) We have C(F1)∩ · · · ∩ C(Fn) �=∅.

Proof. We first show that (i) implies (ii) by induction on n. If n= 1, (i) trivially implies
(ii). Now suppose that this is true also for n− 1. Set

G= α2

1 − α1
F2 + · · · + αn

1 − α1
Fn�

Notice that since V is convex, α2V (F2)+ · · · + αnV (Fn)≥ (1 − α1)V (G) and

α1V (F1)+ · · · + αnV (Fn)= V (
α1F1 + (1 − α1)G

) ≤ α1V (F1)+ (1 − α1)V (G)�
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Therefore, α2V (F2)+ · · · + αnV (Fn)= (1 − α1)V (G) and

α1V (F1)+ (1 − α1)V (G)= V (
α1F1 + (1 − α1)G

)
�

So choose π ∈ C(α1F1 + (1 − α1)G). Then〈
α1ϕF1 + (1 − α1)ϕG�π

〉 − V (
α1F1 + (1 − α1)G

) = c(π)≥ 〈ϕF1�π〉 − V (F1)�

Replacing V (F1)with (1/α1)V (α1F1 + (1 −α1)G)− ((1 −α1)/α1)V (G) and, rearranging,
we get

(1 − α1)〈ϕG�π〉 − 1 − α1

α1
V (G)≥ (1 − α1)〈ϕF1�π〉 − 1 − α1

α1
V

(
α1F1 + (1 − α1)G

)
�

Multiplying both sides by α1/(1 −α1), adding 〈ϕG�π〉 to both sides, and rearranging, we
get

〈ϕG�π〉 − V (G)≥ 〈
α1ϕF1 + (1 − α1)ϕG�π

〉 − V (
α1F1 + (1 − α1)G

)
�

which implies that 〈ϕG�π〉 − V (G)≥ c(π). Hence, it must be that π ∈ C(G). The analo-
gous argument shows that π ∈ C(F1), so that

C
(
α1F1 + (1 − α1)G

) ⊂ C(F)∩ C(G)�

Since α2V (F2) + · · · + αnV (Fn) = (1 − α1)V (G), by the inductive assumption, C(G) ⊂
C(Fi) for all i= 2� � � � � n. We conclude that C(α1F1 +· · ·+αnFn)⊂ C(Fi) for all i= 1� � � � � n.

Since C(α1F1 + · · · + αnFn) is nonempty, (ii) implies (iii).
To see that (iii) implies (i), choose some π ∈ C(F1)∩ · · · ∩ C(Fn). Then

α1V (F1)+ · · · + αnV (Fn)= 〈α1ϕF1 + · · · + αnϕFn�π〉 − c(π)≤ V (α1F1 + · · · + αnFn)�
By Jensen’s inequality, the convexity of V implies

α1V (F1)+ · · · + αnV (Fn)≥ V (α1F1 + · · · + αnFn)
and, therefore, (i) holds. �

Proof of Corollary 1 It is straightforward to prove that a constrained-information pref-
erence � satisfies Axioms 1–8, and so we omit this direction of the proof. For the con-
verse, suppose � satisfies Axioms 1–8. By Theorem 1, � is a rationally inattentive prefer-
ence represented by some (u� p̄� c), and by Theorem 2 it is without loss of generality to
assume that c is canonical. We will show that adding Axiom 8 implies that c(π) ∈ {0�∞}
for all π ∈	(p̄), so that � is a constrained-information preference.

Let V : �F → R be given by V (ϕF) = maxπ∈	(p̄)〈ϕF�π〉 − c(π). We first show that
Axiom 8 implies that V is homogeneous, that is, V (αϕF) = αV (ϕF) for all F ∈ F and
α> 0.

