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In this appendix, we present the sections and proofs omitted in the main paper.

In Section S.1, we discuss the relationship between continuous and discrete type
models. Sections S.2, S.3, and S.4 provide the proofs excluded from the Appendix in the
main paper. Section S.5 formally states and solves the three-type two-period example
introduced in the main text. Finally, Section S.6 provides a numerical example of the
approximate optimality of monotonic contracts.

The numbering of new lemmata here continues from the Appendix in the main pa-
per, so the first new lemma here is numbered Lemma A10 and so on.

S.1. From discrete to continuous types

In this section we formalize the statements made in Section 4.3 and show that the con-
tinuous case can be seen as the limit of the discrete case, so all problems of the FO ap-
proach in the discrete version are inherited by the continuous version and vice versa. To
keep the notation simple, we assume two periods and u(θ�q) = θq. Consider a type set
Θ = [θ�θ] ⊂ R

+, an associated prior distribution Γ (θ) at t = 1, and a conditional distri-
bution F(θ′|θ) at t = 2 defined on Θ. We assume Γ (θ) is differentiable in θ with density
μ(θ) and that F(θ′|θ) is differentiable in both θ, with derivative Fθ(θ

′|θ), and θ′, with
density f (θ′|θ). By standard methods we can obtain the envelope formula (4),1

U ′(θ)= q(θ)−
∫
θ′
q
(
θ′|θ) · Fθ

(
θ′|θ)

dθ′�

and then derive the FO-optimal contract

q
(
θ′|θ) = θ′ + 1 − Γ (θ)

μ(θ)

Fθ
(
θ′|θ)

f
(
θ′|θ) � (S.1)

In the rest of this section, we refer to this as the continuous model.
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1See Baron and Besanko (1984), Besanko (1985), Laffont and Tirole (1996), Courty and Li (2000), Esö and
Szentes (2007), and Pavan et al. (2014).
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We now explore the connection between the continuous model and the discrete
model studied in the previous sections. The continuous model can be derived as the
limit of the discrete model as follows. Define ΘN = {θ0� � � � � θN} with θ0 = θ, θN = θ, and
θi = θi+1 +�θN , and let Γ N(θi) = Γ (θi) and FN(θj|θi) = F(θj|θi). Given this, the proba-
bility of a type j at t = 1 is μN

j = Γ N(θj)−Γ N(θj+1) and the probability of a type i at t = 2
after a type j at t = 1 is fN(θj|θi) = FN(θj|θi) − FN(θj+1|θi).2 In the rest of the section,
we refer to this as the discrete model.

Consider a sequence of supports ΘN for N → ∞ such that �θN → 0 as N → ∞ and
ΘN ⊆ ΘN+1, so that along the sequence, the finite approximation of Θ becomes increas-
ingly fine.3 Using the formula (9) derived in the paper, we can write the FO-optimal
contract along the sequence as

qN(θj|θi) = θj − 1 − Γ N(θi)

μN
i

FN(θj|θi)− FN(θj|θi−1)

fN(θj|θi)
�θN (S.2)

for any θj ∈ ΘN , θi ∈ ΘN . Note that μN
i can be written as μN

i = Γ (θj)−Γ (θj+1)

�θN
· �θN and

fN(θj|θi) = FN(θj |θi)−FN(θj+1|θi)
�θN

�θN . We can, therefore, rewrite (S.S.2) as

qN(θj|θi)= θj + (
1 − Γ N(θi)

) [
FN(θj|θi)− FN(θj|θi−1)

]
/�θN[

Γ (θi)− Γ (θi+1)

�θN

][
FN(θj|θi)− FN(θj+1|θi)

�θN

] �

This condition immediately implies that

lim
N→∞

qN(θj|θi) = θj + 1 − Γ (θi)

μ(θi)

Fθ(θj|θi)
f (θj|θi) = q(θj|θi)

since μN
i /�θN → μ(θi) and fN(θj|θi)/�θN → f (θj|θi) as N → ∞. It follows that the limit

of the discrete FO-optimal contracts is equal to the continuous FO-optimal contract.4

This discussion makes it clear that there is a natural connection between discrete
and continuous types of dynamic principal–agent models. In light of this, we can
present two examples, discretized versions of which are presented in Battaglini and
Lamba (2015).

Examples. Consider a two-period model. Assume and that types in the first period
are distributed uniformly on [5�6] and consider the transition probabilities fα(θ

′|θ) =
α ·e− (θ′−θ)2

σθ(α) and fα(θ
′|θ)= α

1+σθ(α)|θ′−θ| with fα(θ|θ)= α. Note that σθ(α) is chosen so that

2In both definitions, we are implicitly assuming a dummy N + 1 type with mass 0.
3For example, consider the sequence (θm0 � � � � � θmN) such that θm0 = θ, θmN = θ, and θmi − θmi−1 = (θ− θ)/2m,

and so Nm = 2m.
4Since ΘN ⊆ ΘN+1, if θj ∈ ΘN , θi ∈ ΘN , then θj ∈ ΘM , θi ∈ ΘM for M ≥ N , so limN→∞ q∗

N(θi|θj) is well
defined. To extend the contract for points on the real line that do not appear in the sequence of approxi-
mations, we can consider, for example, the sequence of linear interpolations of the discrete contract. It is
immediate to verify that this is a sequence of equicontinuous curves that converges to (S.1).
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Figure S.1. The functions F and q for the Markov process fα(θ′|θ)= α · e− (θ′−θ)2
σθ(α) .

Figure S.2. The functions F and q for the Markov process fα(θ′|θ)= α
1+σθ(α)|θ′−θ| .

the probabilities sum to 1. The larger is α, the higher is the persistence of the types. Fig-
ures S.1 and S.2 show two sample distributions and the associated quantities in period 2.
The contract is nonmonotonic in two ways: first, for a given history, it is nonmonotonic
in θ2. Because of this alone, the FO-optimal contract is not implementable and violates
a global constraint. In addition to this, the FO-optimal contract is not monotonic with
respect to θ1; this can be seen from the fact that the contracts with the two different
histories cross each other.

S.2. Proof of Lemma A1

In the proof of Lemma 1 we use the following result.

Lemma A1 (Repeated). In a FO-relaxed problem, IRN(ht−1) can be assumed to hold as
equality for all ht−1 ∈ Ht−1, and ICi�i+1(h

t−1) can be assumed to hold as an equality for
all ht−1 ∈Ht−1 and i = 0�1� � � � �N − 1.

Proof. We proceed in two steps.
Step 1. Suppose that U(θN |ht−1) = ε > 0 for some ht−1. If t = 1, then decreasing

U(θi|h0) by ε for all i does not violate any constraints and increases the monopolist’s
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profit. If t > 1, fix ht−1 and decrease U(θi|ht−1) by ε for all θi. This does not change any
of the constraints and keeps the profit of the monopolist the same.

Step 2. Suppose that ICi�i+1(h
t−1) does not hold as an equality for some ht−1 ∈ Ht−1

and i = 0�1� � � � �N − 1. Then decrease U(θk|ht−1) by ε for each k ≤ i. If t = 1, all
the constraints are still satisfied and the monopolist’s profit is strictly higher, giving a
contradiction. If t > 1, this change does not affect any constraint except ICj−1�j(h

t−2),
where θj is such that ht−1 = (ht−2� θj). The right-hand side of ICj−1�j(h

t−2) is reduced by
δ

∑
k≤i(α(j−1)k − αjk)ε = δ�F(θi+1|θj)ε ≥ 0, where the last inequality follows from first-

order stochastic dominance. Now repeat the same procedure, decreasing U(θk|ht−2) by
δ�F(θi+1|θj)ε for each k≤ j−1. We can keep reducing utility vectors backward until the
first period, unless ht−1 contains θ0, in which case the backward iteration ends there, to
deduce a strictly greater increase in the monopolist’s profit. Thus, the changes do not
violate any of the constraints and keep the profit of the monopolist greater than or equal
to before the change.

