
Supplementary Material

Supplement to “Alternating-offer bargaining with the global
games information structure”

(Theoretical Economics, Vol. 13, No. 2, May 2018, 869–931)

Anton Tsoy
Department of Economics, Einaudi Institute for Economics and Finance

B.6 Interim versions of Theorems 1 and 3

I first introduce interim counterparts of sets E, E , and IR. Define US
η(s|τ�ρ) =

Eη[e−rτ(s�b)(ρ(s�b) − c(s))|s] and UB
η (b|τ�ρ) = Eη[e−rτ(s�b)(v(b) − ρ(s�b))|b] players’ ex-

pected payoffs from the bargaining outcome (τ�ρ) at the interim stage, i.e., after types s
and b are realized. For any x ∈ [0�1], let

E(x)=
{

lim
η→0

(
US
η(x|τη�ρη)�UB

η (x|τη�ρη)
) : (τη�ρη) →

η→0
(τ�ρ) ∈ DL

}

be the set of all interim expected payoff profiles of types on the diagonal s = x and b = x

generated by double limits. Let E(x) be the convex hull of the closure of E(x). Note that
when players have access to the public randomization device in the beginning of the
game, E(x) is the set of interim expected payoff profiles of types s = x and b= x that can
be approximated by double limits of my model.

I put some preliminary restrictions on E(x). Clearly, the feasibility constraint holds:

US
η(x|τη�ρη)+UB

η (x|τη�ρη)≤�(x)�

Moreover, Lemma 1 implies that the seller’s utility is at least US(s) ≡ max{y∗(0)− c(s)�0}
in any frequent-offer PBE limit, and, symmetrically, the buyer’s utility is at least UB(b) ≡
max{v(b) − y∗(1)�0}. Hence, for any η, any outcome of the frequent-offer PBE limit
(τη�ρη) satisfies the interim individual rationality constraints

US
η(s|τη�ρη) ≥US(s) and UB

η (b|τη�ρη) ≥UB(b)�

Denote by

IR(x) = {(
US�UB

) :US +UB ≤�(x)�US ≥US(x)�and UB ≥UB(x)
}

the set of feasible, interim individually rational payoffs of types s = x and b = x, and
denote by

PF (x) = {(
US�UB

) : US +UB =�(x)�US ≥US(x)�and UB ≥UB(x)
}

its Pareto frontier. Then I have E(x) ⊆ IR(x).
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The following theorem is the interim counterpart of Theorem 1. The proof follows
directly from the argument in the proof of Theorem 1.

Theorem 4. If (US�UB) ∈ PF(x) for some x ∈ [0�1], then (US�UB) ∈ E(x).

I now turn to the interim version of the folk theorem. Suppose that the buyer’s value
is given by v0(b) + ξ and the seller’s cost is c(s), where v0, c, and ξ are introduced in
Section 3.4. I am interested in the limit of the set E(x) as ξ → 0, which I denote by E0(x).
Denote by IR0(x), x ∈ [0�1] the limit of IR(x) as ξ → 0. It is easy to see that

IR0(x) = {(
US�UB

) :US +UB ≤ �0(x)�U
S ≥ 0�and UB ≥ 0

}
for x ∈ [0�1]�

where �0(x) ≡ v0(x) − c(x). The following theorem is the interim counterpart of Theo-
rem 3.

Theorem 5. For all x ∈ [0�1], E0(x) = IR0(x).

Proof. The argument for the Pareto frontier of E0(x) is analogous to that for E in the
proof of Theorem 3. Note that for x = 0 or x = 1, IR0(x) = {(0�0)}. Then in the double
limit that I constructed in Theorem 1, types s = 0 and b = 0 trade at a price close to y∗(0).
Since v(0)− c(0) →

ξ→0
0, the expected utilities of those types converge to 0 as ξ → 0. Sim-

ilarly, the expected utilities of types s = 1 and b= 1 converge to 0 as ξ → 0, which proves
that E0(x) = IR0(x), x ∈ {0�1}. Now consider x ∈ (0�1). There exists ξ small enough such
that y∗(0) < c(x) < v(x) < y∗(1). In the double limit constructed in the proof of Theo-
rem 3, the utility of types s = x and b = x converges to 0 as ξ → 0, which proves that
E0(x) = IR0(x). �

