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In this Appendix, we provide the proofs of the main theorem of the paper.

A.1. Proof of Lemma 4

By applying an affine transformation on the payoffs of the players, we can assume with-
out loss of generality (w.l.o.g.) that u(β) = (0�R) and u(γ) = (R�0), and then Jη is the
line segment that connects (η�R− 2η) and (R− 2η�η). We prove that all the points on
Jη are equilibrium payoffs.1

We construct an equilibrium in public strategies in which the expected discounted
payoff after every public history is in Jη. The mixed-action pair αn that the players play
along the equilibrium path is either β or γ. Whenever the repeated game payoff xn sat-
isfies xn1 < R−η

2 , i.e., whenever xn is in the upper half of the line segment Jη, the players
play αn = β; otherwise they play αn = γ. Since the sum of payoffs of both players in
both β and γ is R, while the sum of payoffs of both players in each point on Jη is R−η,
the players must spend at every stage an expected amount of (1 − r�)η on monitoring.
The expected amount spent on monitoring by player i at stage n is pn

i ci. Consequently,
define

pi := (1 − r�)η

ci
(7)

and instruct player 1 (resp. player 2) to monitor player 2 (resp. player 1) with probability
p1 (resp. p2) in every stage in which the players play the mixed-action pair β (resp. γ).
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Figure 9. The construction in the proof of Lemma 4.

Condition A4 implies that pi < 1. By Condition A3, we have pi >
2(1−r�)
r�η

for i ∈ {1�2}.

Due to the discussion in Section 5.2 (see (3)), a deviation of player 2 (resp. player 1)
to an action outside the support of β2 (resp. γ1) is not profitable, provided it triggers a
punishment at the minmax level.

We now turn to the formal definition of the proposed equilibrium. For every stage
n = 1�2� � � � , if xn1 < R−η

2 , then the following statements hold:

• We have αn = β: the players play the mixed-action pair β.

• We have pn
1 = p1 and pn

2 = 0. That is, only player 1 monitors and he does it with
probability p1 given in (7).

• If player 1 monitors player 2, then xn+1 is given by (see Figure 9)

xn+1
1 := xn1 + c1

r�
� xn+1

2 := R−η− xn1 + c1

r�
�

• If player 1 does not monitor player 2, then xn+1 is given by

xn+1
1 := xn1

r�
� xn+1

2 := R−η− xn1

r�
�

If xn1 ≥ R−η
2 , the play is defined analogously: the players play the mixed-action pair γ;

player 1 does not monitor player 2; player 2 monitors player 1 with probability p2 given
in (7); if player 2 monitors player 1 at stage n, then

xn+1
1 := R−η− xn2 + c2

r�
� xn+1

2 := xn2 + c2

r�
�

while if player 2 does not monitor player 1 at stage n, then

xn+1
1 := R−η− xn2

r�
� xn+1

2 := xn2

r�
�

Since Dn
i = 0 for every n ∈ N, it is sufficient to verify that Conditions C2–C6 are sat-

isfied. Since xi ≥ η > 0 ≥ vi for every x ∈ Jη and every i = 1�2, Condition C2 holds. The
definition of pi and Condition A1 imply that Condition C3 holds. The verification that
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Figure 10. The construction in the proof of Lemma 4.

Conditions C4–C6 hold follows by simple algebraic manipulations. We provide here the
verification of Condition C4. Assume then that xn1 ≤ R−η

2 , so that αn = β and pn
1 = p1.

Since player 1 plays a best response at β, we have u1(a1�α
n
2) = 0 for every a1 ∈ supp(αn

1).
Since Dn

1 = 0, Condition C4 translates to xni = r�xn+1
i − ci · 1Ini

, which holds by the defi-

nition of xn+1
1 . Regarding player 2, since he is indifferent at β, we have u2(α

n
1� a2)= R for

every a2 ∈ supp(αn
2). Since Dn

2 = 0, Condition C4 translates to

xn2 = (1 − r�)R+ r�
(
p1

(
R−η− xn1 + c1

r�

)
+ (1 −p1)

(
R−η− xn1

r�

))
�

Since xn2 =R−η−xn1 , after cancelling the term R−xn1 from both of its sides, this equation
reduces to p1c1 = (1 − r�)η, which holds by the definition of p1.

