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APPENDIX: AUXILIARY TECHNICAL LEMMAS

LEMMA A.1. (i) Whenc < c, ®C(., c) on [x, ¥] is positive at first, then intersects zero at a
point, then is negative, then intersects zero at a point, and then is positive again.

(ii) The ®€(., ¢) is nonnegative on [x, x] ifand only if c > c.
(iii) The ®4(.,-, ¢) is nonnegative on [x, X|* ifand only if ¢ > c.
(iv) When c < ¢, ®1(xy, -, ¢) is quasi-convex on [x1, b~ (x1)].
Proor. The proof proceeds in steps.
Step 1. Claim. Wehave 1l —c—a>0and1—c —a® > 0foranya € [x, X].

ProoE. We have

_ 1-2c—y1—4c 4c?

l-c—a>1—-c—x= = >0,
2 2(1 —2c++/1—4c)

which, coupled with a? < a, also implies that 1 — ¢ — a* > 0. <

Step 2. Claim. Define a =1 — \/c. Then a € (x, x), and a € [x, @) U (a, x] implies that
(a—a)(c—(1—a)?) >0.

Proor. The inequality follows by the definition of @ and by inspection. It remains
to verify that a € (x, x). Indeed,
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where ¢ < c. <

Step 3. Claim. If ®¢(a, ¢) < 0 for some a € [x, ¥], then ®C(., ¢) is at first positive, then
intersects zero at a single point to the left of a, then is negative, then intersects zero
at a single point to the right of @, and then is again positive.

Proor. Because ®€(x,c) = 1/(1 — x) > 0 and ®(x,¢) = 1/(1 — %) > 0, then
®d(a,c) <0 = a € (x, ¥). Differentiating yields
c(1-c—a? n c(1—a)
(1—a)(1—c—a)? a(l—c—a)
_ 9@ (c—d-a)(l-c-d)
B a a(l—a)(l—a—c)2 .

(blc(a, c)=

If ®C(a, ¢) = 0 for some a € (x, ¥), then

(c— (1—a)2)(1—c—a2)
a(l—a)(1 —c—a)2 '

€ (a,c) =

By Step 1, the sign of (I)lc(a, c) is the sign of ¢ — (1 — a)?, which, by Step 2, switches
the sign from negative to positive at a € (x, X). Hence, if a with ®€(a, ¢) < 0 exists,
then ®€ (-, ¢) intersects zero twice: once from above and to the left of 4, and once
from below and to the right of a. <

Step 4. Claim. If ¢ < ¢, then ®C(a,c) <0; if ¢ > ¢, then ®€(-, ¢) is nonnegative on
[x, x].

Proor. Note that, ata € (x, X),
1— 2
(I)g(a’ c)= E<7a> > 0.
c\l—c—a

Furthermore,
1— 2
€@, 0=2-(1 —\@m% _o0,

where the first equality is by @ = 1 — ,/c and the second equality is by (8). Combin-
ing the two displays above delivers ®€(a,c) <0 for any ¢ < ¢ and ®€(a,c) > 0 for
any ¢ > c.

For ¢ < ¢, ®°(a, ¢) < 0 and Step 3 imply part (i).

For ¢ > ¢, ®¢(a, ¢) > 0 and Step 3 imply part (ii). N

Step 5. Claim. Subject to x; > x1, ®4(., -, ¢) is minimized at x; = x;.

Proor. The claim follows from

(1—1x1) <1 c(1—xy) (1—x2)(1—c—x§)>>0’

CDA(x,x,c)z
22 (1—x)%\ x1(1—c—x2) (1—c—x)?
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where the inequality follows because 1 — ¢ — x% >0and 1—c— x> 0byStep 1.
Because ®4(z, z, ¢) = ®€(z, ¢), Step 5 implies that (-, -, ¢) has the same mini-
mized value as ®€ (-, ¢) does. Hence, part (iii) is implied by part (ii). <

Step 6. Claim. Define k(x1,x2,¢) = (1 — x2)(2¢ — 1 + x5 + x3 — x1x3) — ¢%. Then, for
some y“ € (x, ¥) and for any x; € [x, y*) U (y*, X], (x2 — y)k(x1, x2, ¢) > 0.

