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Appendix B

B.1 Proofs for Sections 5 and 6

Proof for Lemma 5.1. (i) General persuasion. Let (π(d̂a|θ))θ be an optimal policy with
n voters. Suppose a voter Ri is removed from the group, so there are only (n − 1) voters
left. The distribution of states for the remaining voters is given by f̃ : {H�L}n−1 → [0�1]
such that f̃ (θ−i) = f (θ−i�H) + f (θ−i�L). We construct π̃(d̂a|·) : {H�L}n−1 → [0�1] such
that for any θ ∈ {H�L}n−1 and θ′� θ′′ ∈ {H�L}n with θ′

j = θ′′
j = θj for j �= i and θ′

i = H,
θ′′
i = L,

f̃ (θ)π̃
(
d̂a|θ) = f

(
θ′)π(

d̂a|θ′) + f
(
θ′′)π(

d̂a|θ′′)�
Notice that the ICa constraints of the remaining voters are satisfied, as∑

θ∈{H�L}n−1:θj=H

f̃ (θ)π̃
(
d̂a|θ)

∑
θ∈{H�L}n−1:θj=L

f̃ (θ)π̃
(
d̂a|θ) =

∑
θ∈{H�L}n:θj=H

f(θ)π
(
d̂a|θ)

∑
θ∈{H�L}n:θj=L

f (θ)π
(
d̂a|θ) ≥ �j�

By the same reasoning, the sender attains the same payoff under π̃ as under π. Hence,
he is weakly better off with (n− 1) voters.

(ii) Individual persuasion. Consider a group of n voters, characterized by a threshold
profile {�1� � � � � �n} with �i > �i+1 for any i ≤ n−1. By Proposition 4.2 there exists a mono-
tone optimal policy. We let (πi(L))

n
i=1 denote this policy. Suppose that the sender does

not need some voter’s approval, so we are left with n − 1 voters. We relabel the remain-
ing voters monotonically, so that R1 is the strictest and Rn−1 is the most lenient voter. In
the first step, we assign the original πi(L) to the ith strictest voter among the remaining
n− 1 voters. Therefore, Rn’s original policy will be removed from the group.
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Note that the remaining n−1 voters might not be willing to obey the approval recom-
mendation given the policy {π1(L)� � � � �πn−1(L)} if we remove Rn’s original policy πn(L)

from the group. This is because voter Rj �= Rn might be willing to approve only when she
conditions the approvals by the other voters including Rn. We need to construct a new
policy for the smaller group {R1� � � � �Rn−1}. The main step is to show that the informa-
tiveness of πn(L) can be loaded into the policies of the remaining voters so as to satisfy
the remaining voters’ ICa constraints when πn(L) is removed from the policy profile.

Our first observation is that if πn(L) = 1, then the policy {π1(L)� � � � �πn−1(L)} is
incentive-compatible since each voter in the smaller group {R1� � � � �Rn−1} is assigned
a (weakly) more informative policy than before. Moreover, removing Rn’s policy has
no impact on the other voters’ incentive constraints since she always approves. We
focus on the case in which πn(L) < 1. We want to show that we can adjust the pol-
icy {π1(L)� � � � �πn(L)} in an incentive-compatible way so as to increase πn(L) until it
reaches 1. At that point, removing πn(L) from the policy profile will not affect the ICa

constraints of {R1� � � � �Rn−1}.
Since Rn will eventually be removed, this is as if Rn’s ICa constraint is always slack.

In Proposition 4.3, we show that among those voters who have interior πi(L), only the
strictest voter might have a slacking ICa constraint. In our current setting, Rn’s policy
corresponds to the most lenient voter’s policy and Rn’s ICa constraint is slack. There-
fore, we follow the reasoning in the proof of Proposition 4.3 to show that we can al-
ways increase πn(L) and decrease another voter’s policy in an incentive-compatible way
without decreasing the sender’s payoff. In particular, if πn−1(L) is also interior, we can
replace (πn−1(L)�πn(L)) with (πn−1(L) − ε2�πn(L) + ε1) so that the sender is better
off and the ICa constraints of {R1� � � � �Rn−1} are satisfied. Since Rn’s ICa constraint is
constantly slack, we can make this adjustment on the pair (πn−1(L)�πn(L)) until either
πn(L) reaches 1 or πn−1(L) reaches 0. If πn(L) reaches 1 before πn−1(L) drops to 0, we
are done with the construction, because removing Rn from the group now will not affect
the remaining voters’ ICa constraints. If πn−1(L) drops to 0 before πn(L) reaches 1, we
can then adjust the pair (πn−2(L)�πn(L)) by increasing πn(L) and decreasing πn−2(L)

in a similar manner.
We keep making this adjustment until πn(L) reaches 1: this is always possible if

