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SI. PROOF AND PROPOSITIONS

In this section, we provide a detailed analysis of the dynamic programming problem in
the general case with two assets. That is, as in Section 5, we assume that a household
can save with money and nominal bonds, and that only money can be used to finance
lumpy consumption. The real rate of return of money holdings is —7 < 0, while the real
rate of return of nominal bonds is p. Anticipating properties of equilibrium, we assume
that p € [, r). The analysis of the pure-currency economy corresponds to the special
case in which money and bonds are perfect substitutes, i.e., p + 7 = 0.

SI.1 The Bellman equation

Let ¢; denote flow consumption, 4, denote flow labor, and y, denote lumpy consump-
tion. Let z; denote the real balances and let w; denote the real wealth of a household at
time ¢ (the sum of his real balances and of his real holdings of nominal bonds). The con-
straint that lumpy consumption must be finance by real balance can be written y; < z,.
But notice that, since p > —, the real return on bond weakly dominates that on money.
Therefore, we can assume without loss of generality that z; = y;. That is, the real balance
of the household at time ¢ is exactly equal to his intended lumpy consumption, and the
rest of the household real wealth is invested in nominal bonds.!
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f p 4+ 7 = 0, this is only weakly optimal. In fact, in some cases, equilibrium requires that z, > y,. How-
ever, at this stage of the analysis, we are only concerned with deriving elementary properties of the value
function and of the total saving function, @,. Clearly, these do not depend on the particular optimal port-
folio choice chosen by the household.
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The Bellman equation for a household in our model is the functional equation
T[W]= W, where

m -
TIW](w)= sup/ e~ Oyl h—hy) + a[U(y) + W(w, — yo)]} dt (S1)
0
with respect to left-continuous plans for flow consumption, ¢, flow labor, #4;, lumpy

consumption, y;, a piecewise continuously differentiable plan for real wealth, »,, and
subject to

w) = o,
0<y <o,
or=hi—c+plw;—y)—my+ Y. (82)

In what follows, we say that consumption flows, labor flows, and lumpy consumption
are feasible if they satisfy the above stated requirements, together with the path of wealth
they generate. We also maintain the assumption that # + Y > 0, i.e., when o is small
enough, a household can increase its wealth by working full time and consuming noth-
ing. Let C denote the set of bounded, positive, continuous, increasing, and concave
function of w. We obtain the following lemma.

LEMMA SL.1. If W €C, then T[W] eC.
Proor. Clearly, if W > 0, then T[W] > 0, since this is also true for u(c, £) and U(y). If W
is bounded, then one sees directly from the objective that

1

TV ()| < e

o
||u|I+r+—a{I|UI|+IIWI|}, (S3)

where ||u|| and ||U| denote the sup norm. It thus follows that 7[I#] is bounded. We also
have that T[W]is increasing if I is increasing: indeed, any feasible plan with initial con-
dition w; is also feasible with initial condition w; > w{ and yields higher value since the
household is left with higher wealth at its next lumpy consumption opportunity. Finally,
the concavity of T[W] follows directly from the objective being concave and the graph
of the constraint correspondence being convex.

The harder part of the proof is to establish that 7[W] is continuous. We proceed in
two steps. First note that since T[W] is concave and increasing, it must be continuous
over (0, co) (see, for example, Corollary 1, Chapter 7, in Luenberger 1969). To show con-
tinuity at = 0, consider some small & > 0. By working full time, 4, = h, consuming
nothing, and saving only in cash, the household can reach ¢ at time T, solving wr, = ¢,
where @, = 1 + Y — mw,. Solving this ODE explicitly shows that

1 ™ &
T.=——1log|l1— = el== +o(e). (S4)
™ g( h+Y ) h+Y @)
Clearly, since utility flows are bounded below by zero, we must have that T[W](0) >

e~ UTOTT[W ()], that is, T[W](0) is greater than the value of working full time, con-
suming nothing, saving only in cash until 7, and behaving optimally thereafter. This
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implies in turn that
0<TIW(e) = TIW1(0) < (1 — e~ " 9T ) T (8). (S5)
Since T[W]is bounded and 7, — 0 as ¢ — 0, continuity at zero follows. O
The next lemma is an important result for what follows.

Lemma SL.2. IfW e€C, then T[W1] has a bounded derivative at z = 0:

. TWl(e)=TIW]O0) r+a
lim <

<= w1
e—0 & h+Y

In particular, T[W1] is Lipschitz with coefficient (r + o) || W |/ h.

The upper bound follows directly from (S4) and (S5). The Lipschitz property follows
by concavity.

LeMmMaA S1.3. The functional equation W = T[W] has a unique bounded solution, and
this solution belongs to C.

Proor. The Blackwell sufficient conditions for a contraction (see Theorem 3.3 in Stokey
et al. 1989) are satisfied for T[W]: monotonicity follows directly because if W (w) >
Wr(w) for all @ > 0, then any feasible plan generates a higher utility with W rather
than W, implying that T[W;] > T[W,]. Discounting follows directly, with a modulus of
contraction > < 1. It then follows from the contraction mapping theorem (see The-
orem 3.2 in Stokey et al. 1989) that T[W] has a unique bounded solution. Lemma SI.1

implies that this solution belongs to C. O
From the arguments in the proofs above, we can derive two auxiliary results.
CoRoOLLARY S1.4. The solution of the functional equation T[W]= W satisfies
rIW < llull + allU],

r+a«
W, (0) < = W (0),
#)_h+Y (0)

lim W' (z)=0,
w—> 00
where W! (w) and W/ (w) denote, respectively, the left and the right derivatives of W ().

Prookr. The first upper bound follows directly from using ||T[W]| = ||W| in (S3). The
second upper bound follows directly from Lemma SI.2 and from the fact that T[W] = W.
To show thatlim,_, , W’ (@) = 0, note that, by concavity, we have that o W’ (0) < W(w) —
W (0). But since W(z) is bounded, it follows that lim,_, oc W’ (@) =0. O

A useful result is the following lemma.
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LeMmMaA S1.5. The solution of the functional equation TIW 1= W is strictly increasing and
has strictly positive left and right derivatives.

Proor. Consider any n > 0 and some feasible path {c, 4, y;} that achieves at least
W (w) — m starting at w. Then, for any ¢ > 0, the value W (w + &) must be greater than
the value of following {c;, A, y; + ee~™}. That is, one keeps the same plan for flow con-
sumption and labor, and saves the extra ¢ initial wealth in cash. The extra saving in
cash allows an extra e~ ™ to be consumed at the first lumpy consumption opportunity.
Plugging this into the Bellman equation, we obtain that

W(w+2)=W(w)—n+ / ae” T U (v + ee”™) = Uy ] dt
- (S6)
>W(w)—n +/ ae” "TIU (v + ee”™) — U(y)] dt
0

for any arbitrary horizon 7. Now fix some horizon 7. It is clear from (S2) that the wealth
of a household is bounded above by the wealth obtained at time 7 by consuming noth-
ing, working full time, and saving only in bonds for the entire interval. Let us denote this
upper bound by . Given the concavity of U(y), the inequality y; < @ provides a lower
bound for the integral on the right-hand side of (S6):

T
Wit o)z W) —n+ [ ae U6+ ee™) - U@ )]ar
0

Taking the limit  — 0, we obtain that W (w+¢) > W(w), i.e., the value function is strictly
increasing. It must have strictly positive left and right derivatives because it is concave. O

S1.2 The Hamilton-Jacobi—Bellman equation
First, let us note that, by standard arguments, we can state the following lemma.

Lemwma SI.6. The solution of the functional equation T[W] = W satisfies the maximum
principle. For any o and §,

W(w)= sup{/{)s{u(ct, h—ho)+e[Uy) + W(w—y)] e "o de + e_(’+0‘)6W(w5)},
with respect to feasible consumption flow, labor flows, and lumpy consumption.
Our main result is the following proposition.
ProPposITION S1.7. Forall w > 0and all A € [W] (w), W (w)],

(r+a)W(w) <suplu(c, h—h)+a[Uy)+W(w-y)]+A[h—c+p(o—y)—my+Y]}, (S7)

with respectto ¢ >0, h € [0, hl, and y € [0, w], and with the convention that W' (0) = +ooc.
Moreover, if W, (0) = W/ (w), then (57) holds with equality.
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Notice that at w =0, W/ (w) = oo, so that A is only restricted to be larger than W (0)
and so can be chosen to be arbitrarily large. One can show that this is equivalent to
letting A = W/ (0) and imposing the constraint that the saving function is positive.?

Proposition SI.7 is a version of the statement that the value function is a viscosity so-
lution of the Hamilton-Jacobi-Bellman (HJB) equation. To prove this result, we cannot
directly apply existing theorems, because these usually assume that the rate of change
of the state variable is bounded (for example, Assumption Al in Chapter 3 of Bardi and
Capuzzo-Dolcetta 1997). This assumption fails in our model, since a household can in
principle choose arbitrarily large consumption flows and so deplete its wealth balance
very quickly. Another difference from standard theorems is that we consider an opti-
mization problem for which the agent is making some of its decision at Poisson arrival
times, so that the “flow reward” depends on the function whose smoothness we seek to
establish, W (w).

Preliminary results To adapt the standard proof, we first establish that, in fact, deplet-
ing money balance very quickly cannot be optimal. To see this, consider an agent who
consumes at a very high rate during a time interval of length §, in such a way that its
wealth decreases by k x & for some very large k. The utility gain would be bounded by
|lu||8, but the continuation value would decrease by an amount that is approximately
equal to W’ (w) x k8. If k is very large, the net utility must be negative. Formally, we
show the following lemma.

LeMmwmaA S1.8. Forall v > 0 and all 0 > 0, there is some k > 0 such that, for all 6 > 0 and
any feasible controls ¢;, h;, and y; starting at wg = 0, ws < w — k& implies that

8 -
W(w) > 06+ / {M(Ct, h—hy)+ a[U(yt) +W(w; — yt)]}ef(r+a)t dr + W(wa)ef(”a)‘s,
0
Proor. Consider any feasible control starting at wy = w:

9
W(w)—f {u(ctvil_ht)+a[U(yt)+W(wt—y,)]}e_(r+“)tdt_W(ws)e—(r-i-a)s
0
>W(w) —W(ws) = 8[llul + al|Ull+ W] = Mo — ws) — §[llull + «l|U|| +a| W]

forany A € [W] (), W/ (w)], since W is concave. By Lemma SI.5, A > 0 and so the result
follows by choosing some k > (0 + ||u|| + «|U|| + «||W])/A. O

Next, we establish an equicontinuity property for all optimal controls that satisfy
ws > wy — ko.

2 To see this, write A = W/ (0) + u for some p > 0. The right side of (S7) is greater than the left side for all
A=W/ (0) if and only if the infimum of the right side of (S7) with respect to u > 0 is greater than the left side.
By the saddle point theorem, this infimum is equal to the maximized value of the HJB equation subject to
the constraint that the saving function is positive.
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LeMmMa S1.9. Consider any k > 0 and any ¢ > 0. Then there exists some 6 > 0 such that,
for any control over [0, 8], starting at w,

ws>wg—ké = |w—wol<e foralltel0,?].
Prookr. Since p + 7 > 0, the law of motion for w; implies that
o <h+Y+yo; (S8)
for some vy > |p|. Direct integration of (S8) over [0, ¢] gives

h4Y h
w; < woe?" + L(ew — 1) = w;—wy=< <L + wg) (ew — 1).
Y
Since the right side is continuous and equal to zero at ¢ = 0, it follows that there exists
6 > 0 such that w; — wg < e forall ¢ € [0, 8].
Next we show that wg — w; > —e. To do so, we integrate (S8) over [, §] instead. We
obtain

h+Y
y

w; > wae—y(ﬁ—t) _ [1 _ e—v(ﬁ—t)]

h+Y
= w;—w)>(ws— a)o)e_y(‘s_t) — [L + w0:| [1 - 6_7(6_0]
Y

Again, since the right-hand side is continuous in § and equal to zero at § = 0, we obtain
that if we choose § > 0 small enough, w; — wy > —¢forall ¢ € [0, 8]. O

Proof of the inequality in Proposition SI.7 Toward a contradiction, suppose that there
issome A € [W| (w), W/ (w)] and some 6 > 0 such that

(r+a)W(w) > 0 +suplu(c,h—h) +a[U(y) + W(w - y)] 59
+A[h—c+p(ow—y) —my+Y]}

with respect to ¢ > 0, & € [0, hl, and y € [0, w]. By continuity, there exists ¢ > 0 such
that this inequality holds for all @ such that |w — @] < e. Given this ¢ > 0 and the &
constructed in Lemma SI.8, pick é according to Lemma SI.9 so that |w; — w| < ¢ for all
t € [0, 8]. This implies that, for any feasible control such that ws > w — k8,

(r+a)W(w) > 0+ u(ci, h—hy) +a[Uy) + W(wr— )]
+ /\[ht —a+p(wr—y) — 7y + Y]

for all ¢ € [0, 6]. Now let ¢ (&) = W(w) + A(® — w). By construction, W(w) = ¢(w), and
by concavity, ¢(®) > W () for all &. In particular, if = 0, then this inequality holds for
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all A > W/ (0). Therefore,

P(w5)e T W (ws)e™ 90 > o(w) — W(w) =0

)
o W(a))Z—/ %[qo(wt)e‘(”“”]dwrW(w,s)e‘(’+“)5
0

S
< W(‘”)if [r+ @)e(w;) — ¢ (0) b e T dt + W (ws)e T2,
0

But ¢(w;) > W(w;), ¢'(w) = A, and &; = h; — ¢; + p(w; — y;) — wy: + Y. Plugging these
into the above relation, substituting in inequality (S9), we obtain

3 _
W(Cl)) > 66+ / {M(C[, h— ht) + a[U(y[) + W(wl‘ _ yt)]}e_(r+a)t dt + W(a),s)e_(H'a)S
0

for any control such that ws > w — k6. If w > 0, Lemma SI.8 shows that this inequality
also holds for any control such that ws < w — k8. Thus, we can take the supremum over
all feasible controls, and we obtain a contradiction of the maximum principle.

Proof of the equality in Proposition SL.7 when the value function is differentiable In this
case, the standard proof applies. If W] (w) = W/ (w), then the value function is differ-
entiable and so W'(w) is an element of its subdifferential. Thus, by Lemma 1.7 in Bardi
and Capuzzo-Dolcetta (1997), there exists a continuously differentiable ¢(®) such that
¢(w) =W (w) and ¢(®) < W (&) in a neighborhood of w. This implies in particular that
¢'(w) = W'(w). Thus, all we need to show is that the reverse inequality of (S7) holds with
A = ¢'(w). Toward a contradiction, assume that there is some 6 > 0 and some (¢, fz, y)
such that

(r+ )W (w)+ 0 <u h—h)+a[UG) + W] 10

+ ¢ ()[h—é+pw—P) —mh+Y].

Consider the controls ¢; = ¢, h; = fz, and y; = min{w;, y}. Then by continuity there is
some small enough & such that the inequality continues to hold for all ¢ € [0, §] and
¢(wr) < W(w¢). Using the definition of ¢(x), we also have that

0=W(w) — ¢(0) < W(ws)e " _ p(ws)erTe?