Fix some F such that ϕF ≥ 0. First assume that α ∈ [0�1] and let f ∈ F be such that
f ∼ F . By Axiom 8, we have that F ∼ αF + (1 − α)f , and so

V (ϕF)= V (
αϕF + (1 − α)ϕf

) = V (αϕF)+ (1 − α)V (ϕf )�
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where the second equality comes from the translation invariance of V (see Claim 6 in
the proof of Theorem 1). Substituting V (ϕf )= V (ϕF) and rearranging terms, we obtain
V (αϕF)= αV (ϕF). Now assume that α> 1. Then

V
(
α−1(αϕF)

) = α−1V (αϕF) ⇒ V (αϕF)= αV (ϕF)�
where the first equality follows from the case α ∈ (0�1). Hence, V (αϕF) = αV (ϕF) for
any F such that ϕF ≥ 0 and α> 0.

Now we show that if V is homogeneous, then c(π) ∈ {0�∞} for all π ∈	(p̄).
Fix some π ∈ 	(p̄). Notice that if c(π) > 0, then there exists a menu G such that

〈ϕG�π〉 − V (ϕG) > 0. By translation invariance of V , we can assume without loss of
generality that ϕG ≥ 0. Now notice that

c(π) = sup
F∈F

〈ϕF�π〉 − V (ϕF)

≥ sup
α∈(0�∞)

〈αϕG�π〉 − V (αϕG)

= sup
α∈(0�∞)

α
(〈ϕG�π〉 − V (ϕG)

) = ∞�

Finally, notice that if c(π) is always equal to 0 or ∞, we can write

V (ϕF)= max
π∈	(p̄)

〈ϕF�π〉 − c(π)= max
{π:c(π)=0}

〈ϕF�π〉

so that � is a constrained-information preference.

Proof of Corollary 2 It is straightforward to prove that a subjective-learning preference
� satisfies Axioms 1–4, 5b, 6, and 7. For the converse, suppose � satisfies Axioms 1–4,
5’, 6, and 7. Clearly Axiom 5b implies Axiom 5, and so by Theorem 1, � is a rationally
inattentive preference represented by some (u� p̄� c), and by Theorem 2 it is without loss
of generality to assume that c is canonical. We will show that Axiom 5b implies that � is
a subjective-learning preference.

By Axiom 5b, for all menus F andG, and α ∈ (0�1),

αV (F)+ (1 − α)V (G)= V (
αF + (1 − α)G)

�

By induction it is easy to see that for all menus F1� � � � �Fn, and α1� � � � �αn > 0 summing
to 1,

V (α1F1 + · · · + αnFn)= α1V (F1)+ · · · + αnV (Fn)�
By Lemma 1, C(F1) ∩ · · · ∩ C(Fn) �= ∅. Hence, the collection of closed sets {C(F) :
F ∈ F} has the finite intersection property. Since 	(p̄) is compact, we conclude that⋂
F∈F C(F) �= ∅. Hence, we can choose some π ∈ ⋂

F∈F C(F) with c(π) <∞, so that for
all menus F andG,

〈ϕF�π〉 ≥ 〈ϕG�π〉 ⇔ V (F)≥ V (G)�
which implies that � is a subjective-learning preference.
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Proof of Theorem 2 Let (u� p̄� c) represent a rationally inattentive preference. First, we
verify that, without loss of generality, we can assume that c is canonical. Next—and this
is the core of the proof—we show that if c is canonical, then c satisfies (2).

Claim 8. There exists c′ canonical such that (u� p̄� c′) represent the same preference as
(u� p̄� c).

Proof. Clearly adding a constant to the cost function c does not affect preferences;
therefore without loss of generality, assume 0 ∈ c(	(p̄)). Define the value function V :
F→ R such that

V (F)= max
π∈	(p̄)

〈ϕF�π〉 − c(π) ∀F ∈ F�

Choose c′ :	(p̄)→ (−∞�∞] such that

c′(π)= sup
F∈F

〈ϕF�π〉 − V (F) ∀F ∈ F�

Since 0 ∈ c(	(p̄)), then 〈ϕf �π〉 = ϕf (p̄) = V (f ) for every π ∈ 	(p̄) and f ∈ F . This
implies that c′(π)≥ 0 for every π ∈	(p̄). Moreover, 〈ϕF�π0〉 = maxf∈F ϕf (p̄)≤ V (F) for
all F ∈ F. Therefore, c′(π0) ≤ 0 and so c′(π0) = 0. It is also clear that c′ is convex, lower
semicontinuous, and Blackwell monotone. Therefore, c′ is canonical. Finally, a standard
variational argument shows that