S.3. Proof of Lemmata A2 and A3

We now prove the lemmata used in the proof of Proposition 2. Recall that �U(θk|ht−1�

θi) = U(θk|ht−1� θi)−U(θk|ht−1� θi+1). For simplicity of exposition, we write the proofs
for the special case where u(θ�q)= θq and, hence, uθ(θ�q)= q; the arguments are easily
generalizable.

Lemma A2 (Repeated). If q(θi|ht−1) and �U(θk|ht−1) are non-increasing in, respectively,
i and k for any ht−1, then (5) implies that local upward incentive compatibility constraints
are satisfied.

Proof. Since ICi�i+1(h
t−1) holds as an equality, we have for any i and ht−1,

U
(
θi|ht−1) =U

(
θi+1|ht−1) +�θq

(
θi+1|ht−1) + δ

N∑
k=0

(αik − α(i+1)k)U
(
θk|ht−1� θi+1

)
�

Thus,

U
(
θi+1|ht−1) −U

(
θi|ht−1)

= −�θq
(
θi+1|ht−1) − δ

N∑
k=0

(αik − α(i+1)k)U
(
θk|ht−1� θi+1

)
)

= −�θq
(
θi|ht−1) + δ

N∑
k=0

(α(i+1)k − αik)U
(
θk|ht−1� θi

)

+�θ
(
q
(
θi|ht−1) − q

(
θi+1|ht−1)) + δ

N∑
k=0

(αik − α(i+1)k)�U
(
θk|ht−1� θi

)

≥ −�θq
(
θi|ht−1) + δ

N∑
k=0

(α(i+1)k − αik)U
(
θk|ht−1� θi

)
�
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where the last inequality follows from the fact that q(θi|ht−1) is non-increasing in i and∑N
k=0(αik − α(i+1)k)�U(θk|ht−1� θi) ≥ 0. The second observation follows from the fact

that �U(θk|ht−1� θi) is non-increasing in k and that αi first-order stochastically domi-

nates αi+1. Thus, ICi+1�i(h
t−1) holds.

Lemma A3 (Repeated). If q(θi|ht−1) and �U(θk|ht−1) are non-increasing in, respectively,

i and k for any ht−1 and (5) holds, then the local incentive compatibility constraints imply

the global incentive compatibility constraints.

Proof. We show that ICi�i+2(h
t−1) holds. Since ICi�i+1(h

t−1) and ICi+1�i+2(h
t−1) hold

as equalities, we have

U
(
θi|ht−1) −U

(
θi+2|ht−1)

= [
U

(
θi|ht−1) −U

(
θi+1|ht−1)] + [

U
(
θi+1|ht−1) −U

(
θi+2|ht−1)]

= �θq
(
θi+1|ht−1) + δ

N∑
k=0

(αik − α(i+1)k)U
(
θk|ht−1� θi+1

)

+�θq
(
θi+2|ht−1) + δ

N∑
k=0

(α(i+1)k − α(i+2)k)U
(
θk|ht−1� θi+2

)
�

It follows that

U
(
θi|ht−1) −U

(
θi+2|ht−1)

= 2�θq
(
θi+2|ht−1) + δ

N∑
k=0

(αik − α(i+2)k)U
(
θk|ht−1� θi+2

)

+�θ
(
q
(
θi+1|ht−1) − q

(
θi+2|ht−1)) + δ

N∑
k=0

(αik − α(i+1)k)�U
(
θk|ht−1� θi+1

)

≥ 2�θq
(
θi+2|ht−1) + δ

N∑
k=0

(α(i+1)k − α(i+2)k)U
(
θk|ht−1� θi+2

)
�

where the last inequality follows from the fact that q(θi|ht−1) is non-increasing in i and∑N
k=0(αik − α(i+1)k)�U(θk|ht−1� θi) ≥ 0. As in the previous lemma, the second observa-

tion follows from the fact that �U(θk|ht−1� θi) is non-increasing in k and that αi first-

order stochastically dominates αi+1. Thus, ICi�i+2(h
t−1) holds. Similarly we can show

that ICi�i+l(h
t−1) holds for all l ≤ N − i. Therefore, all global downward incentive con-

straints are satisfied. In an analogous fashion, we can show that all upward global in-

centive constraints are satisfied.
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S.4. Proof of Lemma A9

Using f τ
ij as a shorthand for the ijth element of fτ , we can write

f τ
ij = e−λτ

∞∑
n=0

[P̂ij]n (λτ)
n

k! = e−λτ(1i=j + P̂ijλτ)+ e−λτ
∞∑
n=2

[P̂ij]n (λτ)
n

n! � (S.3)

where 1i=j = 1 if i = j. We first show that the second term in (S.3) is an o(λ). Note that∑∞
n=2[P̂ij]n (λτ)n

n! ≥ 0 (that is, the elements of this matrix are all nonnegative) and

∞∑
n=2

[P̂ij]n (λτ)
n

n! = (λτ)2

n(n− 1)

∞∑
n=1

[P̂ij]n (λτ)
n−2

(n− 2)!

≤ (λτ)2

n(n− 1)

∞∑
n=0

(λτ)n

n! = (λτ)2

n(n− 1)
�

It follows that [∑∞
n=2[Pij]n (λτ)n

n! ]/λ→ 0 as λ → 0.
We can, therefore, write

f τ
ij = e−λτ(1i=j + P̂ijλτ)+ o(λ)�

That is,

f τ
ii = e−λτ

(
1 + (λ− λi)τ

) + o(λ)� (S.4)

f τ
ij = e−λτ(λiPi�jτ)+ o(λ)� (S.5)

Note that λi
λ ∈ [0�1] so there is a ηi ∈ [0�1] such that λi

λ → ηi as λ → 0. From the second
equation (S.5), setting τ = 1, we have

fij

λ
→ ηiPi�j

as λ→ 0. From the first equation (S.4), using a Taylor expansion, applied to the first term
with respect to λ and λi evaluated at (0�0), we have

fii(λ�λi) = f τ
ii(0�0�1)+ ∂f ii(λ�λi� τ)

∂λ

∣∣∣∣
λi�λj=0

· λ+ ∂fii(λ�λi� τ)

∂λj

∣∣∣∣
λi�λj=0

· λj + o(λ)

= 1 + (−e−λ
(
1 + (λ− λi)

) + e−λττ
)
λ�λj=0 · λ− [

e−λjττ
]
λ�λj=0 · λi + o(λ)�

where note that in the last term, we put all factors that converges to zero faster than λ

(so also o(λi)). We have, therefore,

1 − fii
λ

→ ηi

as λ → 0.
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Figure S.3. The dashed arrows are the constraints in the WR program that are ignored in the
first-order approach.