B.7 Proof of Lemma 12

Let V B ≡ v(b∞)−qS , V S ≡ qB −c(s∞), and 	P ≡ qS −qB. Denote φ ≡ 1−δ2

δ2	P
, αB ≡ αB(0) =

φV S , and αS ≡ αS(0) = φV B. By (24), αB > 0 and αS > 0. Note that φ →
δ→1

0. I choose δ

sufficiently large so that αS and αB are less than 1.
System (25) has steady states (z�−z), z ∈ R. I am interested in the positive trajectory

that approaches the steady state (0�0). Around this steady state, the linearized system
can be written in the matrix form(

xk+1
yk+1

)
=

(
1 − αB + αSαB −αB(1 − αS)

−αS 1 − αS

)(
xk
yk

)
�

The matrix has eigenvalues 1 and λ ≡ (1 − αB)(1 − αS) ∈ (0�1). Since one of the eigen-
values is equal to 1, the steady state is unstable, and I cannot conclude that in the neigh-
borhood of the steady state, the nonlinear system will converge to the steady state or
that the trajectory will stay positive. Therefore, I construct a particular trajectory that
satisfies the desired properties. The proof proceeds in three steps.

Step 1: Conjectured solution. In the first step, I conjecture the form of solution and
use the method of indeterminate coefficients to derive it. The following preliminary
claim gives the Taylor expansion of αB(y) and αS(x).
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Claim 1. For any x ∈ (0�1) and y ∈ (0�1),

αB(y) ≡ αB +φ

∞∑
l=1

γB
l y

l�

αS(x) ≡ αS +φ

∞∑
l=1

γB
l x

l�

where γB
l ≡ dlc(s∞)/dxl

l! and γS
l ≡ dlv(b∞)/dxl

l! .
Note that by the regularity conditions on v and c, γB

l <D and γS
l <D for all l.

I conjecture that there exists (μx
i �μ

y
i )

∞
i=1 such that the solution (25) takes the form17

(
xk
yk

)
=

∞∑
i=1

λik

(
λi/2μx

i

μ
y
i

)
for k = 1�2� � � � � (74)

and in addition, satisfies for all i = 1�2� � � � ,

∣∣μx
i

∣∣ ≤ uδM
i and

∣∣μy
i

∣∣ ≤ uδM
i (75)

for some positive M and uδ such that

M < 1 <
1

λ(1 + uδ)
� (76)

Given this conjecture, I next derive expressions for coefficients μx
i and μ

y
i , and in the

next step, I will verify that for δ sufficiently close to 1, upper bounds (75) indeed hold.
Series (74) defining (xk� yk) are absolutely convergent, as they are dominated by the

absolutely convergent series uδ
∑∞

i=1 λ
ikMi. Plugging the conjectured solution (74) into

system (25), I get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
i=1

λi(k+ 1
2 )

(
μx
i −μx

i λ
i − αB

(
μx
i +μ

y
i λ

i
2
))

=φ

( ∞∑
l=1

γB
l

( ∞∑
i=1

μ
y
i λ

i(k+1)

)l)( ∞∑
i=1

λi(k+ 1
2 )

(
μx
i +μ

y
i λ

i
2
))

�

∞∑
i=1

λik
(
μ
y
i −μ

y
i λ

i − αS

(
μx
i λ

i
2 +μ

y
i

))

=φ

( ∞∑
l=1

γS
l

( ∞∑
i=1

μx
i λ

ik

)l)( ∞∑
i=1

λik
(
μx
i λ

i
2 +μ

y
i

))
�

(77)

17This is a natural guess given the eigenvalues of the linearized system.
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Consider the first equation in system (77). Since λ ∈ (0�1) and |μy
i | ≤ uδM

i, by Mertens’

theorem,

∞∑
l=1

γB
l

( ∞∑
i=1

μ
y
i λ

i(k+1)

)l

=
∞∑
l=1

γB
l

( ∞∑
i=l

∑
i1+···+il=i

μ
y
i1

· � � � ·μy
il
λi(k+1)

)
� (78)