V (F)= max
π∈	(p̄)

〈ϕF�π〉 − c′(π) ∀F ∈ F�

which implies that (u� p̄� c′) represents the same preference as (u� p̄� c), completing the
proof. �

For the rest of the proof, assume that c is canonical. With some abuse of notation,
define the functional V :�→R such that

V (ϕ)= max
π∈	(p̄)

〈ϕ�π〉 − c(π) ∀ϕ ∈�� (4)

Fix π ∈ 	(p̄). From (4) we see that c(π) ≥ 〈ϕF�π〉 − V (ϕF) for each menu F , and so
c(π)≥ supF∈F〈ϕF�π〉−V (ϕF). To show that c(π)= supF∈F〈ϕF�π〉−V (ϕF), we therefore
need to show the reverse inequality. It is sufficient to show that for each c(π) > α ≥ 0,
we have supF∈F〈ϕF�π〉 − V (ϕF) ≥ α. Since �F + R is dense in � and V is continuous
and translation invariant, it is enough to verify that supϕ∈�〈ϕ�π〉 − V (ϕ) ≥ α for each
c(π) > α≥ 0. To do so, fix 0 ≤ α< c(π), and define the sets

epi c ={
(ρ�β) ∈	(p̄)×R : c(ρ)≤ β}

and �∗
π�α = {

(π + ρ�α) : ρ ∈�∗}�
where epi c is the epigraph of c. Since c is convex, is lower semicontinuous, and c(π0)=
0, epi c is nonempty, convex, and closed. Since �∗ is convex and closed, �∗

π�α is convex
and closed. Adapting an argument in Sarver (2014, Proof of Claim 1), we first establish
the following claim about the difference between epi c and �∗

π�α.
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Claim 9. The origin (0�0) ∈ ca(�(�))×R is not a limit point of epi c−�∗
π�α.

Proof. Define the sets

A=epi c ∩ (
	(p̄)× [0�α+ 1]) and B= epi c ∩ (

	(p̄)× [α+ 1�∞)
)
�

Since c ≥ 0, we have that epi c =A ∪ B, so that epi c −�∗
π�α is covered by A−�∗

π�α and
B−�∗

π�α. It is clear that B−�∗
π�α is a subset of ca(�(�))× [1�∞), which is a closed set

that does not contain (0�0), and so (0�0) is not a limit point of B − �∗
π�α. Hence, it is

sufficient to show that (0�0) is not a limit point ofA−�∗
π�α.

Observe thatA is the intersection of the closed set epi c and the compact set	(p̄)×
[0�α+ 1]: hence A is compact. Since A−�∗

π�α is the difference of a compact set and a
closed set,A−�∗

π�α is closed. So it is sufficient to show that (0�0) does not belong toA−
�∗
π�α or, equivalently, that A and �∗

π�α are disjoint. Pick ρ ∈�∗ such that π + ρ ∈	(p̄).
Since 〈ϕ�ρ〉 ≥ 0 for each ϕ ∈ �, then π + ρ � π. Since c is monotone in the Blackwell
order and c(π) > α, (π + ρ�α) does not belong to the epigraph of c, which implies that
(π + ρ�α) does not belong to A. Hence, A and �∗

π�α are disjoint, and so (0�0) is not a
limit point ofA−�∗

π�α. �

Since (0�0) is not a limit point of epi c −�∗
π�α and epi c −�∗

π�α is a nonempty convex
set (being the difference of two nonempty convex sets), a separating hyperplane theo-
rem (Aliprantis and Border 2006, Theorem 5.79) guarantees the existence of a function
ϕ ∈ C(�(�)), and real numbers γ and κ such that

〈ϕ�ρ1〉 − 〈ϕ�π + ρ2〉 + γ(β− α)≤ κ < 〈ϕ�0〉 + γ(0)= 0 (5)

for each (ρ1�β) ∈ epi c and each ρ2 ∈�∗. In what follows, dom c denotes the (nonempty)
effective domain of c, that is, dom c = {π ∈	(p̄) : c(π) <∞}.

