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Boundedly rational backward induction

Shaowei Ke
Department of Economics, University of Michigan

This paper proposes simple axioms that characterize a generalization of backward
induction. At any node of a decision tree, the decision maker looks forward a fixed
number of stages perfectly. Beyond that, the decision maker aggregates continu-
ation values according to a function that captures reasoning under unpredictabil-
ity. The model is uniquely identified from the decision maker’s preference over
decision trees. Confronting a decision tree, the decision maker iteratively revises
her plan for the future as she moves forward in the decision tree. A comparative
measure of unpredictability aversion and several examples are discussed.
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1. Introduction

Backward induction has been used to analyze decision makers’ behavior in dynamic
decision problems. In a typical dynamic decision problem, fully rational backward in-
duction begins by identifying the optimal choice for the last stages of the problem and
then rolls back to the first stage. The solution is taken as a prediction of how decision
makers behave in such a context. It is well known, however, that decision makers cannot
perform fully rational backward induction in reality.1

To accommodate deviations from fully rational backward induction, many
economists have considered the idea that perhaps the decision maker can only see a
few stages ahead perfectly.2 The difficulty, however, is to understand how the decision
maker evaluates the part of the decision problem that is beyond her perfect foresight.
Suppose a decision maker can only see one stage ahead perfectly and is confronted with
the following decision problem depicted by a decision tree (Figure 1). Without knowing
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Figure 1. The value of the second-stage subtree that is beyond the decision maker’s perfect
foresight determines how she compares 2 and {0�1�5�3}, and hence determines the backward
induction solution for the entire decision tree. Since the decision maker no longer fully ratio-
nally backward inducts beyond the first stage, the value of the second-stage subtree may not be
max{0�1�5�3} = 3.

the value the decision maker assigns to the subtree beyond the first stage, we do not
know how the decision maker would roll back the first stage to evaluate the decision
tree.

This paper takes a revealed-preference approach to analyze how the decision maker
may evaluate subtrees beyond her perfect foresight. The decision maker’s preference
over individual decision trees is taken as the primitive. We impose simple and testable
axioms that describe how the preference may vary with the presentation/frame of the
decision problem, that is, the structure of the decision tree. Then we characterize the
class of models that are consistent with the axioms. Note that in previous literature on
backward induction, most studies take place in extensive-form games. However, there
exist many confounders in extensive-form games.3 To avoid this, we focus on the sim-
plest choice environment that allows us to study backward induction: the set of individ-
ual deterministic finite decision trees.

Confronting a decision tree, the decision maker makes a sequence of choices until
she reaches a lottery. Decision trees are defined recursively: A depth-1 decision tree
is a finite set of lotteries, a depth-2 decision tree is a finite set of lotteries and depth-1
decision trees, and so on (see Figure 2). Thus, a decision tree is represented by a set
a = {a1� � � � � an} consisting of subtrees a1� � � � � an. Each subtree may be a lottery or yet
another decision tree; that is, another set of subtrees and lotteries.

The axioms we impose on the preference yield a new class of models that generalize
fully rational backward induction. In the resulting model, the decision maker performs
fully rational backward induction to evaluate the first 0 ≤ κ ≤ +∞ stages of a decision
tree. For subtrees beyond κ stages, it is as if the decision maker uses a general aggregator
to aggregate the subtree values. For a subtree a= {a1� � � � � an} that is beyond κ stages, the
aggregator takes the form

U(a) = f−1
(

1
n

∑
f
(
U(ai)

))
� (1)

3For example, it is often found that players do not end the centipede game immediately, unlike what fully
rational backward induction predicts. However, this could happen because, although players have back-
ward inducted rationally, they believe that other players will make mistakes, or they have social preferences
for fairness, etc.
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Figure 2. Think of the numbers at the end of decision trees as the utility of lotteries. The first
decision tree a is a depth-1 decision tree. The second decision tree b is a depth-2 decision tree.
The last decision tree c is a depth-3 decision tree, and c = {1�8� a�b}.

in which U(·) is the utility function. Depending on f , the aggregator ranges from the
maximum function to the minimum function. Both κ and f are uniquely identified from
the decision maker’s preference. We call this representation the κ-boundedly-rational
backward-induction (κ-BRBI) representation.

We offer two interpretations of (1). First, note that the aggregator in fully rational
backward induction is the maximum function. In our model, instead of the maximum,
(1) is a general notion of average. Thus, (1) captures the idea that beyond the decision
maker’s perfect foresight, she evaluates subtrees according to some “foggy” overall im-
pression.

In the second interpretation, it is as if the decision maker knows the structure of the
decision tree, but is unable to predict or does not trust her future selves’ choices beyond
κ stages. First, she envisions that she will choose uniformly randomly after κ stages, cap-
tured by 1/n in (1). Such a belief is called Laplacian, as Laplace (1951) suggests that the
uniform prior should be applied to unknown events from “the principle of insufficient
reason.” Second, the decision maker’s attitude toward the Laplacian belief is captured
by f ◦ U , in which f is a second-order expected utility function. We show that the con-
cavity of f is a comparative measure of unpredictability aversion; that is, the extent to
which the decision maker avoids unpredictable situations.

The example in Figure 3 illustrates how the model assigns values to decision trees.
Suppose κ = 1 and the aggregator is the simple average function (f (u) = u). For the de-
generate decision tree 1�8 (the left-hand side) and the depth-1 decision tree {0�1} (the
right-hand side), the decision maker’s evaluation is identical to fully rational backward
induction. For the depth-2 decision tree, the decision maker uses (1) to aggregate the
subtree beyond the first stage and then rolls back the first stage using fully rational back-
ward induction.

The preference also describes how the decision maker actually chooses in a deci-
sion tree. Confronting a decision tree a = {a1� � � � � an}, the decision maker chooses her
most preferred subtree ai. If the chosen subtree ai is also a decision tree, she continues
to choose her most preferred subtree from ai = {b1� � � � � bm}. By using this choice pro-
cedure, we have made a history-independent assumption: The decision maker’s pref-
erence over subtrees does not depend on how she reaches the current decision tree.
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Figure 3. The decision maker with κ= 1 and f (u) = u evaluates subtrees 1�8, {2� {0�1�5�3}}, and
{0�1}.

Figure 4. Suppose κ = 1 and f (u) = u. First, the decision maker chooses one of the subtrees
from 1�8, {2� {0�1�5�3}}, and {0�1}. Since the value of {2� {0�1�5�3}} is 2, which is the highest
among the three subtrees, the decision maker chooses it from the original (the left-hand) deci-
sion tree. Once she moves on to the chosen subtree {2� {0�1�5�3}} (the right-hand tree), the sub-
tree {0�1�5�3} is no longer beyond the decision maker’s perfect foresight. The value of {0�1�5�3}
becomes 3 instead of 1�5, and the decision maker chooses {0�1�5�3}. She will end up with 3.

Such a choice procedure implies that the decision maker’s perfect foresight moves for-
ward as she makes choices; that is, if the decision maker can see the κth stage of a per-
fectly when choosing from {a1� � � � � an}, she can now see the (κ+ 1)th stage of a perfectly
when choosing from {b1� � � � � bm}. This procedure continues iteratively until she reaches
a lottery.

Figure 4 shows how the decision maker with κ= 1 and f (u) = u chooses in a decision
tree. Notice that according to the subtree values that the decision maker assigns when
making the first choice (in the left-hand-side decision tree), the decision maker would
have assumed that she would choose 2 from {2� {0�1�5�3}} next. However, as she moves
on to the next stage, she ends up noticing that the value of {0�1�5�3} is 3 instead of 1�5.
Thus, the decision maker may iteratively revise her plan as she makes choices.

Our model has four main axioms. One states that if the decision maker can solve
all depth-k decision trees correctly, she can also solve depth-j trees correctly whenever
j ≤ k. This allows us to identify κ—the boundary of the decision maker’s perfect fore-
sight. Next, we consider three axioms for subtrees beyond the perfect foresight. Suppose
b is a subtree that is beyond κ stages. First, if we replace a subtree of b with a better one,
b becomes better. Second, combining a good subtree with a bad subtree yields a new
subtree that is ranked in between. The last main axiom is built on a simple idea: When
a depth-1 tree contains fewer lotteries, each of its lotteries commands more attention.
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Figure 5. Suppose both subtrees are beyond κ stages. Compared to the left-hand tree, the
right-hand tree accentuates “Win” and hides “Draw.” The decision maker prefers the right-hand
tree.

Therefore, swapping a better lottery from a subtree of b that has more branches for a
worse lottery from a subtree of b that has fewer branches accentuates the better lottery
and hides the worse lottery, which makes subtree b better. Figure 5 illustrates this idea.

1.1 Related literature

Our work belongs to the bounded rationality literature on choices in complex situations.
Several papers have examined specific heuristics or reasoning processes. Jehiel (2001)
considers a stochastic value function beyond a player’s imperfect foresight and studies
an equilibrium notion in which the players’ forecasts within the imperfect foresight are
correct. Gabaix et al. (2006) study a reasoning procedure in which the decision maker
evaluates continuation problems as if they end right away. Based on the heuristic, the
reasoning procedure endogenously determines the optimal number of stages the deci-
sion maker should look forward. Rampal (2018) assumes that the decision maker uses
the simple average of the maximum and the minimum payoffs to evaluate actions be-
yond κ stages. He introduces an equilibrium notion that features uncertainty over the
opponents’ numbers of stages of perfect foresight. Our paper does not start with a spe-
cific heuristic or reasoning process. We propose simple and testable axioms on the de-
cision maker’s preference over decision trees and provide the representation theorem.

Fudenberg and Strzalecki (2015) also adopt the revealed-preference approach to
study the decision maker’s choices in individual deterministic finite decision trees. They
propose a dynamic extension of the logit model in which the decision maker is averse to
large decision trees. Their measure of choice aversion is based on the size of the decision
tree (recursively) and takes a specific functional form. Our decision maker chooses de-
terministically and does not necessarily avoid large decision trees. She avoids decision
trees with inferior subtrees, and the extent to which she avoids them is captured by the
concavity of a general second-order expected utility function.

Our disjoint set betweenness axiom is related to several existing axioms. Bolker (1966)
is the first to use this type of axiom. He studies a generalization of the concept of ex-
pected value in mathematics. The axiom is not imposed on the preference. Bolker’s
resulting formula is different from ours, but similar to Ahn (2008), who uses a similar
axiom to study ambiguity. Gul and Pesendorfer (2001) use a related axiom to model
temptation and self-control. In their model, the decision maker may prefer a smaller
choice set to a larger one because the larger one contains tempting bad lotteries. Their
axiom is stronger than ours, as it applies to the case in which choice sets have nonempty
intersections.
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Figure 6. The depth-2 decision tree b = {r� a} = {r� {p�q}} ∈ D2 consists of a lottery r and a
depth-1 decision tree a = {p�q} ∈ D1.