A.2. Proof of Lemma 5

By applying an affine transformation on the payoffs of the players, we can assume
that R(1)

1 = R(2)
2 and u1(β) = u2(γ) = 0. We prove the following result, which implies

Lemma 5.

Lemma 9. Let β = (β1�β2) and γ = (γ1�γ2) be two mixed-action pairs and let R> 0 such
that the following conditions hold:

(i) Player 1 plays a best response at β, u1(β) ≥ 0, and u2(β1� a2) ≥ R for every action
a2 ∈ supp(β2).

(ii) Player 2 plays a best response at γ, u2(γ) ≥ 0, and u1(a1�γ2) ≥ R for every action
a1 ∈ supp(γ1).

Then the pentagon Qη whose extreme points are (see Figure 10) (v1 + η�v2 + η), (v1 +
η�R − 2η), (R − 2η�v2 + η), (η�R − 2η), and (R − 2η�η) is a subset of NE(r� c1� c2��),
provided that the parameters r, c1, c2, �, and η satisfy Conditions A1–A4.
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Proof. Let ξ ∈ Qη. We construct an equilibrium with payoff ξ. The construction is
similar to the construction in the proof of Lemma 4 and uses burning-money processes.

Recall that pi = (1−r�)η
ci

for i ∈ {1�2}.
Fix a Nash equilibrium α∗ in the base game. The play in the first stages depends on

three parameters: a payoff vector x ∈ Qη close to Jη and two nonnegative integers k1
and k2. We first describe the play in the first k := max{k1�k2} stages, and then explain
how to choose the parameters x, k1, and k2.

The players play as follows:

• They play the mixed action α∗ for k stages.

• In the first k1 stages, player 1 monitors player 2, and in the first k2 stages, player 2
monitors player 1. If, for example, k1 < k2, then in the first k1 stages, both players
monitor each other, and in the following k2 −k1 stages, player 2 monitors player 1
while player 1 does not monitor player 2.

• From stage k+ 1 onward, the players implement an equilibrium with payoff x.

The payoff to each player i is then (1 − rk�)ui(α
∗) + rk�xi − (1 − rki�)c: in the first

k stages, the players play α∗; in the first ki stages, player i monitors player j, and the
continuation payoff at stage k is x. We choose the parameters x, k1, and k2 to satisfy the
following conditions.

Condition D1. We have ξi = (1 − rk�)ui(α
∗)+ rk�xi − (1 − rki�)c.

Condition D2. We have xi ≥ η for i ∈ {1�2}.

Condition D3. We have R−η− 2c ≤ x1 + x2 ≤ R−η.

Conditions D2 and D3 ensure that x is close to Jη: there is y ∈ Jη that dominates x and
satisfies yi − xi ≤ 3c. Fix then such y ∈ Jη and set

x1 := y� D1 := y − x�

For every stage n > k, if xn1 ≤ R−η
2 , the following statements hold:

• We have αn = β: the players play the mixed-action pair β.

• If Dn
i ≥ ci, then pn

i = 1: a player with a high debt monitors the other player (and
burns money).

• If Dn
1 < c1, then pn

1 = p1; if Dn
2 < c2, then pn

2 = 0: Only player 1 monitors with
positive probability. Recall that player 1 plays a best response at β, so that he
cannot gain by deviating from β1; hence he does not have to be monitored.

• If player 1 monitors player 2 and finds out that player 2 played an action a2 /∈
supp(β2), then from stage n+ 1 onward he switches to a punishment strategy that
reduces player 2’s payoff to v2 +η.

In case xn1 > R−η
2 , the play is analogous: the players play the mixed-action pair γ, a

player with a debt of at least ci monitors the other with probability 1; if player 1’s (resp.
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Figure 11. The continuation payoff and the debt.

player 2’s) debt is lower than c1 (resp. c2), then he does not monitor player 2 (resp. mon-
itors player 2 with probability p2); and if player 2 monitors player 1 and finds out that
player 1 played an action outside the support of γ1, then he switches to a minmax strat-
egy against player 1.

