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B.1 Proofs for Section 4

Proof of Lemma 1. Since the game is finite it has a mixed strategy Nash equilibrium,
and for any ν > 0 and any such Nash equilibrium α̂ ∈ �(A), there is an open neighbor-
hood U of α̂ in which every element is a ν/2 equilibrium. For N sufficiently large there
is a grid point α ∈ �N(A) in U and, consequently, for large enough N/M , if the learners
are content with this grid point, it is ν-robust. We may choose N/M large enough that
the behavior of the committed agents does not move the grid point outside of U.

Proof of Lemma 2. The hypothesis ν < g implies that ν-best responses are strict best
responses,1 and for each pure opponent’s action a−j for which some aj is the (unique)
strict best response, there is a γ ≥ 0 such that aj is also a best response to any mixed
strategy α−j ∈ �N(A−j) such that α−j(a−j) ≥ 1 − γ. Because A−j is finite, there is a γ

such that for all γ ∈ (0�γ) the previous conclusion holds for all such best responses aj ,
which proves the statement.

Proof of Lemma 3. If z is 0-robust, all learners are content and are playing a best re-
sponse to the unique α−j(z) ∈ Aj . By Assumption 1, content learners in each population
j must be playing the same best response âj and so z is pure. At z then, αj(âj) > 1−M/N

for each j, so âj is a strict best response to â−j and so â is a pure strategy Nash equilib-
rium. Conversely, suppose that â is a pure equilibrium, and that all learners in each
population j are playing âj and are content. Since â is strict, by Lemma 2, there is an
N/M sufficiently large such that for each j, the action âj is a strict best response to
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any α−j(â−j) > 1 − N/M and for such N/M , there is a 0-robust state for the learners
to play â.

B.2 Auxiliary result for Section 4

The following result was noted in Section 4.

Lemma B.1. When ε > 0, the Markov process Pε generated by the low-information model
is irreducible and aperiodic.

Proof. Pick any state ẑ where Dj(ẑ) = N − #�j for each population j. Start with any
state zt and take any agent state xt ∈ X(zt). There is probability ε#T j

that all learners
tremble and #T j = N − #�j , so Dj(zt+1) = N − #�j for j = 1�2. Take α

j
t+1 ∈ Aj(ẑ) and

choose x̂t+1 ∈ X(ẑ) with an action assignment σ̂j consistent with α
j
t+1. Starting at x̂t+1

there is probability (1/#A1)N−#�1
(1/#A2)N−#�2

that all agents play σ̂ . There is proba-
bility (1 −p)2N−#�1−#�2

that all learners are inactive, so they all stay discontent; hence,
they enter ẑ. Next, starting at x̂ ∈X(ẑ), there is positive probability that no learner trem-
bles and is active, so that learners all remain discontent. Starting at any state, the fact
that there is a positive probability of reaching a single state ẑ where the system may rest
for any length of time with positive probability implies that the system is irreducible and
aperiodic.

B.3 Proof of Lemma 7

For each pure Nash equilibrium â = (âj� â−j) of the game G, define ρ
j
â
(ν) for player j

to be the maximum probability α−j(â−j) such that âj is not the only ν-best response
to â−j . Analogously, let ρj

â
(ν) for player j be the supremum probability α−j(â−j) such

that âj is not a ν-best response to â−j . From Assumption 1, ρj
â
(0) = ρ

j
â
(0) for j = 1�2,

and by Assumption 2, ρj
â
(0) > 0 for j = 1�2. By definition of equilibrium, ρj

â
(0) < 1 for

j = 1�2. Then, since ρ
j
â
(0) = ρ

j
â
(0), it follows that for j = 1�2 we have (1 − ρ

j
â
(0)) < (1 −

ρ1
â
(0)) + (1 − ρ2

â
(0)) and ρ

j
â
(0)�ρj

â
(0) < 1. Notice that ρ

j
â
(ν) is continuous at ν = 0 by

Assumption 3, and that ρj
â
(ν) is continuous at ν = 0 by Assumptions 2 and 3. Hence for