The rest of the paper is organized as follows. The setup is introduced in Section 2.
A special case of the model is presented in Section 3 and the general case is presented in
Section 4. Section 5 discusses a few behavioral predictions of the model.

2. Setup

We consider a decision maker who makes a series of choices until a lottery is reached.
A decision tree describes this choice situation. Let X be a compact separable metric
space and let D0 := �(X) be the set of lotteries (Borel probability measures) on X , en-
dowed with the Prokhorov metric.4 Generic lotteries are denoted by p, q, r, and s.

A depth-1 decision tree is a nonempty finite subset of lotteries. When the decision
maker confronts a depth-1 decision tree a⊂ D0, she chooses one of its lotteries. For any
set Z, let K(Z) denote the collection of all nonempty finite subsets of Z. Then D1 :=
K(D0) denotes the set of depth-1 decision trees. A depth-2 decision tree is a nonempty
finite subset of lotteries and depth-1 decision trees. We require that a depth-2 decision
tree be different from a depth-1 decision tree. Let

D2 := K(D0 ∪D1) \D1

denote the set of depth-2 decision trees. By definition, in Figure 6, decision tree a =
{p�q} is a depth-1 decision tree and decision tree b = {r� a} = {r� {p�q}} is a depth-2 deci-
sion tree.

Recursively, we define the set of depth-k decision trees as

Dk := K

(
k−1⋃
j=0

Dj

) ∖ (
k−1⋃
j=0

Dj

)
�

The definition has two implications: When the decision maker confronts a depth-k de-
cision tree, (i) she makes at most k choices to reach a lottery and (ii) there exists some
lottery that takes exactly k choices to reach. Let D := ⋃∞

j=1 Dj be the set of all decision
trees.

4The main results of the paper goes through if we replace D0 with a convex set of real numbers repre-
senting monetary payoffs. The difference is that we replace the utility of lotteries with monetary payoffs.
Considering lotteries allows us to discuss decision trees with nonmonetary payoffs, and allows us to sepa-
rately identify the decision maker’s attitude toward objective uncertainty and her attitude toward subjective
uncertainty about her own future choices, as is shown below.
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According to the construction, a typical decision tree a = {a1� � � � � an} ∈ D is repre-
sented as a finite set of subtrees, a1� � � � � an. For example, in Figure 6, the depth-2 de-
cision tree b consists of subtrees a ∈ D1 and r ∈ D0. A subtree could be either another
decision tree or a lottery. Let D := D∪D0 denote the set of all subtrees. It can be verified
that D =K(D).

The decision maker has a binary relation/preference � on D, the set of decision trees
and lotteries. We say that � is nontrivial if there exist some subtrees a�b ∈ D such that
a � b. We assume throughout the paper that X is rich; that is, for any x ∈ X , there exist
countably many distinct consequences that are indifferent to x. We need richness to
ensure that it is always possible to have an arbitrary number of indifferent lotteries in
a decision tree. For example, since we use sets to construct decision trees, if there is a
unique best consequence in X , it cannot appear more than once in a depth-1 decision
tree.5 Last, when restricted to D0, � is a preference over lotteries. We say that � on
D0 has an expected utility representation if there is a continuous function U : D0 → R

representing � on D0 such that

U(p) =
∫
X
U dp (2)

for each p ∈ D0.6 We call a function Û : D → R an expected utility function if, when
restricted to D0, Û is an expected utility representation of � on D0.

Throughout the paper, we impose two axioms on �.

Axiom 1 (Weak Order). Preference � is complete and transitive.

Axiom 2 (von Neumann–Morgenstern (vNM)). Preference � on D0 has an expected util-
ity representation.

The first axiom is standard. The second axiom is equivalent to the three well known
von Neumann–Morgenstern axioms in expected utility theory.

The remaining axioms pin down a representation of the decision maker’s preference
in which the decision maker looks forward κ stages perfectly. Beyond κ stages, to eval-
uate subtrees, the decision maker uses an aggregator that is different from that used by
fully rational backward induction. To understand how the aggregator is revealed from
the decision maker’s preference, in the next section we first investigate a special case of
the model in which κ= 0. Then we characterize the general case with 0 ≤ κ≤ +∞.

3. 0-stage perfect foresight

We consider the following testable axioms on the decision maker’s preference that en-
capsulate how the decision maker’s preference is allowed to deviate from full rationality
when the decision maker cannot even evaluate depth-1 trees perfectly.

5Alternatively, we can use multisets to define decision trees without assuming richness.
6As usual, we identify X with the set of degenerate lotteries. For each x ∈ X , the degenerate lottery that

gives the decision maker x with probability 1 is denoted by δx. Equation (2) means that U(p) = ∫
X U(δx)dp.
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Figure 7. Monotonicity requires that a1 � a′
1 if and only if a� a′.

Figure 8. The decision maker should have the following preference: {Win} �
{Win�Draw�Lose} � {Draw�Lose}.

Axiom 3 (Monotonicity). For any a = {a1� a2� � � � � an} and a′ = {a′
1� a2� � � � � an} ∈ D, a1 �

a′
1 implies a� a′ and a1 � a′

1 implies a � a′.

A fully rational decision maker satisfies the first part of Axiom 3 (a1 � a′
1 implying

a� a′), but violates the second part (a1 � a′
1 implying a � a′) (see Figure 7). To see this,

suppose a = {p�q}, a′ = {p′� q}, and q � p � p′. A fully rational decision maker is indif-
ferent between a and a′, since they have the same best lottery q. Axiom 3 requires that
a � a′; that is, the decision maker avoids decision trees with inferior subtrees.

The next axiom, disjoint set betweenness, considers two decision trees a and b that
have no subtree in common.7 For example, suppose a = {Win}, b = {Draw�Lose}, and
the decision maker prefers {Win} to {Draw�Lose}. Disjoint set betweenness states that
{Win�Draw�Lose} is ranked in between; that is, {Win} is preferred to {Win�Draw�Lose},
which in turn is preferred to {Draw�Lose} (see Figure 8).

Axiom 4 (Disjoint Set Betweenness). For any a�b ∈ D such that a ∩ b = ∅, a� b implies
a� a∪ b� b.

When a � b, a fully rational decision maker should be indifferent between a and
a∪ b, since they both contain the same best subtree from a. Axiom 4 allows the decision
maker to strictly prefer a to a ∪ b because a ∪ b contains inferior subtrees that a does
not have. Similarly, a ∪ b may be strictly preferred to b because a ∪ b contains better
subtrees that b does not have. Thus, as in Axiom 3, the decision maker in our model is
averse to decision trees with inferior subtrees. This means that Axiom 4 may be violated
if the decision maker simply dislikes large decision trees. For example, {p} ∼ {q} and the
decision maker prefers {p}, {q} to {p�q}.

To rule out some uninteresting deviations from full rationality, we impose the fol-
lowing two axioms that a fully rational decision maker satisfies. The first requires that
the decision maker not be fooled by trivial extensions of decision trees (see Figure 9).

7However, two subtrees with no subtree in common may have common (terminal) lotteries.
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Figure 9. The decision maker is indifferent between the two decision trees, a = {p�q} and
{a} = {{p�q}}.

Axiom 5 (Indifference to Trivial Extensions). For any a ∈ D, a ∼ {a}.

The second axiom is a continuity condition. Intuitively, we want a decision tree’s
utility to not change much when its subtree values are slightly perturbed. For example,
for depth-1 trees a and b, this means that if a and b share the same size and the utility
of a’s lotteries is pairwise close to that of b’s, a’s utility should be close to b’s. This idea
can be formalized as follows. Let | · | denote the cardinality of a set. Define Dn

1 := {a ∈
D1 : |a| = n} for each positive integer n. Recall that the distance between two lotteries p

and q is given by the Prokhorov metric d(p�q). Analogous to the Hausdorff metric, we
define the following metric on Dn

1 : For any a�b ∈Dn
1 ,

dn(a�b) = max
{

max
p∈a min

q∈b
d(p�q)�max

q∈b
min
p∈a d(p�q)

}
�

We may also continue to define the metric for depth-k trees, but this turns out to be
unnecessary.

Axiom 6 (Continuity). For any a ∈ D1, {b ∈ D
|a|
1 : b � a} and {b ∈ D

|a|
1 : a � b} are open

in D
|a|
1 .

To better understand the implication of the final axiom, we use the following lemma
to summarize the behavioral implication of the axioms presented so far. We first define
a representation.

Definition 1. The preference � has a recursive average (RA) representation if there
exists an expected utility function U : D → R and a sequence of continuously strictly
increasing symmetric functions gn : U(D)n → R for n ∈ N such that (i) for any a1� a2 ∈
D, a1 � a2 if and only if U(a1) ≥ U(a2), (ii) for any b = {b1� � � � � bn} ∈ D, U(b) =
gn(U(b1)� � � � �U(bn)), and (iii) for any u1� � � � � un ∈ U(D), minui ≤ gn(u1� � � � � un) ≤
maxui.

The representation is recursive. For example, suppose a = {p�q� r} and b = {s� a} =
{s� {p�q� r}}. Then

U(b) = g2
(
U(s)�U(a)

) = g2
(
U(s)�g3

(
U(p)�U(q)�U(r)

))
�
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Moreover, the utility of b is always between the utility of b’s best subtree and the utility
of b’s worst subtree.

Lemma 1. The preference � has an RA representation if and only if � satisfies Axioms 1–6.

Axiom 4 ensures that gns are between the maximum and the minimum. Axiom 3
not only ensures that the gns are well defined and increasing, but also implies their re-
cursivity.8 To see this, consider a = {p�q� r} and b = {s� a}. Suppose there is a lottery p′
such that p′ ∼ a. According to Axiom 3, p′ ∼ a implies that b ∼ {s�p′}. In other words,
U(b) = U({s�p′}) = g2(U(s)�U(p′)) = g2(U(s)�U(a)).

The RA representation is very general, because there are few restrictions on gns. Our
last axiom pins down the form of gns, which significantly reduces the number of param-
eters of the model. The last axiom is built on a simple idea: When a depth-1 tree contains
fewer lotteries, each of its lotteries commands more attention. To see what attention has
to do with choices, let us first introduce a notion of a swap.