It is left to define the processes (xn)n∈N and (Dn)n∈N so that (a) the discounted payoff
is x and (b) no player has an incentive to deviate. We define these two processes recur-
sively. Suppose that xn ∈ Jη and Dn ∈ R

2+ have already been defined, and assume that

xni −Dn
i ≥ vi +η for i = 1�2. If xn1 ≤ R−η

2 , define yn� zn�wn ∈ Jη as (see Figure 10)

wn
1 := xn1

r�
+η(1 − r�)= R− xn2

r�
−η� wn

2 := xn2 − (1 − r�)R

r�
�

yn1 := xn1 + c

r�
� yn2 := R−η− xn1 + c

r�
�

zn1 := xn1

r�
� zn2 := R−η− xn1

r�
�

The payoff vectors yn and zn are the continuation payoffs when player 1’s debt is
lower than c1. These quantities are similar to xn+1 in the proof of Lemma 4, where yn

(resp. zn) was the continuation payoff when player 1 monitored (resp. did not monitor)
player 2. The vector wn is the continuation payoff when player 1’s debt is higher than c1.
Note that these three vectors are on Jη.

When xn1 > R−η
2 , the roles of the two players are exchanged: they play the mixed-

action pair γ, player 2 monitors player 1 with positive probability, and the continuation
payoffs wn, yn, and zn are defined analogously.

The continuation payoff xn+1 and the debt Dn+1 are given by the table in Figure 11.
For the sake of convenience we provide the quantity r�Dn+1

i for i = 1�2. When player 1
monitors player 2, the action a2 that player 2 plays at stage n is common knowledge, and
Dn+1 can depend on it. Recall that the event that player i monitors player j at stage n is
denoted by Ini .

We explain below the intuition behind the definition of the burning-money process
for player 1.

• Whenever a player monitors the other to burn money (i.e., Dn
i ≥ ci, which implies

pn
i = 1), his debt decreases by ci. For instance, in lines 1 and 2, the first part of

r�Dn+1
1 is Dn

1 − ci.
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• When Dn
1 ≥ ci, as in lines 1 and 2, the last part of r�Dn+1

1 is (1 − r�)η. The reason
for adding this term is that the construction assumes that the stage payoff is (0�R)
or (R�0), so that the sum of stage payoffs of the two players is R. However, the sum
of payoffs in all points in Jη is R − η. Since both the continuation payoff and the
current payoff should be on Jη, we need to add (1− r�)η to the debt of the players.

• Whenever Dn
1 ≥ c1, the continuation payoff wn+1 is defined to satisfy Condition C6

for player 1. Indeed, using the definition of wn and Dn,

(1 − r�)u1(β)− c1 + r�w1 − r�Dn+1
1

= (1 − r�)u1(β)− c1 + r�
(
xn1

r�
+η(1 − r�)

)

− (
Dn

1 − c1 + (1 − r�)u1(β)+ (1 − r�)η
)

= xn1 −Dn
1 �

• Whenever player 1 decides randomly whether to monitor player 2 (lines 3–6 in
the table in Figure 11), the continuation payoff xn+1 is given as in the proof of
Lemma 4. In case player 1 monitors player 2, the continuation payoff is yn; oth-
erwise it is zn. The continuation payoffs were chosen to ensure that Condition C4
holds. We verify this for line 3:

(1 − r�)u1(β)+ r�y1 − r�Dn+1
1

= (1 − r�)u1(β)− c1 + r�y1 − [
Dn

1 + (1 − r�)u1(β)
]

= (1 − r�)u1(β)− c1 + r�
[
xn1 + c1

r�

]
− [

Dn
1 + (1 − r�)u1(β)

]
= xn1 −Dn

1 �

We now verify that this definition satisfies the conditions listed in Section 5.3. In the
first k stages, no player can profit by deviating, and so we need to verify these condi-
tions only from stage k onward. We first check that Condition C2 holds. One can verify
that if Dn

i ≥ ci, then xn+1
i − Dn+1

i ≥ xni − Dn
i , and the result follows by induction; other-

wise, Dn+1
i ≤ ci

r�
. When xn1 ≤ Rη

2 , we have yn1 � z
n
1 ≥ xn1 ≥ η, and therefore xn+1

1 −Dn+1
1 ≥ 0.