S.5. The solved example of Section 5

To characterize the optimal contract, we first guess which constraints are relevant and
then we show that we can ignore the remaining constraints without loss of generality. We
focus on a weakly relaxed program (henceforth WR program) that constitutes problem
(3) with |Θ| = 3 and T = 2, with the subset of constraints

IRL� ICHM�ICML� ICHL�

ICHM(M)� ICML(M)� ICLM(M)� ICHM(L)� ICML(L)� ICLM(L)�
(S.6)

where IRL is the individual rationality constraint of type L at t = 0, ICi�j is the incentive
constraint requiring that type i does not want to misreport being type j in period 1, and
ICi�j(k) is the incentive constraint requiring that type i does not want to misreport being
type j in period 2, after the agent reports being type k in period 1. See Figure S.3 for an
illustration of the constraints.

The intuition for modifying the FO approach to focus on the WR program is as fol-
lows. It is natural to ignore incentive constraints after history h1 = θH , since the contract
is typically efficient after this history even in the FO approach (see (7)). Similarly, it is
natural to drop the individual rationality constraints at t = 2, since they are typically not
binding even in the FO approach (any rent left to the lowest type at t = 2 can be extracted
at t = 1, so there is no reason to force these rents to be nonnegative). There are, however,
two reasons why we need additional constraints. First, we must include ICHL, since we
know from the previous analysis that it may be violated if ignored. Second, since the
second period is terminal, within history, monotonicity is a necessary condition; that
is, q(θj|θi) is weakly increasing in θj . Thus, to allow for pooling in period 2, we include
ICLM(h1) for h1 =M�L.

In what follows, we prove that there is no loss of generality in restricting attention to
the WR program so we can focus on (S.6) to solve for the optimal contract. For a given μL

and δ, the environment is fully described by two parameters, μM and α, and, therefore, it
can be represented in the two dimensional box (μM�α) ∈E(μL)= (0�1−μL)×(1/3�1).5

5The thresholds defined below do not depend on the types θ.
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Figure S.4. Fully characterized contract when μL = 0�25 and δ= 0�95.

In the rest of the analysis, we fix μL and δ and study how the optimal contract changes
as we change μM and α.

The following proposition provides a full characterization of the optimal contract.
Table 1 details the exact formulas case by case; Figure S.4 illustrates the possible cases
in the (μM�α) space.

Proposition A1. There exist thresholds μ∗(α) and μ∗∗(α), μ∗(α) > μ∗∗(α), such that we
have the following cases.

• Case A. For all μM ≥ μ∗(α), ICHL does not bind and there exists a threshold α0(μM)

such that the following subcases hold:
– Case A1. If α< α0(μM), the optimal contract is fully separating and FO-optimal.

– Case A2. If α ≥ α0(μM), the optimal contract is fully separating after all histories
except M ; after this history, types M and L are pooled: q(θM |θM) = q(θL|θM).

• Case B. For all μM <μ∗(α), ICHL binds and there exists a threshold μ0(α) such that
the following subcases hold:
– Case B1. If μM ∈ [μ∗∗(α)�μ∗(α)) ∩ (μ0(α)�1), then the optimal contract is fully

separating.

– Case B2. If μM ∈ [μ∗∗(α)�μ∗(α)) ∩ (0�μ0(α)], then the optimal contract is fully
separating after all histories except M ; after this history, types M and L are pooled:
q(θM |θM) = q(θL|θM).
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– Case B3. If μM < μ∗∗(α), the optimal contract pools types M and L in the first
period: qM = qL. In the second period, after history H, the contract is separat-
ing and efficient; after histories M and L, types M and L are pooled across both
histories: q(θM |θi) = q(θL|θi) and q(θj|θM) = q(θj|θL) for i� j = M�L.

While the example solved in Proposition A1 is very special, it presents interesting
features that are reminiscent of the features of optimal contracts in multidimensional
screening problems. Multiple IC constraints can bind simultaneously to determine the
optimal quantities, a fact that is ruled out by assumption in FO-optimal contracts. For
example, in Cases A2 and B2, both ICHL and ICHM are binding. Multiple binding IC
constraints have been observed in a multidimensional screening problem by, for exam-
ple, Armstrong and Rochet (1999). The optimal contract also features a strategic use of
bunching in order to minimize the expected rent of the buyer. In regions in Cases A2 and
B2, we observe separation in period 1 followed by history-dependent pooling in period
2, which we term dynamic pooling. In regions in Case B3, types are pooled in period 2
across the pooled histories in period 1: it is as if we were in a two-type model following
the pooled histories.

An analogous use of bunching to screen types in multidimensional problems, even
with a very simple distribution of types, is documented by Rochet and Choné (1998).
The similarities between contracts in dynamic and multidimensional environments are
not surprising. In a dynamic environment, the expected utility of a type at t is given
not only by the time t realization θt , but also by the conditional distribution of types
f (θt+1|θt), a multidimensional object. At the same time, the optimal contract as stated
in Proposition A1 features some distinctive characteristics that depend on the dynamic
structure of the problem, the most interesting perhaps being the fact that pooling is state
dependent and thus dynamic.

S.5.1 Proof of Proposition A1

To solve the example, we use a simplified notation. Let Ui be the expected utility of type
i in the first period and let ui(h) be the expected utility of type i after history h in the
second period. Note that since the second period is the terminal period, the expected
utility and stage utility are the same. Similarly, we define qi and qi(h) to be the first and
second period allocations, respectively.

In Section S.5.1.1, we prove two preliminary results. In Section S.5.1.2, we character-
ize the WR problem. In Section S.5.1.3, we prove that the solution of the WR problem is
optimal.

S.5.1.1 Preliminary results The following lemma allows us to simplify the constraint
set (S.6).

Lemma A10. In the WR program, constraints IRL, ICHM , and ICML bind at the opti-
mum.

Proof. First, we state and prove a useful lemma.
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Lemma A10.1. The optimal solution satisfies qL ≤ θL, qL(L) ≤ θL, and qM(L) ≤ θM .

Proof. Suppose qL > θL. Then decrease qL by ε. Since it appears only on the right-
hand side of incentive constraints and has positive coefficients, this does not violate any
of the constraints. Moreover, the change in the monopolist’s profit is proportional to(

θL(qL − ε)− 1
2
(qL − ε)2

)
−

(
θLqL − 1

2
q2
L

)
= (qL − θL)ε− 1

2
ε2�

We can choose ε small enough so that the above expression is positive, giving us a con-
tradiction. We can similarly show that qL(L) ≤ θL.

Next, suppose qM(L) > θM . Note that the second period incentive constraints after
history L give

�θqL(L) ≤ uM(L)− uL(L)≤ �θqM(L)�

Without loss of generality, ICML(L) can be assumed to hold as an equality. Suppose
uM(L)− uL(L) > �θqL(L). Then decrease uM(L) so that ICML(L) holds as an equality.
This does not violate any constraints and keeps the profit of the monopolist the same.

If ICLM(L) holds as an equality, then we must have qM(L) = qL(L) ≤ θL < θM , giv-
ing a contradiction. If ICLM(L) does not hold as an equality, then we can decrease
qM(L) by ε without disturbing any of the constraints. Moreover, the change in the mo-
nopolist’s profit is proportional to the expression(
θM

(
qM(L)− ε

) − 1
2
(
qM(L)− ε

)2
)

−
(
θMqM(L)− 1

2
qM(L)2

)
= (

qM(L)− θM
)
ε− 1

2
ε2�

We can choose ε so small that the above expression is positive, giving us a contradiction.