3
& Ww) < _/ %[go(w;)e‘_(r"'“)t] dt—I—W(wg)e_(r"'“)S
0

)
& W(w)< / [(r + @) p(wr) — ¢ (0@ ]e” T dt + W (wg)e™ 02,
0

Now note that ¢(w;) < W(w;) and that w; = h; — ¢; + p(w; — yr) — wy; + Y, and substitute
in (S10) to obtain

6 —_
W(w) < / [=0+u(c, h—he) +a[Uy) + W(w, — y)]}e T dt + W(ws)e "2,
0

which contradicts the maximum principle of Lemma SI.6 .
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S1.3 The derivatives of the value function

In this section, we derive a number of results regarding the derivative of the value func-
tion. In particular, we show that the value function is continuously differentiable and
twice differentiable almost everywhere over (0, co). The key implication of differentia-
bility is that the HJB equation (S7) holds with equality. This leads to simple characteri-
zations of the policy functions.

S1.3.1 Preliminary results For what follows it will be useful to study the following pe-
nalized problem: for any (w, ) € [0, c0) x (0, 00),

H(w, ) =suplu(c,h—h)+a[Uy) +W(w - )]+ A[h—c+plo —y) —my+ Y]},
X (w, ) =argmax{u(c, h—h) +a[lUy)+W(w -]+ A[h—c+p(o—y)—my+Y]}

with respect to ¢ > 0, & € [0, k], and y € [0, w]. We obtain two lemmas about this penal-
ized problem.

LeMwMmA S1.10. Under both SI and linear preferences, the maximized objective, H(w, )), is
continuous, concave in o, and convex in A. The the maximum correspondence, X (w, A),
is compact-valued, upper hemicontinuous, nonempty, and convex.

ProoOF. We have that u(c, h — h) + A(h — ¢) < |u|| + Ah — Ac, which is strictly negative for
all ¢ > ||u||/A + h. Therefore, any consumption ¢ > |lul|/\A + h is dominated by ¢ = 0. This
implies that we can restrict attention to consumption choices such that ¢ < |Ju| /A + h.
Thus an application of the theorem of the maximum (see Theorem 3.6 in Stokey et al.
1989) shows that the maximum correspondence is compact valued, upper hemicontin-
uous, and nonempty. The convexity of the set X (w, A) follows because the objective is
concave and the constrained set is convex. The maximized objective is convex in A be-
cause it is the upper envelope of affine functions of A. It is concave in w because the
objective is concave and, holding A fixed, the graph of the constraint correspondence is
convex. (]

Next, we discuss properties of the problem when the household has SI preferences.

LeMmwma SI.11. Under SI preferences, the following statements hold:

e The optimal consumption choice, c()), is strictly decreasing, continuous, and satis-
fieslimy_, g c(A) = oo, limy_, o c(A) =0.

e There is some X > 0 such that, for all A € [0, A, the optimal labor choice is h(\) = 0.
For all A > ), the optimal labor choice is strictly positive, strictly increasing, and
continuous, with lim,_, 5 h(A) = 0. Moreover, lim_, o h(A) = h.

e The consumption and labor flows, [c()\), h())], are continuously differentiable over
(0, 00) except perhaps at A, where they have left- and right-hand side derivatives.

e The maximized objective, H(w, A), is strictly convex in A.
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ProoE. Given Inada conditions, we must have ¢(A) > 0 and A(A) < h. The necessary
and sufficient first-order conditions are

uc[e(V), h— ()] =2,
ue[c(A), h —h(M)] = A with = if h(A) > 0.

Let ¢(A) denote the solution of uc[¢(M), h] = A. By strict concavity, it follows that
c(A) is strictly decreasing, and using the Inada conditions that lim,_,g¢(A) = oo and
lim)_, o ¢(A) = 0. The first-order condition implies that 2(A) = 0 if and only if c(A) = ¢(A)
and

ue[é(N), h] — A= 0.

Since u.¢(c, ¢) > 0 and since c(A) is decreasing, the left-hand side is a strictly decreasing
function of A, which is positive when A — 0 and negative when A — co. Thus, there exists
A such that 4(A) = h if and only if A < A. When A € (0, A), the first-order conditions hold
with equality, and a direct application of the implicit function theorem implies, after
some calculations, that

(A = <0,
Uc,c
h'(M) =0,
while, for A € (A, 00),
Upo—u
¢'(A) = ——=0 <,
Ue,cUpe —Ucy
By = et “Hee g

2
Uc,cUp e — Ucy

where all second derivatives above are evaluated at [c()), £())], and where we used that
both ¢ and ¢ are normal goods, which implies that u, ; — u. ¢ < 0. This shows that the
consumption and labor flows are, respectively, strictly increasing and decreasing, and
continuously differentiable except perhaps at A, where they have left and right deriva-
tives.

To show that lim, ., c(A) = 0, note that A = u.[c(A), & — h(M)] < uc[c(A), h] since
uc ¢ > 0. Therefore, lim)_, o0 tc[c(A), h] = oo and the result follows from the Inada condi-
tions. Similarly, for A > A, we have A = ug[c(A), h — h(A)] < ug[c(A), h — h())). Therefore,
lim)— o0 te[c(X), B — h(X)] = 00, and the result follow from the Inada conditions.

Finally, we show that the maximized objective is strictly convex. The maximized
objective can be written as the sum of two functions of A, H(A, w) = H{(\) + Hy(w, A),
where

Hi() = maxu(c, h—h)+Ah—0)},

Hy(w, \) Eyg[l(.;cl);]{a[U(y) +W(w—y)]+A[p(o —y) — mo +Y]}.
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Both H; and H; are convex in A, since they are the upper envelope of affine functions
of A. To show strict convexity, it is sufficient to show that H;()) is strictly convex. This
follows because, by an application of the envelope theorem,

JH; _
e h(A) —c(A),

which is strictly increasing. O
S1.3.2 The first derivative of the value function

Lemma S1.12. Suppose that (S7) holds with equality for some o > 0 and some A €
[W](w), W (w)]. Suppose in addition that there exists some (c, h, y) € X (w, A) such that
h—c+p(w—y)—my+Y =0. Then the value function is differentiable at v with

alU'(y)

W(w)=——".
r+a+a

Proor. Since the value function is concave, it is differentiable almost everywhere. Con-
sider, then, any @ near o such that W is differentiable at ®. Notice that, for & close
enough to w, ¢, h and y + ® — o are all feasible for the optimization problem defining
H(w, A). Therefore,

r+a)W(d)>u(c,h—h) +a[U(y+d—o)+W(w—y)]
+ W (d)h—c+plw—y)—7(y+o—w0)+Y]
>u(c,h—h)+a[U(y+6— o)+ W(ow—y)]-aW(d)o— o]
= u(c,h=h) +a[U(y+ o — o)+ W(o—y)] - 7[W(d) - W(w)],

where the second line follows from our maintained assumption that # — ¢ + p(w — y) —
7y +Y =0, and the third line follows from the concavity of W (w). At w, this inequality
holds with equality. Subtracting the equality at w from the inequality at @, we obtain

(r+a+m)[W(d)—W)]=a[Uy+od—w)+W(w-y).
After dividing by @ — w > 0 and letting & | », we obtain that

al'(y)

W > —.
+(@)= r+a+m
Dividing by @ — w < 0 changes the direction of the inequality. Letting & 1 w, we obtain

al'(y)

W () < ———.
r+a+m
Since, by concavity, W/ (») < W/ (w), we obtain that

al'(y)

W (w)=W (w)= rratw

as claimed. O
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ProrosiTioN S1.13. The value function is continuously differentiable over [0, 00).

ProoF. Suppose that there is some w € (0, 00) such that W/ (w) < W/ (w). Since W is
concave, it is differentiable almost everywhere, and so there exists an increasing se-
quence w, < o such that w, - » and W is differentiable at w,. Note that, by con-
cavity, W'(w,,) is decreasing and positive and so has a limit A. Going to the limit in
the Hamilton-Jacobi-Bellman equation of Proposition SI.7, we obtain (r + &)W (w) =
H(w, A), where H(w, \) is the function on the right-hand side of the HJB equation. Like-
wise, there exists a decreasing sequence w, > o such that ®, - o and W (w) is differ-
entiable at w,. By concavity, W'(&,) is increasing and bounded by W/ (0), which is fi-
nite by Corollary SI.4, and so has a limit A. Going to the limit in the HJB equation, we
obtain this time (r + o)W (w) = H(w, A). We know from Lemma SI.10 that H(w, A) is
convex in A. Hence, it follows that, for all A € [, A], (r + a)W (w) > H(z, A). By concavity,
AW (0) =W (w) < A. Together with the inequality shown in Proposition SI.7, this
implies that the HJB equation must hold with equality, that is,

r+ao)W(w)=H(w, )

for all A € [W] (w), W/ (w)]. With SI preferences, we have reached a contradiction be-
cause we know from Lemma SI.11 that H (w, A) is in fact strictly convex in A.

With linear preference, we need a little more work before reaching a contradiction.
First, we notice that, since A < A, there exists A\; < A, bothin[A, A], such that 1 ¢ [Aq, A;].
Suppose, for example, that A, < 1 (the argument when A; > 1 is symmetric). Then, for
all A € [A1, A2], the optimal choice of consumption and labor flow in the HJB is ¢ = 0 and
h = h. Hence,

H(w, )= sup {a[Uy)+W(w—y]+A[h+pw—y)—ay+Y]}  (S1D)
y€l0, 0]
with respect to y € [0, w]. An application of the envelope theorem (Theorem 1 in
Milgrom and Segal 2002) implies that

Ay _
H(w, ) —H(w, )= fA {h+plo—y(N)] —7y(A) +Y}dA,

1
where y(A) is the solution of the optimization program on the right side of (§11). Notice
that, by strict concavity, y(A) is indeed uniquely defined. By the theorem of the maxi-
mum (Theorem 3.6 in Stokey et al. 1989), it is continuous in A. Now since H(w, Ay) =
H(w, Ay), it thus follows that there evidently exists some A € [A1, A2] such that the inte-
grand is equal to zero, that is, h+ plo — y(A)] — my(A) +Y = 0. But we have reached a
contradiction because, according to Lemma SI.12, this implies that the value function is
differentiable at .

Finally, we need to establish that the value function is continuously differentiable.
For this, take any w > 0. By concavity, it follows that W' (w) > limg, |, W (®) = W'(w4).
To obtain the reverse inequality, take any w < ® < @. By concavity, we have that

W(o) —W(w)

Woys VO WD) gy, s V@ - W)
w—w

w—w

= W(op)zW(w),
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where the first inequality follows by letting ® | » and the second inequality follows by
letting & | w. This shows that W/(wy) = W/(w). Proceeding similarly to the left of any
o > 0, we obtain that W/ (w_) = W/(w). O

Because the value function is continuously differentiable we obtain the following
corollary.

COROLLARY S1.14. Forall w >0,

(r+ )W (w) =max{u(c,h — h) +a[U(y) + W(w — y)]
+ W (@)[h—c+plw—y) —my+Y]},

with respect to ¢ > 0, h € [0, hl, and y € [0, w]. In particular, at o = 0, the equality holds
with or without imposing the positive saving constraint that h —c+7Y > 0.

Proor. The equality when o > 0 follows directly from Proposition SI.7 and the finding
that the value function is differentiable. All we need to show is that the equality holds
at w =0, with and without imposing the positive saving function constraint. To see this,
recall that W’(w) is continuous and that, according to Lemma SI.10, H(w, A) is contin-
uous in (w, A). Therefore, it follows that H[w, W/(w)] is continuous in o > 0. Going
to the limit as w — 0 leads to (r + a)W(0) = H[0, W’(0)], i.e., it is equal to the value of
the optimization program on the right side of HJB without imposing the positive sav-
ing constraint. By Proposition S1.7, (r + a) W (0) < inf,>p ) H(0, A). It thus follows that
infy>w ) H(0, A) = H[0, W’(0)]. As argued earlier in footnote 2, taking the infimum over
A > W'(0) is equivalent to setting A = W’ (0) and imposing the constraint that the saving
function is positive. O

Next we show the following proposition.
ProrosiTioN SI.15. The derivative of the value function, W' (w), is strictly decreasing.

ProOF. Suppose that there exists some ag < by such that W'(ay) = W/(by) = Ag. Then,
since W’'(z) is decreasing, W'(w) = Aq for all w € [ay, by]. Plugging this back into the HJB
equation, we obtain that

(r+ )W (w) =supfu(c, h—h) +a[Uy)+W(w—y)]+Ar[h—c+plw—y) —my+Y]}

with respectto ¢ >0, 4 € [0, hl, and y € [0, w].

This implies that ¢y > @, where @ solves aU'(®) = (r + @ + a)W’'(0). Indeed, one
easily sees by taking the first-order condition that, for all w < @, y = w solves the lumpy
consumption problem, i.e., it maximizes a[U(y) + W(w — y)] — (p + m)W'(w)y. Hence,
if ag < @, then for all w € [ay, @], the value function satisfies

r+a)W(w)= sup{u(c, h—h)+ a[U(w) + W(O)] +Mh—c— 7o+ Y]}
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with respect to ¢ > 0 and 4 € [0, h). Since U(w) is strictly concave, then W (w) would be
strictly concave as well, contradicting the premise that W’ (w) = A for all w € [ag, bg].
The first-order condition with respect to y is

alU'[y(w)] —aW'[o — y(w)] = o(p+m) — ¢y =0,

where ¢ is the multiplier for the constraint y < w. An application of the envelope theo-
rem (for example, Corollary 5 in Milgrom and Segal 2002) shows that

(r+ )W (@) = (r + a)ko = aW'[© = y(0)] + pAo + .
Substituting in the first-order condition to eliminate ¢, we obtain
(r+a+mi=al(y),

which implies that y is constant and equal to yy = (U")~}(1 + ”T”) for all w € [ag, bg].
This implies in turn that the constraint y < w is slack for all w € (ay, bg], that s =0, and,
from the envelope condition, that

r—
W (@ — yo) = <1+ 7’3))\0 =

for all @ € (ag, bo]. Clearly, this remains true by continuity at = ay. Thus, we have
found a new interval, [a1, b1], where a; = ag — yp and b; = by — )y, such that W'(w) = A;.
As before a; > . By induction, we obtain a decreasing sequence a; > @ such that
k
W' (ag) = (1 + r—p) Ao
o
But we know from Lemma SI.4 that W/(z) is bounded above. Since p < r, we have
reached a contradiction. O

S1.3.3 The second derivative of the value function We now offer two propositions about
the second derivative of the value function. First, we can characterize the second deriva-
tive of the HJB equation whenever it exists.

ProrosiTIiON SI.16. The value function is twice differentiable almost everywhere.
Whenever W' (z) exists,

(r+a+mWi(w)=al )+ W (o)h—c+plw—y) —mz+Y]
forall (c, h,y) € X[w, W (w)], and with an equality if o > 0.