Claim 10. In expression (5), γ ≤ 0 and ϕ is convex.

Proof. Suppose, for contradiction, that γ > 0. Then we can take ρ2 = 0, fix some ρ1 ∈
dom c, let β go to infinity, and contradict (5).

Again, for contradiction, suppose that 〈ϕ�ρ2〉 < 0 for some ρ2 ∈ �∗. Since �∗ is a
cone, nρ2 ∈�∗ for each natural number n. Fix any (ρ1�β) ∈ epi c and observe that for n
large enough, we must have

〈ϕ�ρ1〉 − 〈ϕ�π〉 + γ(β− α) > κ+ n〈ϕ�ρ2〉�
contradicting (5). Since 〈ϕ�ρ2〉 ≥ 0 for each ρ2 ∈�∗ and �=�∗∗, we conclude that ϕ is
convex (see Appendix A.1). �

We conclude the proof by showing that expression (5) implies supϕ∈�〈ϕ�π〉−V (ϕ)≥
α. By Claim 10, we can focus on the cases γ < 0 and γ = 0, which are treated separately
in the following two claims.

Claim 11. Suppose that γ < 0 in expression (5). Then supϕ∈�〈ϕ�π〉 − V (ϕ)≥ α.



648 de Oliveira, Denti, Mihm, and Ozbek Theoretical Economics 12 (2017)

Proof. Define ψ = −ϕ/γ. By Claim 10, ϕ is convex and −γ > 0 by hypothesis: hence
ψ ∈�. From expression (5),

〈ψ�ρ1〉 − 〈ψ�π + ρ2〉 − (β− α)≤ 0

for each (ρ1�β) ∈ epi c and each ρ2 ∈�∗. Taking β= c(ρ1) and ρ2 = 0,

〈ψ�ρ1〉 − c(ρ1)≤ 〈ψ�π〉 − α ∀ρ1 ∈ dom c ⇒ V (ψ)≤ 〈ψ�π〉 − α�

Hence we conclude that supϕ∈�〈ϕ�π〉 − V (ϕ)≥ α. �

Claim 12. Suppose that γ = 0 in (5). Then supψ∈�〈ψ�π〉 − V (ψ)≥ α.

Proof. Substituting ρ2 = 0 in (5), we obtain 〈ϕ�ρ1〉 ≤ κ + 〈ϕ�π〉 for each ρ1 ∈ dom c,
which implies infρ1∈dom c〈ϕ�π − ρ1〉> 0.

Since c(π0)= 0, it follows that for each natural number n,

〈nϕ�π〉 − V (nϕ)= 〈nϕ�π〉 −
(

sup
ρ1∈dom c

〈nϕ�ρ1〉 − c(ρ1)
)

≥ n inf
ρ1∈dom c

〈ϕ�π − ρ1〉�

It therefore follows from infρ1∈dom c〈ϕ�π − ρ1〉> 0 that supψ∈�〈ψ�π〉 − V (ψ)= ∞ ≥ α. �

Proof of Corollary 3 Assume that the rationally inattentive preference � is represented
both by (u� p̄� c) and (u′� p̄′� c′), where c and c′ are canonical. Since the restriction of �
to acts has an expected utility representation (Lemma 1), it follows that p̄= p̄′ and there
exist some α> 0 and β ∈R such that u′ = αu+β. By Theorem 2, for all π ∈	(p̄),

c(π) = sup
F∈F

[〈
max
f∈F

〈
u(f )�p

〉
�π

〉
− u(xF)

]

= sup
F

[〈
max
f∈F

〈
αu′(f )+β�p〉

�π
〉
− αu′(xF)−β

]

= α sup
F

[〈
max
f∈F

〈
u′(f )�p

〉
�π

〉
− u′(xF)