Since xn2 ≤ R
2 , it follows that xn+1

2 − Dn+1
2 ≥ 0. The definition of pi together with Condi-

tion A3 implies that Condition C3 is satisfied. The verification that Conditions C4–C6
hold amounts to substituting the quantities defined above in the relevant equations, as
illustrated above. �

A.3. Proof of Lemma 6

We denote u(a) = (A�B), and distinguish between four cases that are handled sepa-
rately (see Figure 12).

Case 1. We have u1(a) ≥ t2
1 and u2(a) ≥ t1

2 .
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Figure 12. The four cases in the proof of Lemma 5.

Case 2. We have u1(a) < t1
1 and u2(a) > t1

2 .

Case 3. We have u2(a) < t2
2 and u1(a) > t2

1 , which is analogous to Case 2.

Case 4. Cases 1–3 do not hold.

The construction in this section does not employ burning-money processes. Rather,
we use a recursive construction: we identify a set J1 of payoff vectors, which can be
arbitrarily close to J′, and for every payoff vector g ∈ J1, we define a one-shot auxiliary
game in which (a) the payoffs are the stage payoff in the base game plus a continuation
payoff, (b) the continuation payoff, which depends on the players’ choices, are in J ∪ J1,
and (c) there is an equilibrium whose payoff is g and in which each player monitors the
other with probability p that satisfies (3).

A.4. Case 1: u1(a) ≥ t2
1 and u2(a) ≥ t1

2

Roughly, we prove that all the points in the triangle whose extreme points are t1, t2,
and (t2

1 � t
1
2) are in E(r� c��), provided that c1, c2, and � are sufficiently small. Fix η <

min{ t2
1−u1(β

∗)
7 �

t1
2−u2(γ

∗)
7 }. Denote by −α the slope of the line segment [t1� t2]. Set (see

Figure 13)

w1 := (t1
1 +η� t1

2 − 2αη)� w2 := (t2
1 − 2η� t2

2 + αη) (8)

s1 := (t1
1 + 2η� t1

2 − 3αη)� s2 := (t2
1 − 3η� t2

2 + 2αη) (9)

ẑ := (t2
1 − 4η� t1

2 − 4αη)�

Since J is an asymptotic set of Nash equilibrium payoffs, Lemma 5 implies that all the
points in the pentagon J0 whose extreme points are (v1� v2), (v1�w

1
2), (w2

1� v2), w1, and w2
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Figure 13. Case 1.

are in E(r� c1� c2��), provided that c1, c2, and � are sufficiently small. Denote the slope of
the line segment [s1� ẑ] by −d := − αη

t2
1−u1(β∗)−6η

, and denote the slope of the line segment

[̂z� s2] by −e := − t1
2−u2(γ

∗)−6αη
η (see Figure 13).

By the choice of η, we can state the following condition.

Condition E0. We have s1
1 < ẑ1 and s2

2 < ẑ2.

Hence, e > d > 0.
Assume that c1, c2, and � are sufficiently small to satisfy Conditions A1–A4, as well

as the following conditions for i ∈ {1�2}.

Condition E1. We have 1 − r� < ci <
η
6 .

Condition E2. We have 1
ηci <

1
4Be, 1

4Ad < η
2(1−r�)

.

Condition E3. We have 2ci
dr�

� 2eci
r�

< η.

Condition E4. We have r� > 1
2 and 4(1 − r�) < η.

We show that all points in the triangle J1, whose extreme points are s1, s2, and ẑ, are in
E(r� c1� c2��).
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Figure 14. The game G(ζ1� ζ2�x� y).

Figure 15. The continuation payoffs that underlie the game G(ζ1� ζ2�x� y).

Fix a point g in the triangle J1, and for the calculations below add a constant to the
payoff so that g = (0�0). We now describe a 2 × 2 one-shot auxiliary game G(ζ1� ζ2�x� y)

whose payoffs depend on four positive real numbers ζ1, ζ2, x, and y, and an equilibrium
in that game that yields the payoff (0�0).

• Each player has two actions, “monitor” and “don’t monitor.”

• The payoff function is given by the table in Figure 14, in which at each entry,
player 1’s payoff appears at the top and player 2’s payoff appears at the bottom.

The payoff is calculated as if, in the original repeated game with costly observation,
the players play the pure action pair a, each player chooses whether to monitor the other
player, and the continuation payoffs, which depend on the identity of the players who
chose to monitor, are given by the matrix in Figure 15.