Proor. Since W’(w) is decreasing, it is differentiable almost everywhere (see, for in-
stance, Royden and Fitzpatrick 2010, Chapter 5, Theorem 2). To obtain the relationship
shown above, consider some o > 0 and any (c, #, y) € X[w, W/(w)]. Assume that W' (w)
admits a right derivative, that is,

W (0 = tim @) =W (@)

olw w—w
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exists. Then, for all ® > w and close enough to w, ¢, i, and y = y + ® — w are all feasible
for the HJB equation at . Evaluating the right-hand side of the HJB equation at this
feasible choice, we obtain

(r+a)W (&) >u(c,h—h) +a[Uy+é — o)+ W(w—y)]
+ W (d)h—c+plw—y)—m(y+d—w)],

with an equality when & = w. Subtracting the equality at » from the inequality at @, we
obtain that

(r+a)[W (@) —W(w)]=a[Uy+d—ow)—U®y)]
+[W'(@) =W ()]|[h—c+plw—y)—my+Y]
—aW (&) (& — w).

Dividing by @ — » > 0 and letting @ — w, we obtain the inequality of the proposition. If
w >0 and W’'(w) admits a left derivative at w, then repeating the same steps with @ < w
leads to the reverse inequality. O

Finally, the next proposition derives simple sufficient conditions for the value func-
tion to be locally twice continuously differentiable.

ProrosiTiON SI.17. Consider any o such that (i) o > 0, (ii) the saving function is not
zero, and (iii) if preferences are linear, W'(w) # 1. Then W (w) is twice continuously dif-
ferentiable in a neighborhood of .

Proor. Consider any such o and let A = W'(w). With SI preference, X (o, A is always
single-valued. With linear preference, given our maintained assumption that W' (w) =
A#£1, X(,A) is single-valued in a neighborhood of (w, A). Since w > 0, there exists
ysuch that 0 < y < & for all (o, A)in a neighborhood of (w, A). Hence, an application
of Corollary 5 in Milgrom and Segal (2002) implies that H (&, A) is differentiable in a
neighborhood of (w, A) with

&H ~ A~ ~ ~ A A A
i =c(A) —h(A) +p[d — y(@&, V)] = my(&, M)+,

o aU'[y(&d, )] - Am.

Jdw

Since the maximum correspondence is single-valued and upper hemicontinuous, it is
continuous, which implies that the partial derivatives are continuous as well.

Now the HJB implies that the equation —(r + &)W (@) + H(®, ) = 0 is solved by
A = A when & = . The above discussion established that the equation is continuously
differentiable with respect to (&, A) in a neighborhood of (w, A). Moreover, % # 0 at
(w, M) by our assumption that the saving function is nonzero. Hence, an application of
the implicit function theorem (for example, Theorem 13.7 in Apostol 1974) shows that

this equation has a unique solution in some neighborhood of w, and that this function
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can be written as a continuously differentiable function of . But W'() also solves
this equation and, by continuity, must lie in the same neighborhood of w for & close
enough to . Hence, W’ (@) must coincide with the continuously differentiable function
obtained by the above application of the implicit function theorem. O

Note that the proposition does not apply at v = 0 since H (w, A) is not differentiable
with respect to w at that point. Indeed, we show in the next section that lim,,_,o W’ (w) =
—00.

S1.4 Properties of the policy functions

Because the HJB equation holds with equality, the optimal lumpy consumption problem
can be written

maxa[U(y) + W (w = y)] = (p+ MW (w)y (812)
with respectto y € [0, w].

PropositioN S1.18. The optimal lumpy consumption problem (S12) is solved by some
unique y(w) > 0, which is continuous, strictly positive, and increasing in o > 0, with
limy— oo Y(w) = limy,00 @ — y(w) = 0c0. Moreover, there exists some @ > 0 such that
y(w)=wifw < oandonlyif v < & when p+ 7 =0.

Proor. Given that U(y) satisfies Inada conditions but W (w) does not, it immediately
follows that y(w) > 0. Moreover, the first-order necessary and sufficient conditions for
y(w) are

aU'(y) —aW'(w —y) — (p+m)W' (w) >0, with = ify < w.

Since this equation is strictly decreasing in y and increasing in o, it follows that
y(w) is an increasing function of w. Moreover, lim,_, . y(w) = co: otherwise, given
limy,_, oo W/ (@) =0, the first-order condition would not be satisfied for w large. A similar
argument shows that lim,,_, .c @ — y(w) = 4+00. Finally, evaluating the first-order condi-
tion at y = w, we obtain that

aU'(w) —aW'(0) — (p+ MW (w) > aU'(w) — aW'(0) — (p + m)W'(0).

The right-hand side is equal to the left-hand side if p + 7= = 0, and is strictly positive if
and only if 0 < & = (U)~1[(1 + £EZ)W’(0)]. The result follows. O

Next we show that the saving function is strictly positive near zero. This provides
the basis for establishing that there exists a monetary equilibrium since, according to
Proposition SI.18, agents only save in cash near v = 0.

ProrosiTioN S1.19. The saving function is strictly positive and decreasing for all o >
0 and close enough to zero. It is strictly decreasing with SI preferences and with linear
preferences if w > 0.
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Proor. From Lemma SI.12, we know that if the saving function is zero for some w > 0,
then W'(w) = % But W (w) < W’'(0) and U'(y) > U'(w). Therefore, we obtain
that w > (U)"1(1 + ”’T”)W’ (0)]. Hence, the saving function is nonzero for all @ > 0
close enough to zero. Since W’'(w) is strictly decreasing, we must have W'(w) # 1 for
all o > 0 close enough to zero. Hence, an application of Proposition SI.17 shows that
the value function is twice continuously differentiable for all @ > 0 and close enough to

zero. Moreover,
(r+a+mWi(w)=al'[y()]+W (0)s(v),

where s(w) is the saving function. Since U’(y) > U'(w) and W/(w) < W’(0), we obtain
that

W (w)s(w) < (r+a+m7)W(0)—al'(w) - —oc0

as w — 0. Since W’ (w) < 0 by concavity, this clearly implies that s(w) > 0 for all >0
and close enough to zero.

From Proposition SI.18 we know that y = w for all w close enough to zero. Therefore,
the saving function can be written

s(w) =h[W' (o)) —c[W (0)] - 7o +Y.

Under SI preferences, the result follows because /(A) — ¢()) is strictly increasing, while
by W’'(w) is strictly decreasing by Proposition SI.15. Under linear preference, the result
follows because c(A) — h(A) is weakly increasing. O

Finally we note the following corollary.
CoROLLARY SI.20. We havelim,_,o W' (w) = —o0.

The proof follows from the the upper bound derived above, given that the saving
function is strictly positive near w = 0.

SII. CONTINUITY WITH RESPECT TO THE LUMP SUM-TRANSFER PARAMETER

To establish equilibrium existence, we need to establish that policy functions are con-
tinuous with respect to the the lump-sum transfer parameter, Y. As before, we consider
h+Y >0, i.e., werestrict Y to lie in (—}_z, 00). In the remainder of this section, we depart
from our notation and we are explicit about the dependence with respect to (z, Y) of the
various functions under consideration.

We start with a continuity result for the value function.

Lemwma SII.1. The value function W is continuous and increasing in (z,Y) € [0, 00) X
(—h, 00).
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Proor. Consider the fixed-point problem for the value function, W = T[W] and note
the following.

First, it is clear that any policy that is feasible for (z, Y) is also feasible for any (z/, Y')
such that z/ > zand Y’ > Y. Hence, T[W] is increasing in (z, Y).

Second, let Ty;[W] denote the value of the optimization problem (S1) but assuming
that the horizon is finite and equal to H > 0. Then, since utilities are positive, Ty;/[W] <
TIW].

Third, consider any ¢ > 0. Let M, be such that e~ tOMe iy + a(|W | + 1UIDY/(r +
a) < e. The restriction over [0, H,.] of any feasible policy over [0, c0) is a feasible policy
over [0, M.]. Therefore, T[W] < Ty [W1+ e.

Fourth, by inspection of the proof of Lemma SI.2, one sees that the Lipschitz prop-
erty derived for the infinite horizon problem also holds for the finite horizon problem,
with the same Lipschitz constant.

Fifth, in the optimization problem (S1) with finite horizon M., all the policies that are
feasible starting at z with lump-sum transfer Y’ > Y are also feasible starting at z+A(Y' —
Y) with lump-sum transfer Y, where A(Y' —Y) = (Y — Y)/m(e™¢ — 1). Indeed, the
extra real balance allows the household to mimic the lump-sum transfer over the finite
horizon [0, H.]: the household can spend Y’ — Y every period and run out of the extra
real balance A(Y’' — Y) exactly at time M,. This shows that T, [W1(z,Y') < Tar, [W1(z +
AY' -Y),Y).

With these remarks in mind, consider any (z,Y) and (z/,Y’). Let Y = max{Y,Y'},
Y =min{Y, Y'}, Z=max{z, z’}, and z = min{z, z’}. We have

|TIW(z,Y) - TIW1(z,Y)]
<TIWIZ Y) - TIW1(zY)
=TIW1EY) - TIWIEZY) + TIWIE Y) - TIW(z, Y)
< Ty, IWIZY) = Tag,IW1ZXY) + e+ TIWI(Z, X) — TIW1(z,Y)
< T, IWIZ+AN =X),Y) — Ty, IW1EZ,Y) + e+ TIWIE,Y) - TIWI(z, Y),

where the first inequality follows from monotonicity, and the second inequality follows
from the above derived inequalities between the value of the finite and the infinite hori-
zon problems. Now, using the Lipschitz properties of 7[W] and Ty [W], we obtain

ITIW (2, Y) - TIW1(2,Y)| < r;a[A(Y—X) +z-z]+e

We obtain the continuity result by letting (z’, Y') — (z, Y) and then & — 0. O

Next we consider the optimal lumpy consumption problem. Since W (z, Y) is contin-
uousin (z, Y) and since the optimal lumpy consumption problem has a unique solution,
an application of the theorem of the maximum shows the following lemma.

Lemma SIL.2. The optimal lumpy consumption, y(z,Y), is continuous in (z,Y) €
[07 OO) X (_h7 OO).
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Next we work on the first derivative of the value function, W’(z,Y). To do so, we first
need to prove an intermediate result. Let z(Y) =sup{z > 0:z — y(z,Y) = 0}. We know
that, for all z > z(Y), the first-order condition for optimal lumpy consumption holds
with equality, i.e., U'[y(z, Y)] = W[z — y(z,Y), Y]. Given that, for fixed Y, this first-order
condition is continuous in z, we obtain by letting z — z(Y) that

U'[20)] =W/ (0, Y).

Hence, z(Y) is continuous in Y if and only if W’ (0, Y) is continuous in Y. We establish
this in the following lemma.

LemMA SII.3. The function W'(0,Y) is continuous in'Y € (—h, c0).

Proor. We note that, forany Y, W’ (0, Y) solves the HJB equation: W (0,Y) = H(0, Y, A).
Moreover, we know from Proposition SI.19 that the saving function is strictly positive at
zero; hence, it follows from Lemma SI.10 that the left derivative of H with respect to A
is strictly positive, i.e., H,(0,Y, AT) > 0 when evaluated at A = W’(0,Y). Together with
the fact that H(0, Y, A) is convexin A, this implies that the equation W (0, Y) = H(0, Y, A)
has at most one other solution, A, and for this solution H, (0, Y, A*) < 0. Hence, W'(0,Y)
is the unique solution of the HJB equation satisfying H,(0, Y, AT) > 0.

Now consider a sequence of Y,, — Y, the associated sequence A, = W'(0,Y}), and
some (cy, hy) € X (Ay). Since saving functions are strictly positive at z = 0, we have that
h, —cn + Y, > 0. Since the sequence of A, is bounded, it has at least one accumula-
tion point, A*. By continuity, this accumulation point satisfies the HJB equation. Cor-
responding to this accumulation point, there is an accumulation point (c¢*, #*) of the
sequence (cu, h,) that is, by upper hemicontinuity, an element of X (A). By continuity,
it satisfies #* — ¢* +Y > 0. Hence, by Lemma SI.10, we obtain that H, (0, Y, \**) > 0. By
the characterization of the previous paragraph, we conclude that A* = W/(0, Y), and the
result follows. O

Next, we show the following lemma.

LemMA SII.4. Thefynction o(x,Y) solving z— y(z,Y) =x and z > z(Y) is continuous in
(x, Y) € [0: OO) X (_h’ OO)'

Proor. By construction, this function is the unique function of the pair of equations
z—y(z,Y)=x and z > z(Y). To show continuity, consider some Y,, — Y, x,, — x, and
the corresponding sequence z, = ¢(x,, Y;). This sequence is bounded since z, < x, and
Xy is convergent; hence, it has at least one accumulation point, z*. By continuity, we find
that z* solves z* — y(z*,Y) =0 and z* > z(Y), whose unique solution is ¢(x, Y). O

Finally, we obtain the following lemma.

LemMA SI1.5. The first derivative of the value function with respect to z, W'(z,Y), is con-
tinuousin (z,Y) € [0,00) x (=h, 00).
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Prookr. The proof follows from the same reasoning as before. We start from the first-
order condition of the optimal lumpy consumption problem, at any z > z(Y):

Uly(z, )] =W'[z—y(z,Y),Y].
For any x > 0, evaluate this first-order condition at ¢(x, Y). We obtain
U'ly(e(x,Y),Y)]=W'(x,Y).

Since y(z,Y) and ¢(x,Y) are both continuous, the result follows. O

SIII. FURTHER RESULTS: SI PREFERENCES WITH 7 > ()

We now derive some additional properties of the solution under SI preferences. For sim-
plicity we assume here that 7 > 0. A nonnegative inflation rate simplifies some proof be-
cause it implies that the saving function is strictly decreasing, and that the target money
balance is finite. But one may expect results to extend beyond 7 > 0.

SIII.1 Target real balances

We first study the target real balances.

LemMA SII1.1. Under SI preferences, if m > 0, the saving function s(z,Y) = h[W'(z,Y)] —
c[W(z,Y)]—wz+Y iscontinuousin (z,Y).

Proor. We know that W/(z,Y) is continuous and strictly decreasing. That the saving
function is continuous follows from X (A) being singled-valued and, hence, continuous.
That the saving function is strictly decreasing follows because 4’'(A) < 0, ¢/(A) > 0, and
a>0. O

Now we define the target real balance.

LEMMA SIII.2. Let the target real balance be
Z*(Y)=inf{z > 0]s(z,Y) <0}.
Under SI preferences, if m > 0, z*(Y) is strictly positive, finite, and continuous in'Y.