]
= αc′(π)�

Proof of Corollary 4 It is straightforward to prove that (ii) implies (u1� p̄1)≈ (u2� p̄2) so
we can normalize (u1� p̄1)= (u2� p̄2)without loss of generality. For i= 1�2, let Vi : F→R

represent (ui� p̄i� ci) in the sense of Definition 2. From Theorem 2, it is clear that V1 ≥ V2

if and only if c1 ≤ c2. So it is enough to show that (i) is equivalent to V1 ≥ V2.
Assume first that (i) holds. For all menus F , choose h so that V2(F)= V2(h). Then it

has to be the case that V1(F)≥ V1(h)= V2(F); hence V1 ≥ V2.
Alternatively, suppose that V1 ≥ V2. Choose a menu F and an act h: whenever

V2(F) ≥ V2(h), since V1(F) ≥ V2(F) and V2(g) = V1(g), we have that V1(F) ≥ V1(g), so
(i) holds.
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Lemma 2 The following lemma, which is used in the proof of Theorem 3, provides an
alternative characterization of the Blackwell order over sets in Definition 4.

Lemma 2. Let 	1 and 	2 be two subsets of 	(p̄), where 	1 is convex and compact. Then
	1 �	2 if and only if, for all π2 ∈	2, there exists π1 ∈	1 such that π1 is Blackwell more
informative than π2.

Proof. We show the contrapositives.
First suppose that supπ1∈	1

〈ϕ�π1〉< supπ2∈	2
〈ϕ�π2〉 for someϕ ∈�. Since	1 is com-

pact, supπ1∈	1
〈ϕ�π1〉 is attained. Hence, there is π2 ∈ 	2 such that 〈ϕ�π2〉 > 〈ϕ�π1〉 for

all π1 ∈	1.
Now suppose that there is some π2 ∈ 	2 such that there is no π1 ∈ 	1 with π1 �

π2. This means that 	1 is disjoint from π2 +�∗. Since 	1 is convex and compact and
π2 + �∗ is convex and closed, there exists a hyperplane strongly separating these two
sets (Aliprantis and Border 2006, Theorem 5.79). This means that there is a nonzero
ϕ ∈ C(�(�)) such that, for every π ∈�∗ and π1 ∈	1, 〈ϕ�π2 +π〉> 〈ϕ�π1〉. In particular,
〈ϕ�π〉 > 〈ϕ�π1 − π2〉 for every π ∈ �∗. Since �∗ is a cone, it must be that 〈ϕ�απ〉 >
〈ϕ�π1 − π2〉 for every α > 0 and for every π ∈�∗, which implies that 〈ϕ�π〉 ≥ 0 for every
π ∈ �∗. Since �∗∗ = �, we have that ϕ ∈ � (see Appendix A.1). Since 0 ∈ �∗ , it follows
that 〈ϕ�π2〉> 〈ϕ�π1〉 for every π1 ∈	1, and so supπ1∈	1

〈ϕ�π1〉< supπ2∈	2
〈ϕ�π2〉. �

Proof of Theorem 3 To prove that (i) implies (ii), assume that DM1 acquires more infor-
mation than DM2 (in particular, (u1� p̄1)= (u2� p̄2)). Fix a pair of menus F andG, an act
f , and α ∈ [0�1]. Define, for i= 1�2, the functionWi(ε)= Vi(αF + (1 −α)(εG+ (1 − ε)f ))
for all ε ∈ [0�1], and observe that

Wi(ε)= max
π∈	(p̄)

〈αϕF�π〉 + 〈
(1 − α)ϕf �π

〉 + ε〈(1 − α)(ϕG −ϕf )�π
〉 − ci(π)�

By an envelope theorem (Milgrom and Segal 2002, Theorem 2),

Wi(1)−Wi(0)=
∫ 1

0

〈
(1 − α)(ϕG −ϕf )�πi(ε)

〉
dε�

where ε �→ πi(ε) is any function mapping [0�1] into 	(p̄) that satisfies

πi(ε) ∈ ∂Vi
(
αF + (1 − α)(εG+ (1 − ε)f )) ∀ε ∈ [0�1]�

Since DM1 acquires more information than DM2 and (1 − α)(ϕG −ϕf ) ∈�, for all ε we
can choose π1(ε) and π2(ε) so that

〈
(1 − α)(ϕG −ϕf )�π1(ε)