sufficiently small ν > 0 for each j, we still have (1 −ρ
j
â
(ν)) < (1 −ρ1

â
(ν))+ (1 −ρ2

â
(ν)) and

ρ
j
â
(ν)�ρ

j
â
(ν) < 1. Since there are finitely many pure equilibria, we may choose ν so that

these conditions are satisfied at all such equilibria for all ν ≤ ν.
Take any ν ≤ ν. Since (1 − ρ

j
â
(ν)) < (1 − ρ1

â
(ν)) + (1 − ρ2

â
(ν)) and ρ

j
â
(ν)�ρ

j
â
(ν) < 1, it

must be that for sufficiently large N−M , we have (N−M)(1−ρ
j
â
(ν))+3 < (N−M)[(1−

ρ1
â
(ν)) + (1 − ρ2

â
(ν))]. Denote by �x� (resp. �x�) the smallest (resp. the largest) integer

greater than or equal to x (resp. not larger than x) so that rjz = �(N −M)(1 − ρ
j
â
(ν))� and

r
j
z = �(N −M)(1 − ρ

j
â
(ν))�. Since there are finitely many equilibria, there is, therefore, a

constant � such that for N −M ≥ �, we have r
j
z ≤ r1

z + r2
z . Since M ≥ 1, there is a γ such

that for N/M ≥ γ, we have N − M ≥ �. Since ρ
j
â
(ν) > 0, a similar argument establishes

that rjz ≥ 1 for j = 1�2.
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B.4 Absorbing states with stochastic best response with inertia dynamic

We next provide a proof that in acyclic games with a unique best response to each pure
action of the opponent, the support of the limit invariant distribution for the stochas-
tic best-response dynamic with inertia contains only singleton absorbing sets, i.e., pure
Nash equilibria.

Lemma B.2. Every state that does not correspond to a pure strategy Nash equilibrium is
transient under best response with inertia dynamic.

Proof. Fix a time t and suppose that the state does not correspond to a pure strat-
egy equilibrium. There is positive probability that this period all agents of one player,
say j, do not adjust their play while all agents of the other player −j play the best re-
sponse to the date-t state, and that at date t + 1 all agents of j play the best response
to the date t + 1 state while all agents of player −j hold their actions fixed. Thus, there
is positive probability that play in each population corresponds to a pure strategy from
period t + 2 on. Because the game is finite and acyclic, the best response path from this
state converges to a pure strategy Nash equilibrium in a number of steps no greater than
J ≡ #A1 × #A2. There is positive probability that the populations will take turns ad-
justing, all of the −j agents adjusting in periods t� t + 2� t + 4� � � � and all of the j agents
adjusting at t+1� t+3� t+5� � � � , so this equilibrium has probability bounded away from
0 of being reached in 2 + J steps, showing the initial time t state is transient.

B.5 Analysis of Example 1 (Continued)

We first show that the low information dynamic with T = 1 can also predict a different
equilibrium than best response with inertia even when the best response with inertia
dynamic has a singleton stochastically stable set. Suppose that a player obtains κ > 0
instead of 0 when choosing (B�B) against (C�C). To escape from (B�B), now about
N/(11−κ) of one population needs to mutate so this is the radius of (B�B). Our dynamic
selects (A�A) as it continues to have the largest radius among pure strategy equilibria.
The set S equal to the union of (B�B), (C�C), and (D�D) still contains all stochastically
stable states. Let S′ be the union of (A�A) and (B�B). The radius of S′ is about N/(11 −
κ) of one population, since escaping from S′ requires this amount of agents to tremble
to move to (C�C) or (D�D), and the co-radius is about N/11. Because the radius of S′
is larger than its co-radius, the stochastically stable states are in S′. Combining this with
the fact that they also lie in S shows that the unique stable state is (B�B), although its
radius is smaller than the radius of (A�A).

We next show that when T > 16 and ν > 0 in the high-information dynamic, the
stochastically stable set consists exactly of the three equilibria (B�B), (C�C), and (D�D).