Proor. ByProposition SI.19, we have z* > 0. Moreover, z* is finite since lim,_, o W/(z) =
0 and lim,_,g c(A) = +o0. To prove continuity, consider some Y and some z such that
5(z,Y) < 0. Because the saving function is continuous, it is negative at z for all Y’ close
enough to Y. Since the saving function is decreasing in z, we conclude that z*(Y) < z
for all Y’ close enough to Y. Now consider a sequence Y, — Y, and the corresponding
sequence z, = z*(Y},). By construction, s(z,, Y;) = 0, and so by continuity, s(z, Y) = 0 for
any accumulation point of the sequence z,. We conclude that all accumulation points
of z, must equal z*(Y), since it is the unique solution of s(z, Y). Because z, is bounded
by z for n large enough, it follows that z,, converges to z*(Y). O
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SIIL.2 Twice continuous differentiability

Next we study the second derivative of the value function over [0, z*]. By Proposi-
tion SI.17, we obtain that W (z) is twice continuously differentiable over (0, z*) and has
an infinite second derivative at z = 0. The difficulty lies in establishing that it is also twice
continuously differentiable at the target real balance, z*. Twice continuous differentia-
bility at z* is a useful regularity property: it implies that the system of ODEs satisfied by
optimal real balance is continuously differentiable, and so is well behaved everywhere.
We proceed in steps.

LemMA SII1.3. Under SI preferences, if m > 0, V (z) is twice continuously differentiable
over [0, z), where z > z* solves z — y(2) = z*.

Prookr. Recall that y(z) solves, U'[y(z)] = W'[z — y(z)], with an equality if z > z. If z < Z,
then y(z) = z and so is clearly continuously differentiable with y'(z) = 1. Since V'(z) =
Uly(z)], we obtain likewise that I"(z) is twice continuously differentiable with 1"/ (z) =
U"(2).

If z > z, then the first-order condition holds with equality. Moreover, since we as-
sume that z < z, we have that z — y(z) < z*. Since W (z) is twice continuously differ-
entiable over [0, z*), this implies that the first-order condition defines a continuously
differentiable and strictly decreasing implicit function for y(z). Hence, we can apply
the implicit function theorem and assert that y(z) is continuously differentiable, with
derivative

W'z —y(2)]
W'z - y(@2]+U"[y(2)]

y(z)=

and, by implication, V" (z) = U"[y(2)]y/(2).

Finally, consider z = z in case z < 2. Since lim,_,g W”(z) = —oo (Proposition SI.20)
and since lim,_,; y(z) = z, it follows that lim,_, s+ y'(z) = 1. Since we already know that
y'(z) =1forall z < z, an application of the mean value theorem implies that y(z) is con-
tinuously differentiable at z with y’(z) = 1. By implication, V' (z) is twice continuously
differentiable at z with V" (2) = U"(2). O

ProposiTioN SIII.4. Assume SI preferences and w > 0. Then W (z) is twice continuously
differentiable over (0, co) except perhaps at z*, where W' (z) has left and right limits at z*,
which are negative solutions of the quadratic equations

>

[W[W'(2*)+] = [W(2*)+]}** = r + a+2m)x +aV " (2*) =0
WDV ()] - W ()11 = -+t 20+l "(2) =0,

In particular, if W' (z*) # A, where A is the threshold below which h(\) =0, then W (z) is
twice continuously differentiable at z*.
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Proor. For z # z*, the result follows from Proposition SI.17. The only potential diffi-
culty arises at z = z*. To address it, consider the initial value problem

zZi=h(A) —c(Ap) —mze + Y,
M= +at+mi —aV(z),

starting with initial condition zy # z* close enough to z*, and Ay = W’(z3). From
Lemma SI.11, we know that /(A) — c()) is continuously differentiable for A # A and ad-
mits left and right limits at A. From Lemma SIII.3, we know that V(z) is twice continu-
ously differentiable near z*. Hence the system satisfies Lipschitz conditions so that stan-
dard existence and uniqueness theorems for ODEs apply. By Proposition SI.16, it is clear
that the unique solution of this problem is obtained by solving the initial value problem
zy = h[W'(z¢)]1 — c[W'(z;)] — 7z + Y, with initial condition zy, and letting A(z;) = W/ (z;).

Note that we must have z; # z* at all times. Indeed, suppose toward a contradiction
that there is some finite time T at which zy = z*. Then Ay = W’(z*). But note that, by
Lemma SI.12, [z*, W’(z*)] is a stationary point of the above system of differential equa-
tions. Since the above system of ODEs satisfies standard Lipschitz conditions, it admits
aunique solution for any set of initial condition, and so it follows that z; = z* at all times,
which is a contradiction. Also, since the saving function is strictly positive for all z < z*
and strictly negative for all z > z*, it follows that (z;, A;) converges toward [z*, W’(z*)] as
time goes to infinity.

Next we study the asymptotic behavior of the above system of ODEs near the sta-
tionary point. Assume for now that W’(z*) # X so that the system is continuously differ-
entiable at [z*, W/(z*)]. The Jacobian evaluated at [z*, W’ (z*)] is

S ( W) - c/[W'(z*>]> |

—aV"(z*) r+a+m

Clearly, the determinant of J is strictly negative, implying that J has two nonzero eigen-
values of opposite sign. Therefore, the stationary point [z*, W/(z*)] is a saddle. By the
stable manifold theorem (see Perko 2006, Chapter 2.7), there is a unique trajectory solv-
ing the ODE converging to [z*, W*(z*)], the “saddle path.” Moreover, this trajectory is
tangent to the subspace associated with the negative eigenvalue of J. Formally, let C;
and C; denote eigenvectors associated with the negative and positive eigenvalues of J.
Let (y1, y2) denote the coordinates of any point x on the basis formed by (Cy, C;). These
coordinates solve x = Cy, where C = [C1, C;]. Then any solution of the ODE converging
to [z*, W(z*)] must satisfy y,, = ¢/(y1;), in a neighborhood of the stationary point, for
some continuously differentiable function. The tangency condition is that '(y;) =0,
where (y}, y5) denote the coordinates of the stationary point. Hence, z; and A, must sat-
isfy C{llzt + C{zlx\, = w(Cﬂlz, + szlx\,), where Cl.jf ! denotes the elements of the matrix
C~!. Taking derivatives and rearranging, we obtain that

g—;[cgzl — CRM W (Cltze + Ct M) | = = Co + C W (Clze + CRt ),
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where we used the fact that z, £ 0. Since Cz_zl =det(C)~1Cy; # 0 and since ¥'(y7) =0, we
obtain that
A ol c
lim 25 = lim W"(z) = ——2 = 221,
=00 Z; t—00 C2—2 Cu

where we used the fact that A, = W”(z,)z, and that Cz_l1 = —det(C)~'Cy;. Clearly, the
same result obtains starting from an initial condition z, > z*. Taken together, this gives
us that
. " Co
zlgrzl* W (Z) a C_ll’

and so an application of the mean value theorem shows that W”(z*) = C,1/Cy,. Finally,
a straightforward eigenvector calculation leads to the formula of the proposition.

Finally, if W’'(z*) = A, the system of ODEs is not continuously differentiable at z*;
however, the Jacobian has left and right limits as z — z*. This allows us to solve for the
saddle path separately to the left and the right of the stationary point, [z*, W/(z*)]. For
example, to obtain the left derivative, we extend 2(A) — c(A) — wz + Y to the right of
X so that it is continuously differentiable at \. We can then apply the stable manifold
theorem just as before, obtaining a saddle path that converges to z* from the left, which
is clearly also a saddle path for the original ODE. The eigenvector calculation provided
the left limit of W’ (z) at z*. To obtain the right derivative, we proceed similarly to the
right of A. O

SIIL.3 The time path of real balances starting at z =0

Next consider the initial value problem of finding a differentiable function z(¢,Y) such
that

21‘(Y) = S[ZI(Y)7 Y]7
z0(Y) =0,

(513)

where s(z,Y) = h[W'(z,Y)] — c[W'(z,Y)] — wz + Y is continuous in z > 0 and continu-
ously differentiable in z > 0. As a result, to construct the solution starting at z =0, we
cannot directly use a standard existence theorem because W”(0,Y) = oo and so s(z, Y)
fails to be Lipschitz with respect to z at z = 0. However, we can construct a solution by
running the ODE forward and backward starting at some Z € (0, z*).

The forward solution The forward solution is defined as the solution of the initial value
problem zp;(Y) = s[zr:(Y), Y], with some arbitrary initial condition zpg = z € (0, z*).
From the proof of Proposition SIII.4, we already know that the forward solution remains
less than z*(Y) at all times, and converges toward z*(Y) as time goes to infinity. More-
over, standard results about continuity with respect to parameters (see, for example,
Theorem 2.10 in Tikhonov et al. 1985) show that zg,(Y) is continuous, since we have
shown that W’(z, Y) is continuous in (z, Y).
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The backward solution The backward solution is defined as the solution of the initial
value problem zp;(Y) = —s[zp(Y), Y] starting at zgy = Z € (0, z*), where we extend the
saving function to be s(z,Y) = s(0,Y) for all z < 0. Since the saving function is posi-
tive over [0, z] and continuous, it is bounded away from zero by some s > 0, so that the
backward solution, zp,(Y), must reach zero at some finite time 75(Y) < z/s. Clearly,
standard results about continuity with respect to parameters apply for all # < Tp(Y). We
first establish the following lemma.

LeMmma SIIL.5. Thefunction Tg(Y) = inf{t > 0: zp,(Y) = 0} is continuousin’Y € (—h, 00).

ProOE. Fix some ¢ > 0 and some Y € (—#, co). Since the function zg,(Y) is continu-
ous at t = Tg(Y) by construction, there exists n; such that | — Tg(Y)| < i1 implies that
|z:(Y)| < . Now set any ¢ # Tg(Y) such that |t — Tg(Y)| < min{e, n1}. Since ¢ # Tg(Y),
the ODE satisfies the regularity conditions required for the solution to be continuous
with respect to the parameter Y. Namely, there is some 7, such that |Y' — Y| < 5, im-
plies that |zg,(Y) — zp;(Y’)| < € and, as a result,

|ZBt(Y/)| = ‘ZBZ(Y/) - ZBt(Y)’ + ‘ZBt(Y)’ <2e.

Now since the saving function is bounded below by s, we have s|t' — | < |zg#(Y') —
zp+(Y")| for any ¢. In particular, when ¢ = T(Y’), zpy(Y’) = 0 so that this inequality
becomes

Y/
|Tp(Y') —t| < —|ZB’£ ) < 2

B
Taken together we obtain that

1 Ts(Y) — Tp(Y')| < |To(Y) — t| + |t — Ta(Y')| < &(1+2/s)
for all |Y' — Y| < 72, since we chose ¢ such that |t — Tg(Y)| < &. The result follows. O

Putting the backward and the forward solution together 'We now let

zBTyY)—t(Y) ift < Tg(Y),

zz(Y) = )
' Zreryn(Y) it > Ta(Y).

Our main result is the following proposition.

ProposiTiON SIII.6. The function z,(Y) is the unique solution of the initial value prob-
lem (S13), is strictly increasing in time, converges to z*(Y) as t — oo, and is continuous in
(,Y).

Proor. By construction, z(¢,Y) solves the initial value problem (S§13), is strictly increas-
ing in ¢, and converges to z*(Y) as t — oco. To establish uniqueness, we note that any
solution of (S13) must be strictly increasing, and so must be strictly positive for all # > 0.
Since the ODEs we consider are continuously differentiable for all z > 0, their solution
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is unique given any initial condition, which implies that any solution of (S13) must co-
incide with z(z,Y) for any ¢ > 0. That it also coincides with z(#,Y) for ¢+ = 0 follows by
continuity.

For continuity, the only potential difficulty arises at + = 0, when the ODE fails to
be Lipschitz with respect to z. For this, consider some ¢ > 0 and some neighbor-
hood [Y1, Y,] of Y. The uniqueness result shows that the construction of z(¢,Y) does
not depend on the particular initial condition 2z chosen for the backward and forward
solutions. Hence, we are free to pick z small enough so that z/s|s — s| < ¢, where
s > 0 and s are, respectively, a lower and an upper bound on the saving function over
(z,Y) €10, 2] x [Y1, Y]. Note that this implies that 0 < z/s < Tp(Y’). Forany ¢’ > z/5, we
can write

|Z([/, Y/) —z(0, Y)| = |ZB[TB(Y/) — t/, Y/] — ZB[TB(Y), Y]|
< |ZB[TB(Y/) — t/, Y/] — ZB[TB(Y/) — t/, Y]|
+ |ZB[TB<Y/) -7, Y] — ZB[TB(Y), Y]|

The first term is less than & by our choice of Z, given that the two backward solutions
zp(t,Y) and zp(t,Y’) can differ by at most ¢|s — s| and given that 0 < Tp(Y') — ¢ <
Ts(Y') < z/s. Turning to the second term, recall that in Lemma SIII.5, we showed that
Tg(Y) is continuous. Hence, Tg(Y') — ¢ — Tp(Y) as (¢, Y') — (0,Y). Moreover, for fixed
Y, the backward solution is continuous in time by construction. Hence, the second term
is smaller than ¢ in a neighborhood of (0, Y). O

SIII.4 Time to accumulate balance

Consider some Y and some Z > z*(Y) such that Z — y(Z,Y) < z*(Y). Such Z exists since
y(z,Y) > 0. By continuity, there is a neighborhood [Y{, Y,] of Y such that Z — y(Z,Y") <
z*(Y") forall Y’ € [Y1, Y»]. Finally for any x € [0, Z] and Y € [Y1, Y], consider the time it
takes a household to accumulate an x real balance starting from zy =0,

T(x,Y)=inf{r>0:z(Y) =x},

where T'(x,Y) = oo if this set is empty. For x < z*(Y), T(x,Y) is the unique solution of
the equation z;(Y) = x. For x > z*(Y), T (x,Y) = co. Since z;(Y) is strictly increasing in ¢
and continuous in (¢, Y), we obtain the following lemma.?

Lemwma SIII1.7. The time to accumulate balances, T (x,Y), is increasing in x and contin-
uous in (x,Y) € [0, 0) x (—h, 00).

Proor. For (x,Y) such that x < z*(Y), this follows because the functions z*(Y) and
z;(Y) are continuous, and because 7 (x, Y) is the unique solution of z;(Y') = x. For (x,Y)
such that x > z*(Y), this also follows because, for any (x’, Y’) close enough to (x, Y), we
have that x’ > z*(Y’) by continuity, and so 7 (x’,Y’) = co. Finally, consider x = z*(Y).

3In the lemma, if 7(x, Y) = 0o, then continuity means that lim, y/y_, x.y) 7 (x¥', Y) = oo.
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We seek to show that, for any sequence (x,,Y,) converging to (x,Y), 7 (x,, Y,) — oo.
Suppose, toward a contradiction, that we can find some sequence such that 7 (x,, Y,)
is bounded by some M. Then, for all n, z(M,Y,) > x,. Letting n go to infinity, we ob-
tain that z(M,Y) > x = z*(Y), which is a contradiction since z*(Y) is reached in infinite
time. O

Finally, to establish existence and uniqueness of stationary distributions, as well as
the existence of equilibrium, we need to establish the following continuity property. For
this paragraph, consider some Y and some Z > z*(Y) such that Z — y(Z,Y) < z*(Y).
Such Z exists since y(z, Y) > 0. By continuity, there is a neighborhood [Y, Y,] of Y such
that Z — y(Z,Y") < z*(Y') forall Y’ € [Yy, Y»]. Let

F(z,Z,Y)=1- e~ z2.Y) - where A(z, 2, Y) =max{T(z},Y) = T[z — y(z,Y), Y], 0}.
The following corollary then follows directly from Lemma SIII.7.