〉 ≥ 〈
(1 − α)(ϕG −ϕf )�π2(ε)

〉
by Lemma 2. Hence, by monotonicity of the integral,

∫ 1

0

〈
(1 − α)(ϕG −ϕf )�π1(ε)

〉
dε≥

∫ 1

0

〈
(1 − α)(ϕG −ϕf )�π2(ε)

〉
dε�
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Therefore,

V1
(
αF + (1 − α)G) − V1

(
αF + (1 − α)f ) ≥ V2

(
αF + (1 − α)G) − V2

(
αF + (1 − α)f )�

Now, to prove that (ii) implies (i), assume that for each pair of menus F and G, for each
act f , and for each α ∈ [0�1],

αF + (1 − α)G�2 αF + (1 − α)f ⇒ αF + (1 − α)G�1 αF + (1 − α)f�
Observe that this condition implies that DM1 has a stronger desire for flexibility than
DM2 (in the sense of Corollary 4(ii)) . Therefore, without loss of generality (u1� p̄1) =
(u2� p̄2).

For i= 1�2, define the functional Vi :C(�(�))→R such that

Vi(ϕ)= max
π∈	(p̄)

〈ϕ�π〉 − ci(π) ∀ϕ ∈ C(
�(�)

)
�

The functional Vi is a niveloid, hence is continuous. Moreover, since ci is canonical,
Ci(F) coincides with the subdifferential, ∂Vi(ϕF), of Vi at ϕF .

Claim 13. For each pair ϕ� ϕ̃ ∈�, for each ψ ∈�F +R, and for each α ∈ [0�1],
V2

(
αϕ+ (1 − α)ϕ̃) ≥ V2

(
αϕ+ (1 − α)ψ) ⇒ V1

(
αϕ+ (1 − α)ϕ̃) ≥ V1

(
αϕ+ (1 − α)ψ)

�

Proof. First assume that for some menus F andG, act f , and real numbers β, γ, and δ
we have

ϕ= ϕF +β� ϕ̃= ϕG + γ� and ψ= ϕf + δ�
Choose ε ∈ R large enough so that β+ ε�γ+ ε�δ+ ε≥ 0. Then it follows that

ϕ+ ε� ϕ̃+ ε ∈�F and ψ+ ε ∈�F �

Therefore,

V2
(
αϕ+ (1 − α)ϕ̃) ≥ V2

(
αϕ+ (1 − α)ψ)

⇒ V2
(
α(ϕ+ ε)+ (1 − α)(ϕ̃+ ε)) ≥ V2

(
α(ϕ+ ε)+ (1 − α)(ψ+ ε))

⇒ V1
(
α(ϕ+ ε)+ (1 − α)(ϕ̃+ ε)) ≥ V1

(
α(ϕ+ ε)+ (1 − α)(ψ+ ε))

⇒ V1
(
αϕ+ (1 − α)ϕ̃) ≥ V1

(
αϕ+ (1 − α)ψ)

�

Now assume ϕ� ϕ̃ ∈�, and observe that V2(αϕ+ (1 − α)ϕ̃) ≥ V2(αϕ+ (1 − α)ψ) implies
that for each η> 0,

V2
(
αϕ+ (1 − α)ϕ̃)

> V2
(
αϕ+ (1 − α)ψ) − (1 − α)η�

Alternatively, if, for eachη> 0, we have V1(αϕ+(1−α)ϕ̃)≥ V1(αϕ+(1−α)ψ)−(1−α)η,
then it follows that

V1
(
αϕ+ (1 − α)ϕ̃) ≥ V1

(
αϕ+ (1 − α)ψ)

�
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So choose η> 0 and assume that V2(αϕ+ (1 − α)ϕ̃) > V2(αϕ+ (1 − α)(ψ−η)). Observe
that ψ−η ∈�F +R. Choose sequences {ϕn} and {ϕ̃n} in �F +R converging to ϕ and ϕ̃,
respectively. By continuity of V2, eventually