πi(L) > 0 for some i ∈ {1� � � � � n − 1}. In other words, it cannot be that the policies of
all other voters become fully revealing before πn(L) = 1, as it takes an infinite amount
of information from Rn’s policy to push all other voters’ policies to be fully revealing.
When πn(L) reaches 1, removing Rn will not affect the remaining voters’ ICa constraints.
If πj(L) = 0 for j ∈ {1� � � � � n− 1} in the original policy to begin with, removing Rn’s policy
will not affect the remaining voters’ ICa constraints since they all learn their states fully.
This completes the construction. �

Proof for Lemma 5.2. From the proof of Proposition 4.4, we know that given a per-
fectly correlated distribution f ′, for sufficiently correlated states, i.e., for some f within
ε > 0 of f ′, in any optimal individual policy, ICa-1 is the only binding ICa-i constraint.
The sender achieves the same payoff as if he needed only R1’s approval.
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We next argue that this is also the optimal policy under general persuasion. From
Lemma 5.1, we know that the sender’s payoff weakly decreases in the number of ap-
provals he needs for a fixed threshold profile. Therefore, the sender’s payoff cannot ex-
ceed the payoff from persuading only R1. Alternatively, the sender can use the individual
policy specified in the previous paragraph to achieve this payoff when the sender is al-
lowed to use any general policy. Therefore, the probability of approval is equal for each
θ across the two modes. �

Proof for Proposition 5.2. Suppose that d̂ is observed publicly; we want to show
that each Ri continues to comply with d̂i. Consider first d̂ ∈ {d̂a� {d̂r�i}i}. By incentive
compatibility of the optimal policy π, it follows immediately that each Ri follows her
own recommendation, i.e., she complies with d̂i. Suppose now that d̂ /∈ {d̂a� {d̂r�i}i}. If all
other voters R−i follow the recommendation, Ri’s vote is not pivotal. For any such d̂ with
two or more rejections, the project is not approved. Hence, Ri is indifferent between d̂i
and the other available action, as both yield an ex post payoff of 0. �

Proof for Proposition 6.1. Consider first the case of individual persuasion. Take
(πi)i to be an optimal policy under simultaneous voting. Our first claim is that any pol-
icy that is incentive-compatible under simultaneous voting is incentive-compatible also
under sequential voting, for a fixed voting order {1� � � � � n}. Conversely, any policy that
is incentive-compatible under sequential voting is incentive-compatible under simulta-
neous voting as well. It is sufficient to show that ICa

sim-i, ICa
seq-i, ICr

sim-i, and ICr
seq-i, are

pairwise equivalent:

(∑
�H
i

f (θ)
∏
j �=i

πj(θj)πi(H)

)
≥ �i

(∑
�L
i

f (θ)
∏
j �=i

πj(θj)πi(L)

)
� (ICa

sim-i)

(∑
�H
i

f (θ)

i−1∏
j=1

πj(θj)πi(H)

n∏
j=i+1

πj(θj)

)

≥ �i

(∑
�L
i

f (θ)

k−1∏
j=1

πj(θj)πi(L)

n∏
j=k+1

πj(θj)

)
�

(ICa
seq-i)

(∑
�H
i

f (θ)
∏
j �=i

πj(θj)
(
1 −πi(H)

)) ≥ �i

(∑
�L
i

f (θ)
∏
j �=i

πj(θj)
(
1 −πi(L)

))
� (ICr

sim-i)

(∑
�H
i

f (θ)

i−1∏
j=1

πj(θj)
(
1 −πi(H)

) n∏
j=i+1

πj(θj)

)

≥ �i

(∑
�L
i

f (θ)

k−1∏
j=1

πj(θj)
(
1 −πi(L)

) n∏
j=k+1

πj(θj)

)
�

(ICr
seq-i)
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The constraints are pairwise equivalent for simultaneous and sequential voting. There-
fore, the optimal policy under simultaneous voting is also optimal under sequential vot-
ing with order {1� � � � � n}. We next argue that optimal policy in sequential voting is order-
independent. Let {1� � � � � n} and δ such that δ(i) �= i be two voting orders. Let us rewrite
ICa-i and ICa-δ(i) in the form, respectively,(∑