The series in (78) is absolutely convergent by

∞∑
l=1

∞∑
i=l

∣∣∣∣λi(k+1)γB
l

∑
i1+···+il=i

μ
y
i1

· � � � ·μy
il

∣∣∣∣
≤D

∞∑
l=1

∞∑
i=l

λi(k+1)
∑

i1+···+il=i

∣∣μy
i1

· � � � ·μy
il

∣∣

≤D

∞∑
l=1

∞∑
i=l

λi(k+1)
∑

i1+···+il=i

ulδM
i

= D

∞∑
l=1

ulδ

∞∑
i=l

λi(k+1)Mi

(
i− 1
l − 1

)

= D

∞∑
l=1

ulδ

(
λk+1M

1 − λk+1M

)l

≤D

∞∑
l=1

ulδ

(
λM

1 − λM

)l

�

where the first inequality arises via the triangle inequality and |γB
l | < D, the second

inequality follows from (75), the first equality arises from the fact that the number of

compositions of i into exactly l parts is
( i−1
l−1

)
, the second equality is by summing over i,

and the third inequality is by λk+1 < λ < 1. The resulting series is convergent whenever

uδ
λM

1−λM < 1, which holds by (76). Therefore, by Fubini’s theorem, exchanging the order

of summation in (78) results in

∞∑
l=1

γB
l

( ∞∑
i=1

μ
y
i λ

i(k+1)

)l

=
∞∑
l=1

γB
l

( ∞∑
i=l

∑
i1+···+il=i

μ
y
i1

· � � � ·μy
il
λi(k+1)

)

=
∞∑
i=1

λi(k+1)
i∑

l=1

∑
i1+···+il=i

γB
l μ

y
i1

· � � � ·μy
il
�

By the absolute convergence of both series on the right-hand side of (77), the product

on the right-hand side is equal to the Cauchy product, and so I can rewrite system (77)
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as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
i=1

λi(k+ 1
2 )

[
μx
i −μx

i λ
i − αB

(
μx
i +μ

y
i λ

i
2
)

−φ

i−1∑
j=1

((
μx
i−jλ

j
2 +μ

y
i−jλ

i
2
) j∑
l=1

γB
l

∑
j1+···+jl=j

μ
y
j1

· � � � ·μy
jl

)]
= 0�

∞∑
i=1

λik

[
μ
y
i −μ

y
i λ

i − αS

(
μx
i λ

i
2 +μ

y
i

)

−φ

i−1∑
j=1

((
μx
i−jλ

i−j
2 +μ

y
i−j

) j∑
l=1

γS
l

∑
j1+···+jl=j

μx
j1

· � � � ·μx
jl

)]
= 0�

Setting all coefficients at λi(k+1/2) and λik equal to zero results in the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μx
i −μx

i λ
i − αB

(
μx
i +μ

y
i λ

i
2
)

= φ

i−1∑
j=1

((
μx
i−jλ

j
2 +μ

y
i−jλ

i
2
) j∑
l=1

γB
l

∑
j1+···+jl=j

μ
y
j1

· � � � ·μy
jl

)
�

μ
y
i −μ

y
i λ

i − αS

(
μx
i λ

i
2 +μ

y
i

)
= φ

i−1∑
j=1

((
μx
i−jλ

i−j
2 +μ

y
i−j

) j∑
l=1

γS
l

∑
j1+···+jl=j

μx
j1

· � � � ·μx
jl

)
�

(79)

Using notation

Ai ≡
(

1 − λi − αB −αBλ
i/2

−αSλ
i/2 1 − λi − αS

)
� μi ≡

(
μx
i

μ
y
i

)
�

and

ϕi =
(
ϕx
i

ϕ
y
i

)
≡

⎛
⎜⎜⎜⎜⎜⎝
φ

i−1∑
j=1

((
μx
i−jλ

j/2 +μ
y
i−jλ

i/2) j∑
l=1

γB
l

∑
j1+···+jl=j

μ
y
j1

· � � � ·μy
jl

)

φ

i−1∑
j=1

((
μx
i−jλ

(i−j)/2 +μ
y
i−j

) j∑
l=1

γS
l

∑
j1+···+jl=j

μx
j1

· � � � ·μx
jl

)
⎞
⎟⎟⎟⎟⎟⎠ � (80)