Now we show that IRL binds. Suppose not. Decrease UH , UM , and UL by the same
small amount. The first period incentive compatibility constraints continue to hold and
the second period constraints are unaffected. This increases the profit of the monopolist
without disturbing any of the constraints, giving us a contradiction. Thus, UL = 0. Next
we show that ICML binds. Suppose not. Decrease UM by ε. Then all the constraints are
satisfied and we increase the monopolist’s profit, giving us a contradiction. Using these
two binding constraints, we can eliminate UL and UM from the maximization problem.
In particular, ICHM can now be written as

UH ≥ �θ(qM + qL)+ δ
3α− 1

2
[(
uH(M)− uM(M)

) + (
uM(L)− uL(L)

)]
�

Also, ICHL is given by

UH ≥ 2�θqL + δ
3α− 1

2
[
uH(L)− uL(L)

]
�

First, note that at least one of ICHM and ICHL must bind. If not, then we can de-
crease UH and increase the monopolist’s profit. Suppose ICHM does not bind. Then
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ICHL must bind. Thus, we can eliminate UH from the maximization problem. In par-
ticular, ICHM can now be written as

�θqL + δ
3α− 1

2
[
uH(L)− uM(L)

] ≥ �θqM + δ
3α− 1

2
[
uH(M)− uM(M)

]
� (S.7)

Second, we claim that if ICML and ICHL bind and ICHM does not bind, then
ICHM(L) binds. Suppose uH(L)− uM(L) > �θqM(L). Decrease uH(L) by ε (and so UH

by δ(αHH −αLH)ε and UM by δ(αMH −αLH)ε), thereby, increasing the profit of the mo-
nopolist without disturbing any of the remaining constraints, giving us a contradiction.
Thus, ICHM(L) must bind.

Using ICHM(M) and the binding ICHM(L), we can rewrite (S.7) to obtain

�θqL + δ
3α− 1

2
�θqM(L)≥ �θqM + δ

3α− 1
2

�θqM(M)�

Since ICHM does not bind, it is easy to see that qM = θM and qi(M) = θi for any i.
By Lemma A10.1, we have qL ≤ θL (and, thus, qL < θM ) and qM(L) ≤ θM . These clearly
contradict the above inequality. Thus, we must have that ICHM binds.

S.5.1.2 Characterization of the optimal WR contract We can now use the equalities im-
plied by Lemma A10 to reduce the number of free variables in the optimization prob-
lem. In particular, we can eliminate the period 1 utility vectors. Define ωHM(i) =
uH(i) − uM(i) and ωML(i) = uM(i) − uL(i) for i = M�L. The variable ωkl(i) is the net
utility of reporting to be type k rather than a type l after history i. Using this notation, we
can rewrite the WR program as a maximization problem in which the control variables
are the quantities q and second period marginal utilities ω,

max〈ω�q〉

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
i=H�M�L

μi

[
θiqi − 1

2
q2
i + δ

∑
k=H�M�L

αik

(
θkqk(i)− 1

2
qk(i)

2
)]

−μH

[
�θqM + δ

3α− 1
2

ωHM(M)

]
− (μH +μM)

[
�θqL + δ

3α− 1
2

ωML(L)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(S.8)

subject to

[λ] : �θqM + δ
3α− 1

2
ωHM(M) ≥ �θqL + δ

3α− 1
2

ωHM(L)�[
λHM(M)

] : ωHM(M)≥ �θqM(M)|[λHM(L)
] : ωHM(L) ≥ �θqM(L)�[

λML(M)
] : ωML(M)≥ �θqL(M)|[λML(L)

] : ωML(L)≥ �θqL(L)�[
λLM(M)

] : ωML(M)≤ �θqM(M)|[λLM(L)
] : ωML(L) ≤ �θqM(L)�

where the variables in the square brackets on the left are the Lagrange multipliers as-
sociated with the constraints. Program (S.8) is a standard maximization problem, but
it is complicated by a still significantly large number of constraints. The key difference
between (S.8) and the FO approach is the global constraint ICHL and the presence of
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the local upward constraints ICLM(M) and ICLM(L). We cannot ignore any of these
three constraints. Moreover, now we cannot assume without loss of generality that all
local downward incentive constraints are binding at t = 2, so the envelope formula (4)
in Section 3 cannot be directly applied. Hence, we still have utilities in the objective
function.

We start the analysis of (S.8) with the first-order conditions. It is easy to see that
the H type always gets the efficient quantity. After history H, moreover, quantities are
always efficient, implying qH = qH(M) = qH(L) = θH , and qH(H) = θH , qM(H) = θM ,
and qL(H) = θL. The remaining first-order conditions are given by

[qM ] : μM(θM − qM)−μH�θ+ λ�θ = 0�

[qL] : μL(θL − qL)− (μH +μM)�θ− λ�θ = 0�[
qM(M)

] : μMδα
(
θM − qM(M)

) − λHM(M)�θ+ λLM(M)�θ = 0�

[
qL(M)

] : μMδ
1 − α

2
(
θL − qL(M)

) − λML(M)�θ = 0�

[
qM(L)

] : μLδ
1 − α

2
(
θM − qM(L)

) − λHM(L)�θ+ λLM(L)�θ = 0�[
qL(L)

] : μLδα
(
θL − qL(L)

) − λML(L)�θ = 0�

[
ωHM(M)

] : −μHδ
3α− 1

2
+ λδ

3α− 1
2

+ λHM(M)= 0�[
ωML(M)

] : λML(M)− λLM(M) = 0�

[
ωHM(L)

] : −λδ
3α− 1

2
+ λHM(L)= 0�

[
ωML(L)

] : −(μH +μM)δ
3α− 1

2
+ λML(L)− λLM(L) = 0�

The following result characterizes when we can ignore the ICHL constraint.

Lemma A11. There exists a threshold μ∗(α) such that the global incentive constraint
ICHL can be ignored if and only if μM ≥ μ∗(α).

Proof. We first characterize the optimal allocation assuming λ = 0. We then derive the
conditions under which the assumption of λ = 0 is admissible.

Assuming λ = 0, we have

qM = θM − μH

μM
�θ and qL = θL − μH +μM

μL
�θ� (S.9)

Clearly, λ = 0 implies λHM(L) = 0. Also, it is easy to show that λLM(L) = 0; other-
wise qM(L) > θM , which contradicts Lemma A10.1. We, therefore, have λML(L) =
(μH +μM)δ 3α−1

2 , and the solution after history L is given by

qM(L) = θM and qL(L)= θL − μH +μM

μL

3α− 1
2α

�θ� (S.10)
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Next note that we must have λHM(M) = μHδ 3α−1
2 and λML(M) = λLM(M). We have two

possible cases.
Case A1: λML(M)= λLM(M) = 0. In this case,

qM(M)= θM − μH

μM

3α− 1
2α

�θ and qL(M) = θL� (S.11)

For this to be a solution, we must have θM − μH
μM

3α−1
2α �θ ≥ θL, so α ≤ α0(μM), where

α0(μM) = μH

3μH − 2μM
�

We conclude that for α ≤ α0(μM), the solution is given by qH = θH , qH(j) = θH , and
qj(H) = θj for all j =H�M�L in addition to (S.9)–(S.11).

Case A2: λML(M) = λLM(M) > 0. Then qM(M) and qL(M) are both equal to a con-
stant q. From the first-order condition with respect to qM(M) and qL(M), we have

qM(M) = qL(M) = 2α
1 + α

θM + 1 − α

1 + α
θL − μH

μM

3α− 1
1 + α

�θ� (S.12)

We conclude that for α > α0(μM), the solution is given by qH = θH , qH(j) = θH , and
qj(H) = θj for all j =H�M�L, (S.9), (S.10), and (S.12).