Because the slopes of the line segments that define J1 are −d and −e, the vectors
(ζ2
e �−ζ2) and (−ζ1� dζ1) are in J0 ∪ J1, provided that ζ1 and ζ2 are sufficiently small.

Recall that g = (0�0) is in J1. We have to ensure that x� y ∈ [0�η] so that (−x�−y) is in
J0 ∪ J1.

Set

p := 2(1 − r�)

r�η
�

We find positive numbers ζ1, ζ2, x, and y such that the pair of strategies in which each
player monitors the other with probability p is an equilibrium of G(ζ1� ζ2�x� y) with pay-
off (0�0). By (3), this implies that in the repeated game, no player can profit by a devia-
tion to an action that he is supposed to play with probability 0, provided such a deviation
leads to a punishment at the maxmin level. By solving the indifference conditions of the
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players, we obtain that if

ζ2 = e(c1 − (1 − r�)A)

r�(1 −p)
� (10)

ζ1 = c2 − (1 − r�)B

dr�(1 −p)
� (11)

x = (1 − r�)Ad(1 −p)−p(c2 − (1 − r�)B)

d(1 −p)2 � (12)

y = (1 − r�)B(1 −p)−pe(c1 − (1 − r�)A)

(1 −p)2 � (13)

then having both players monitor each other with probability p is an equilibrium of
G(ζ1� ζ2�x� y).

Condition E1 implies that ζ1 and ζ2 are positive; Conditions E2 and E4 imply that
x and y are positive; Conditions E3 and E4 imply that ζ1 and ζ2 are smaller than η;
and Condition E2 implies that x and y are smaller than η. This concludes the proof
for Case 1.

A.5. Case 2: u1(a) < t2
1 and u2(a) > t1

2

The proof in this case is similar to the proof in Case 1, with a different definition of ẑ,
and the calculations are slightly more cumbersome. Recall that u(a) = (A�B), so that
in this case A< t1

1 and B > t1
2 (see Figure 16). The slope of the line segment [u(a)� t2] is

t2
2−B

t2
1−A

< 0. Fix η > 0 sufficiently small to satisfy η < − t2
2−B

t2
1−A

, and define the points w1, w2,

s1, and s2 as in Case 1 (see (8) and (9)). Set

e := − t2
2 −B

t2
1 −A

−η> 0�

Consider the line with slope −e that passes through s2, and let ẑ be the point on this line
that satisfies ẑ2 = t1

2 − 4η. Let d be the slope of the line segment [s1� ẑ]. Then 0 < d <

e < ∞. Suppose that Conditions E2–E4 hold for the d and e defined here, as well as the
following two conditions.

Condition E5. We have ec1 <
1
8 , e(1 − r�)(−A)< 1

8 , and c2 < 4dη.

Condition E6. We have d(−A)η2 > 8e(c2 + dc1).

Denote by J1 the triangle whose extreme points are s1, s2, and ẑ. We prove that all the
points in the triangle J1 are in E(r� c1� c2��), provided that c1, c2, and � are sufficiently
small.

Fix a point g ∈ J1 and for the calculation below add a constant to the payoffs so that
g = (0�0). Because g = (0�0) is below the line segment [u(a)� t2],

B

−A
> e+η�
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Figure 16. The setup in Case 2.

Consider the 2×2 one-shot auxiliary game G(ζ1� ζ2�x� y) that is defined in Figure 15.

Having each player monitor the other with probability p = 3(1−r�)
r�η

is an equilibrium in

the game G(ζ1� ζ2�x� y) that yields payoff (0�0), where ζ1, ζ2, x, and y are given by (10)–
(13). Because A is negative, x is negative as well.
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Figure 17. The proof in Case 4.

Condition E1 implies that ζ1 is positive and together with Condition E3 it implies
that it is less than η. Plainly ζ2 is positive, and Conditions E1 and E5 imply that is it less
than η. Condition E2 implies that y is positive and Conditions E1 and E4 implies that it
is less than η. As mentioned above, x is negative, and Conditions E1 and E5 imply that
it is larger than −η.