Definition 2. For any a = {a1� a2� � � � � an} ∈ D2 such that a1� a2 ∈ D1, |a1| ≥ |a2|, p ∈
a1 \ a2, q ∈ a2 \ a1, a′

1 := a1 \ {p} ∪ {q} /∈ {a3� � � � � an}, and a′
2 := a2 \ {q} ∪ {p} /∈ {a3� � � � � an},

a swap of p for q is

�
p
q (a) := a \ {a1� a2} ∪ {

a′
1� a

′
2
}
�

See Figure 5 for an example of a swap of win for draw. The definition requires that
a ∈ D2 be a depth-2 tree. Hence, a1 and a2 are two sets of lotteries. In the definition, the
lottery p originally belongs to a larger subtree (a1) than the subtree (a2) containing q.
We assume that lotteries from a smaller subtree command more attention. Therefore,
the swap of p for q accentuates p and masks q. If p is preferred to q, we call this swap an
accentuating swap to emphasize the fact that after the swap, the better lottery p is more
salient and the worse lottery q is less salient. When we write �

p
q (a) to denote the swap

of p for q, implicitly we have imposed the assumptions in Definition 2.

Axiom 7 (Preference for Accentuating Swaps). If a ∈D2 and p� q, then �
p
q (a)� a.

While the axiom is satisfied by a fully rational decision maker, it allows for departures
from full rationality. Consider the example in Figure 5. There is a depth-2 decision tree
a = {a1� a2}, where a1 = {Win�Lose} and a2 = {Draw}. For a fully rational decision maker,
it does not matter which lottery is presented at which part of the tree; that is, she is in-
different between a and {{Draw�Lose}� {Win}}. In contrast, when a boundedly rational
decision maker looks forward in decision tree a, since |a1|> |a2|, there are more (degen-
erate) lotteries competing for attention in a1 than in a2. An accentuating swap of win
for draw makes win more salient and draw less salient. Therefore, the swapped decision
tree appears to be better. This axiom may be violated if, for example, the decision maker
prefers “well organized” decision trees. Suppose x1, x2, and x3 are bags, y1 and y2 are

8More discussions about Axioms 3 and 4 can be found in Ke (2018).
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jackets, and x1 is better than y1. The decision maker who prefers well organized deci-
sion trees may strictly prefer {{x1�x2�x3}� {y1� y2}} to {{x1� y2}� {y1�x2�x3}}, which violates
Axiom 7.

The theorem below identifies the class of aggregators that are consistent with the
axioms. We first define the representation.

Definition 3. The preference � has a 0-stage boundedly rational backward induction
(0-BRBI) representation if there exists an expected utility function U : D → R and a
continuously strictly increasing function f : U(D) → R such that (i) for any a1� a2 ∈ D,
a1 � a2 if and only if U(a1) ≥U(a2), and (ii) for any b = {b1� � � � � bn} ∈D,

U(b) = f−1

(
1
n

n∑
i=1

f
(
U(bi)

))
� (3)

Due to (3), U and f are not independent. However, if we restrict the domain of
U to the set of lotteries D0, U (defined on D0) does not depend on f ; that is, (3)
uniquely extends the utility of lotteries to the utility of all finite decision trees. To
see how the representation works, for example, suppose again that a = {p�q� r} and
b = {s� a} = {s� {p�q� r}}. Knowing the utility of lotteries p, q, r, and s, we can apply (3) to
derive the utility of a,

U(a) = f−1
(

1
3
f
(
U(p)

) + 1
3
f
(
U(q)

) + 1
3
f
(
U(r)

))
�

which in turn is used to derive the utility of b,

U(b) = f−1
(

1
2
f
(
U(s)

) + 1
2
f
(
U(a)

))

= f−1
(

1
2
f
(
U(s)

) + 1
2
f

(
f−1

(
1
3
f
(
U(p)

) + 1
3
f
(
U(q)

) + 1
3
f
(
U(r)

))))

= f−1
(

1
2
f
(
U(s)

) + 1
6
f
(
U(p)

) + 1
6
f
(
U(q)

) + 1
6
f
(
U(r)

))
� (4)

Theorem 1. The preference � has a 0-BRBI representation if and only if � satisfies Ax-
ioms 1–7. In the 0-BRBI representation of a nontrivial �, the expected utility function U is
unique up to a positive affine transformation, and fixing any U , the function f is unique
up to a positive affine transformation.

We offer two interpretations of the aggregator (3). The first interpretation follows and
the second is introduced in Section 4. In the first interpretation, note that the aggregator
in fully rational backward induction is the maximum function; that is, U(b) = maxi U(bi)

for any decision tree b = {b1� � � � � bn} ∈ D. In our model, instead of the maximum func-
tion, the aggregator (3) is a general notion of average.9 The decision maker evaluates

9In mathematics, Kolmogorov (1991) proposes an equation that is similar to (3) to define average.
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subtrees as if she applies (3) recursively. The average aggregator (3) captures the idea
that if the decision maker does not perform backward induction, she evaluates subtrees
according to some “foggy” overall impression. As f gets arbitrarily convex (concave), (3)
converges to the maximum (minimum) function. For example, suppose U(D0) = R++.
As γ → ∞, f (u) = uγ (γ > 0) yields the maximum function and f (u) = −u−γ (γ > 0)
yields the minimum function.

3.1 Nonrecursive aggregation

Although (3) and the previous example of evaluating b= {s� a} = {s� {p�q� r}} suggest that
the aggregator works recursively, there is an equivalent but nonrecursive way to apply
the aggregator. Nonrecursive aggregation may provide a better interpretation of the rep-
resentation. In recursive aggregation, it is natural that the decision maker adopts some
average aggregator—but perhaps less so that the decision maker does this recursively.
In the equivalent nonrecursive aggregation introduced below, the decision maker ap-
plies the average aggregator only once to evaluate the decision tree, but the aggregator’s
weights over (terminal) lotteries depend on the structure of the tree.

Consider b = {s� a} = {s� {p�q� r}} again. As shown by the third equality of (4), rather
than first evaluating a and then b recursively, an alternative way to evaluate b is to ag-
gregate the utility of b’s lotteries s, p, q, and r directly:

U(b) = f−1
(

1
2
f
(
U(s)

) + 1
6
f
(
U(p)

) + 1
6
f
(
U(q)

) + 1
6
f
(
U(r)

))
�

Note that instead of using the uniform weights (1/n) as in (3), each lottery’s weight now
depends on the structure of the decision tree. In this example, s has weight 1/2 and the
other lotteries have weight 1/6.

Intuitively, we can think of the weight of a lottery as the share of attention that the
lottery receives. The decision maker’s attention is equally split at every node of a deci-
sion tree. Therefore, s receives half of the attention, and p, q, and r each receive 1/6 of
the attention. This observation can be easily generalized.

3.2 Sketch of the proof

The construction of the function f is similar to how one calibrates an expected utility
function from the data on certainty equivalents for 50–50 gambles (see Machina 1987).
Recall that D0 = �(X) is the set of Borel probability measures on a compact set X . Ax-
iom 2 states that � has an expected utility representation on D0. Let U : D0 → R be an
expected utility representation of � on D0. Since U is continuous and X is compact,
find one of the best lotteries ph and one of the worst lotteries pl. Consider the nontrivial
case in which U(ph)= 1 and U(pl)= 0.

From Axiom 4, one can show recursively that for any subtree c, ph � c � pl. To see
this, for example, consider a depth-1 decision tree a = {p�q} ∈ D1 and suppose p � q.
By Axiom 4, ph � p � a � q � pl. Next, consider some depth-2 decision tree b = {r� a}.
As explained in Lemma 1, Axiom 3 implies the recursivity of the representation; that
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is, if for some lottery s, a ∼ s, then Axiom 3 implies b ∼ {s� r}. Since we already know
that ph � a � pl, we know that s exists. Then we can apply Axiom 4 again to show that
ph � b � pl. By induction, we can show for every decision tree c, ph � c � pl, which
implies that we can find some αc such that αcph + (1 − αc)pl ∼ c. Let U(c) = αc . Now
we have extended the domain of U from D0 to D. The question is whether the function
U is consistent with (3).

We construct f as follows. Let f (0) = f (U(pl)) = 0 and f (1) = f (U(ph)) = 1. Define

f
(
U

({ph�pl}
)) := 1

2
f
(
U(ph)

) + 1
2
f
(
V (pl)

) = 1
2
;

that is, if, for example, U({ph�pl}) = 1/5, the equation above defines f (1/5) to be 1/2. To
see why this construction of f is similar to the calibration of an expected utility function,
think of U(ph) and U(pl) as x dollars and y dollars, think of U({ph�pl}) as the certainty
equivalent of the 50–50 gamble between x and y, and think of f as the expected utility
function. Then the equation above is similar to stating that the utility of the certainty
equivalent is equal to the expected utility expression on the right-hand side.

Next consider {ph� {ph�pl}} and define

f
(
U

({
ph� {ph�pl}

})) := 1
2
f
(
U

({ph�pl}
)) + 1

2
f
(
U(ph)

) = 3
4
�

Similarly, consider {pl� {ph�pl}} and set f (U({pl� {ph�pl}})) = 1
2f (U({ph�pl})) +

1
2f (U(pl)) = 1

4 . We can continue in this fashion and define f on some subset of [0�1].
Denote all the binary decision trees of this kind (whose terminal lotteries are either ph

or pl) by D̂. The subset of [0�1] on which f has been defined is U(D̂).
We want to verify that (3) holds on D̂, and a key consequence of (3) to be veri-

fied is a bisymmetry property. Consider two binary decision trees, {{a�b}� {c�d}} and
{{a� c}� {b�d}} that belong to D̂. For (3) to hold on D̂, it must be true that{{a�b}� {c�d}} ∼ {{a� c}� {b�d}}� (5)

because

U
({{a�b}� {c�d}}) = U

({{a� c}� {b�d}}) = f−1
(

1
4
f
(
U(a)

) + · · · + 1
4
f
(
U(d)

))
�

Axiom 7 ensures that (5) holds. Consider {{a�b}� {c�d}} and suppose b� c. First, find lot-
teries p1� � � � �p4 such that p1 ∼ a� � � � �p4 ∼ d. Thus, p2 � p3. By Axiom 3, {{a�b}� {c�d}} ∼
{{p1�p2}� {p3�p4}} and {{a� c}� {b�d}} ∼ {{p1�p3}� {p2�p4}}. According to Axiom 7, since
|{p3�p4}| ≥ |{p1�p2}|, an accentuating swap of p2 for p3 should be weakly preferred to
{{p1�p2}� {p3�p4}}. Therefore, {{p1�p3}� {p2�p4}} � {{p1�p2}� {p3�p4}}. However, we can
swap p2 back for p3 and apply Axiom 7 again to conclude that {{p1�p2}� {p3�p4}} �
{{p1�p3}� {p2�p4}}. Thus, we have (5).