To characterize the necessary and sufficient condition for λ = 0, we need to verify
that given the solution defined above, ICHL is satisfied. Plugging in the values of Case
A1, we obtain

θM − μH

μM
�θ+ δ

3α− 1
2

(
θM − μH

μM

3α− 1
2α

�θ

)
≥ θL − μH +μM

μL
�θ+ δ

3α− 1
2

θM� (S.13)

that is,

μM ≥
μL(1 −μL)

(
1 + δ

α

(
3α− 1

2

)2)

1 +μL

(
1 + δ

α

(
3α− 1

2

)2) = μ∗
1(α)�

Plugging in the values of Case A2, we obtain

θM − μH

μM
�θ+ δ

3α− 1
2

(
2α

1 + α
θM + 1 − α

1 + α
θL − μH

μM

3α− 1
1 + α

�θ

)

≥ θL − μH +μM

μL
�θ+ δ

3α− 1
2

θM� (S.14)

that is,

μM ≥
μL(1 −μL)

(
1 + δ

(3α− 1)2

2(1 + α)

)

1 +μL

(
1 − δ

3α− 1
1 + α

(1 − 2α)
) = μ∗

2(α)�

Let us define μ∗(α)= min{μ∗
1(α)�μ

∗
2(α)}. We have the following result.
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Lemma A11.1. If α�μM is such that μM ≥ μ∗(α) and α ≤ α0(μM), then the optimal con-
tract is as described in Case A1 presented above. If μ ≥ μ∗(α) and α > α0(μM), then the
optimal contract is as described in Case A2 presented above.

Proof. We first prove that when α ≤ α0(μM), then μM ≥ μ∗(α) implies μM ≥ μ∗
1(α). To

this end, we prove the counterpositive: when α ≤ α0(μM), μM < μ∗
1(α) implies μM <

μ∗(α). Note that (i) the left-hand side of (S.13) and (S.14) are the same, and (ii) the right-
hand side of (S.13) is not larger than the right-hand side of (S.14) if and only if μM

μH
≤

2α
3α−1 , that is, if α ≤ α0(μM). It follows that if μM < μ∗

1(α), then neither (S.13) nor (S.14)
hold, implying μM < μ∗

2(α) as well: we, therefore, conclude that μM < μ∗(α). Given
this, the conditions μM ≥ μ∗(α) and α ≤ α0(μM) imply the conditions μM ≥ μ∗

1(α) and
α ≤ α0(μM), so by the discussion presented above, the allocation described in Case A1
is an optimal solution of the WR problem. By a similar argument, we can prove that
when α > α0(μM), then μM ≥ μ∗(α) implies μM ≥ μ∗

2(α). This implies that when we
have μM ≥ μ∗(α) and α> α0(μM), then the allocation described in Case A2 is an optimal
solution of the WR problem.

Finally note that Cases A1 and A2 described above are the only possible allocations
consistent with λ= 0. So, if μM <μ∗(α), the Largrange multiplier of ICHL must be bind-
ing.

Cases A1 and A2 follow from Lemma A11.1. For the remaining cases we first prove a
useful lemma.

Lemma A12. The optimal solution satisfies qL ≤ θL − μH+μM
μL

�θ, qL(L) ≤ θL −
μH+μM

μL

3α−1
2α �θ, and qL(M)≤ θL.

Proof. We proceed in three steps.

Step 1. Suppose qL > θL − μH+μM
μL

�θ. Now decrease qL by ε. All the constraints are
still satisfied. The change in the monopolist’s profit is given by

μL

[
−θLε− 1

2
(
(qL − ε)2 − (qL)

2)] + (μH +μM)�θε

= μL

[(
qL −

(
θL − μH +μM

μL
�θ

))
ε− 1

2
ε2

]
�

which is greater than zero for small enough ε, giving us a contradiction.
Step 2. Suppose qL(L) > θL − μH+μM

μL

3α−1
2α �θ. Now decrease qL(L) by ε and ωML(L)

by �θε. All the constraints are still satisfied. The change in the monopolist’s profit is
given by

μLδα

[
−θLε− 1

2
((
qL(L)− ε

)2 − (
qL(L)

)2)] + (μH +μM)δ
3α− 1

2
�θε

= μLδα

[(
qL(L)−

(
θL − μH +μM

μL

3α− 1
2α

�θ

))
ε− 1

2
ε2

]
�
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which is greater than zero for small enough ε, giving us a contradiction.
Step 3. Suppose qL(M) > θL. Now decrease qL(M) by ε and ωML(M) by �θε. All the

constraints are still satisfied. The change in the monopolist’s profit is given by

μMδ
1 − α

2

[
−θLε− 1

2
((
qL(M)− ε

)2 − (
qL(M)

)2)] = μMδ
1 − α

2
[
[(
qL(M)− θL

)
ε− 1

2
ε2

]
�

which is greater than zero for small enough ε, giving us a contradiction.
Keep in mind that λ > 0 ⇒ λHM(L) > 0. It follows from the first-order condition with

respect to ωHM(L). Next, so as to characterize the quantities after history M , we prove
a useful lemma.

Lemma A13. We have λ > 0 ⇒ λHM(M) > 0.

Proof. Assume to the contrary that λHM(M) = 0. Then we must have λML(M) =
λLM(M)= 0. Assuming them to be strictly positive gives us qM(M)= qL(M). Also, from
the first-order condition for qM(M), we obtain qM(M) > θM , implying qL(M) > θM >

θL, a contradiction to Lemma A12. Thus, λ = μH and qM = qM(M)= θM .
Next we note that if λ > 0, then qM(L) < θM . To see this point, consider the first-

order condition with respect to qM(L). Since λHM(L) > 0, if λLM(L) = 0, then it follows
immediately that qM(L) < θM . If λLM(L) > 0, then qM(L) = qL(L) < θL < θM , where
the first inequality follows from Lemma A12.

Using these facts, we can now write

�θqM + δ
3α− 1

2
ωHM(M)

= �θ · θM + δ
3α− 1

2
ωHM(M) ≥ �θ · θM + δ

3α− 1
2

�θqM(M)

= �θ · θM + δ
3α− 1

2
�θ · θM > �θqL + δ

3α− 1
2

�θqM(L)

= �θqL + δ
3α− 1

2
ωHM(L)� (S.15)

The strict inequality proven in (S.15) contradicts λ > 0. Thus, we must have λHM(M) > 0
as requested. This completes the proof of Lemma A13.

We divide the reminder of the proof of Proposition A1 into two steps. First we assume
that ICLM(L) is not binding and we characterize the parameter region in which this
assumption is correct. This will allow us to define the regions B1 and B2 described in the
statement of the proposition. Then we characterize the optimal contract when ICLM(L)

is binding, i.e., region B3.

Characterization of Regions B1 and B2 Let us assume λLM(L) = 0. Since μM < μ∗(α),
we have λ > 0. From the first-order conditions, we obtain

qM = θM − μH − λ

μM
�θ� qL = θL − μH +μM + λ

μL
�θ� (S.16)

qM(L) = θM − λ

μL

3α− 1
1 − α

�θ� qL(L) = θL − μH +μM

μL

3α− 1
2α

�θ� (S.17)
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Since λ > 0, we have λHM(M) > 0 and λHM(L) > 0. Thus,

qM + δ
3α− 1

2
qM(M) = qL + δ

3α− 1
2

qM(L)� (S.18)

There are two relevant cases. We use λ1 and λ2 to denote λ from Case B1 and Case B2,
respectively.