Proor. First, we show that k(x1, X, ¢) > 0. Indeed,
1
k(x1,X,¢) > k(x,x,c)=c—(1 —\/1—40)(5 —c) >0,

where the first inequality is by dx/dx; < 0, and the last inequality follows because
k(X, x,-) is zero at ¢ € {0, ¢} and is positive at the only critical point (¢ = 2/9) in
0, ¢).

Next, we show that k(x1, x, ¢) <0. Indeed,

K(x1,£,C)5K(LLC)=C—(1+\/1—4C)(%—C) <0,

where the first inequality is by dx/dx; < 0, and the last inequality follows because
k(x, x,c¢) =0 and because dk(x, x, ¢)/dc > 0.

Finally, I k(x1, x2, c)/x% = —6(1 — x1)xp, — 2x1; < 0. Hence, «(x1,x,c) < 0 and
k(x1, X, c) > 0 imply that, on (x, ), k(x1, -, ¢) crosses zero and—by #°k(x1, X2, ¢)/
x% < 0—just once, from below, at some y4 e (x,X). <

Step 7. Claim. The ®“(xy, -, ¢) can be negative on and only on an interval.

ProoF. At any (x1, xp, c) with ®dA(x1,x7,¢) =0, by differentiation and substitu-
tion,

K(x1, X2,¢)

@3 (x1, x2, ) = :
? (1 - xp)xx(1 — ¢ — x)°
The sign of <I>§4(x1 , X2, ¢) is the sign of x(x1, x2, ¢), which, by Step 6, switches from
negative to positive at y? e (x, X) as x; rises; ®“(x1, x5, ¢) is quasi-convex. Part (iv)
follows.
O

LEMMA A.2. The function M€ is uniquely maximized on [x, X] at .

ProOEF. Recall from the proof of Lemma 3 that M has two local maxima: at ¢ and at X.
It remains to verify that M€ (x) > M€ (a).
Then

1-V(E 5

M€ (%) =2ca(%) — =57

1
ZCU()_C) — 1—_,
— X
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where the last equality uses V' (¥, X) = X, by direct substitution. Furthermore,

ooty LTV @D L 1-a
M*(a) =2co(a) 1_a)? =2co(a) - T-a—¢

where the last equality follows by substituting ®(a,c) = 0 into the expression for
1-Va,a)
(1-a)? *
As a result,

C Cig) — %) — c .
M€ (x) = M€(a) = 2co (%) 250’(2)+£(1_£)2+1—a—c -

- 1 1 1-—a
= c[Za(x) — 7)_6(1 _)_6)2} —c[Zo(g) — a _£)2i| + T— >0,

where the last equality follows from ¥(1 — X) = ¢ and by rearranging, and the in-
equality follows because the first bracket exceeds the second bracket, and the fraction
(1—-a)/(1 —a— c) is positive (by a < x). The ordering of the brackets follows from x > a
and the observation

d 1 1
da <20'(a) — (= a)) = a2(1 — a)2 >0, Vae(0,1).

To summarize, M€ (x) > M€ (a) and, so, M€ has a unique maximand, ¥, on [x, ¥]. O

LEMMA A.3. For M4 defined in (18), argmax, e[y, p-1(x;)] MA(xy1,a) = {b~1(x1)}, where
b~ is the inverse of b defined in (11). As a result, on A, u(xy) <b1(xy) and F C A.

PRrROOF. By Lemma 4, the only two local maxima of M4 (x, -) are d(x;) and b~!(x), so
it suffices to show that M4 (x1, b=1(x1)) > M4 (x1, d(x;)). Write

1-— V(xl, b_1(x1))

MA(xl,b_l(m))=C’7(b_1(x1))_ 1—b (xp)
- 1

=cn(bt(x) - 1,

where the first equality is definitional and the second equality is by V' (x1, b~1(x1)) =
b~ (x).
Evaluating V' in (10) at (x1, d(x1)) and using d4(x1,d(x1),¢) =0 (by (19)), one can
write
(1—dx))c(l—c—x1d(x1))

V(xl,d(xl)):(l—xl)d(xl)— d(x1)(1_c_d(x1)) —Cc+Xxq.