Using Axioms 3 and 4, it can be shown that the subset must be dense. By Axiom 6,
we can extend the domain of f to the entire set [0�1]. The construction so far only deals
with binary decision trees D̂. In the last step, we show that (3) holds not only for D̂, but
also for all finite decision trees under the same f function.
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Figure 10. By replacing the 2-stage subtree b = {0�1�5�3} of a with c = {0�1�5}, we obtain a new
decision tree φc

b(a). Suppose κ≤ 2. Then, b�∗ c implies that a�φc
b(a).

4. κ-stage perfect foresight

To accommodate violations of fully rational backward induction, many economists have
considered the idea that the decision maker can perform fully rational backward induc-
tion only for a few stages, and then she uses some other aggregator/value function to
evaluate subtrees beyond her perfect foresight (see footnote 2). Below, we characterize
the model in which the decision maker has perfect foresight for κ stages, and uses the
aggregator (3) to evaluate subtrees beyond κ stages.

To state the axioms, we first introduce some terminology and notation. For each
decision tree a ∈ D, we use π(a) to denote the set of lotteries that can be reached by
making a series of choices in a. Since a is finite, π(a) is finite. Because the preference �
is complete and transitive, we can find the best lotteries of π(a). Denote one of the best
lotteries among π(a) by π̄(a). For a lottery p ∈D0, let π(p) = {π̄(p)} = {p}.

Confronting a ∈ D, we say that a subtree b is a j-stage subtree of a if

b ∈ a(j−1) ∈ · · · ∈ a(1) ∈ a�

We say that a is a 0-stage subtree of a. Next suppose b is a j-stage subtree of a. We use
φc
b(a) ∈ D to denote the tree that differs from a only by replacing b with a subtree c (see

Figure 10).10 By definition, c is a j-stage subtree of φc
b(a).

We first introduce a simple axiom that allows us to identify κ.

Axiom 8 (Limited Perfect Foresight). For some j ∈ N, if a ∼ π̄(a) for all a ∈ Dj , then b ∈
Dk and k ≤ j imply b∼ π̄(b).

The axiom says that if a decision maker can solve all depth-j decision trees perfectly,
she can also solve any depth-k decision tree perfectly as long as k ≤ j. This axiom en-
ables us to define κ and a preference �∗ for subtrees beyond the decision maker’s perfect
foresight.

10More precisely, φc
b(a) should also keep track of the choice path in a that leads to b; that is, φc

b(a) should
also depend on a(j−1)� � � � � a(1) if we are considering subtree b ∈ a(j−1) ∈ · · · ∈ a(1) ∈ a. This is because, in
general, subtree b may appear multiple times in a decision tree a. For simplicity, we omit the choice path
that leads to b in the notation.
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Definition 4. Let κ be the number such that (i) for any a ∈ Dκ, π̄(a) ∼ a, and (ii) there
exists some b ∈ Dκ+1 such that π̄(b)� b. When κ < +∞, we write b�∗ c if for any j ≥ κ

and a ∈ D such that b is a j-stage subtree of a, a� φc
b(a). When κ = +∞, b�∗ c for any

b� c ∈ D.

Since p ∼ π̄(p) for any lottery p, we know that κ ≥ 0. If κ = +∞, the decision maker
performs fully rational backward induction. The definition of �∗ implies that if b �∗ c,
replacing a subtree b beyond perfect foresight with another subtree c always makes the
original decision tree worse. The next axiom requires that �∗ be well behaved.

Axiom 9 (κ-Consistent Weak Order). Preference �∗ is complete and transitive, and for
any p�q ∈ D0, p� q if and only if p�∗ q.

This axiom implies that if replacing a j-stage (j ≥ κ) subtree b of a with another sub-
tree c makes a better, then whenever b is beyond perfect foresight in any decision tree,
replacing b with c improves the tree. Moreover, �∗ coincides with � on D0; that is, the
risk attitude stays constant no matter where the lotteries are located in decision trees.

Last, we impose axioms from Section 3 to �∗.

Axiom 10 (κ-Aggregator). Preference �∗ satisfies Axioms 3–7.

Axioms 1 and 2 together with the axioms in this section lead to the following repre-
sentation of the decision maker’s preference.

Definition 5. The preference � has a κ-stage boundedly rational backward induction
(κ-BRBI) representation if there exists a constant κ ∈ N ∪ {+∞}, expected utility func-
tions U∗ : D → R and Uj : D → R for each j ≤ κ, and a continuously strictly increasing
function f : U∗(D) → R such that the following statements hold:

(i) For any a�a′ ∈ D, a� a′ if and only if U0(a) ≥U0(a
′).

(ii) We have Uj(p) =U∗(p) for any j ≤ κ and p ∈D0.

(iii) If b = {b1� � � � � bn} ∈D is a j-stage subtree of a decision tree c,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uj(b) = max
i

Uj+1(bi) if j < κ

Uj(b) =U∗(b) = f−1
(

1
n

∑
i

f
(
U∗(bi)

))
if j = κ

U∗(b) = f−1
(

1
n

∑
i

f
(
U∗(bi)

))
if j > κ�

(6)

Part (i) of the definition says that U0 is the utility function that represents the pref-
erence. Part (ii) implies that no matter where a lottery is located in a decision tree, its
expected utility does not change. Hence, let us define an expected utility function for
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lotteries; that is, for any κ-BRBI representation, we define U : D0 →R to be the function
such that for any p ∈D0,

U(p) := U0(p)= · · · = Uκ(p) =U∗(p)� (7)

What the structure of a decision tree affects is how the decision maker aggregates
the utility of lotteries, which is reflected in part (iii). The first case in part (iii) is the
aggregator within the decision maker’s perfect foresight, in which the utility of a j-stage
subtree b depends on j. To see why, suppose b = {s� {p�q� r}} and κ = 2. If b is a 0-
stage subtree, the utility of b should be equal to its best lottery’s utility. However, if b
is a 1-stage subtree, b’s subtree {p�q� r} is beyond the decision maker’s perfect foresight.
Hence, the utility of b may differ from its best lottery’s utility. The second case in part (iii)
is the transition stage, in which b is at the boundary of perfect foresight and b’s subtrees
are beyond perfect foresight. Beyond perfect foresight, the utility function U∗ is used
instead, which is no longer aggregated through the maximum function. Last, note that
although part (iii) works recursively, our discussion in Section 3.1 again applies.

To see how the representation works, consider again, for example, a = {p�q� r} and
b = {s� a} = {s� {p�q� r}}. We derive the utility of b. The case of κ= 0 is identical to the ex-
ample in the previous section except for some notational differences.11 Suppose κ= 1.
Since a is a 1-stage subtree of b, the second case of Definition 5(iii) implies that

U1(a) =U∗(a) = f−1
(

1
3
f
(
U(p)

) + 1
3
f
(
U(q)

) + 1
3
f
(
U(r)

))
�

However, for the 0-stage subtree b (of b), we apply the first case of Definition 5(iii):

U0(b) = max
{
U(s)�U1(a)

}
�

The following theorem establishes the equivalence between the κ-BRBI representa-
tion and the axioms.

Theorem 2. The preference � has a κ-BRBI representation if and only if � satisfies Ax-
ioms 1, 2, and 8–10. In the κ-BRBI representation of a nontrivial �, κ is unique; the
expected utility functions Uj (j ≤ κ) and U∗ are unique up to a positive affine transforma-
tion, and fixing Uj and U∗, the function f is unique up to a positive affine transformation.

Now, we introduce the second interpretation of the κ-BRBI representation. In this
interpretation of (6), it is as if the decision maker knows the structure of a decision tree
but is unable to predict or does not trust her future selves’ choices beyond κ stages. Con-
ceptually, knowing the structure of a decision tree does not imply that she can identify
the optimal path and keep track of it. In particular, when evaluating a decision tree b, she

11Suppose κ= 0. First, because b is a 0-stage subtree of b, the second case of Definition 5(iii) implies that

U0(b) = U∗(b) = f−1( 1
2 f (U

∗(s)) + 1
2 f (U

∗(a))). Since s is a lottery, part (ii) of the definition and (7) imply
that U∗(s) = U(s). The same applies to lotteries p, q, and r. Next, a is a 1-stage subtree of b. The third case of
Definition 5(iii) applies: U∗(a)= f−1( 1

3 f (U
∗(p))+ 1

3 f (U
∗(q))+ 1

3 f (U
∗(r))) = f−1( 1

3 f (U(p))+ 1
3 f (U(q))+

1
3 f (U(r))), which can be plugged into the equation for U0(b) above.
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envisions that beyond κ stages, she will choose uniformly randomly among a1� � � � � an
for each j-stage subtree a = {a1� � � � � an} of b (j ≥ κ). As discussed previously, such a be-
lief is called Laplacian; it captures the idea that the uniform prior should be applied
to unknown events based on “the principle of insufficient reason” (Laplace 1951). The
Laplacian belief is biased/unsophisticated, because the decision maker does not actu-
ally randomize at future stages. The decision maker’s attitude toward the Laplacian be-
lief is captured by f ◦U∗, because (3) implies that

f ◦U∗(b) =
n∑

i=1

1
n

· f ◦U∗(bi)�

Therefore, f is a second-order expected utility function, and captures the difference be-
tween how the decision maker treats objective risk (captured by U∗) and the subjective
uncertainty perceived in the Laplacian belief. As will be shown, the concavity of f de-
scribes the decision maker’s unpredictability aversion the same way the concavity of the
expected utility function describes the decision maker’s risk aversion.

Note that by definition, Uj(p) = U∗(p) for any lottery p and j ≤ κ. Therefore, Uj

and U∗ are jointly unique up to a positive affine transformation. Similar to the case with
κ= 0 in the previous section, κ and f uniquely extend the utility of lotteries to the utility
of decision trees. The three parameters—the expected utility function for lotteries U as
defined in (7), κ, and f—are independent. When the decision maker’s preference can
be represented by the κ-BRBI representation, as in Definition 5, we say that (U�κ� f )

represents �.