Case B1: λML(M)= λLM(M) = 0. Then, from the first-order conditions,

qM(M) = θM − μH − λ1

μM

3α− 1
2α

�θ and qL(M) = θL� (S.19)

Substituting the values from (S.16), (S.17). and (S.19) into (S.18), we obtain

1 + λ1

μL
+ δ

3α− 1
2

λ1

μL

3α− 1
1 − α

= μH − λ1

μM
+ δ

3α− 1
2

μH − λ1

μM

3α− 1
2α

� (S.20)

which gives

λ1 = λ1(α) =
μH

μM

(
1 + δ

3α− 1
2

3α− 1
2α

)
− 1

μL

1
μM

(
1 + δ

3α− 1
2

3α− 1
2α

)
+ 1

μL

(
1 + δ

3α− 1
2

3α− 1
1 − α

) � (S.21)

Clearly, for this case to be valid, we must justify the assumption that λML(M) =
λLM(M) = 0. A necessary and sufficient condition for this is qM(M) ≥ qL(M). Given
(S.19), this condition can be rewritten as μH−λ1

μM

3α−1
2α ≤ 1, where λ1 is given by (S.21). This

condition is implied by

μM ≥ 1 + (1 −μL)b0(α)−μLc0(α)a0(α)

b0(α)
(
1 + c0(α)

) = μ0(α)�

where

a0(α)= 1 + δ
3α− 1

2
3α− 1

2α
� b0(α) = 1 + δ

3α− 1
2

3α− 1
1 − α

� c0(α) = 2α
3α− 1

�

It follows that (under the assumption that λLM(L) = 0) the solution is given by (S.16),
(S.17), (S.19), and (S.21) when μM ≥ μ0(α).

Case B2. For μM < μ0(α), we must have λML(M) = λLM(M) > 0. In this case, we
must have

qM(M) = qL(M)= 2α
1 + α

θM + 1 − α

1 + α
θL − μH − λ2

μM

3α− 1
1 + α

�θ� (S.22)

Substituting qM(M) and qM(L) into (S.18), we obtain

1 + λ2

μL
+ δ

3α− 1
2

(
λ2

μL

3α− 1
1 − α

− 1 − α

1 + α

)
= μH − λ2

μM
+ δ

3α− 1
2

μH − λ2

μM

3α− 1
1 + α

� (S.23)
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which gives

λ2 =
μH

μM

(
1 + δ

3α− 1
2

3α− 1
1 + α

)
−

(
1
μL

− δ
3α− 1

2
1 − α

1 + α

)
1

μM

(
1 + δ

3α− 1
2

3α− 1
1 + α

)
+ 1

μL

(
1 + δ

3α− 1
2

3α− 1
1 − α

) � (S.24)

It follows that (under the assumption that λLM(L) = 0) the solution is given by (S.16),
(S.17), (S.22), and (S.24) when μM <μ0(α).

We now complete the analysis of this section by characterizing the conditions under
which we can ignore the ICLM(L) constraint and so λLM(L) = 0. It is easy to see that
ICLM(L) is satisfied if and only if qM(L) ≥ qL(L). We have qM(L) ≥ qL(L) if and only if

λi ≤
(

1
μL

3α− 1
1 − α

)−1(
1 + 1 −μL

μL

3α− 1
2α

)
� (S.25)

Thus, for Case B1, we have

μH

μM

(
1 + δ

3α− 1
2

3α− 1
2α

)
− 1

μL

1
μM

(
1 + δ

3α− 1
2

3α− 1
2α

)
+ 1

μL

(
1 + δ

3α− 1
2

3α− 1
1 − α

)

≤
(

1
μL

3α− 1
1 − α

)−1(
1 + 1 −μL

μL

3α− 1
2α

)
�

Define

a1(α�μL)= 1 + δ
3α− 1

2
3α− 1

2α
� b1(α�μL) = 1 + δ

3α− 1
2

3α− 1
1 − α

c1(α�μL)=
(

1
μL

3α− 1
1 − α

)−1(
1 + 1 −μL

μL

3α− 1
2α

)
�

We can then write the previous inequality as

μM ≥ μLa1(α�μL)
[
1 −μL − c1(α�μL)

]
1 + a1(α�μL)μL + b1(α�μL)c1(α�μL)

= μ∗∗
1 (α)�

Next, for Case B2, we have qM(L) ≥ qL(L) if and only if

μH

μM

(
1 + δ

3α− 1
2

3α− 1
1 + α

)
−

(
1
μL

− δ
3α− 1

2
1 − α

1 + α

)
1

μM

(
1 + δ

3α− 1
2

3α− 1
1 + α

)
+ 1

μL

(
1 + δ

3α− 1
2

3α− 1
1 − α

)

≤
(

1
μL

3α− 1
1 − α

)−1(
1 + 1 −μL

μL

3α− 1
2α

)
�
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Define

a2(α�μL) = 1 + δ
3α− 1

2
3α− 1
1 + α

� b2(α�μL)= 1
μL

− δ
3α− 1

2
1 − α

1 + α
�

c2(α�μL) =
(

1
μL

3α− 1
1 − α

)−1(
1 + 1 −μL

μL

3α− 1
2α

)
� d2(α�μL) = 1 + δ

3α− 1
2

3α− 1
1 − α

�

Rearranging, we obtain

μM ≥ μLa2(α�μL)
[
1 −μL − c2(α�μL)

]
μL

(
a2(α�μL)+ b2(α�μL)

) + b2(α�μL)c2(α�μL)
= μ∗∗

2 (α)�

Let us define μ∗∗(α)= min{μ∗(α)�μ∗∗
1 (α)�μ∗∗

2 (α)}.

Lemma A14. If μM ∈ [μ∗∗(α)�μ∗(α)] and μM ≥ μ0(α), then the solution of the WR prob-
lem is given by the solution in Case B1 presented above. If μM ∈ [μ∗∗(α)�μ∗(α)] and
μM < μ0(α), then the solution of the WR problem is given by the solution in Case B2 pre-
sented above.

Proof. We first show that if μM ∈ [μ∗∗(α)�μ∗(α)] and μM ≥ μ0(α), then μM ∈ [μ∗∗
1 (α)�

μ∗(α)] and μM ≥ μ0(α). This implies that the solution is given by Case B1. Assume
μM <μ∗∗

1 (α). In this case, (S.25) does not hold with λ1. This implies that (S.25) does not
hold with λ2 as well if λ2 ≥ λ1. Subtracting (S.23) from (S.20), we get

(λ1 − λ2)

[
1
μL

+ 1
μM

+ δ
3α− 1

2

(
1
μL

3α− 1
1 − α

+ 1
μM

3α− 1
1 + α

)]

= δ
3α− 1

2
1 − α

1 + α

[
μH − λ1

μM

3α− 1
2α

− 1
]
� (S.26)

So, we have that λ2 ≥ λ1 if

μH − λ1

μM

3α− 1
2α

− 1 ≤ 0�

which is implied by μM ≥ μ0(α). It follows that if μM < μ∗∗
1 (α), then μM < μ∗∗(α), a

contradiction. We conclude that it must be μM ≥ μ∗∗
1 (α).

We now show that if μM ∈ [μ∗∗(α)�μ∗(α)] andμM <μ0(α), then μM ∈ [μ∗∗
2 (α)�μ∗(α)]

and μM < μ0(α). This implies that the solution is given by Case B2. Assume μM <

μ∗∗
2 (α). In this case, (S.25) does not hold with λ2. This implies that (S.25) does not hold

with λ1 as well if λ1 ≥ λ2. From (S.26) we have that this is always true if μM < μ0(α). It
follows that if μM <μ∗∗

2 (α), then μM <μ∗∗(α), a contradiction. We conclude that it must
be μM ≥ μ∗∗

2 (α).