V2
(
αϕn + (1 − α)ϕ̃n

) ≥ V2
(
αϕn + (1 − α)(ψ−η))�

This implies that eventually V1(αϕn + (1 − α)ϕ̃n) ≥ V1(αϕn + (1 − α)(ψ− η)). By conti-
nuity of V1, it follows that V1(αϕ+ (1 −α)ϕ̃)≥ V1(αϕ+ (1 −α)(ψ−η)). Since the choice
of η was arbitrary,

V2
(
αϕ+ (1 − α)ϕ̃) ≥ V2

(
αϕ+ (1 − α)ψ)

⇒ V1
(
αϕ+ (1 − α)ϕ̃) ≥ V1

(
αϕ+ (1 − α)ψ)

� �

Claim 14. For all for all ϕ�ψ ∈�, V1(ϕ+ψ)− V1(ϕ)≥ V2(ϕ+ψ)− V2(ϕ).

Proof. For contradiction, suppose there is a real number α such that

V2(ϕ+ψ)− V2(ϕ)≥ α� V1(ϕ+ψ)− V1(ϕ) < α�

Using translation invariance we can rewrite the above statement as

V2

(
1
2
(2ϕ)+ 1

2
(2ψ)

)
≥ V2

(
1
2
(2ϕ)+ 1

2
(2α)

)
�

V1

(
1
2
(2ϕ)+ 1

2
(2ψ)

)
< V1

(
1
2
(2ϕ)+ 1

2
(2α)

)
�

which contradicts Claim 13. �

Now consider menu F andϕ ∈�. Exploiting the relation between directional deriva-
tives and subdifferentials (Rockafellar 1974, Theorem 11), we obtain

inf
ε>0

Vi(ϕF + εϕ)− Vi(ϕF)
ε

= max
πi∈∂Vi(ϕF )

〈ϕ�πi〉�

Moreover, from Claim 14,

V1(ϕF + εϕ)− V1(ϕF)

ε
≥ V2(ϕF + εϕ)− V2(ϕF)

ε
∀ε > 0�

Hence,

max
π1∈∂V1(ϕF )

〈ϕ�π1〉 ≥ max
π2∈∂V2(ϕF )

〈ϕ�π2〉�

Since ϕ ∈� was arbitrary, it follows that ∂V1(ϕF)� ∂V2(ϕF).

A.3 Infinite state space

Finally, we briefly discuss how our characterization of rationally inattentive preferences
can be generalized to an infinite state space.



652 de Oliveira, Denti, Mihm, and Ozbek Theoretical Economics 12 (2017)

For a measurable space E, denote by B(E) the set of all real-valued bounded mea-
surable functions defined on E. The real linear space B(E) is normed by the uniform
norm. Denote by �(E) the set of all finitely additive probabilities over E. The set �(E) is
endowed with the weak topology generated by the family of functions{

μ �→
∫
E
ϕ(t)μ(dt) : ϕ ∈ B(E)

}
�

The topological space �(E) is then endowed with the Borel σ-algebra.
Adapting our previous notation, let � be an arbitrary measurable space of states of

the world and let X be a convex set of outcomes. Denote by F the set of all simple
acts: functions f : � → X with finite range, such that f−1(x) is measurable for each
x ∈X . Denote by F the set of all menus: nonempty, finite subsets of F . Definition 2 and
Axioms 1–7 then apply exactly as they are formulated in Sections 2 and 3. The following
theorem generalizes Theorem 1 to this framework:

Theorem 4. A binary relation over menus is a rationally inattentive preference if and
only if it satisfies Axioms 1–7. Moreover, the information cost function can be chosen to be
the canonical one defined as in (2) in Theorem 2.

There are no conceptual differences between Theorem 4 and Theorem 1. The main
technical difference is that the probabilities involved may not be countably additive. To
prove Theorem 4, the steps in the proof of Theorem 1 can be followed verbatim, with
two exceptions. In Claim 6, we embed convex combinations of finitely many acts in a
Euclidean space using the fact that the smallest σ-algebra for which they are measurable
has finitely many atoms. In Claim 7, we use the duality between B(�(�)) and ba(�(�)),
the set of signed charges of bounded variation on �(�) (Aliprantis and Border 2006,
p. 396).
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