4.1 A comparative measure of unpredictability aversion

In the second interpretation of the κ-BRBI representation, the decision maker is unable
to predict her choices beyond κ stages. However, if what lies beyond κ stages is a degen-
erate subtree, the decision maker does not need to make any prediction. Suppose there
are two decision makers, labeled 1 and 2, who, for simplicity, look forward only 0 stages
perfectly; that is, they are unable to predict their future choices in any nondegenerate
decision tree. Confronting the same lottery and decision tree, if compared to decision
maker 1, decision maker 2 is always more inclined to choose the lottery over the deci-
sion tree, decision maker 2 reveals that she is more averse to the situation in which she
cannot make predictions. This idea can be extended to the case in which both decision
makers can look forward more stages perfectly.

Formally, suppose �i is decision maker i’s preference. Recall that we write b �∗
i c if

decision maker i always prefers to replace subtree c with b whenever c is beyond her
perfect foresight.

Definition 6. Preference �2 is more unpredictability-averse than �1 if for any p ∈ D0,
a ∈ D, a�∗

2 p implies a�∗
1 p.

We say that a function f2 is more concave than f1 if f2 = g ◦ f1 for some strictly in-
creasing and concave function g. The following theorem characterizes the comparative
measure of unpredictability aversion.
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Theorem 3. Suppose (Ûi�κi� f̂i) represents the nontrivial preference �i and κi < +∞.
Then �2 is more unpredictability-averse than �1 if and only if there exist (U�κ1� f1) and
(U�κ2� f2) that represent �1 and �2, respectively, such that f2 is more concave than f1.

Therefore, the concavity of f characterizes a decision maker’s attitude toward unpre-
dictability, the same way that the concavity of an expected utility function characterizes
the decision maker’s attitude toward objective risk. Similar to the measure of absolute
risk aversion, when f1 and f2 are twice differentiable, −f ′′/f ′ can be used as the compar-
ative measure of unpredictability aversion.

4.2 Choices in decision trees and iterative revisions of plans

Confronting a decision tree a = {a1� � � � � an}, the most preferred subtree ai should be cho-
sen. If ai is not a lottery, it is natural to assume that the decision maker will continue to
choose her most preferred subtree from ai = {b1� � � � � bm} and so on. Thus, we can ap-
ply the preference iteratively to describe the decision maker’s choices (see Figure 4 for
example). By doing so, we have assumed history independence: The decision maker’s
preference over subtrees does not depend on her past choices.

Under history independence, the decision maker’s perfect foresight moves forward
as she makes choices. She can see the first κ stages of a perfectly when choosing from
a = {a1� � � � � an}. After choosing ai ∈ a, she will be able to see the (κ + 1)th stage of a
perfectly. Therefore, the decision maker may iteratively revise her plan. In Figure 4,
initially, the decision maker may believe that she will choose 2 at the next stage, but at
the next stage, she realizes that 2 is not optimal.

Intuitively, at every stage, the decision maker has an “optimal” plan for the next κ
choices following the current one, and the current one constitutes the first step of the
plan. Our revealed preference theory, together with history independence, thus charac-
terizes a decision maker who does not realize that her actual future choices may differ
from her plan. The decision maker mistakenly believes that she is able to control her
future choices, and as she makes choices, she may even revise what she believes she will
do in the future. Therefore, our approach is similar to an approach to modeling choices
under imperfect foresight discussed in Section 4 of Chapter 7 in Rubinstein (1998).

This approach contrasts with an alternative approach discussed in Rubinstein
(1998), the “multiselves” approach first suggested by Strotz (1955). The multiselves ap-
proach assumes that the decision maker at each stage chooses the utility-maximizing
subtree taking her next κ selves’ strategies as given. The decision maker becomes a set
of “selves” whose strategies form some equilibrium. The equilibrium describes how the
decision maker chooses in the decision tree. For example, in Jéhiel (1995), at each stage,
a player of an infinite-horizon alternate-move game forms a finite forecast of the moves
of the player’s and her opponent’s future selves. Although the forecast is limited, the
equilibrium requires that the forecast be correct.

Both approaches have pros and cons. In addition to Rubinstein’s (1998) discussion of
why the multiselves approach may be inappropriate, it is also not clear whether the de-
cision maker’s first self should know her second self’s strategy, because the second self’s
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strategy is determined based on the (κ + 1)th self’s strategy, which the first self should
not know.12 For example, when an amateur plays a Rubik’s Cube, she often has an ini-
tial plan for the next few moves, but as the configuration of the Rubik’s Cube changes,
the plan may no longer be appealing. This seems consistent with our approach. Al-
ternatively, Rubinstein (1998) points out a difficulty in our approach that will arise in
games: Since the decision maker does not know her own future choices, it is not clear
whether we should assume that in equilibrium the decision maker knows the strategies
of opponents who move after her.

Iterative revisions of plans lead to time inconsistency. Many other models generate
time inconsistency too, such as models of changing tastes (see Strotz 1955). There are
three main differences between models of changing tastes and ours. First, in our model,
the utility function over lotteries never changes. Therefore, our model has a clear welfare
criterion. In contrast, the utility function over lotteries in models of changing tastes may
change over time, and it is less clear how to choose the welfare criterion. Second, in our
model, dominated lotteries affect the decision maker’s evaluation and choices, because
all lotteries beyond the perfect foresight are aggregated with equal weights. In models of
changing tastes, if a lottery is always dominated regardless of tastes (for example, a de-
generate lottery of losing a billion dollars in the presence of a degenerate lottery of losing
zero dollars), it should not matter. Third, our decision maker applies the Laplacian be-
lief to her future choices beyond the perfect foresight. In models of changing tastes, the
decision maker can have a deterministic and complete plan for her future choices, even
though the plan may not match her actual future choices. Last, sometimes decision
trees can be viewed as frames of decision problems that unfold in a short period of time.
In this situation, models of changing tastes may not be suitable.

Models of temptations (see Gul and Pesendorfer 2001, Dekel et al. 2009, and Sto-
vall 2010) may also generate time inconsistency.13 First, compared to our model, mod-
els of temptations usually implicitly assume that the decision maker is correct about
her second-stage (tempted) preferences, while in our model, the decision maker can be
wrong about her future choices. Second, the second point in the previous discussion
continues to apply to models of temptations. Last, it can be shown that our model vio-
lates the independence axiom that is often imposed in models of temptations. However,
it should be noted that our model satisfies the temptation-related axioms in, for exam-
ple, Dekel et al. and Stovall. Those axioms are rather weak. Hence, they have temptation-
based interpretations and may also have imperfect-foresight-based interpretations.

5. κ and f in decision trees

We use a few examples below to illustrate that first, as κ increases or f becomes more
convex, it is not necessarily the case that the decision maker reaches better lotteries in
decision trees; second, a more convex f may be more helpful for the decision maker to

12However, see Jéhiel (1998) for a learning foundation for this approach.
13See Dekel and Lipman (2012) for the relation between models of random changing tastes and models

of random temptations.
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reach better lotteries in decision trees with higher depth, and a higher κ, in contrast,
may be more helpful in decision trees with lower depth.

As κ increases, the decision maker looks forward more stages perfectly. As f be-
comes more convex, the decision maker is less unpredictability-averse; that is, her ag-
gregator beyond the perfect foresight is closer to the fully rational decision maker’s.
Whether a higher κ or a more convex f implies that the decision maker will reach better
lotteries, however, depends on the decision tree.14

Suppose (U�κ� f ) represents the decision maker’s preference, U(x) = x whenever
x ∈X is a real number, κ= 0, and f is the identity function. Consider the decision tree

a= {{{3�1}�4
}
� {2�4 + ε}}�

in which ε is a small positive number. Since {{3�1}�4} is indifferent to {2�4}, the decision
maker will choose {2�4 + ε} and end up with 4 + ε. Now, if f becomes convex, it can
be shown that as long as ε is sufficiently small, the decision maker will choose {{3�1}�4}
over {2�4 + ε} and end up with 4. This is because when f is convex, the subtree {3�1}
from {{3�1}�4} appears to be better than 2 from {2�4 + ε}. The decision maker with a
“better” aggregator gets distracted by 3 and misses 4 + ε.

Increasing κ may also cause the decision maker to turn away from the best lottery.
Consider another decision tree

b = {{
3� {2�4 + ε}}� {2�4}}�

The value of {3� {2�4 + ε}} is 3 + ε/4, which is higher than the value of {2�4}. Therefore,
the decision maker will reach 4+ε. Now suppose κ becomes 1. The value of {3� {2�4+ε}}
becomes 3+ε/2, while the value of {2�4} becomes 4. The decision maker ends up with 4.
The decision maker who sees more stages perfectly gets distracted by 4 and misses 4+ε.

Of course, fixing any ε > 0, if κ becomes sufficiently high or the aggregator becomes
close enough to the maximum function, the decision maker should not be worse off.
In general, however, the κ-BRBI representation is flexible enough to interact with the
decision tree and generate interesting behavioral predictions.

The next example illustrates how κ’s role may differ from f ’s. Suppose the decision
maker needs to go to a building. She can either take a taxi or drive. If she takes a taxi,
the utility is t. If she drives, there is a series of exits along the way. For simplicity, assume
that only one exit leads to the building and the others are equally bad. The utility of the
correct exit is 2 and the utility of other exits is 0. By driving and choosing the correct exit,
the decision maker obtains the highest utility.

Suppose the decision tree

c = {
t�

{
0�

{
0� � � � �

{
0�︸ ︷︷ ︸

n−1

{
2�

{
0�

{
0� � � � � {0�0}}}︸ ︷︷ ︸

m

}}}}}

14Jéhiel (1995) also finds that decision makers who can see fewer stages may perform better.
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describes this situation.15 It can be verified that regardless of what κ and f are, once
the decision maker chooses to drive herself, she will reach the correct exit. However, the
decision maker may not understand at early stages that she is able to do that if κ < n.

Suppose there are two decision makers. Decision maker 1 has κ1 = κ (0 < κ ≤ n)
and f1(u) = u. Decision maker 2 has κ2 = 0 and f2(u) = uγ (γ > 1). At the first stage, for
decision maker 1, the utility of driving is 2κ · 21−n, and for decision maker 2, the utility of
driving is ( 1

2n 2γ)1/γ = 21−n/γ . Let us vary n. The smallest n is n = κ, in which case

2κ · 21−n = 2 > 21−n/γ�

Therefore, there exists some t ∈ (0�2) such that decision maker 1 will choose to drive, but
decision maker 2 will take a taxi. The situation will change as n increases. Whenever n is
larger than κ

1−1/γ , 21−n/γ will be higher than 2κ · 21−n; that is, there exists some t ∈ (0�2)
such that decision maker 2 will drive but decision maker 1 will take a taxi. Hence, intu-
itively, if n is large, the difference between κ1 and κ2 is less important, and the decision
maker with a more convex f is likely to do better, and vice versa.