Characterization of Region B3 Finally, we characterize the contract when μM < μ∗∗(α)
and so both λ > 0 and λLM(L) > 0. This is region B3. In this case,

qM = θM − μH − λ

μM
�θ and qL = θL − μH +μM + λ

μL
�θ� (S.27)
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We also have that λLM(L) > 0 implies qM(L)= qL(L), so

qM(L)= qL(L) = 1 − α

1 + α
θM + 2α

1 + α
θL − μH +μM + λ

μL

3α− 1
1 + α

�θ� (S.28)

From Lemma A12, we have qL(L) ≤ θL − μH+μM
μL

3α−1
2α �θ. Also, when λLM(L) > 0, the

above inequality is strict. Thus, substituting the optimal value of qL(L), we obtain

1 − λ

μL

3α− 1
1 − α

+ μH +μM

μL

3α− 1
2α

< 0� (S.29)

Note that as λLM(L) converges to zero, (S.29) is the exact violation of μM ≥ μ∗∗(α), that
is, inequality (S.25).

To characterize the quantities after history M , we now show that λML(M) =
λLM(M) > 0.

Lemma A15. We have λ�λLM(L) > 0 ⇒ λML(M) = λLM(L) > 0.

Proof. Suppose λML(M) = λLM(M)= 0. Then

qM(M) = θM − μH − λ

μM

3α− 1
2α

�θ and qL(M)= θL�

From θM − μH−λ
μM

3α−1
2α �≥ θL, we have

2α
3α− 1

− μH − λ

μM
≥ 0� (S.30)

Since λ�λLM(L) > 0, using qM(M) ≥ qL(M) = θL > qL(L) = qM(L), we get qL > qM .
This implies (

1 − μH − λ

μM
+ μH +μM + λ

μL

)
< 0�

Using (S.30). we get

μH +μM + λ

μL

3α− 1
1 − α

< 1� (S.31)

Now, inequality (S.29) can be written as

1 <
μH +μM + λ

μL

3α− 1
1 − α

− μH +μM

μL
(3α− 1)

(
1

1 − α
+ 1

2α

)

= μH +μM + λ

μL

3α− 1
1 − α

− μH +μM

μL

3α− 1
2α

1 + α

2α
�

which contradicts condition (S.31).

It follows that

qM(M) = qL(M)= 2α
1 + α

θM + 1 − α

1 + α
θL − μH − λ

μM

3α− 1
1 + α

�θ�
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Finally, substituting the optimal values in ICHL as equality, we obtain(
1 − μH − λ

μM
+ μH +μM + λ

μL

)
= 0� (S.32)

which implies qM = qL. Note that (S.32) gives the value of λ, which uniquely defines the
solution at the optimum. In particular, note that types M and L are treated as one, that
is,

qM = qL and qM(M)= qL(M) = qM(L) = qL(L)� (S.33)

We conclude that the solution of the WR problem in region B3 (μM <μ∗∗(α)) is given by
(S.27),(S.28), (S.33), and (S.32).

This concludes the complete characterization of the optimal allocations in the WR
problem. Table 1 summarizes the solution of the optimal allocation for each possible
case.

S.5.1.3 The optimal WR contract is the optimal contract We prove the lemma as fol-
lows. Let U = U(ht) be the vector of expected utilities, mapping an history ht to the
corresponding agent’s expected utility. First we construct a vector of utilities U using the
solution of the WR problem, 〈ω�q〉. We then show that the solution 〈U�q〉 satisfies all
the constraints of the seller’s profit maximization problem and it maximizes profits. We
proceed in two steps.

Step 1. We set uL(M), uL(L), and uL(H) all equal to zero. We also define

uM(M) =ωML(M)� uM(L)= ωML(L)� uM(H) = �θqL(H)

uH(M) =ωML(M)+ωHM(M)� auH(L) =ωML(L)+ωHM(L)�

uH(H) = �θ
(
qL(H)+ qM(H)

)
�

Since IRL, ICML, and ICHM hold as an equality, we must have

UL = 0�

UM = �θqL + δ
3α− 1

2
ωML(L)�

UH = UM +�θqM + δ
3α− 1

2
ωHM(M)�

Step 2. We now show that 〈U�q〉 satisfies all the constraints of the profit maximizing
problem. By constructio,n it is immediate that 〈U�q〉 satisfies all the constraints in the
WR problem. It remains to be shown that it also satisfies the other constraints,

IRH� IRM�ICMH�ICLM�ICLH�

ICHM(H)� ICML(H)� IRL(H)� IRL(M)� IRL(L)

ICMH(H)� ICLM(H)� ICLH(H)� ICHL(H))� ICMH(M)�

ICLH(M)� ICHL(M)� ICMH(L)� ICLH(L)� ICHL(L)�

(S.34)
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First, we show that IRM is satisfied. From ICML, we have

UM = UL +�θqL + δ
3α− 1

2
[
uM(L)− uL(L)

]
= �θqL + δ

3α− 1
2

[
uM(L)− uL(L)

] [using IRL]

≥ �θqL + δ
3α− 1

2
�qL(L) > 0

[
using ICML(L)

]
�

Similarly, we can show that IRH is satisfied. To prove the remaining constraints, we need
the following properties of the solution of the WR problem.

Lemma A16. For all parameter configurations, in the solution to the WR problem we
have (i) qi(H) = θi for i = M�L�H, qM(M) < θM�qL(M) ≤ θL, and qL(M) ≥ qL(L); (ii)
ωHM(M) = �θqM(M) and, without loss of generality, ωML(M) = �θqL(M), ωHM(L) =
�θqM(L); (iii) quantities at t = 2 are nondecreasing in type after any history; (iv) qH ≥
qM ≥ qL.

Proof. Point (i) follow from the solution characterized in Section S.5.1.2 (for conve-
nience, the quantities are reported in Table 1). The first part of point (ii) (ICHM(M)

always binds) follows from the first-order condition for ωHM(M) (when λ = 0) and
Lemma A13 (when λ > 0). The second part follows from the fact that ICML(M) can
be assumed to hold as an equality. Suppose ωML(M) > �θqL(M). Then can decrease
ωML(M) so that this holds as an equality. No constraint is violated and the profit of the
monopolist is unaffected. Similarly, we show that ICHM(L) can be assumed to hold as
an equality, implying ωHM(L) = �θqM(L). Point (iii) follows from incentive compati-
bility constraints for the second (terminal) period. We now turn to point (iv). From the
fact that in the solution to the WR problem, qH = θH , and the fact that (as shown in Sec-
tion S.5.1.2) qi ≤ θi for i = H�M�L, we have qH ≥ qi, i = M�L. We, therefore, need to
prove only that qM ≥ qL. We show this result case by case for all regions A1, A2, B1, B2,
and B3. In Cases A1 and A2, from (S.9), we have qM ≥ qL if and only if

1 − μH

μM
+ μH +μM

μL
≥ 0�

that is, 1
μL

≥ μH
μM

. In regions A1 and A2, we have μM ≥ μ∗(α), as defined in Lemma 5.2.
This condition can be written as

1
μL

≥ μH

μM
+ δ

3α− 1
2

μH

μM

3α− 1
2α

and
1
μL

≥ μH

μM
+ δ

3α− 1
2

(
1 − α

1 + α
+ μH

μM

3α− 1
1 + α

)
�

clearly implying 1
μL

≥ μH
μM

. For Case B3, we show in Section S.5.1.2 that qM = qL. We
now show that in regions B1 and B2, we have qM ≥ qL as well. In these regions, we
have μ ∈ [μ∗∗(α)�μ∗(α)]. We have qM ≥ qL if and only if 1 − μH−λ