CoroLLARY SIII1.8. The function F(z,Z',Y) is continuous in (z,z',Y) € [0, Z] x [0, Z] x
[Y1,Ys].

SIIL.5 The marginal value of real balance is strictly decreasing in Y
Our objective in this section is to show the following proposition.

ProrosiTiON SIIL.9. The marginal value of real balances is strictly decreasing in lump-
sum transfer: foranyY' > Y and z € [0, 00), W/ (z|Y) < W' (z|Y).

To establish this proposition, we go back to our basic dynamic programming prob-
lem: the one-asset version of the contraction mapping operator we studied in Ap-
pendix SI.1,

T[f]<z|Y>=supE[ /0 e_(r+a)t{u(czjl—ht)+01[U(Yt)+f(zt—Yt|Y)]}dt:|, (S14)

with respect to time paths for ¢, y;, y;, and z; and subject to

thht—ct—WZ[+Y,
OSYtSZta
zZp=2Zz.

The argument of our proof goes as follows. We first impose regularity conditions on
the continuation value f(z | Y) in the contraction mapping optimization program (S14):
we assume that f(z | Y) € @, the set of functions f(z | Y) that are concave in z € [0, c0),
continuously differentiable in z € [0, co0), twice continuously differentiable in z € (0, co)
except perhaps at one point where the second derivative admits left and right limits,
such that lim, . f”(z | Y) = oo and such that f'(z | Y) is decreasing in Y. We let ®* C ®
be the set of functions f(z | Y) € ® such that f/'(z | Y) is strictly decreasingin Y.
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In Appendix SIII.5.1 and Appendix SIII.5.2, we use saddle-path analysis to establish
that T[®] € ®*. That is, (i) the set ® is stable under the contraction mapping operator
T and (ii) the contraction mapping operator maps a continuation value with weakly
decreasing marginal value of real balances into a value with strictly decreasing marginal
value of real balances. Since monotonicity properties are preserved by taking limits,
value function iteration then shows that the marginal value of real balances, W/(z | Y),
is weakly decreasing in Y. Since we already know from Proposition SIII.2 that W (z |
Y) is continuously differentiable over [0, c0) and twice continuously differentiable over
(0, 00) except perhaps at one point, this shows that W € ®. Applying the contraction
mapping once more then shows that 7[W] = W € ®*. Therefore, the marginal value of
real balances is strictly decreasingin Y.

SIIL.5.1 Analysis of the optimization program We start with the following result.

LEMMA SIII.10. Iff € ®, then T[f]is concavein z € [0, 00), continuously differentiable in
z € [0, 00), and twice continuously differentiable in z € (0, co) except perhaps at one point
where the second derivative admits left and right limits, such thatlim,_.o f"(z | Y) = oo.

Concavity follows from Lemma SI.1, which we proved earlier. To obtain the smooth-
ness properties, we study the optimization program (S14) using the saddle-path ap-
proach described in Section 9, Part IT in Kamien and Schwartz (1991).

Optimal lumpy consumption Let z denote the level of real balance at which W (z) is
not twice continuously differentiable, if any. We first study the optimal choice of lumpy
consumption given the continuation value W (z):

V(z|Y) EorgfgzU(y)+f(z—le),

y(zlY)= argorgfgzU(y) +f(z—=ylY).

The arguments of Proposition SI.18 imply that IV(y | Y) is concave and continuously
differentiable over (0, co) with 7/(y | Y) = U'[y(z | Y)]. One also sees from the first-order
condition that optimal lumpy consumption is strictly increasing in z. Repeating the
argument in the proof of Lemma SIII.3 shows that ' (z | Y) is continuously differentiable
over (0, co) except at Z such that z — y(2) = Z.

Since f'(z | Y) is decreasing in Y, one sees that y(z | Y) is weakly increasing in Y.
Indeed if y(z | Y) =z, then U'(z) > f/(0 | Y) > f/(0 | Y'), implying that y(z | Y') = z. If
y(z 1Y) <z then U'ly(z| )1 = f'lz = y(z | Y) | Y] = f'z — y(z | Y) | Y], implying that
y(z|Y)=y(z]Y).

Optimal controlvia saddle path  The Hamiltonian for the optimization program (S14) is
H(z,h,c)=u(c,h—h)+aV (z|Y)+ A(h—c—mz+Y). Following Kamien and Schwartz
(1991), the system of ODE:s for the state and co-state variables is

Zr=h(A) —c(Ar) =7z + Y,
(r +a+ 77))\[ = OZV/(Zt | Y) + At,
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I(z]7T): 2= 0-isocline

saddle

: A =0 - isocline

(1) 2*(T) i

F1Gure S1. The phase diagram.

where

{c(M), h(M)} =arg max _u(c, h—h)+Ah—=oc).
c,0<h<h

The z; = 0 isocline is the function A = I(z | Y) defined implicitly by
h(A) —c(A) —mz+Y =0.

The function I(z | Y), shown in plain green on Figure S1, is strictly increasing in z and
goes to infinity as z — @ The A, = 0 isocline is the function A = J(z | Y) defined im-
plicitly by

(r+a+mAi=al’[y(z| V)]

This function J(z | Y) is strictly decreasing in z and goes to infinity as z — 0. One sees
easily that the two isoclines have a unique intersection z* > 0.

Using the arguments in the proof of Proposition SIII.4 shows that the system of ODEs
defines a unique saddle path, illustrated as the orange curve in Figure S1. This saddle
path can be viewed as a strictly decreasing function z — A(z | Y), which is continuously
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differentiable over (0, co) except perhaps at z*, where it admits left and right limits.*
Moreover, in Appendix SIII.5.4, one easily establishes the following properties:

e The saddle path is sandwiched between the isoclines, that is,
O<z<zm Iz|Y)<Az|IY)<J(z|Y), (S15)
z>z" Jz|IY)<Az|Y)<I(z|Y), (S16)
with strict inequalities for z # z*.
e The saddle path has a finite limit at z = 0: lim,_,g A(0 | Y) < oo.
o The derivative of the saddle path is infinite at zero: lim,_,gA'(z|Y) = —o0.

¢ The saddle path is the derivative of the maximum attainable utility, that is,

TIf1(z|Y) =TIf1(z* | Y) + /Z/\(x |Y)dx, where

u(c*, h—h*) +aV(z*)
r+a ’

TIfI(z* 1Y) =
SII1.5.2 The saddle path shifts down with Y Next we establish the following lemma.

LemmMa SIII.11. Given any continuation value f € ® in the optimization program (S14),
the marginal value of real balances is strictly decreasing in Y. That is, foranyY' > Y and
z€[0,00), A(z|Y) < A(z|Y).

Graphically, in the phase diagram show in Figure S1, this means that the saddle path

shifts down when Y increases. Our proof proceeds in two steps.

Step 1: The saddle path for Y is strictly above that for Y’ at z*(Y) Indeed suppose that
z*(Y) < z*(Y’"). Using (S15), we obtain

Az () Y] <J[22(Y) | Y]

<J[z2(N) Y]

= A5 () Y],

where the inequality on the second line follows because J(z | Y) is decreasing in Y, and

the equality on the third line follows by definition of z*(Y). Next suppose that z*(Y) >
z*(Y’). Using (S16), we obtain

Az Y] < I[z*(Y) | Y]
<I[z2(Y)|Y]
= Az (V) 1Y],

4The lack of differentiability of A(z | Y) arises because the system of ODEs is not continuously differen-
tiable at (z*, A*) if either A = A or z* = 3.
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where the inequality on the second line follows because I(z | Y) is strictly decreasing in
Y, and the equality on the third line follows by definition of z*(Y).

Step 2: The saddle path forY is uniformly and strictly above that forY' We already know
that this property holds at z*(Y) and the saddle path for Y is above that for Y. Now
assume, toward a contradiction, that they cross to the left of z*(Y). Then consider the
largest crossing point less than z*(Y), z. Clearly, since this is the last point at which the
saddle paths cross before z*(Y), it has to be the case that the saddle path for Y’ must
cross that for Y from above, thatis, A(z |Y) = A(z|Y)and M'(Z|Y) = A'(z|Y'). Letting
A=A(Z|Y)and using the expression for the derivative of A(z | Y), this can be written

(r+a+77);\—aU’[y(2|Y)] . (r+a+77)5\—aU’[y(2|Y’)]
hA) —cA)—m2+Y — hA) —cA) —mz+Y
. (r+a+mi—al[yz|Y)]
h(A) —c(A) —m2+Y

where the inequality on the second line uses that y(z | Y') > y(2 | Y) and that, to the
left of z*(Y), we have that %, > 0, which can be written as 0 < A(A) — c(A) — 72 + Y <
h(A) — ¢(A) — w2 + Y'. Now, to the left of z*(Y), we also have that A; <0, i.e., (r + a +
™A —al’ [y(z]Y)] < 0. Therefore, the above inequality implies that Y’ <Y, which is a
contradiction.

Next, suppose, toward a contradiction, that the two saddle paths cross to the right of
z*(Y). Consider the smallest crossing point larger than z*(Y), z. Clearly, since this is the
first point at which the saddle paths cross to the right of z*(Y), it must be that the saddle
path for Y’ must cross that for Y from below. Letting, as before, A = A(3 | Y), this can be
written

(r+a+mAi—aly(21Y)] . (r+a+mi—al[yz|Y)]
hA) —cAD) —m2+Y = hAD)—cA)—7mi+Y
>(r+a+77)5\—aU’[y(2|Y’)]
T h(AD) —c(A)—7E+Y

b

where the inequality on the second line follows because y(z | Y) < y(z | Y') and because,
to the right of z*(Y), z; < 0 so that h(A) — c¢(A) — 72 +Y < 0. Now, to the right of z*(Y),
we also have that A, > 0, which can be written (r + a + m)A — aU'[y(z]Y)] > 0. Since
y(21Y) < y(2|Y"), this implies that (r + a + m)A — aU’[y(2 | Y')] > 0. Combining with
the above, we find that Y’ <Y, another contradiction.

SIIL.5.3 Finishing up the proof Taking stock of Lemmas SIII.10 and SIII.11, we obtain
the following stability result.

LEMMA SIIL.12. IfW(z|Y) e D, then TIW]1(z|Y) € *.

Now start the value function iteration with some guess W (z | Y) that belongs to
® and let W (z | Y) = T"[W)(z | Y) denote the nth iterate. Then it follows from
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Lemma SIII.12 that W € ® so that for any z; < z; andany Y <Y/,

W@ Y)W (@l Y) W@l Y) =W Y)
Zr — 21 - Z) — 71 )

We already know from the analysis of Appendix SI that value function iteration con-
verges to the value of the original optimization problem, i.e., lim, o W (z | Y) = W (z |
Y). Therefore, going to the limit in the above equation, we obtain

W(z|Y)=W(z 1Y) V@)W Y)
Zr— 21 - Zy)— 21 '

We also know from the analysis of Appendix SI that the value function is continuously
differentiable. This allows us to go to the z; — z; limit in the above equation and obtain

Wz 1Y) =W (z1|Y).

Hence, the marginal value of real balance is decreasing in Y. But it follows from Propo-
sition SIII.2 that W € ®, so applying Lemma SIII.12 once again we find that T[W] € &*.
Since T[W]= W, this means that the marginal value of real balances is strictly decreas-
inginY.

SII1.5.4 Omitted proofs

The saddle path is sandwiched between the isoclines Consider the saddle path to the
left of z*; the proof for for the saddle path to the right of z* is symmetric and is therefore
omitted. Since the saddle path is a strictly decreasing function of z, while the z =0
isocline, I(z | Y), is strictly increasing, it is clear that the saddle path is always strictly
above the isocline for z < z*: A*(z|Y) > I(z | Y). Now turn to the A = 0 isocline, J(z | Y).
From Proposition SIII.4, we know that the slope of the saddle path near z* is given by the
negative root of

[W[A)+] = [V +])x? = (r+ e+ 2m)x + oV (2" =) = 0. (S17)

The slope of the A =0 isocline, alternatively, is

o

— 2 V"(z*-) <.
r+a+mw

Itis clear that the second-order polynomial of (§17) is strictly positive when evaluated at
rats V" (z*—), which establishes that the slope of the saddle path is strictly larger than
the slope of the isocline. Hence, in a neighborhood of z*, the saddle path is below the
A = Oisocline. Next assume that the saddle path crosses the A = 0isocline at some z < z*,
and consider the last intersection before z*, z. Then it must be that the isocline crosses
the saddle path from below, i.e., J/(z | Y) > A*(z | Y). But this leads to a contradiction

because, J'(z | Y) < 0 and, since Z belongs to the isocline, A'(Z | Y) = 0.
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The saddle path is bounded away from infinity at z =0 Integrating the ODE for A; from
some ¢t < 0 to t =0 gives

0
/\t:)\oe(r+a+ﬂ')t+a/ Ul[y(zs|Y)]e—(r+a+77)(s—t)ds'
t

The value of the saddle path at z =0 is lim;_, _ A;. The limit as t — —oo of the first term
is evidently zero. The second term is bounded away from infinity. Indeed, since z; is
positive and decreasing over time, we can write

0
0< a/ U’[y(zs | Y)]e—(r+a+77)(s—t) ds
t

0 / Z o 0 y .
<a | UlyGIN]ds<— | UlyzIY)]zds
t 20 20 Jt

< ;{U[y(Zo 1] = Uly(z Y]},

o

which is bounded away from infinity because U(y) is bounded below.

The derivative of the saddle path is infinity as z — 0 Finally, from the ODE for A,, it is
clear that lim;—, s A; = —00. The ODE for z, shows that lim—, _o0 Z; = A[A(0 | Y)]— c[A(0 |
Y)]+Y € (0, 00). Therefore, lim, .o A'(z | Y) = lim;_, o g_; = —00.

The saddle path is the derivative of the maximum attainable utility The HJB equation
associated with the control problem is

Tf1(2) = m}?x{u(c, h—h)+aV(2)+Tf)(2)h—c—7z +Y1},
C’ 7y

where we omit the Y argument to simplify notation. Given the saddle path, A(z), we
consider the function

(r+a)T(2)=T(z") + /f A(x)dx, where 7 (z*) = ulc(A(z")), h — h(A(z*))] + aV () .

5 r+ao

The function 7 (z) is continuously differentiable. Using that 77(z) = A(z), the right-side
of the HJB equation evaluated at 77(z) is

u[c(A(2)), h— h(M2))]+ &V (2) + M2)[h(A(2)) — ¢(AM(2)) — Tz + Y].

It is equal to (r + a)7 (z*) at z = z*. Using the envelope condition, one sees that the
derivative of the right side of the HJB is equal to

aV'(z) —wA(2) + N(2)[h(A(2)) — c(AM(2)) =Tz + Y] = (r+ )A(2) = (r + )T (2),

where the first equality follows from the ODE for the saddle path. Hence, we obtain
that the right side of the HJB equation is equal to (r + «)7 (z), establishing that 7(z)
satisfies the HJB equation. A standard optimality verification argument then establishes
that 7(z) = T[f1(2).
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SIV. FURTHER RESULTS: LINEAR PREFERENCE WITH 7 > 0
SIV.1 The target level of real balance

With linear preferences preferences, we define three critical levels of real balances:

z1(Y)=inf{z>0:W'(z,Y) <1},

h+Y
Zh(Y)=T,

z.(Y) :max{ _E+Y,O}.
iy

LEMMA SIV.1. The critical levels z;(Y), z,(Y), and z.(Y) are continuous in'Y € (—h, 00).