Appendix

We first prove Lemma 1, which will be used to establish Theorem 1. Theorem 1, in turn,
will be used to establish Theorem 2.

Proof of Lemma 1. We show only that the axioms imply the representation. According
to Axiom 2, let U :D0 → R be a continuous function such that

U(p) =
∫
X
U dp

represents � on D0. Since X is compact, U(D0) is compact and there exists a best lottery
and a worst lottery in X . Let us use xh and xl to denote the best and the worst lottery,
respectively. From the expected utility function U , we construct a utility representation
of �. To do this, we first prove two lemmas.

Lemma 2. For any decision tree a = {a1� � � � � an} ∈ D and distinct lotteries p1� � � � �pn, the
following statements are true:

(i) If pi � ai for each i, then {p1� � � � �pn} � a.

(ii) If pi � ai for each i and for some j, pj � aj , then {p1� � � � �pn} � a.

(iii) If ai � pi for each i, then a� {p1� � � � �pn}.

(iv) If ai � pi for each i and for some j, aj � pj , then a � {p1� � � � �pn}.

(v) If pi ∼ ai for each i, then {p1� � � � �pn} ∼ a.

15Although eventually m does not play any role, we include the variable m so that this example better fits
the description of the problem; that is, it is not necessarily the case that the final exit is the correct one.
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Proof. We show only the first statement; the rest are similar. By applying Ax-
iom 3 repeatedly, we have {p1� � � � �pn} � {a1�p2� � � � �pn} � {a1� a2�p3� � � � �pn} � · · · �
{a1� � � � � an}. �

For any decision tree a= {a1� � � � � an}, we use πh(a) to denote the best subtree among
a1� � � � � an, and use πl(a) to denote the worst subtree among a1� � � � � an.

Lemma 3. For any decision tree a, xh � πh(a)� a� πl(a)� xl.

Proof. We show that for any a ∈D,

xh � πh(a)� a� πl(a)� xl (8)

by two inductions. First, suppose a ∈ D1. Clearly, (8) holds if |a| = 1. If for any a ∈ D1
such that |a| < n, (8) holds, take any b ∈ D1 and |b| = n. Let c = b \ {πh(b)}. By defintion,
b = {πh(b)} ∪ c and |c|< n. By definition, πh(b)� πh(c). Since |c| < n, πh(c)� c. It must
be true that πh(b) � c. By Axiom 5, πh(b) ∼ {πh(b)}. By Axiom 4, πh(b) ∼ {πh(b)} �
b� c. We know that xh � πh(b) and πh(c)� c � πl(c)� πl(b)� xl. Therefore, (8) holds
for b. By induction, we know that for any a ∈ D1, (8) holds.

Next we show that for any a ∈ D, (8) holds. Suppose that for some 1 < k ∈ N, we
have shown that for any b ∈ Dj such that j < k, (8) holds. We want to show that for any
a = {a1� � � � � an} ∈ Dk, (8) holds. By definition, each ai ∈ a must belong to one and only
one Dki such that ki < k. Therefore, xh � ai � xl. Clearly, there exists some αi ∈ [0�1]
such that

ai ∼ αix
h + (1 − αi)x

l =: p̂i� (9)

We want to apply Lemma 2 to show that a is indifferent to some depth-1 decision tree. At
this point, it is possible that there are some ai�aj ∈ a such that ai ∼ aj , which means that
p̂i and p̂j are identical and prevents us from applying Lemma 2. However, by richness
of X , there are countably infinitely many elements of X that are indifferent to xh and
xl, respectively. Therefore, we can always find different xhi �x

l
i ∈X such that xhi ∼ xh and

xli ∼ xl to construct the mixture in (9) for each ai. Denote the lottery αix
h
i + (1 −αi)x

l
i by

pi. We can ensure that p1� � � � �pn are distinct. By Lemma 2,

a ∼ {p1� � � � �pn} =: b�
Note that b ∈ D1. Therefore, xh � πh(b) � b � πl(b) � xl. Since πh(b) ∼ πh(a) and
πl(b) ∼ πl(a), we know that (8) holds for any a ∈ Dk. By induction, for any a ∈ D, (8)
holds. �

Therefore, for each decision tree a ∈ D, we can find a unique α ∈ [0�1] such that
a ∼ αxh + (1 − α)xl. Define U(a) := αU(xh)+ (1 − α)U(xl). Then we have extended U ’s
domain from D0 to D. It is straightforward to verify that U represents � on D.

Next we want to show that there exists a sequence of continuously strictly increasing
symmetric functions gn : U(D)n → R for n ∈ N such that for any b= {b1� � � � � bn} ∈D,

U(b) = gn
(
U(b1)� � � � �U(bn)

)
� (10)
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If we can show (10), it is automatically true that for any u1� � � � � un ∈U(D),

minui ≤ gn(u1� � � � � un) ≤ maxui�

because, by Lemma 3, for any b= {b1� � � � � bn} ∈D, minU(bi) ≤U(b) ≤ maxU(bi).
Lemma 2 ensures that gn is well defined, because for any a�b ∈ D such that a �= b and

U(ai) = U(bi), we must have U(a) = U(b). Lemma 2 also implies that gn is increasing.
Since decision trees are defined using sets, the functions gn are clearly symmetric. Ax-
iom 6 implies that gn is continuous. To see this, suppose that in U(D0)

n, a sequence of
n-tuples ((u(j)1 � � � � � u

(j)
n ))∞j=1 converges to some (u1� � � � � un). For each (u

(j)
1 � � � � � u

(j)
n ) and

(u1� � � � � un), we can find an n-tuple of lotteries giving the desired n-tuple of utility such
that each lottery’s support is {xh�xl}. It can be verified that these lotteries converge in
dn. Then standard arguments follow.

Proof of Theorem 1. We first show that the axioms imply the representation. First,
we can apply Lemma 1 and know that there exist a sequence of continuously strictly in-
creasing functions gn : U(D)n → R for n ∈ N and an expected utility function
U : D → R such that (i) U represents �, (ii) for any b = {b1� � � � � bn} ∈ D, U(b) =
gn(U(b1)� � � � �U(bn)), and (iii) minui ≤ gn(u1� � � � � un) ≤ maxui for any ui ∈ U(D). Note
that statement (iii) implies that g1(u) = u and gn(u� � � � � u) = u for any u ∈U(D).

Let us first focus on g2. We use Axiom 7 to prove a property of g2 in the following
lemma. Next we apply a result from Aczél (1966) that shows that there exists a continu-
ously strictly increasing function f : U(D) →R such that

g2(u1�u2)= f−1
(

1
2
f (u1)+ 1

2
f (u2)

)
� (11)

The main steps of Aczél’s proof are described in Section 3.2.

Lemma 4. For any u1� � � � � u4 ∈ U(D), g2(g2(u1�u2)�g2(u3�u4)) = g2(g2(u1�u3)�

g2(u2�u4)).

Proof. For any u1� � � � � u4 ∈ U(D), by the richness assumption of X , we can find four
distinct lotteries p1� � � � �p4 such that U(pi) = ui. Consider the depth-1 decision trees
a = {{p1�p2}� {p3�p4}} and b = {{p1�p3}� {p2�p4}}. Without loss of generality, assume
that u2 ≥ u3; that is, p2 � p3. Since |{p1�p2}| ≥ |{p3�p4}|, b = �

p2
p3(a). Therefore, by Ax-

iom 7, b� a. Now also note that |{p2�p4}| ≥ |{p1�p3}| and, hence, a = �
p2
p3(b). We apply

Axiom 7 again and find that a� b. Since a∼ b,

U(a) = g2(U
({p1�p2}

)
�U

({p3�p4}
)

= g2
(
g2(u1�u2)�g2(u3�u4)

)
= U(b) = g2(U

({p1�p3}
)
�U

({p2�p4}
)

= g2
(
g2(u1�u3)�g2(u2�u4)

)
� �
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Therefore, g2 is symmetric, strictly increasing, and continuous, and satisfies
g2(u�u) = u and g2(g2(u1�u2)�g2(u3�u4)) = g2(g2(u1�u3)�g2(u2�u4)). If � is trivial, that
is, U(D) consists of only one number, then (11) is trivially true for any f . Otherwise,
according to Aczél (1966), we know that there exists a continuously strictly increasing
function f : U(D) →R such that (11) holds. Thus, for any decision tree a= {a1� a2} ∈D,

U(a) = g2
(
U(a1)�U(a2)

) = f−1
(

1
2
f
(
U(a1)

) + 1
2
f
(
U(a2)

))
�

Since g1(u) = u, for any b = {b′} ∈D, it is trivially true that U(b) = f−1(f (U(b′))). Hence,

gn(u1� � � � � un) = f−1
(

1
n

∑
i

f (ui)

)
(12)

holds for n = 1�2.
To prove (12) for the case of n > 2, we need the following two lemmas. To state the

first lemma, let us extend our definition of swaps. For any a = {a1� a2� � � � � an} ∈ D such
that a1� a2 ∈ D, |a1| ≥ |a2|, b ∈ a1 \ a2, c ∈ a2 \ a1, a′

1 := a1 \ {b} ∪ {c} /∈ {a3� � � � � an}, and
a′

2 := a2 \ {c} ∪ {b} /∈ {a3� � � � � an}, a swap of b for c is

�b
c (a) := a \ {a1� a2} ∪ {

a′
1� a

′
2
}
�

When we write �b
c (a) to denote the swap of b for c, implicitly we have imposed the as-

sumptions in the definition. The difference between this definition of swaps and our
original definition in Section 3 is that in Section 3, we require swaps to be defined only
for some depth-2 decision trees.

Lemma 5. For any decision tree a = {a1� � � � � an} such that b ∈ a1 \ a2, c ∈ a2 \ a1, and
|a1| ≥ |a2|, if b� c, then �b

c (a)� a. Moreover, if |a1| = |a2|, then �b
c (a) ∼ a.

Proof. Let us relabel subtrees b and c by b1 and c1, respectively. Suppose a =
{a1� � � � � an}, a1 = {b1� � � � � bm1}, and a2 = {c1� � � � � cm2}. We know that m1 ≥ m2 and
b1 � c1. By richness of X , we find distinct lotteries p3� � � � �pn such that pi ∼ ai for
i = 3� � � � � n. Then we find distinct lotteries q1� � � � � qm1 and r1� � � � � rm2 such that qj ∼ bj
for j = 1� � � � �m1 and rk ∼ ck for k = 1� � � � �m2. By Lemma 2, a1 ∼ {q1� � � � � qm1} =: â1 and
a2 ∼ {r1� � � � � rm2} =: â2. Again, by Lemma 2, we know that a ∼ {â1� â2�p3� � � � �pn} =: â.
Clearly, â ∈ D2. Since b1 � c1, q1 � r1. Then we can apply Axiom 7 and find that
�
q1
r1 (â)� â ∼ a. Last, showing that �q1

r1 (â)∼ �b
c (a) is similar to how we show that â ∼ a.