�H
i

f (θ)

i−1∏
j=1

πj(θj)πi(H)

n∏
j=i+1

πj(θj)

)

≥ �i

(∑
�L
i

f (θ)

k−1∏
j=1

πj(θj)πi(L)

n∏
j=k+1

πj(θj)

)
�

(ICa-i)

(∑
�H
i

f (θ)

δ(i)−1∏
j=1

πj(θj)πi(H)

n∏
j=δ(i)+1

πj(θj)

)

≥ �i

(∑
�L
i

f (θ)

δ(i)−1∏
j=1

πj(θj)πi(L)

n∏
j=δ(i)+1

πj(θj)

)
�

(ICa-δ(i))

The set of other voters R−i is the same despite the order of play for Ri. If Ri is offered the
same policy in both sequences, ICa-i and ICa-δ(i) become equivalent to each other and
to (∑

�H
i

f (θ)πi(H)Pr(R−i approve|θ)
)

− �i

(∑
�L
i

f (θ)πi(L)f (R−i approve|θ)
)

≥ 0�

Therefore, the ICa constraint for a voter Ri is order-independent. The objective of the
sender is

max
πi(H)�πi(L)

∑
�

f(θ)
∏
i

πi(θi)�

This objective is also order-independent (the product of approval probabilities is com-
mutative). Therefore, if ((πi(H)�πi(L)))i is a solution to the original individual persua-
sion problem with order {1� � � � � n}, {(πδ(i)(H)�πδ(i)(L))}i is also a solution to the new
problem with order δ.

The reasoning for general persuasion is very similar. First, it is straightforward that
ICa

sim-i is equivalent to ICa
seq-i and ICr

sim-i is equivalent to ICr
seq-i. Therefore, the optimal

simultaneous policy remains optimal under sequential voting with order {1� � � � � n}. Sec-
ond, each voter, despite her rank in the sequence, only cares about π(d̂a|θ) and π(d̂i�r |θ).
Upon observing (i − 1) preceding approvals, Ri is sure that the generated recommen-
dation is in Di−1�a = {d̂ : d̂j = 1 for j = 1� � � � � i − 1}. Yet she only cares about those ele-

ments in Di−1�a for which d̂j = 1 for voters in {Ri+1� � � � �Rn} as well. Hence, her ICa is

order-independent: (
∑

�H
i
f (θ)π(d̂a|θ)) ≥ �i(

∑
�L
i
f (θ)π(d̂a|θ)). So is ICr-i as well. The

objective of the sender is also order-independent:

max
π(·|θ)

∑
�

f(θ)
∏
i

π
(
d̂a|θ)

�
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For any recommendation d̂, let δ(d̂) be the permuted recommendation such that
d̂i = d̂δ(i); in particular, δ(d̂a) = d̂a. Therefore, if (π(d̂|θ))

d̂�θ
is a solution to the origi-

nal general persuasion problem with order {1� � � � � n}, π′ such that π ′(δ(d̂)|θ) = π(d̂|θ)
for any d̂ and θ is a solution to the general persuasion problem under δ. The sender’s
payoff is the same from both π and π′. �

Proof for Proposition 6.3. Let D̂a
i denote the set of recommendation profiles un-

der which exactly k voters are recommended to approve and Ri is among them, and let
D̂r

i denote the set of recommendation profiles under which exactly k− 1 voters are rec-
ommended to approve and Ri is not among them. We design a full support policy as
follows. For any i and any d̂ ∈ D̂a

i , we let

Pr(d̂|θ)=
{
ε2 if θ �= θH�

ε if θ = θH�

Here, ε is a small positive number. This ensures that whenever Ri is recommended to
approve, her belief of being H conditional on being pivotal (i.e., conditional on d̂ ∈ D̂a

i )

is sufficiently high. So ICa-i is satisfied. For any i and any d̂ ∈ D̂r
i , we let

Pr(d̂|θ)=
{
ε2 if θ �= θL�

ε if θ = θL�

This ensures that whenever Ri is recommended to reject, her belief of being L condi-
tional on being pivotal is sufficiently high. So ICr-i is satisfied as well. For any rec-
ommendation profile d̂ �= d̂a such that d̂ /∈ D̂a

i ∪ D̂r
i for any i, we let Pr(d̂|θ) = ε2. For

each state profile θ, once we deduct the probabilities of the recommendation profiles
specified above, the remaining probability is assigned to the unanimous approval rec-
ommendation d̂a. This construction ensures that the policy has full support. As ε goes
to 0, the probability that the project is approved approaches 1. �

Lemma B.1. If f is exchangeable and affiliated, then either f (θH) + f (θL) = 1 or f has
full support.