I can write the system in matrix form as

Aiμi = ϕi�

Since det(Ai) = (1 − λi)(λ − λi) > 0, for i ≥ 2, matrix Ai is invertible, and I can solve for
all μi (with the exception of i = 1):

μi = A−1
i ϕi� (81)
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Equation (81) expresses μi through μ1� � � � �μi−1. For i = 1, the equalities in (79) are lin-
early dependent (as det(Ai) = 0) and the relation between μx

1 and μ
y
1 is given by

μx
1 = λ− 1

2
αB

αS
(1 − αS)μ

y
1� (82)

Equations (81) and (82) give the desired expressions for μx
i and μ

y
i through the parame-

ters of the model.
Step 2: Verify bounds. In this step, I verify that for μi given by (82) and (81), bounds

(75) and (76) indeed hold, and so my derivation in Step 1 is justified. Fix any M < 1. Let

uδ = λ−1/4 − 1�

Then 1
λ(1+uδ)

= λ−3/4 > 1 and so (76) holds. If αB
αS

(1 − αS)≤ λ
1
2 , then I set

μ
y
1 = uδM�

μx
1 = λ− 1

2
αB

αS
(1 − αS)μ

y
1�

(83)

and otherwise, set

μx
1 = uδM�

μ
y
1 = λ

1
2

αS

αB(1 − αS)
μx

1 �
(84)

The next claim verifies (75).

Claim 2. There exists δ̂ ∈ (0�1) such that for any δ ∈ (δ̂�1) such that for μx
1 and μ

y
1 defined

above in (83) and (84) and μx
i and μ

y
i defined in (81), bounds (75) hold.

Proof. The proof is by induction on i. By (83) and (84), |μx
1 | ≤ uδM and |μy

i | ≤ uδM ,
which proves the base of induction. Now, I prove the inductive step. Suppose that the
statement is true for all j < i. I show that |μx

i | < uδM
i and |μy

i | < uδM
i. I can find the

closed-form solution to system (81),

∣∣μx
i

∣∣ =
∣∣(1 − λi − αS

)
ϕx
i + αBλ

i/2ϕ
y
i

∣∣(
1 − λi

)(
λ− λi

) ≤ 4 max
{
1 − λi�αS�αB

} · max
{∣∣ϕx

i

∣∣� ∣∣ϕy
i

∣∣}(
1 − λi

)(
λ− λi

) �

and the same upper bound holds for |μy
i |. Thus, it is sufficient to show that

4 max
{(

1 − λi
)
�αS�αB

} · max
{∣∣ϕx

i

∣∣� ∣∣ϕy
i

∣∣}(
1 − λi

)(
λ− λi

) < uδM
i�

Notice that αS
1−λi

< αS
1−λ for i ≥ 2, and by l’Hospital rule, limδ→1

αS
1−λ = limδ→1

αS
αS+αB−αSαB

=
V S

V S+V B < 1. Hence, for sufficiently large δ and all i ≥ 2, I have αS
1−λi

< 1, and by an anal-

ogous argument, αB
1−λi

< 1. Therefore, max{1−λi�αS�αB}
1−λi

≤ 1 for sufficiently large δ and it
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remains to show that

4 max
{∣∣ϕx

i

∣∣� ∣∣ϕy
i

∣∣}
λ− λi

< uδM
i

for sufficiently large δ. I will show that
|ϕx

i |
(λ−λi)uδMi <

1
4 , and by symmetric argument,

|ϕy
i |

(λ−λi)uδMi <
1
4 . Recall from (80) that

ϕx
i =φ

i−1∑
j=1

((
μx
i−jλ

j
2 +μ

y
i−jλ

i
2
) j∑
l=1

γB
l

∑
j1+···+jl=j

μ
y
j1

· � � � ·μy
jl

)

≤φ

i−1∑
j=1

λ
j
2

( j∑
l=1

∣∣γB
l

∣∣ ∑
j1+···+jl=j

∣∣μx
i−jμ

y
j1

· � � � ·μy
jl

∣∣)