Next suppose |a1| = |a2|. We still have �b
c (a)� a, as shown in the previous paragraph.

Moreover, in �b
c (a) = {a′

1� a
′
2� a3� � � � � an}, we know that |a′

1| = |a′
2|, b ∈ a′

2 \ a′
1, and c ∈

a′
1 \ a′

2. Then we can apply the argument from the previous paragraph again and show
that �b

c (�
b
c (a))� �b

c (a). Obviously, �b
c (�

b
c (a)) = a. Therefore, �b

c (a) ∼ a. �

Lemma 6. Suppose a = {a1� � � � � an} is a decision tree such that (i) for some m ≥ 1, ai =
{ai�1� � � � � ai�m} for every i = 1� � � � � n, and (ii) ai ∩ aj = ∅ for any i� j ∈ {1� � � � � n}. Then a ∼⋃n

i=1 ai.
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Proof. First we find for each ai�k, i ∈ {1� � � � � n} and k ∈ {1� � � � �m}, n×m distinct copies
of lotteries that are indifferent to ai�k; that is, by richness of X , we find {pτ

i�k}n×m
τ=1 ⊂ �(X)

for each i ∈ {1� � � � � n} and k ∈ {1� � � � �m} such that (i) pτ
i�k ∼ ai�k for all i, k, τ, and (ii) pτ

i�ks
are distinct for all i, k, τ. Define aτi := {pτ

i�1� � � � �p
τ
i�m} for each i and τ, and define aτ :=

{aτ1� � � � � aτn} for each τ. According to Lemma 2,

ai ∼ aτi (13)

for each i, τ, and a ∼ aτ for each τ. Also according to Lemma 2, {a1� � � � � amn} ∼ {a}. By
Axiom 5, a∼ {a}. Therefore, a∼ {a1� � � � � amn} =: b.

Note that by construction, every aσi is a two-stage subtree of b, since aσi ∈ aσ ∈ b.
Consider any aσ and aτ , σ�τ ∈ {1� � � � �mn}. Note that |aσ | = |aτ| = n. Therefore, accord-

ing to the second part of Lemma 5, �
aσi
aτj
(b) ∼ b for any i� j ∈ {1� � � � � n}; that is, if we swap

any two-stage subtree aσi of b for another two-stage subtree aτj of b, the swapped de-

cision tree �
aσi
aτj
(b) is indifferent to the original decision tree b. Moreover, every one-

stage subtree of the swapped decision tree �
aσi
aτj
(b) has the same cardinality. Therefore,

we can continue to swap any two two-stage subtrees of �
aσi
aτj
(b), and end up with a new

swapped decision tree that is indifferent to �
aσi
aτj
(b) and, hence, to b. We can keep swap-

ping two-stage subtrees of b until we obtain the decision tree c = {c1� � � � � cmn} in which
c(i−1)m+1 = {a1

i � � � � � a
n
i }, c(i−1)m+2 = {an+1

i � � � � � a2n
i }, � � � , c(i−1)m+k = {a(k−1)n+1

i � � � � � akni },

� � � , cim = {a(m−1)n+1
i � � � � � amn

i } for each i = 1� � � � � n. Moreover, b ∼ c.
It can be verified that we can indeed perform swaps to convert b into c. First, deci-

sion tree c has as many (mn) one-stage subtrees as b. Second, each one-stage subtree of
c has as many (n) subtrees as each one-stage subtree of b. Third, each two-stage subtree
of c has as many (m) subtrees as each two-stage subtree of b. Last, every aσi shows up
once in some subtree of c and only once.

Because of (13), subtrees of c(i−1)m+k = {a(k−1)n+1
i � � � � � akni } are indifferent to each

other for any i = 1� � � � � n and k = 1� � � � �m. According to Lemma 3, c(i−1)m+k ∼ ai ∼ aki
for any i = 1� � � � � n and k = 1� � � � �m. Therefore, by Lemma 2,

c ∼ {
a1

1� � � � � a
m
1 � a1

2� � � � � a
m
2 � � � � � a1

n� � � � � a
m
n

} =: d�
Last, we want to apply Lemma 5 to d. Since d = {{a1

1�1� � � � � a
1
1�m}, {a2

1�1� � � � � a
2
1�m}, � � � ,

{am1�1� � � � � am1�m}, {a1
2�1� � � � � a

1
2�m}, {a2

2�1� � � � � a
2
2�m}, � � � , {am2�1� � � � � am2�m}, � � � , {a1

n�1� � � � � a
1
n�m},

{a2
n�1� � � � � a

2
n�m}, � � � , {amn�1� � � � � amn�m}}, each subtree aki = {aki�1� � � � � aki�m} of d is of size m.

The second half of Lemma 5 implies that swapping any two two-stage subtrees of d will
yield a new decision tree that is indifferent to the original decision tree. Again, we can
swap two-stage subtrees of d many times, and obtain

d′ := {{
a1

1�1� � � � � a
m
1�1

}
�
{
a1

1�2� � � � � a
m
1�2

}
� � � � �

{
a1
n�m� � � � � a

m
n�m

}} ∼ d�

Since aσi�k ∼ aτi�k for any σ�τ ∈ {1� � � � �m}, we can apply Lemma 3 and show that{
a1
i�j� � � � � a

m
i�j

} ∼ {ai�j} ∼ ai�j
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Figure 11. Since (12) holds for n = 2, we can compute the utility of the third decision tree by
applying g2 for its second stage and then to its first stage. We use it to show that (12) holds for
n = 3. Axiom 4 is used to show that the first decision tree is indifferent to the second, because
p1 ∼ a. Lemma 6 shows that the second decision tree is indifferent to the third, whose utility has
been computed. By letting the utility of the first decision tree be equal to the utility of the third,
we show that (12) holds for n= 3.

for each i, j. Hence, d′ is indifferent to {a1�1� a1�2� � � � � an�m} = ⋃n
i=1 ai. Since we have

a ∼ b ∼ c ∼ d ∼ d′, we know that a ∼ ⋃n
i=1 ai. �

Now suppose that (12) works for all m≤ n for some n > 1. Take any a = {a1� � � � � an+1}.
By richness of X , let us find distinct lotteries p1� � � � �pn−1 such that none of them be-
longs to a and pi ∼ a for i = 1� � � � � n − 1. By Lemma 2, {p1� � � � �pn−1} ∼ pi ∼ a. Thus,
by Axiom 4, a ∼ a ∪ {p1� � � � �pn−1}. Now consider a decision tree b := {{a1� � � � � an}�
{an+1�p1� � � � �pn−1}}. According to Lemma 6, b ∼ {a1� � � � � an} ∪ {an+1�p1� � � � �pn−1} =
a ∪ {p1� � � � �pn−1} ∼ a. Define b1 := {a1� � � � � an} and b2 := {an+1�p1� � � � �pn−1}. Since
|b| = 2, |bi| = n, and U(pi)= U(a) = U(b), we know that

f
(
U(a)

) = f
(
U(b)

) = 1
2
f
(
U(b1)

) + 1
2
f
(
U(b2)

)

= 1
2

(
1
n

n∑
i=1

f
(
U(ai)

) + 1
n
f
(
U(an+1)

) + 1
n

n−1∑
j=1

f
(
U(pj)

))

= 1
2n

(
n+1∑
i=1

f
(
U(ai)

) +
n−1∑
j=1

f
(
U(pj)

))

= 1
2n

n+1∑
i=1

f
(
U(ai)

) + n− 1
2n

f
(
U(a)

)
�

Thus,

U(a) = f−1

(
1

n+ 1

n+1∑
i=1

f
(
U(ai)

))
�

This shows that (12) works for all n using the same f function. The idea behind this step
is illustrated in Figure 11.

Next, we show that the representation implies the axioms. We only show that Axioms
4 and 7 hold. Consider any a�b ∈ D such that a ∩ b = ∅, say a = {a1� � � � � am} and b =
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{b1� � � � � bn}. If a� b, then U(a) ≥U(b). Since f (U(a)) = 1
m

∑m
i=1 f (U(ai)) and f (U(b)) =

1
n

∑n
i=1 f (U(bi)),

f
(
U(a∪ b)

) = 1
m+ n

(
m∑
i=1

f
(
U(ai)

) +
n∑

i=1

f
(
U(bi)

))

= m

m+ n
f
(
U(a)

) + n

m+ n
f
(
U(b)

)
�

Thus, U(a) ≥U(a∪ b)≥U(b) and, hence, Axiom 4 is satisfied.
For a = {a1� � � � � an} such that a1� a2 ∈ D1, |a1| ≥ |a2|, p ∈ a1 \ a2, q ∈ a2 \ a1, a′

1 :=
a1 \ {p} ∪ {q} /∈ {a3� � � � � an}, and a′

2 := a2 \ {q} ∪ {p} /∈ {a3� � � � � an}, we have

|a| × (
f
(
U

(
�
p
q (a)

)) − f
(
U(a)

)) = f
(
U

(
a′

1
)) + f

(
U

(
a′

2
)) − f

(
U(a1)

) − f
(
U(a2)

)
= (

f
(
U(p)

) − f
(
U(q)

))( 1
|a2| − 1

|a1|
)

≥ 0�

Therefore, Axiom 7 is satisfied.
Last, we show the uniqueness of the representation. Since � is nontrivial and X is

compact, we know that U(D) = [ul�uh] for some ul < uh. Since U is an expected utility
function on D0, we know that U is unique up to a positive affine transformation. Fix the
expected utility function U . To show f ’s uniqueness, suppose that f and g both satisfy
(3). Consider p�q ∈ D0. Define u1 := U(p), u2 :=U(q), and u3 := U({p�q}). We have

f−1
(

1
2
f (u1)+ 1

2
f (u2)

)
= g−1

(
1
2
g(u1)+ 1

2
g(u2)

)
� (14)

Define t1 := f (u1) and t2 := f (u2). Equation (14) becomes

g ◦ f−1
(

1
2
t1 + 1

2
t2

)
= 1

2
g ◦ f−1(t1)+ 1

2
g ◦ f−1(t2)�

Since u1 and u2 are arbitrarily chosen from some nontrivial interval [ul�uh], by Jensen’s
inequality, it must be true that

g ◦ f−1(t) = αt +β

and, hence, g(u) = αf(u)+β. Since both f and g are strictly increasing, α> 0.