Proof. Since f is exchangeable, f (θ) depends only on the number of high-state voters
in θ. For any k ∈ {0� � � � � n}, we let pk denote f (θ) when exactly k voters’ states are high
in θ. Due to affiliation, for any 2 ≤ k≤ n, we have pkpk−2 ≥ p2

k−1.
We first show that if f (θH) = 0 (that is, pn = 0), then pk = 0 for any k ≥ 1. This is

because pk being 0 implies pk−1 being 0 for any 2 ≤ k ≤ n. Given the presumption that
pn = 0, it must be true that pk = 0 for k ≥ 1. The only possibility is that f (θL)= 1.

We then show that if f (θL) = 0 (that is, p0 = 0), then pk = 0 for any k ≤ n− 1. This is
because pk−2 being 0 implies pk−1 being 0 for any 2 ≤ k ≤ n. The only possibility is that
f (θH) = 1.

Suppose that both f (θH) and f (θL) are strictly positive. We next show that ei-
ther pk = 0 for all 1 ≤ k ≤ n − 1 or pk > 0 for all 1 ≤ k ≤ n − 1. Suppose there exists
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some k′ such that pk′ = 0. Then applying the inequality that pkpk−2 ≥ p2
k−1, we con-

clude that pk must be 0 for any 1 ≤ k ≤ n − 1. Therefore, either f has full support or
f (θH)+ f (θL) = 1. �

Proof for Proposition 6.4. Suppose that the sender needs k approvals. We divide
the set of the state profiles � into three subsets. The first subset is denoted by �k, which
contains all the state profiles such that exactly k voters’ states are H. The second subset
is {θL}, which contains a unique state profile such that all voters’ states are L. The third
subset includes the rest of the state profiles, i.e., � \ (�k ∪ {θL}). For any θ ∈�k, we let

πi(θ) =
{

1 − ε1 if θi =H�

ε2 if θi =L�

For θL, we let πi(θ
L) = 1 − ε3. For any θ ∈ � \ (�k ∪ {θL}), we let πi(θ) = 1 − ε4. We

first show that ICa-i is satisfied. For any θ ∈ �k ∩�H
i , the probability that exactly k vot-

ers including Ri are recommended to approve is (1 − ε1)
k(1 − ε2)

n−k +O((1 − ε1)
k−1 ×

(1−ε2)
n−k−1ε1ε2). For any θ ∈ �k∩�L

i , the probability that exactly k voters including Ri

are recommended to approve is O((1 − ε1)
k−1(1 − ε2)

n−k−1ε1ε2). For θL, the probabil-
ity that exactly k voters including Ri are recommended to approve is O((1 − ε3)

kεn−k
3 ).

Similarly, for any θ ∈�\(�k∪{θL}), the probability that exactly k voters including Ri are
recommended to approve is O((1−ε4)

kεn−k
4 ). When ε1, ε2, ε3, and ε4 are small enough,

Ri puts most of the weight on the event that θ ∈ �k ∩ �H
i when she is recommended to

approve and she conditions on being pivotal. It is obvious that Ri is willing to approve
since her state is H.

We next show that ICr-i is satisfied as well. For any θ ∈ �k ∩ �H
i , the probability

that exactly k − 1 voters excluding Ri are recommended to approve is O((1 − ε1)
k−1 ×

ε1(1−ε2)
n−k). For any θ ∈ �k ∩�L

i , the probability that exactly k−1 voters excluding Ri

are recommended to approve is O((1−ε1)
k−1ε1(1−ε2)

n−k). For θL, the probability that
exactly k− 1 voters excluding Ri are recommended to approve is O((1 − ε3)

k−1εn−k+1
3 ).