To complete the proof we need to show that (−x� y) lies in J0 ∪ J1. To this end we
show that −y

−x >−e. By (12) and (13), this inequality reduces to

(1 − r�)dB(1 −p)−ped
(
c1 − (1 − r�)A

)
>pe

(
c2 − (1 − r�)B

) − (1 − r�)Ade(1 −p)�

Since p = 3(1−r�)
r�η

, we can divide all terms by (1 − r�), so that this inequality is equivalent
to

d(1 −p)(B +Ae)+pe(dA+B) >
2e(c2 + dc1)

r�η
�

which holds by Condition E6.

A.6. Case 4

To solve Case 4, we use Case 1 and jointly controlled lotteries. Specifically, by Case 1,
the grey area in Figure 17 is in NE(r� c1� c2��), provided that c1, c2, and � are sufficiently
small.

To complete Case 4, we show that the set NE(r� c1� c2��) is almost convex. Indeed,
suppose that at the first stage, the players jointly choose between, say, implementing as
an equilibrium payoff a vector close to ẑ or a vector close to t2. This is done as follows.
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• Let a1� a
′
1 ∈ A1 and a2� a

′
2 ∈ A2 be two distinct actions of the two players. At the

first stage, player 1 (resp. player 2) chooses either a1 or a′
1 (resp. a2 or a′

2) with
equal probabilities, and both players monitor each other.

• If, at the first stage, one of the players fails to monitor the other or fails to play one
of the designated actions, both players switch to punishment strategies.

• Otherwise, according to the realized action pair at the first stage, the players im-
plement from the second stage onward one of the following payoff vectors as an
equilibrium payoff, where w = t2 + (−η�η).

Action pair Player 1’s payoff Player 2’s payoff

(a1� a2) ẑ1 − (1 − r�)u1(a1� a2) ẑ2 − (1 − r�)u2(a1� a2)

(a1� a
′
2) w1 − (1 − r�)u1(a1� a

′
2) w2 − (1 − r�)u2(a1� a

′
2)

(a′
1� a2) w1 − (1 − r�)u1(a

′
1� a2) w2 − (1 − r�)u2(a

′
1� a2)

(a′
1� a

′
2) ẑ1 − (1 − r�)u1(a

′
1� a

′
2) ẑ2 − (1 − r�)u2(a

′
1� a

′
2)

A.7. Public perfect equilibria

In the construction of Nash equilibria, we used threats of punishment. In this sec-
tion, we modify the proof of Lemma 5 so that the implementation of the vector ξ :=
(v1 +η�v2 +η) does not involve noncredible threats. As is common in the literature, the
implementation of a credible punishment is accomplished by having the players lower
their payoffs for a fixed number of stages and return to the equilibrium play afterward.

The implementation of ξ in the proof of Lemma 5 includes a first phase that lasts
k stages, in which the players follow an equilibrium α∗ of the base game and partially
monitor each other. We change only the implementation of this phase.

Suppose w.l.o.g. that k1 ≤ k2, so that k = k2. Thus, player 1 monitors player 2 in the
first k1 stages, and player 2 monitors player 1 in the first k2 stages.

• In the first k stages, player 1 plays a minmax mixed action β1.

• In the first k1 stages, player 2 plays a minmax mixed action β2.

• In the following k2 − k1 stages, player 2 plays a best response γ2 against β1.

If no deviation occurs, the expected payoff to player 1 in the first k stages, given the
public history, is

δ1 :=
k1∑
n=1

(1 − r�)r(n−1)�u1(a
n
1� a

n
2)+

k2∑
n=k1+1

(1 − r�)r(n−1)�u1(a
n
1�γ2)− (1 − rk1�)c�

and the expected payoff to player 2 in the first k stages, given the public history, is

δ2 :=
k1∑
n=1

(1 − r�)r(n−1)�u2(a
n
1� a

n
2)+

k2∑
n=k1+1

(1 − r�)r(n−1)�u2(a
n
1�γ2)− (1 − rk2�)c�
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The continuation payoff x is a random variable that satisfies

ξ = δ+ rk2�x�

where δ= (δ1� δ2). Provided � is small, x is in Qη and satisfies d(x�Jη) ≤ 2η.
Whenever a deviation is observed, the players restart implementing ξ with the above

construction. It is left to the reader to verify that the construction is indeed a public
perfect equilibrium.
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