Proof of Theorem 2. We show only that the axioms imply the representation. First,
let U : D0 → R be an expected utility representation of � on D0 implied by Axiom 2.
Under Axiom 8, κ is uniquely determined from the preference. If κ = +∞, then for
any a, a ∼ π̄(a); that is, the decision maker evaluates a decision tree using fully ratio-
nal backward induction. Define a function U0 : D → R such that for a lottery p ∈ D0,
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U0(p) =U(p), and for a decision tree b = {b1� � � � � bn},

U0(b) = max
i

U0(bi)� (15)

This definition is recursive.16 It can easily be seen that U0 is the recursive value function
used by fully rational backward induction, and U0 represents �. To fit the representation
definition, for each j ∈ N∪ {+∞}, we define Uj : D → R to be the function such that
Uj(a) =U0(a) for each subtree a ∈ D; that is, the other Ujs play no role when κ= +∞.

Suppose κ <+∞. Then �∗ is not trivially defined. First, Axiom 10 (the κ-aggregator)
implies that the preference �∗ on D satisfies Axioms 3–7. Axiom 9 implies that �∗ satis-
fies Axioms 1 and 2, because � on D0 satisfies Axiom 2 and �∗ coincides with � on D0.
Therefore, according to Theorem 1, we can find an expected utility function U∗ : D → R

and a continuously strictly increasing function f : U∗(D) → R such that (i) for any
a1� a2 ∈ D, a1 �∗ a2 if and only if U∗(a1) ≥U∗(a2), and (ii) for any b = {b1� � � � � bn} ∈D,

U∗(b)= f−1

(
1
n

n∑
i=1

f
(
U∗(bi)

))
�

According to Axiom 9 and the uniqueness of U∗, we can, without loss of generality, as-
sume that U∗ and U coincide on D0. As we have seen in the proof of Theorem 1, for
every decision tree a, we can find a lottery pa such that a∼∗ pa.

If κ = 0, according to the definition of �∗, � becomes identical to �∗. In this case,
Theorem 2 reduces to Theorem 1: Define U0 : D → R such that U0 = U∗ and we know
that U0 represents �.

Next suppose that 0 < κ < +∞. For any â� b̂ ∈ D such that â is a j-stage subtree of b̂
and j ≥ κ, according to the definition of �∗, we know that

φ
pâ

â
(b̂) ∼ b̂� (16)

in which pâ ∼∗ â. Take any depth-k decision tree b such that k > κ. By definition, b has
at least one κ-stage subtree that is not a lottery. Denote all its κ-stage subtrees that are
not lotteries by a1� � � � � an. We can replace ais with lotteries pai one after another; that is,

we construct decision trees c1 := φ
pa1
a1 (b), c2 := φ

pa2
a2 (c1), � � � , cn−1 := φ

pan−1
an−1 (cn−2), and

bκ := φ
pan

an (cn−1). Due to (16), b ∼ c1 ∼ c2 ∼ · · · ∼ cn−1 ∼ bκ. By construction, bκ is a
depth-κ decision tree. Hence, according to Axiom 8 and the definition of κ,

π̄
(
bκ

) ∼ bκ ∼ b�

Define functions Uj : D → R for each integer 0 ≤ j ≤ κ such that (i) Uj(p) = U∗(p)
for any p ∈ D0 and any j, and (ii) if b = {b1� � � � � bn} ∈ D is a j-stage subtree of a decision

16The utility of lotteries is given by U . Then (15) defines the utility of all depth-1 decision trees; this, in
turn, defines the utility of depth-2 decision trees, because depth-2 decision trees consist only of lotteries
and depth-1 decision trees, and so on.
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tree c, then17 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uj(b) = max
i

Uj+1(bi) if j < κ

Uj(b) =U∗(b) = f−1
(

1
n

∑
i

f
(
U∗(bi)

))
if j = κ

U∗(b) = f−1
(

1
n

∑
i

f
(
U∗(bi)

))
if j > κ�

(17)

We want to show that U0 represents �. Recall that for any decision tree b, π(b) is the
set of lotteries that can possibly be reached in b. Let πκ(b) denote the lotteries that can
possibly be reached in b within κ stages. First, take any depth-k (k> κ) decision tree b in
which a1� � � � � an are all its κ-stage subtrees that are not lotteries. Clearly, πκ(b)∩π(ai) =
∅ for all i and

πκ(b)∪π(a1)∪ · · · ∪π(an)= π(b)�

Since U∗ represents �∗, U∗(ai) = U∗(pai), i = 1� � � � � n. Then, the second line of (17) im-
plies that Uκ(ai) =U∗(ai)= U∗(pai). Therefore, it can easily be verified that (17) implies
that

U0(b) =U0
(
bκ

) = max
p∈πκ(b)∪{pai }ni=1

U∗(p) = max
p∈π(bκ)

U∗(p) =U∗(π̄(
bκ

))
� (18)

Last, for any depth-k′ decision tree c (k′ ≤ κ), we know that c ∼ π̄(c). Equation (17)
implies that U0(c) =U∗(π̄(c)).

Now we need to consider three cases. First, suppose a1� a2 ∈ ⋃κ
i=0 Di. Then a1 ∼

π̄(a1) ∈ D0 and a2 ∼ π̄(a2) ∈ D0. Note that U∗ represents � on D0. Therefore, π̄(a1) �
π̄(a2) if and only if U∗(π̄(a1)) = U0(a1) ≥ U∗(π̄(a2)) = U0(a2) implies that a1 � a2 if
and only if U0(a1) ≥ U0(a2). Second, suppose a1� a2 ∈ ⋃+∞

i=κ+1 Di. Then a1 ∼ π̄(aκ1 ) ∈ D0

and a2 ∼ π̄(aκ2 ) ∈ D0. According to (18), since π̄(aκ1 )� π̄(aκ2 ) if and only if U∗(π̄(aκ1 )) =
U0(a1) ≥ U∗(π̄(aκ2 )) = U0(a2), we have a1 � a2 if and only if U0(a1) ≥ U0(a2). The last
case, in which one subtree is in

⋃κ
i=0 Di and the other is in

⋃+∞
i=κ+1 Di, follows from sim-

ilar arguments. Last, the uniqueness of the representation follows from the uniqueness
result in Theorem 1.

Proof of Theorem 3. First, we prove sufficiency. Suppose that �1 and �2 can be rep-
resented by (U�κ1� f1) and (U�κ2� f2), respectively, and that κjs are finite. Then �∗

1
must coincide with �∗

2 on D0. Take any p ∈ D0 and a = {q1� � � � � qn} ∈ D1. Let U∗
j be

the utility function that decision maker j uses for subtrees beyond κ stages and let

17The recursive definition works as follows. Take any depth-1 decision tree b = {b1� � � � � bn} that is a j-
stage subtree of some decision tree, for any j. Depending on j and κ, the utility of b is either equal to
maxi Uj+1(bi) = maxi U∗(bi) or f−1( 1

n

∑
i f (U

∗(bi))). In either case, we know Uj+1(bi)’s and U∗(bi)’s be-
cause b ∈ D1, and hence bi’s are lotteries. The utility of lotteries is given by part (i). Therefore, we can define
the utility of every j-stage depth-1 decision tree for any j. Since the utility of j-stage depth-2 decision trees
only depends on the utility of lotteries and the utility of (j + 1)-stage depth-1 decision trees, we can define
j-stage depth-2 decision trees’ utility, and so on.
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ui := U∗
j (qi) =U(qi). Since f2 = g ◦ f1,

f2
(
U∗

2 (a)
) = 1

n

n∑
i=1

f2(ui)

g ◦ f1
(
U∗

2 (a)
) = 1

n

n∑
i=1

g ◦ f1(ui)�

Alternatively, f1(U
∗
1 (a)) = 1

n

∑
i f1(ui). By Jensen’s inequality,

f2
(
U∗

2 (a)
) = 1

n

∑
g ◦ f1(ui)≤ g

(
1
n

∑
f1(ui)

)
= g ◦ f1

(
U∗

1 (a)
) = f2

(
U∗

1 (a)
)
�

Therefore, U∗
1 (a) ≥ U∗

2 (a) and, hence, a �∗
2 p implies a �∗

1 p. Next suppose we have
shown that for some m, a�∗

2 p implies a�∗
1 p for any p ∈D0 and a ∈ ⋃m

k=0 Dk. Consider
b = {b1� � � � � bn} ∈Dm+1. By the induction hypothesis, we have U∗

1 (bi) ≥U∗
2 (bi) for each i

and, thus,

U∗
1 (b) = f−1

1

(
1
n

∑
f1

(
U∗

1 (bi)
)) ≥ f−1

1

(
1
n

∑
f1

(
U∗

2 (bi)
))

≥ f−1
2

(
1
n

∑
f2

(
U∗

2 (bi)
)) =U∗

2 (b)�

The second inequality is similar to what we previously derived for the case of a ∈ D1.
Therefore, again we know that b�∗

2 p implies b�∗
1 p.

Next we prove necessity. The definition of unpredictability aversion implies that for
any two lotteries p�q ∈D0,

q�∗
2 p ⇒ q�∗

1 p� (19)

Since �∗
j on D0 satisfies Axiom 2, it is well known that (19) implies that �∗

1 and �∗
2 must

coincide on D0 (see, for example, Ghirardato et al. 2004). Suppose U represents �∗
1 on

D0 and �∗
2 on D0. We know from the uniqueness of the κ-BRBI representation that there

exist (U�κ1� f1) and (U�κ2� f2) that represent �∗
1 and �∗

2, respectively.
Define g := f2 ◦f−1

1 . The function g is strictly increasing. We know that for any p ∈D0
and a = {q1� � � � � qn} ∈ D1, a �∗

2 p implies a �∗
1 p. Again, let ui := U∗

j (qi) = U(qi). The
proof of Theorem 1 shows that there exists a lottery r such that a ∼∗

2 r; that is, U∗
2 (a) =

f−1
2 ( 1

n

∑
f2(ui)) =U(r). We know that U∗

1 (a) ≥U(r), which implies that

f−1
1

(
1
n

∑
f1(ui)

)
≥ f−1

2

(
1
n

∑
f2(ui)

)

g

(
1
n

∑
f1(ui)

)
≥ 1

n

∑
f2(ui)�

Define ti := f1(ui). The inequality above becomes 1
n

∑
g(ti) ≤ g( 1

n

∑
ti), which implies

that g is concave.
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