The block game GBCD
1 has seven Nash equilibria: the pure equilibria (B�B), (C�C),

and (D�D), the binary mixed equilibria (( 10
11C�

1
11D),( 10

11C�
1
11D)), (( 10

11B�
1
11D),( 10

11B�
1
11D)),

and (( 10
11B�

1
11C),( 10

11B�
1
11C)), and a mixed equilibrium in which players randomize uni-

formly across B, C, and D.2 Since all ν-robust states of this dynamic do not belong to

2Notice that when analyzing ν-robust states there is a subset of ν-robust states in a neighborhood of each
mixed equilibrium.
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the same circuit, we have to analyze circuits of circuits, but first we must establish what
the structure of the circuits is.3

First, the three pure ν-robust states corresponding to the equilibria (B�B), (C�C),
and (D�D) form a circuit, since we can move from one of these equilibria to the next
with resistance equal to the common radius of these equilibria, which is about N/11.

The mixed ν-robust states corresponding to a binary mixed equilibrium have a sim-
ple structure. Consider a binary mixed equilibrium. As weight shifts from one of the two
actions for one of the players to the other until we reach an extremal point at which a
further shift causes the other player no longer to be playing a ν-best response for both of
his actions. The structure of these equilibria is that of a square: for each player, there is
a sequence of consecutive grid points between the two actions for which the opponent’s
two actions are a ν-best response. The complete collection of mixed ν-robust states cor-
responding to the binary mixed equilibrium is then the Cartesian product of these two
sets. Each of these collections forms a circuit, but these collections are also in a common
circuit with the pure equilibria that we call the pure/binary circuit.4

The structure of the mixed ν-robust states corresponding to the mixed equilibrium
over B, C, and D is more complicated, since shifts are no longer one-dimensional for
each player. However, the least resistance from a ν-robust state in the pure/binary cir-
cuit to some ν-robust state corresponding to the completely mixed equilibrium is about
N/2.5 Since this is greater than N/11, none of the ν-robust states corresponding to the
completely mixed equilibrium are in the pure/binary circuit. Moreover, transitions from
these mixed ν-robust states to the pure/binary circuit all have resistance 1.

Finally, (A�A) lies also in a separate circuit. This is because the least resistance from
a ν-robust state in the pure/binary circuit to (A�A) is about N/2.6 Being greater than
N/11 implies that (A�A) does not belong to the pure/binary circuit. We can move from
(A�A) to any ν-robust state in the pure/binary circuit with resistance N/3.

We next need to compute the modified resistance of going from one circuit to the
next circuit, which is the least resistance from one circuit to the next circuit minus the
least resistance path out of the circuit. We can then define circuits of circuits, which are
collections of circuits such that for any pair of circuits in the collection, we have a route
from one to the other such that at each step the modified resistance of moving from one
circuit to the next is the least resistance of moving from the one circuit to any other.

Although the structure of ν-robust states corresponding to the mixed equilibrium
over B, C, and D involves several circuits, note that transitions from the pure/binary
circuit to any circuit containing such ν-robust states have a modified resistance of

3Recall that a circuit is a set of ν-robust states such that for any pair of states z� z′ there exists a least
resistance chain from z to z′.

4Because they can be reached from the corresponding pure equilibria with resistance equal to about
N/11, while within each collection corresponding to a binary mixed equilibrium, there is always a ν-robust
state from which we can move to either of the two pure equilibria in the support of the mixed equilibrium
with resistance 1.

5As half of one population may play the remaining action to make it a ν-best response and be in the
memory set.

6Since if 1/2 of one population is playing in the block BCD, one of those strategies must earn at least
19/6, while playing (A�A) yields no more than 5/2.
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N/2 − N/11.7 Moving on the other direction requires a modified resistance of no more
than 1. Hence, from Theorem 10 of Levine and Modica (2016) we know that the stochas-
tically stable set belongs to the pure/binary circuit, and within that circuit we look for
the largest radii: the three pure equilibria.
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7Transitions from a pure ν-robust state to any ν-robust state corresponding to the mixed equilibrium
over B, C, and D have resistance of about N/2 while the radius of such a pure ν-robust state is about N/11.
Moving on the other direction requires a modified resistance of no more than 1.
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