Proor. This is obvious for z;,(Y) and z.(Y), and the only potential difficulty concerns
z1(Y). Consider any sequence Y, — Y and the associated sequence z, = z1(Y,). Re-
call that, by concavity, zIW/(z,Y) < ||W]|, implying that z, is bounded and so it has at
least one accumulation point, z. If this accumulation point is strictly positive, then
W'(zn,Yy,) =1 for all z, close to the accumulation point, implying by continuity that
W'(z,Y)=1; hence, z = z1(Y). If the accumulation point is zero, then by continuity we
obtain that W’(0,Y) < 1; hence, z = z{(Y). Thus, all accumulation points of z, are equal
to z1(Y), implying that z, — z1(Y). O

At the first critical level, z; (Y), the marginal value of real balance reaches 1. Note that
the upper bound of Corollary SI.4 implies that z; (Y) = 0 when Y is large enough: that is,
if the lump transfer is very large, then a household never finds it optimal to supply labor
(which, of course, cannot be the basis of an equilibrium; otherwise no output would be
produced). The second critical level, z;(Y), is the stationary point of real balance of a
hypothetical household who always works full time. The third critical level, z.(Y), is the
stationary point of real balance of a hypothetical household who always consumes up to
its satiation point, c. If the satiation point is very large, then of course z.(Y) = 0. Finally,
note that z; (Y) > z.(Y).

With these critical levels in mind, there are two cases to consider. First, if z;(Y) >
z.(Y), then a household works full time until its real balance reaches the target
min{z;(Y), z;(Y)}. If z1(Y) < z.(Y), then when the household works full time until its
real balance reaches z;(Y) and then consume up to its satiation point until its real bal-
ances reach the target z.(Y). Therefore, in this economy with linear preferences, the
target level of real balances is

2*(Y) = max{z.(Y), min{z,(Y), z1(Y)}}. (S18)

SIV.2 An explicit calculation of times to accumulate real balance

We need to consider two cases.
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Case 1: If z1(Y) > z.(Y) In this case, the target level of real balance is z*(Y) =
min{z1(Y), z;(Y)} > z.(Y). Then the ODE of real balance is

. h—mzz(Y)+Y ifz(Y) < z*(Y),
z(Y) = . N

0 if z,(Y) = z*(Y).
In particular, if z,(Y) < z1(Y), then the saving function is Lipschitz in real balance and
vanishes as real balances approach their target, implying that the target is reached in
infinite time. If z;(Y) > z1(Y), then the saving function remains bounded away from

zero as real balances approach their target, and the target is reached in finite time. The
time path of real balance has the explicit solution

z:(Y) =min{z*(Y), z,(Y)(1 — e~ ™)},

and the time it takes to reach any x is

1 X
——1 1-— if (Y
T(x,Y) = wog( zhm) =200, (519)
+00 if x > z*(Y).

Case2: If z1(Y) < z.(Y) Inthis case, when z = z;(Y), the saving function is strictly pos-
itive even when households consume up to their satiation point, ¢. Hence, households
continue to accumulate balances until they reach the stationary point z.(Y) = z*(Y). In
this case, z*(Y) = z.(Y) and the ODE of real balance is

h—mzz(Y)+Y  ifz(Y) < z1(Y),

z(Y) = { _ .
—Cc—7mzz(Y)+Y ifz1(Y) < z:(Y) < z.(Y).

Note that, in this case, the stationary point, z*(Y), is reached in infinite time. Solving for
the time path of real balance as before, we obtain that the time to reach any x is

1 10g<1 B min{x, z; (Y)}>
T

Zh({Y) ¥,0]
Tx,Y) = 1 max{x — z;(Y), . . (S20)
o (1_ 2 (V) —21(Y) ) =200,

400 if x > z*(Y).

SIV.3 A continuity property

To establish existence and uniqueness of stationary distributions, as well as the exis-
tence of equilibrium, we need to establish the following continuity property. For this
subsection, consider some Y and some Z > z*(Y) such that Z — y(Z,Y) < z*(Y). Such
Z exists since y(z, Y) > 0. By continuity, there is a neighborhood [Y1, Y,] of Y such that
Z—y(Z,Y)<z*(Y)forall Y € [Y,Y>]. Let

F(Z, Z/, Y) =1- e_aA(ZaZ,>Y),
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where A(z, 2/, Y) =max{7 (2, Y) = T[z—y(z,Y), Y], 0}. Notice that A(z, 2/, Y) = +o0 for
all z/ > z*(Y). We have the following lemma.

LeEMmMmA SIV.2. Consider some (z,z',Y) € [0, Z] x [0, Z] x [Y1, Y] such that Z' is a conti-
nuity point of 2’ — F(z, z',Y). Then, for any sequence (z,,, Y,) — (z,Y), F(z, 2/, Y,) —
F(z,Z,Y).

ProoF. One sees easily that the function z’' +— F(z, z/,Y) is continuous at z’ except at the
target when it is reached in finite time, i.e., except at z’ = z*(Y) when T[z*(Y), Y] < oc.
With this in mind, we proceed to analyze three cases.

Case I1: If z/ > z*(Y). Then F(z,z,Y) = 1. Moreover, by Lemma SIV.1, we obtain
by continuity that z’ > z*(Y,) for n large enough. Since z,, — y(z,, ) < z*(Y,) by our
choice of Z, this implies that F(z,, z/, Y,) =1, hence, that F(z,, z’,Y,) = F(z,, 2, Y).

Case 2: If 2/ = z*(Y) and T[z*(Y), Y] = co. Consider first that z;(Y) > z.(Y). Then it
must be the case that z*(Y) = z;,(Y) > z.(Y), since otherwise, z*(Y) would be equal to
z.(Y) and would be reached in finite time. Moreover, from (S18), it must also be the case
that z1(Y) > z;(Y). Taken together, this implies that z;(Y) > z.(Y), a strict inequality
that must be satisfied for n large enough, by the continuity result of Lemma SIV.1. It
then follows that, for n large enough, A(z,, z/, Y},) is either equal to oo or to

1 Zh(Y) 1 Zn — y(Zn, Yn)
_Fl°g<1_z;,m>>+¥1°g<l_ 1Y) )

Keeping in mind that z, — y(z,,Y,) < Z — y(Z,Y,) = Z — y(Z,Y) < z;(Y), one sees
that this expression goes to infinity as n goes to infinity. Hence, F(z,,z',Y,) > 1 =
F(z,Z,Y).

Second, consider that z1(Y) < z.(Y). Then, by (§18), z*(Y) = z.(Y). In this case,
the same reasoning as above, but based on formula (520), shows that F(z,, z/,Y,) —
F(z,Z,Y).

Case 3: If 2/ < z*(Y). If z1(Y) # z.(Y), the result follows by continuity using the ex-
plicit formulae (S19) and (S20). If z1(Y) = z.(Y), then z*(Y) = z1(Y) = z.(Y), and so
our maintained assumption implies that z’ < z*(Y) = z{(Y). By construction, we also
have that z — y(z,Y) < z*(Y) = z;(Y). By the continuity result of Lemma SIV.1, these
inequalities hold for » large enough. Hence, for n large enough, 7 (x,Y,) is given by
formula (S19), both for x = z’ and x = z,, — y(z, Y5). It then follows by continuity that
F(zy,Z,Y) — F(z,Z,Y). O

SV. EQUILIBRIUM
SV.1 Stationary distribution

Fix some Y and some Z > z*(Y) such that Z — y(Z,Y) < z*(Y). Such Z exists since
y(z,Y) > 0. By continuity, there is a neighborhood [Y{, Y,] of Y such that Z — y(Z,Y’) <
z*(Y) forall Y €[Yy,Y2]. Let

A(z,2,Y)=max{T(z,,Y) = T(z — y(z,Y),Y), 0}
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that we introduced before. In words, the function A(z, z’,Y) gives the time it takes to
accumulate strictly more than 2z’ after receiving a lumpy consumption opportunity with
real balance z. Equipped with the function A(z, z/,Y), we define the transition proba-
bility between money balances prior to the last consumption opportunity and current
money balances. Namely, consider a household at time « and let 7, € (—o0, ) denote
its last lumpy consumption opportunity. Then consider the probability that the current
money balance is less than z’, conditional on having z money balance at the last lumpy
consumption opportunity:

F(z,2,Y)=P{z(u) < ' | 2(ry) = z} = 1 — ¢ 7*AEFY),

Notice that F(z, z/,Y) =1 for all z € [z*(Y), Z]. Collecting the results of Corollary SIII.8
and Lemma SIV.2, we obtain the following proposition.

ProposiTioN SV.1. With SI and linear preferences, the function F(z,z',Y) has the fol-
lowing properties:

e Itis continuous in z’' except if z/ = z*(Y) and T[z'(Y), Y] < oo when it is right con-
tinuous.

e Itisdecreasing in z and increasing in z'.

e Forany (z,z,Y) € [0, Z] x [0, Z] x [Y1, Y] such that Z' is a continuity point of
7'+ F(z,7,Y), and for any sequence (z,,, Y,) — (z,Y), F(zy,2',Y,) = F(z,2,Y).

For fixed z and Y, the function z’' — F(z,z/,Y) is increasing, is right continuous,
isequal to 0 at 2/ = z — y(z,Y), and is equal to 1 for z > z/ = z*. By Theorem 12.7 in
Stokey et al. (1989; SLP), it thus defines a unique probability measure Q(z, -, Y) on [0, Z]
equipped with the Borel o-algebra, B([0, Z]). To apply the results of Chapter 12 in SLP,
we first show the following lemma.

LEMMA SV.2. Forany A € B([0, Z]), z+ Q(z, A,Y) is measurable.

Prookr. Clearly the property holds for all sets of the form [0, b) and (a,b] for 0 < a <
b < Z, and for the union of any finite and disjoint collection of such sets, the family of
which is, by Exercise 7.6 in SLP, an algebra generating B([0, Z]). By an application of the
monotone convergence theorem (Theorem 7.8 in SLP), one sees that the collection of
sets A such that Q(z, 4,Y) is measurable is a monotone class. Thus, by the monotone
class lemma (Lemma 7.15 in SLP), it follows that Q(z, 4,Y) is measurable for any A4 €
B([0, Z]). O

A stationary distribution of money holding is a solution of the fixed-point problem:
z
A=T*[A, Y], where T*[A,Y](A4) = / O(z, A,Y)\(dz) forall A € B([0, Z]). (S21)
0

The transition probability function Q(z, -, Y) has one key property: it is monotone, in
the sense that a higher z leads to a higher distribution of current money balance, in the
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sense of first-order stochastic dominance. This follows directly from the observation
that F(z,z,Y) is decreasing in z: a household with higher money balance at its last
consumption opportunity tends to have a higher current money balance. Then a direct
application of results in SLP delivers the following proposition.

ProrosiTiON SV.3. The fixed-point problem (S21) has a unique solution, A*(Y), with
the following properties:

e Its support is included in [0, z*(Y)].
e Itdoes not dependon Z.

e Itis continuousin’Y in the sense of weak convergence.

Proor. Monotonicity is shown in the paragraph above. The Feller property follows from
the third point of Proposition SV.1, together with point b in Exercise 12.7 and Theo-
rem 12.8 in SLP. Next, we verify the SLP mixing condition, Assumption 12.1. For this
we let a =0, b = z*(Y), and ¢ = [z2*(Y) + z*(Y) — y(z*,Y)]/2. Then Q(z*,[0,c],Y) =
F(z*,¢,Y) > 0 since ¢ > z*(Y) — y[z*(Y), Y]. Moreover, Q(0, [¢, z*(Y)],Y)=1—- F(0,c,
Y) > 0 since ¢ < z*(Y). It thus follows from Theorem 12.12 in SLP that there exists
a unique stationary distribution, A(Y). That the support is included in [0, z*(Y)] fol-
lows because Q(z, A,Y) =0 for any 4 C (z*(Y), Z]. Given that the supports of A* and
0(z,-,Y) are allincluded in [0, z*(Y)], it is clear that the stationary distribution does not
depend on the particular Z used for its construction: a fixed point for some Z remains
a fixed point for Z’ # Z, and so must coincide with the fixed point for Z’ by uniqueness.
Finally, continuity in Y follows from the third point of Proposition SV.1, together with
Theorem 12.13 in SLP. O

SV.2 Existence of equilibrium

We proceed to establish that an equilibrium exists. The equilibrium equation can be
written as a fixed-point problem in the space of real lump-sum transfers,

Y=7T/ zdM(z,Y), (822)
0

where A* (-, Y) is the stationary distribution of real balance. We obtain the next proposi-
tion.

ProprosiTION SV.4. Under SI or linear preference, if m > 0, the equilibrium fixed-point
equation has at least one solution.

Prookr. First, we note that the stationary distribution cannot be concentrated at z =0,
since Q(z,{0},Y) =0 for all z. Hence, when Y = 0, the left-hand side of (522) is zero
and so is less than the right-hand side, which is strictly positive. When Y — oo, we have
that W/(z,Y) — 0 for all z € [0, co0). This implies that labor supply is zero and consump-
tion is strictly positive for all z € [0, z*(Y)]; hence, the saving functionis s(z) < —mz + Y.
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Plugging in s[z*(Y)] = 0, it follows that z < z*(Y) < Y/ for all real balances z in the sup-
port of the stationary distribution, A*(Y), implying that the right-hand side of (S22) is
less than the left-hand side. Finally, note that (S22) is continuous because, by Proposi-
tion SV.3, the stationary distribution A*(Y) is continuous in the sense of weak conver-
gence. The result then follows by an application of the intermediate value theorem. O

SV.3 Further results about the equilibrium with linear preferences

We start with the following observation.
Lemwma SV.5. In equilibrium, with linear preferences, z. < z;.

Proor. Since it takes time to accumulate money balance, we must have A*({z*}) < 1.
Together with the market-clearing condition, Y = 7 [ zdA*(z), this implies that Y < 7z*.
Since Y > 7z, we obtain that z, < z*. Next note that since z* is a stationary level of
money balance, there must be some (c*, h*) € X[W'(z*)] such that0 = A* — ¢* — wz* 4+ Y.
Given that Y > #z*, it follows that 4* — ¢* > 0. With linear preferences, this implies that
W’(z*) > 1 and so that z; > z*. The result follows. O

From this observation, the next lemma follows.

LemMmaA SV.6. In equilibrium, with linear preferences, there exists some z > z* such that
the value function W (z) is twice continuously differentiable over (0, z], with second
derivative:

r+a+mW (z)—aV'(z)

ifz+#z%,
h—mz+Y f2#
W' (z)=10 ifz=z"and z* = z,
V// Z*
% ifz=z"andz* = z;,

Proor. There are two cases to consider. First, suppose that z* = z; < z;,. From Propo-
sitions SI.16 and SI.17, we already know that W (z) is twice continuously differentiable
over (0, z1) and (z1, z), and that its second derivative satisfies

h— Y ifze(0
F+atmW (2)=aV'(z) + W'(z) x w2+ Mze ), (S23)
—c—mz+Y ifze(z,zp).