+φλ
i
2

i−1∑
j=1

j∑
l=1

∣∣γB
l

∣∣ ∑
j1+···+jl=j

∣∣μy
i−jμ

y
j1

· � � � ·μy
jl

∣∣

≤φ

i−1∑
j=1

λ
j
2

j∑
l=1

∣∣γB
l

∣∣ ∑
j1+···+jl=j

ul+1
δ Mi +φλ

i
2

i−1∑
j=1

j∑
l=1

∣∣γB
l

∣∣ ∑
j1+···+jl=j

ul+1
δ Mi

=φ

i−1∑
j=1

λ
j
2

j∑
l=1

∣∣γB
l

∣∣ul+1
δ Mi

(
j − 1
l − 1

)
+φλ

i
2

i−1∑
j=1

j∑
l=1

∣∣γB
l

∣∣ul+1
δ Mi

(
j − 1
l − 1

)

≤ 2φuδMiD

i−1∑
j=1

λ
j
2

j∑
l=1

ulδ

(
j − 1
l − 1

)

≤ 2φuδMiD

i−1∑
j=1

λ
j
2 uδ(1 + uδ)

j−1

= 2φuδMiD
uδλ

1
2
(
1 − λ

i−1
2 (1 + uδ)

i−1)
1 − λ

1
2 (1 + uδ)

= 2φuδMiDλ
1
2
(
1 − λ

i−1
2

)
�

where the first inequality is due to the triangle inequality, the second inequality arises
via the inductive hypothesis, the first equality makes use of the fact that the number
of compositions of j into exactly l parts is

( j−1
l−1

)
, the fourth inequality is by λj > λi for

j < i and |γB
l | < D, the fifth inequality is by summing over l, the second equality is the

summation over j, and the last equality is plugging in uδ = λ−1/4 − 1. Thus, I need to
show that

2φD
λ

1
4
(
1 − λ

i−1
4

)
λ− λi

<
1
4
�
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This inequality holds for sufficiently large δ, as φ→ 0 as δ→ 1 and

lim
δ→1

λ
1
4
(
1 − λ

i−1
4

)
λ− λi

= lim
δ→1

1 − λ
i−1

4

1 − λi−1 = lim
δ→1

− i− 1
4

λ
i−5

4

−iλi−2 = i− 1
4i

�

This completes the proof of the inductive step and the claim. �

Step 3: Check solution. In this step, I verify that the candidate trajectories (xk� yk)

given by (74) that I have constructed indeed satisfy all conditions of Lemma 12. The
convergence to (0�0) follows immediately by taking the limit k → ∞ of (74) and noting
that λ < 1. Note that I still have one free parameter left: M that pins down μx

1 and μ
y
1 in

(83) or (84). I choose M so that

x1 + y1 = λ3/2μx
i + λμ

y
i = 2η�

and so the initial condition in (25) is satisfied. In follows from (74) that xk and yk are
decreasing in k and so

xk + yk+1 ≤ xk + yk ≤ x1 + y1 = 2η�

verifying inequalities (28) and (29).
Finally, I show that xk and yk are positive. Observe that

xk =
∞∑
i=1

λi(k+1/2)μx
i

= λk+1/2

(
μx

1 +
∞∑
i=2

λi(k+1/2)μx
i

)

≥ λk+1/2

(
μx

1 −
∞∑
i=2

λi(k+1/2)uδM
i

)

≥ λk+1/2
(
μx

1 − uδ
λ2k+1M2

1 − λ(k+1/2)M

)
�

Hence, for sufficiently large k, xk is positive whenever μx
1 is. Since from (82) the sign

of μy
1 and μx

1 is the same, yk is positive for sufficiently large k. Thus, I have shown that
xk and yk are positive starting from some k0. By rearranging terms in the first equality

of (25), xk = xk+1+αB(yk+1)yk+1
1−αB(yk+1)

. Observe that for δ sufficiently close to 1, αB(y) ∈ (0�1)
for all y > 0. Hence, xk is positive whenever xk+1 and yk+1 are positive. Analogously, it
can be shown from the second equality of (25) that for sufficiently large δ, yk is positive
whenever xk+1 and yk+1 are positive. This proves that xk and yk are positive for all k =
1�2� � � � , when δ is sufficiently close to 1.
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