μM
+ μH+μM+λ

μL
≥ 0. It

is clear from the first-order condition for ωHM(L) that λ > 0 implies λHM(L) > 0; thus,
ωHM(L)= �θqM(L). Therefore, we have in regions B1 and B2,

qM + δ
3α− 1

2
qM(M) = qL + δ

3α− 1
2

qM(L)�
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When μM ≥ μ0(α), by substituting optimal values (summarized in Table 1), we have

1 − μH − λ1

μM
+ μH +μM + λ1

μL
+ δ

3α− 1
2

[
λ1

μL

3α− 1
1 − α

− μH − λ1

μM

3α− 1
2α

]
= 0�

That can be re written as(
1 − μH − λ1

μM
+ μH +μM + λ1

μL

)(
1 + δ

(3α− 1)2

4α

)

= δ
(3α− 1)2

4α

[
1 + μH +μM

μL
− λ1

μL

3α− 1
1 − α

]
�

We know from (S.25) that the right-hand side of the above equation is nonnegative.
Thus, 1 − μH−λ1

μM
+ μH+μM+λ1

μL
≥ 0.

When μM <μ0(α), by substituting optimal values again (see Table 2), we have

1 − μH − λ2

μM
+ μH +μM + λ2

μL
+ δ

3α− 1
2

[
λ2

μL

3α− 1
1 − α

− μH − λ2

μM

3α− 1
1 + α

− 1 − α

1 + α

]
= 0�

which can be rewritten as

(
1− μH − λ2

μM
+ μH +μM + λ2

μL

)(
1+δ

(3α− 1)2

2(1 + α)

)
= δ

α(3α− 1)
1 + α

⎡
⎢⎢⎣

1 + μH +μM

μL

3α− 1
2α

− λ2

μL

3α− 1
1 − α

⎤
⎥⎥⎦ �

We know that (S.25) is always verified in the relevant range. Using this condition, we
can see that the right-hand side of the above equation is nonnegative. Thus, we have
1 − μH−λ2

μM
+ μH+μM+λ2

μL
≥ 0.

Consider the first period constraints. To show that ICLM holds, it is sufficient to
prove

0 = UL ≥ θLqM + δ

[
αuL(L)+ 1 − α

2
uM(M)+ 1 − α

2
uH(M)

]

= UM −�θqM − δ
3α− 1

2
uL(M)

= UM −�θqM − δ
3α− 1

2
qL(M)� (S.35)

Since UM = �θqL + δ 3α−1
2 qL(L), (S.35) can be written as

qM + δ
3α− 1

2
qL(M) ≥ qL + δ

3α− 1
2

qL(L)�

The fact that this inequality is satisfied follows from points (i) and (iv) in Lemma A16.
(In the following discussion, when we mention a point, we refer to the points of
Lemma A16.)
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Next, we show that ICMH holds. From ICHM , we have

UH =UM +�θqM + δ
3α− 1

2
[
uH(M)− uM(M)

]
�

Thus,

UM = UH −�θqM − δ
3α− 1

2
[
uH(M)− uM(M)

]
= UH −�θqH − δ

3α− 1
2

[
uH(H)− uM(H)

]
+�θ(qH − qM)+ δ

3α− 1
2

[(
uH(H)− uM(H)

) − (
uH(M)− uM(M)

)]
>UH −�θqH − δ

3α− 1
2

[
uH(H)− uM(H)

]
�

The last inequality follows from the observation that

uH(H)− uM(H) ≥ �θqM(H) = �θθM > �θqM(M)= uH(M)− uM(M)� (S.36)

where the first inequality follows from the definition of ui(H), and the first equality and
the second inequality follow from point (i). From (S.36) and the fact that qH > qM (point
(iv)), it follows that ICMH holds. We now turn to ICLH . Using ICLM first and then ICMH ,
we have

UL ≥UM −�θqM − δ
3α− 1

2
[
uM(M)− uL(M)

]
≥UH −�θqH − δ

3α− 1
2

[
uH(H)− uM(H)

] −�θqM − δ
3α− 1

2
[
uM(M)− uL(M)

]
=UH − 2�θqH − δ

3α− 1
2

[
uH(H)− uL(H)

]
+�θ(qH − qM)+ δ

3α− 1
2

[(
uM(H)− uL(H)

) − (
uM(M)− uL(M)

)]
>UH − 2�θqH − δ

3α− 1
2

[
uH(H)− uL(H)

]
�

The last inequality follows from the observation that

uM(H)− uL(H) ≥ �θqL(H) = �θθL ≥ �θqL(M) = uM(M)− uL(M)� (S.37)

where the first inequality follows from the definition of ui(H), the first equality and the
second inequality follow from point (i). From (S.37) and qH > qM (point (iv)), it follows
that ICLH holds.

Consider now the second period constraints. The constraints IRL(M), IRL(L),
IRL(H), ICML(H), and ICHM(H)) follow immediately by the definition of the utilities
at t = 2. The proof that 〈U�q〉 solves the seller’s problem is, therefore, completed if we
prove that it satisfies the constraints in the last two lines of (S.34). This result follows
from the fact that the local downward incentive constraints are satisfied in period 2 and
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α

δ= 0�95 0�38 0�48 0�58 0�68 0�78 0�88 0�98

μH = 0�5 0.01 0.01 0.02 0.02 0.01 0.01 0.00
μH = 0�1 11�00 9�87 8�49 6�87 4�98 2�86 0�51
μH = 0�5 0.01 0.02 0.04 0.06 0.06 0.04 0.01
μH = 0�2 10�70 9�62 8�32 6�77 4�96 2�87 0�51
μH = 0�5 0.01 0.01 0.02 0.03 0.03 0.02 0.01
μH = 0�3 10�01 9�87 8�51 6�91 5�06 3�93 0�52
μH = 0�3 0.01 0.01 0.01 0.02 0.02 0.01 0.00
μH = 0�1 10�75 9�73 8�45 6�91 5�08 2�95 0�53
μH = 0�3 0.01 0.01 0.01 0.03 0.04 0.03 0.01
μH = 0�2 10�61 9�61 8�37 6�87 5�08 3�98 0�54
μH = 0�3 0.01 0.01 0.01 0.02 0.02 0.02 0.01
μH = 0�3 10�41 9�42 8�20 6�72 4�97 2�92 0�53

Table 2. Percentage loss of optimal objective (monopolists profit) by using monotonic con-

tracts (in bold) and repetition of the static optimum.

quantities are weakly monotonic after any history (point (iii)). Finally, to see that the
contract is optimal, we note that it maximizes expected profits in the less restricted WR
problem, so it must be optimal in the seller’s problem. Note, moreover, that since the
original problem is concave in q, this is in fact the unique solution (in quantities).

S.6. Numerical solution of the example in Section 6

We consider a three-type, three-period model with a uniform prior and the Markov pro-
cess f (θ|θ)= α, f (θ|θ′) = (1−α)/2 for θ �= θ′, and we calculate the loss in expected profit
from using (i) the optimal monotonic contract and (ii) the repeated optimal static con-
tract. The loss is expressed in Figure 5 as a percentage of the profit in the optimal con-
tract in Table 2. As can be seen, the approximation by the optimal monotonic contract
is quite good for all cases, with a loss of profit that is never higher than 0�06%.
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