Then
l—V(xl,d(xl))
1—d(x1)
1 }er— cl—x))
dan(—dxp) ] ' 1—c—dxp)

M (x1, d(xn)) = en(d(x1)) —

= C[”’)(d(xl)) -
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where the first equality is definitional and the second equality follows by substituting
V' (x1,d(x1)) and rearranging.
Then, suppressing the argument x; in »~!(x) and in d(x), for compactness,

o N __
M4 (x1,b7) - M (x1,d)—C|:77(b ) b‘l(l—b_l) <n(d) d(l—d)):|

N )b~ —x1) +x1(1-b71)

07
b~ (1—b(d)) -

where the first equality follows by using the definitions of » and b~! and rearranging,
and the inequality uses b~!(x;) > d(x;) and

CY PR TR
ay " T ya =y Y21 —y)

to conclude that the bracket in the first line is positive; and uses x; < b~!(x) <1 to
conclude that the fraction in the second line is positive too. That is, M4 (x{, b~1(x1)) >
MA(x1,d(x1)), as desired.

The conclusion that, on A, u(x;) < b~(x;) and F c A follows by inspection of
Lemma’s 4 Figure 7 (just validated by showing that M4 (x1, b~ (x1)) > MA(x1, d(x1))).0

LEMMA A.4. On B, w(xy) < b~ (x1) and F C B.

Proor. To conclude that w(x;) < b~!(x;), we show that V(x{,b~!(x1)) > B(xy,

b~1(x1)).
Note that V' (x1, b~1(x1)) = b~1(x1) and, from the definition of B in (22),

1—-C(xy) +

B(xl,b_l(xl))zl—(1—b_1(x1))( -

en(bH(xp)) — cn(x1)).
Then
1-C
V(x1, b7 (x1)) = B(x1, b7 (x) = (1 —b_l(x1))(1_7§:il) —1+en(b (x) — Cn(x1)>,

where

1-C(x))
1—X1 N

1- xl)(% +2c[a(x1) — 0(2)])

—4a

1 c
=(1- x1)<1 @ + 2d—a? +2c[o(x1) — U(g)])-

The first equality in the display above uses the definition of C in (13). The second equal-
ity uses the definitions of IV in (10) and b in (11), and the condition CIDC(Q, ¢)=0in (15),
which characterizes a.



6 Nikandrova and Pancs Supplementary Material
Then, substituting the display above into its precursor display gives

V(x1, b7 (x1)) — B(x1, b7 (x1))
1-b"Yx)

Cc

1
—(1- x1)<1 b e ey ot - a@])

+e[n(d xD) —nx] -1

(1—-x1) c
= -1
(1 —b(a) * b~ x)(1—b71(xp)

1 1
1-x)e|20() = ——— — (20(a) - ————
+( xl)c[ o(x1) i —x1)? (U(ﬂ) g(l—g)zﬂ
1 1
b_l - _< _7>}>‘
—l—c[”fl( (x1)) b*l(xl)(l—bfl(xﬂ) m(x1) x1(1—x1)

Note that, using the definition of b in (11),

(I—x1) n ¢
1=b(@) " b~ (x)(1-b""(x)))

_d=xp X
1-b@) b l(x))
_x[l-p7 ]+ b@[b () — xi]
b~ xn)(1-b(a))

>0,

where the inequality follows from x; < b~!(x;) < 1. Moreover,

1 1
20(e) — ———— — (20() - ——— ) >0
o(x1) X](l—X])2 < o(a) g(l—g)2> >

by x1 > a and by

d < 1 1
—\| 20(y) — ) = >0
dy y1=y?) Y1 -y)?

for any y € (0, 1). Finally,

1 1
bl(xy)) - —( - 7> 0
n(b™ () b~ ) (1= b7 (x1) nex) xd—xpn)~

by b~1(x1) > x1 and by

d 1 1
a _ - 0
dy (n(y) y(1— y)) y2(1—y) ~

for y € (0,1). Thus, V (x1, b~ 1(x1)) — B(x1, b~ 1(x1)) > 0, as required.
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To show that (F N B) C B, from (22) and (10), write
B(x) —V(x) 1 c
= T (1=

1—x; ( xl)(l—b(x2)+l—x2[
_1-Ce)
1-— X1

n(x1) — n(b(xz))]>

c[n(x2) = nxD)].

Differentiating and then simplifying gives
d (B(x) - V(x)) e (x,0)

de 1 — X2 xz(l —XQ).

As aresult, because ®“(x, ¢) < 0 implies that B(x) > V' (x), B covers F, the failure region,
on B. Thatis, FN B c B. O
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