The only potential difficulty arises at z;. From Lemma SI.12, we know that (r + « +
W' (z1) = aV'(z1). Given that z; # {z¢, z,}, both h — mz; + Y #0and —¢ — 7wz + Y #
0, and so it follows by taking the limit z — z;” and z — zf in (S23) that W” (z)) =
W"(z{) =0. An application of the mean value theorem then implies that W’(z) is con-
tinuously differentiable at z; with W”(z;) =0.

The second case is when z* = z;, < zy. As in the previous case, we know from Propo-
sition SI.17 that W(z) is twice continuously differentiable over (0, z*). Then one can
apply the same saddle-path arguments as in Lemma SIII.3 and Proposition SIII.4, and
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obtain that W (z) is twice continuously differentiable over (0, 2) for some z > z*, with the
claimed second derivative. O

Lemma SV.7. In equilibrium, with linear preferences, W (z) is independent of ¢ over
[0, z*].

Proor. Consider the value functions W (z, ¢;) obtained for some c¢;. By direct integra-
tion of the HJB equation, one easily observes that in the optimization program (S1), the
maximum is achieved by setting ¢; =0 for all ¢, h; = huntil z; = 2*(&), hy = 72*(&) = Y
when z; = z*, and y; = y[z].

Now consider any ¢, > ¢, and suppose that the optimization program (S1) attains
a strictly higher value than under ¢;, given W (z, ¢;). That is, there exists a feasible plan
(¢, fz,, V¢, 21} such that

0 —
W(z,¢1) < / e~ min{é,, &) + h— hy + U] + W2 — i, 11} de. (S24)
0

Note that we can without loss of generality assume that ¢; < ¢;. Indeed, replacing ¢; by
min{¢;, ¢;} and keeping h ¢ and y; the same remains feasible and achieves a higher value.
Because the constraint set is linear, any convex combination of the two plans, xg; =
Bxi+ (1 — B)xys, x € {c, h, z, y}, is feasible. Moreover, since ¢; < ¢, (1 — B)¢; + B¢ < c1 as
long as B > 0 is small enough. Therefore, for small 8 > 0,

min{CBt7 El} =Cpr = (1 - B)min{cla El} + Bmin{éb 52}

Using the concavity of the objective, together with the strict inequality (S24), we obtain
that

00 -
Wiz, ¢) < / €7(r+a)l{min{cﬁz, ¢} +h — hp+ a{UPpd + Wlzp — yau, €11} } dt,
0

which is a contradiction. This shows that
m —_
W(z,¢) > sup/ e~ O min{éy, &) + h — hy + a{U[P + W[ — §r, ¢11}} dt
0

over the set of feasible plans. Since the upper bound is clearly achieved for {c;, %;, y;, z:},
we obtain W(z, c¢;) = W(z, ¢), as claimed. O

SVI. OPTIMALITY VERIFICATION IN PURE CURRENCY ECONOMIES

In this section, we provide an optimality verification proposition: we show that the value
function solving the Hamilton-Jacobi-Bellman equation is a solution of the sequential
optimization problem of a household. The proposition covers all the intertemporal op-
timization problems considered in the paper: with linear and SI preferences and lump-
sum transfers, with linear preferences and nonlinear and possibly discontinuous trans-
fers, and with quadratic preferences. While the general method of proof is standard, it
requires some extra work (adapted from Bressan and Hong 2007) because in the case of
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discontinuous transfers, the value function is not differentiable at the target. See Aguiar
et al. (2013) for an earlier application of these methods in a model of sovereign debt
crises.

SVIL.1 The intertemporal household’s problem

We start by stating the problem of the household in sequence. Let {#;, t > 0} denote the
filtration generated by the process for lumpy consumption opportunities. Let the suc-
cessive arrival times of lumpy consumption opportunities be denoted by 77 < 75 < ---.
Consider a household starting with real balance zg > 0. For this household, a feasible
plan is a collection of stochastic processes, {c, &, y, z}, with the following properties.
First, these processes must satisfy regularity and measurability restrictions: we con-
strain them to be adapted and left continuous. Second, at each time, these processes
must satisfy inequality constraints:

¢>0, O0<h<h, 0<y<z, and z>0.

Third, consumption is assumed to remain bounded over finite horizons, i.e.,
Sup,cpo, 1 ¢ < oo for all 7. Fourth, the real balance process must solve

zy=hy—c —mz; +Y(z;) almost everywhere over (7, T;4+1),
ZT,‘,*' = ZT,, — yTn.

Finally, the real balance process must satisfy the initial condition zy = z. The household
problem is, then, to choose a feasible plan so as to maximize the intertemporal utility:

0 B 00
E|:/ e "ues, h—hy)dt + Z U(yrn)e’T”:|.

0 n=1

An optimal plan is a feasible plan that achieves the maximum attainable utility. To ana-
lyze all the cases considered in the paper, we maintain the following assumption.

AssumpTION SVI.1. The utility function u(c, h— h) is continuous, concave, positive, and
bounded. The utility function U(y) is continuous, concave, and positive, and satisfies
U(y) <ky + Kyy for some ky, Ky > 0. The transfer is positive, increasing, and satisfies
Y(z) < ky + (Ky + 7)z for some ky, Ky + m>0and Ky <r.

The condition Ky < r implies that real balances grow at a rate smaller than the dis-
count rate, which provides an appropriate “transversality condition” for completing the
standard optimality verification argument.

SV1.2 The optimality verification argument

We proceed by showing that the value function that is obtained via the Hamilton-Jacobi-
Bellman equation is the maximum attainable utility for the household’s problem. To
cover all the cases analyzed in the paper, we maintain the following assumption.
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AssuMPTION SVI.2. There exists some value function W (z) with the following proper-
ties. It is Lipschitz continuous and positive, and satisfies W (z) < kw + Kywz for some
kw, Kw > 0. It is continuously differentiable over [0, co) except perhaps at some z* > 0. It
satisfies, for z # z*,

(r+a)W(z) =max{u(c,h—h)+e[Uy) + W (z— )]+ W (2)|[h—c—mz+Y(2)]} (S25)
with respect to c > 0, h € [0, hl, and y € [0, z]. For z = z*, it satisfies
(r+a)W(z) = max{u(c, h—h)+ alUy)+W(z-y]} (S26)
with respecttoc > 0, h € [0, hl, and y € [0, z], and subject toh —c — wz+ Y(z) =0.

To apply the standard optimality verification argument, we need the following re-
sult, which provides an estimate of the changes in discounted value along any feasible
path. The main difficulty in establishing this estimate, and for which we adapt argu-
ments from Bressan and Hong (2007), is that the value function may not be continuously
differentiable at z*.

LEMMA SVI.1. Forany T, < t; < t; < T,y1 and any feasible plan,

1% _
W(z)e ™ =W(zy)e™™ = / {uCee, h— ho) + o[Uy) + Wz — yi) = W(zn)|}e " dt.

151

Proor. Since consumption flows are bounded over finite horizons, labor flows are
bounded, and Y(z) < ky + (Ky + 7)z, one easily verifies that z; and z, remain bounded
over [{1, i]. Hence, the path for real balance is Lipschitz continuous. Since the value
function is Lipschitz continuous as well, it follows that W (z,) and W (z;)e™"" are also
Lipschitz continuous. Therefore, W (z,) and W (z;)e™"" are absolutely continuous and
thus differentiable almost everywhere (see, for example, Theorem 7.18 in Rudin 1966).
Moreover, their derivative is integrable, that is,

15}

W(zy)e ™ = W(zp)e ™ = _/ %[W(zt)efﬂ] dt
! (S27)

%) d
Z/ {rW(zt)— —[W(z,)]}e_”dt.
0 dt

Now consider the set {t > 0: z; # z*}. This set is open, because it is the inverse image of
an open set by the continuous function z;. Therefore, it can be covered by a countable
union of disjoint open intervals, i.e., it is equal to | J;.;(a;, b;). By continuity, it must be
the case that z; < z* forall ¢ € (a;, b;) or z; > z* for all t € (a;, b;). Hence for all ¢ € (a;, b;),
W is continuously differentiable at z;. In addition, since z; is differentiable almost ev-
erywhere in (a;, b;), with z; = h; — ¢; — wz; + Y(z;), we obtain that %[W(zt)] =W'(z)z
almost everywhere in (a;, b;). Since z; # z*, we obtain from the HJB equation (S25) that

d i}
rW(z) — E[W(Zt)] > u(cr, h—he) +a[Uy) + Wz — yi) — Wi(z)).
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After integrating over the closed interval [a;, b;] and adding up overi € I,

d
W(z) - W dt
/tEUieI[ai,bi]{r (z) dt[ (Zt)]}

(S28)
> / (uCcr, b — ho)+ o[Un) + W (2 — y) — W(zp)]} dr.
teUierlaisbil

Next considerany ¢ € [t1, ]\ U;¢;lai, bil such that z; = hy — ¢, — mz, + Y (z;). By construc-
tion, for any ¢ > 0, (¢, t + £) cannot be a subset of any (a;, b;). Therefore, for any ¢ > 0,
there must exist some ¢’ € (¢, t + ¢) such that zy = z*. This implies by continuity that
z; = z* and also that z; = 0. Given that W is Lipschitz, this also implies that % [W(z)]1=0

even though W may not be differentiable at z; = z*. Using (S26), we therefore obtain
that

d _
rW(z) — E[W(Zt)] =rW(z) = u(ce, h—he) + a[U(ye) + Wz — y)) — W(z)]

foranyt e [t, ]\ U;elai, bil such that z; = hy — ¢; — w2z, + Y (z;). Butsince z; = h; — ¢, —
7z, + Y(z;) almost everywhere, we can integrate this inequality and obtain

d
/ {I’W(Zt) — d—[W(Zt)]}dt
relty, t5\Ujerlaisbi] ! (S29)

>

/ (e, b — )+ a[U ) + Wz — y0) — W(zp)] ) d.
telty, 1\Ujeslai,bil

The desired result obtains by combining (528) and (529) and using equality (527). O
We then obtain the following optimality verification argument.

ProrosiTION SVI.2. Assume that Assumptions SVI.1 and SVI.2 hold. Then if the policy
functions solving the HJB generate a feasible plan, the following statements hold:

o The maximum attainable utility of a household starting with z is W (zy).

e The policy functions that solve the HJB equation generate a optimal plan.

Proor. We adapt arguments from Theorem VII, T1 in Brémaud (1981). We consider any
feasible plan and write

W) =W+ Y (e W) — e W (2T )

0<T,<t

+ e_rtW(Zt) - e_thW(ZTt-F),
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where 7, = sup{T, : T,, < t}. Furthermore,

Wz =W+ Y, e W(zr,y) — Wz}
0<T,<t

+ > (e Wiz, — e T Wz, 1))

0<T,<t

+e "W (z) — e W (z,4).

The second term on the first line collects jumps in the value function when lumpy con-
sumption opportunities arrive, so zr,+ = z7, — yr,. The terms on the second and the
third lines collect changes in the value function in between lumpy consumption oppor-
tunities. Using Lemma SVI.1, we have

e T Wiz, ) — e*’T"W(zTn)
Tn+1 -
> f (s, B — o) +a[U(y) + W(zs — y0) — W(zy)]} ds

with an equality if the feasible plan under consideration is generated by the candidate
optimal policy functions. Taken together, we obtain

t
W(z)e™ "™ < W(zp) +/ e "[W(zg — ys) — W(zy) | dN
0

t -
- / {u(cs, h — he) +a[U(ys) + W(zs — y5) — W(zy)]} ds
0 (S30)

t
< / e_rs[W(Zs —y)+U(ys) — W(Zs)](st —ads)
0

t
- / [u(cs, h — hs) ds + aU(ys) dN5]
0

with an equality if the feasible plan under consideration is generated by the candidate
optimal policy functions. Note that we have

e \W(zs — y5) + Uys) — Wi(zo)| < e |W(zg) — Wiz — yo) |+ e Ulyy)
<e (kw+Kwzg)+e "[ky + kuy(s)]
<e "lkw +ku + (Kw + Kv)zs),
where the last inequality follows because y; < z;. Given our maintained assumptions, it
is clear that z;e™"* is bounded over [0, ¢], and so it follows that e |W (zs — ys) + U (ys) —

W (z,)| is bounded as well. Since, in addition, it is a predictable process, it follows by
Theorem II, T8 in Brémaud (1981) that

t
f e_rS[W(ZS —ys) +U(ys) — W(Zs)][st —ads]
0
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is a martingale, and, therefore, its time-zero expected value is equal to 0. Taking time-
zero expected value on both sides of (S30), we obtain after rearranging that

t
E{[ e—rs[u(cs, ]:l — hy)ds + U(yb) st]} + E[e_rtW(Z[)] <Wi(zg)
0

with an equality if the feasible plan is generated by the candidate optimal policy func-
tions.

The last step is, as usual, to argue that E[e~"'W (z,;)] — 0 as ¢ — oo. Since z; < h—
wzs + Y(z5) < h + ky + Kyz, we obtain by direct calculations that

e—rszs < e—(r—KY)SZO + h+ky (e—(r—KY)t _ e—”).
=< Ky
Given our maintained assumptions that Ky < r and that W(z) < k,, + Ky z, the result
follows. O

SVII. NUMERICAL METHODS
SVII.1 Construction of a stationary equilibrium

In this section, we outline a numerical algorithm to construct a stationary equilibrium.
We guess and verify a stationary equilibrium with a numerical method, where the target
real balances is finite and the value function is strictly concave, increasing, and twice
differentiable.

As shown above, the value function W (z) solves the HJB equation

(r+a)W(z)= max _{u(c, h—h) +aV(z)+W (2)h—c—mz +Y1},
¢>0,he0,h]
where V' (z) = maxyeo,,1{U(y) + W(z — y)}. Denote A = W’(z), and assume c(A) and h())
are the maximizers to the above equality. Let y(z) denote the solution of y to . Then
V' (z) and y'(z) are given by

V'(z) =U'[y(2)]

1 ifU'(z) > W' (0),

y(2) = W[z - y(2)] L / 1)
fU W'z — .
Wz—y@)]+ U] @] =Wz -]

Under the premise that W is twice differentiable, the equilibrium dynamics of the
household’s state and co-state is given by the system of differential equations

F=h(A) —c\) —7z+Y, (S32)
A= +a+mr—al(2). (S33)
The stationary point (z*, A*) is given by
h(A*) =c(A) + 72" =Y,

p
+a+wm
a

=V'(z").
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Our novel, recursive method to solve this problem involves two key elements: first
rewrite the equilibrium as a system of delay differential equations (DDE); second, mod-
ify the time-elimination method (Mulligan and Sala-i-Martin 1993) to solve this system
of DDE. The time-elimination method allows us to change the state variable from 7 to

= —), and then the equilibrium dynamics is fully characterized by the “stable arm”
function z(¢) with initial condition z({y) = 0 and boundary condition z({*) = z*. The
stable arm, z(¢), is well defined and unique under the premise that the value function
is strictly concave, increasing, and twice differentiable (see the mathematical appendix
for details).

SVII.1.1 Computing the stable arm: DDE To compute the system with the time-
elimination method, we first formulate z({; Ag, Y) given Ag and Y. By eliminating the
time in (S32) and (S33), the slope of the stable arm is

z W= -—c(=)—mz+Y

(="

— 4
Y (r+a+mi+aQ) ’ (539

where Q(¢) =V'[z({)] is differentiable. We suppress the dependence on Ay, Y in z and
Q unless confusion could arise. We formulate () (¢) in a recursive way by decomposing
zinto yand z — y as

2= (U)"(Q) + A~ [min{Q, Ap}]. (S35)
y z=y
Notice that
@)

Differentiate (S35) with respect to { to obtain ) (¢{) as the solution to the DDE

QO =2QOUU) O] +1[Q) < M]Z[-O]] (S36)

where I(Q) < Ap) is the indicator function that is equal to 1 if ) < Ay and equal to 0 other-
wise. Equation (S36) is a DDE since (S36) depends on the “current time” { and the “lag
time” —Q({) < {. Now the equilibrium is characterized by the system of DDE (S34) and
(S36).

To solve the system of z({) and Q(¢), given Y and ¢y = Ao, we start integrating (534)
and (§36) from the boundary conditions z(—Xg) = 0 and Q(—Xg) = U’(0), which are well
defined by assuming that either U’(0) is bounded or we start with some arbitrarily large
value. The integration results in two functions z(¢) and Q(¢{) given Ag and Y. For later
use, define {*(Ag,Y) and z*(Ag, Y) as the solution to A(—{*) — (=) — 7 (z* —=Y) =0
and z* = z ().

SVII.1.2 Computing the distribution Having computed z({) and Q(¢), we invert the
system back to A(z) and (z) using the definition { = —A(z). It is invertible since W’'(z)
is monotone. Notice that by definition we have y(z) = (U’")~'[Q(2)]. Define ¢(z) as the
solution to

o —y(p)=1z. (837)
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In other words, ¢(z) is the level of real balances before the preference shock such that the
household depletes the real balances up to z after the shock. Notice that since y(z) > 0
for all z > 0, we have ¢(z) > z. Differentiating (S37), we have for all z > 0,

_ W'z=y@)]+U"[e(2)]

¢'(2) = >0,

U'[y(2)] -
S0 ¢(z) is strictly increasing for all z > 0. Define z; = z* — y(z*). Then we have ¢(z) < z*
if and only if z < z;. Define s(z) = h[A(z)] — c[A(z)] — mz + Y, which is differentiability
continuous, bounded, and positive for all z € [0, z*). The equilibrium density for the
distribution of real balances f(z) solves the Kolmogorov forward equation (hereafter
KFE, which is derived later)

—af(z) ifz> z4,
d:(s(2)f(2)] = sle(z (838)
o ] —af (2) + aMf[qo(Z)] ifz < zg,
s(z)
where J, is the differential functional. The equilibrium density f(z) has a jump at z =
z4, which captures the extra flow of the influx of the mass of agents with z = z* after a
preference shock. The jump is given by

s(z%)
s(z)

Consider two regions of z: [z,4, z*] and [0, z;). In the first region [z,, z*], the KFE (S38)
is just a standard ODE:

fzo)=f(2) -

f(zr) ifz=z, (S39)

_oz—i—s/(z)
s(z2)

fl(z)= f(z) forallze(zq,2"). (S40)

Fix some arbitrary initial value, say f(z4) = 1 (we normalize the density function later),
we can compute f(z) in this region by integrating the ODE (S38) from the initial condi-
tion f(z4) =1 up to the boundary z = z*(A¢, Y). If s(z* ) = 0, then there is also a bound-
ary condition for the KFE, which is given by

liTm* s(z)f(z)=0. (541)

Alternatively, if s(z* ) > 0, then there is a probability mass F(z*) — F(z* ) at z = z*, which
is pinned down by a boundary condition

(542)

Now consider the second region [0, z;). Transform z = z; — ¢ and define ¢(7) =
f(zq —t). Using (S38), ¢ (¢) also solves the DDE

sle(za —1)]
s(zq —1)*

a—5'(zg—1)

$(zg —1) }b(t) -

(1) = [ d[z4 — p(za—1)] forallte (0,z4). (S43)
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We compute ¢ (¢) by integrating the DDE (S43) from ¢ = 0 to ¢ = z,; given the initial value
from (S39):

s(zh)
$(zq)

The (unnormalized) density function in this region can be obtained by having f(z) =
d(zg—z)forall z € [0, zy).

$(0)=1- f(z2). (S44)

SVII.1.3 Computing the stationary equilibrium and welfare cost Finally, we use the
transversality condition and the government’s balanced budget condition to solve A
and Y. The transversality condition implies another boundary condition:

(r+a+m) Ao, Y) +aQ[{* (A, Y)]=0.

The lump-sum transfer is defined as Y = #E(z), which implies

z*(A9,Y)
77/ zdF(2)
0

z*(Ao,Y)
/ dF(z)
0

where F(z) = foz f(z) dz is the cumulative density function. So we have two equations to
solve for the two unknown Ay and Y.
Recall that the welfare under inflation  is given by

Y =

>

7+

W, = ; W{u[cw(z), h—hz(2)]+ aU[yz(2)]} dFx(2).

Define the welfare cost of inflation A, as the solution to

Wi = /0 ([ = Am)eo(2), i — ho(2)] + aU[(1 = Am)yo(2)]} dFo(2).

In other words, the welfare cost of inflation is defined as the percentage of households’
consumption that a social planner would be willing to give up so as to have inflation
zero instead of .

SVII.1.4 Special case: Laissez-faire The time-elimination method is also convenient to
construct the equilibrium under the special case of zero money growth and full deple-
tion, which does not involve any fixed-point problem. The stationary point (z*, A*) is
given by

h(X*) = ("), ($45)

= (U’)‘1[<r+“>)\*}. (S46)

o

The Jacobian of (§32) and (S33) at z = z* and A = A* is then given by

i < 0 KH(\)- a(m)) ,

—aU"(z*) r+a
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where we have used that IV"(z*) = U”(z*). Then the negative eigenvalue of J (corre-
sponding to the stable arm) is given by

g=-112 Hl _ 49U a0y a(m)]}m _ 1].

2 (r +a)?

Define p as the slope of the stable arm at z = z* and A = A*, which is given by

3

In the model with linear preferences, (S45) is replaced with 2(A*) = c(A*) =0, A* =11in
(546), and p = £, U"(z*). These equations solve A* and z*. Under full depletion and
zero money growth, the dynamic system is reduced to the ODEs of A(z) and f(z):

r+a)A—alU'(2)

N(z)= D —en (S47)
o a+ N[ ) = W)
[(z)=~- ) — V) f(2). (548)

A convenient way to construct the stable arm is to, first, integrate (S47) backward from
z = z* to z = 0 with initial value A(z*) = A* and X' (z*) = p.> Then we solve for the
stable arm A(z). We integrate (S48) forward from z = 0 to z = z* with initial value
f(0) =1, so we cannot integrate backward like A(z). If s(z*) > 0, then we construct
the probability mass 1 — F(z*) by the KFE boundary condition (S42). After that, we
solve f(z) (unnormalized). The initial values of Ag and Y are set to Ayg = A(0) and

Y = wfoz* zf(z)dz/ foz* f(z)dz.

SVIL.1.5 Special case: Linear preferences So far we need to solve a system of two DDEs
and one KFE. The system can be further simplified under linear preferences. Eliminating
the time in (S32) and (S33), then using the fact that A = W’(z) and V'(z) = U'[y(z)], we
have

A rt+a+mW(2)—al[y(2)]

WH(Z)ZT— = .
z h—mz+Y

Shifting the state variable to z — y(z), we have, for all z > (U")~1(Ag),

(r+a+mU[y(2)]—alU'[y(z— y(2)]
h—m[z—y(z)=Y]

W'z -y(2)]= , (549)

where we have used the fact that U'[y(z)] =V'(z) = W/[z — y(z)]. Substituting (S49) into
(S31), we have
1 if z < (U') " (M),

-1
homz—y = X) ] it z> (U) " (A).
(r+a+mU'(y)—aU'[y(z—y)]

/

y = (S§50)

|:1+U”(y)

5The value \'(z*) involves zero dividing zero, so it is pinned down by the eigenvector associated with the
negative eigenvalue, which corresponds to the stable arm.



48 Rocheteau, Weill, and Wong Supplementary Material

The equilibrium features full depletion if and only if y'(z) =1 for all z € [0, z*]. Notice
that (S31) is also a DDE but no longer depends on A. Then z* is simply given by

z*:min{ﬁ—i—Y,y_lo(U’)1<1+r+w>}. (S51)
o o
The equilibrium features binding labor if z* takes the first term on the right-hand side of
(S51); otherwise the equilibrium features slack labor. Under linear preferences we have
s(z) = h — wz + Y, which is again independent of . Thus, the KFE (S38) now is also
independent of A. In sum, the stationary equilibrium can be reduced to the system of
one DDE, (S50), and one KFE, (S38).

The KFE can be further simplified under linear preferences. Notice that given s(z) =
h — wz + Y, the KFE (S40) with initial value f(z4) = 1 admits the closed-form solution
(unnormalized)

_ s(z)
@)= [S(Zd)

If s(z*) > 0, then there is a probability mass at z = z* given by the KFE boundary condi-
tion (S42), which is simply

a_y
} forall z € (z4, 2*). (S52)

@
T

B s(zd)l_%s(zi)

F(*) ~ F(2) ’

Finally, using the closed-form solution (S52), the KFE (S43) is reduced to an ODE given
by

. ik
1= -7 (1) — as(zy) M for all ¢ € [0, z4].
s(zqg—1) s(zg—1)
The initial condition from (S44) becomes
s(z*) i| =
s(zg) ]

¢>(0>=1—[

SVIL.2 Derivation of Kolmogorov forward equation

In this section, we derive the KFE (S38) used in the previous section. The law of motion
of real balances is given by

z=s(2)=h[M2)] —c[A(2)] —mz+Y, whereze]0,z*],

and the agent’s real balance reduces by y(z) after a preference shock, which arrives at
the Poisson rate «. Suppose s(z) is continuous, bounded, and positive for all z € [0, z*).
Recall that z; = fot s(z;) ds and let T denote the solution to z* = fOT s(zg) ds.

We use a discrete time, discrete state-space model to obtain the Kolmogorov forward
equation and the boundary conditions for the density f(z). Fixany integer n. Then there
exist A, > 0 and a sequence {z;}._; such that zo =0, z, = z*, and z; = z; 1 + s(z;-1)A, for
any i > 0. To see this, fixany n and A, > 0, and construct z; = z; 1 + s(z;_1)A,; since s(z)
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is bounded, we have z,, — oo if A;, — oo and z, — 0if A, — 0. So there must exist A,
such that z, = z*. Divide [0, z*] into n + 1 discrete states {z;}}_,. Let I(z) be the interval
function such that 7(z) = [z;_1, z;] and z € (z;_1, z;]. Let D(z) be the correspondence
such that D(z) C {z;}]7_, and D(z) — y[D(z)] C I(z). As n goes to infinity, A, converges to
ZE€ro, {z,-}?z0 converges to the continuous-time process z; = fot s(z;)d, I(z) converges to
z, and D(z) converges to ¢(z).

Now let f,(z;, t) denote the fraction of agents with real balances z; at time ¢ for
fixed n. With a slight abuse of notation, let f,,(z) be the stationary distribution. We are in-
terested in characterizing the density f(z) = lim,_, » S’E’;()ZA)n. For any i # n, the dynamics
of z implies

Fa(zi t+80) = (1= adp) fu(zict, ) +ady Y falz, 1),
zeD(z;)

In any period of length A, a fraction A, of agents are hit by a preference shock. Thus,
the fraction of agents with z = z; at t + A,, is a fraction 1 — aA,, of those who were agents
with z = z;_1 at ¢t but were not hit by a preference shock, plus the sum of fraction aA,
of those who were agents with z € D(z;) at ¢t and were hit by a preference shock. Now
impose stationarity of f,,. Dividing both sides by A, and rearranging terms, we have

fa(zi) fazic) Cas(zi DA, fa(ziz1)

S(Zi)s(zl')An - s(zie)An $Gzie1)An

s(zi-1) +a Y fal2).

zeD(z;)

Suppose ¢(z) has probability mass at some z > 0. Since D(z) converges to ¢(z), then
ZZ,GD(Z) fn(2’) converges to F[e(z)] — Fle(z)_]. Taking the limit as »n goes to infinity
and eliminating the term with A, we have

s(2)[f(z) — f(z0)] = efF[e(2)] — Fe(2)-]},

which implies (S39) by taking z = z*. Suppose ¢(z) does not have probability mass
(atomless) at some z > 0. Dividing both side by s(z;_1)A,, we have

fn(zi) _ stz )fn(Zi—l)
s@bn V@b _ FaGio) 3 SO )

$(zi-1)An C o sziAy T S s(zi) s(2)A

s(z;)

Taking the limit as n converges to infinity, D(z) converges to a function ¢(z), and

ZzeD(Z,_) % S{’;()Z)n converges to %f[go(z)] if (z) < z* (corresponding to D(z;) # @)

and to 0 otherwise. Then we obtain Kolmogorov forward equations for all z € (0, z*),

sle(2)] , .
a:[s(2)f(2)] = —af (2) + « o) fle(2)] ife(z) <2z,

—af(z) otherwise,

where J, is the differential functional defined as ¢,G(z) = limy_, W. It implies
(S38).
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To obtain boundary conditions, the dynamics of z = z* = z,, imply
Jn(zn, t+An) = (1 — alp) fu(zp—1, ) + (1 — ady) fu(zn, 1).

In any period of length A, a fraction aA,, of agents are hit by a preference shock. Thus,
the fraction of agents with z = z,, at t + A,, are a fraction 1 — aA,, of those who were agents
with z = z,,_1 at t but were not hit by a preference shock, plus the sum of fraction 1 — aA,
of those with z = z,, at t who were not hit by a preference shock. Now impose stationarity
of f,,. Rearranging terms, we have

fn(zn—1)

afy(zp) =(1- aAn)S(Zn—l)s(Z DA .

If s(z* ) =0, then we have the boundary condition
lim s(z)f(z) =0,
1 z*

which implies (S41). If s(z*) # 0, then there is probability mass at z = z*, and f,,(z,)
converges to F(z*) — F(z* ). The boundary condition becomes

s(z2)f(z2) =a[F(z*) = F(z)].

which implies (S42). Finally, for another boundary z = zy = 0, the discrete time, discrete
state-space KFE is given by

Fa0, 14 Ap) = (1= abp) (0, 1) + @By Y fulz, D). (S53)
zeD(0)

Taking A, to zero, then we have both sides of (S53) equal to f(0), which does not impose
any condition on f(0).
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