Similarly, for any θ ∈ � \ (�k ∪ {θL}), the probability that exactly k − 1 voters excluding
Ri are recommended to approve is O((1 − ε4)

k−1εn−k+1
4 ). If we let ε1 and ε4 approach 0

at a much faster rate than ε3, Ri puts most of the weight on the event that θ = θL when
she is recommended to reject and she conditions on being pivotal. It is obvious that Ri

is willing to reject since her state is L given θL. This completes the construction. �

Proof for Proposition 6.5. Suppose there exists an individual policy
(πi(H)�πi(L))

n
i=1 that is the limit of a sequence of full-support incentive-compatible

policies and ensures that the project is approved for sure. We first argue that πi(H) ≥
πi(L). Pick any full-support policy (π̃i(H)� π̃i(L))

n
i=1 along the sequence. The following

ICa and ICr constraints must hold for each Ri:

Pr(θi = H|k− 1 approve)π̃i(H)≥ Pr(θi = L|k− 1 approve)�iπ̃i(L)�

Pr(θi = H|k− 1 approve)
(
1 − π̃i(H)

) ≤ Pr(θi = L|k− 1 approve)�i
(
1 − π̃i(L)

)
�
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We obtain that π̃i(H)/π̃i(L) ≥ (1 − π̃i(H))/(1 − π̃i(L)). This implies that π̃i(H) ≥ π̃i(L)

for each Ri. This must hold for all policies along the sequence, so πi(H) ≥ πi(L) for
each Ri.

If the project is approved for sure. It is approved for sure when θ = θL. Therefore,
there exist k voters who approve with certainty when their states are L. Given that
πi(H) ≥ πi(L) for each Ri, these voters also approve with certainty when their states
are H. Thus, at least k voters approve the project for sure in both states. Let Ra be the
set of voters who approve for sure: suppose there are exactly k such voters. We want
to show that any voter Ri ∈ Ra prefers to reject the project when she is recommended
to approve. Conditional on being pivotal, Ri knows that all the voters not in Ra have
rejected while all the voters in Ra \ {Ri} have approved. Voter Ri does not get more
optimistic about her state being H from the approvals by Ra \ {Ri} since these voters
approve regardless of their states. Voter Ri becomes more pessimistic about her state
being H from the rejections by voters not in Ra. Therefore, Ri’s posterior belief of being
H conditional on being pivotal is lower than her prior belief. Voter Ri strictly prefers to
reject. Contradiction.

The case in which more than k voters are in Ra can be analyzed in a similar manner.
Suppose that there are k′ > k voters in Ra. This policy is the limit of a sequence of full-
support incentive-compatible policies. There exists M ∈ (0�1) such that voters not in
Ra approve with probability less than M in either state H or L, i.e., min{πi(H)�πi(L)} =
πi(L) ≤ M . For any small ε > 0, there is a full-support policy such that voters in Ra

approve with probability above 1 − ε in both states, i.e., min{πi(H)�πi(L)} = πi(L) ≥
1 − ε. Pick any Ri ∈ Ra. When Ri is recommended to approve, there are two types of
events in which she is pivotal: (i) k− 1 voters in Ra approve and the rest reject; (ii) k′′ <
k − 1 voters in Ra approve, k − 1 − k′′ voters that are not in Ra approve, and the rest
reject. As ε converges to 0, for any event of type (ii), there exists an event of type (i) that
is much more likely to occur. This is because voters outside Ra are much more likely
to reject than those in Ra. Therefore, the belief of Ri about her state being H is mainly
driven by events of type (i). Note that in these events, only voters in Ra approve. Voter
Ri does not get more optimistic about her state being H from the approvals by voters
in Ra \ {Ri} since these voters approve regardless of their states. Voter Ri become more
pessimistic about her state being H from the disapprovals by voters not in Ra. Therefore,
Ri’s posterior belief of being H conditional on being pivotal is either arbitrarily close to
or smaller than her prior, so she strictly prefers to reject. Therefore, Ri does not obey her
approval recommendation. This shows that the project cannot be approved for sure.

We next show that each voter’s payoff under individual persuasion is higher than
that under general persuasion. We have shown that for each Ri, πi(H) ≥ πi(L). We
next show that there exists at least one voter such that the above inequality is strict.
Suppose not. Then each voter approves with the same probability in both state H and
state L. Therefore, each voter’s posterior belief, when she conditions on being pivotal,
is the same as her prior belief. It is not incentive compatible to obey the approval rec-
ommendation since each voter’s own policy is uninformative as well. Therefore, at least
one voter approves strictly more frequently in state H than in state L. We index this
voter by i.
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We next show that Ri is pivotal with strictly positive probability. Suppose not. Then
for each state profile, either (i) at least k voters out of the rest of the n− 1 voters approve
for sure or (ii) at least n − k + 1 voters out of the rest of the n − 1 voters reject for sure.
We first argue that if f has full support, it is not possible that case (i) holds for some
state profiles and case (ii) holds for the others. Suppose not. Suppose that there exists
a state profile such that exactly k′ ≥ k voters out of the rest of the n − 1 voters approve
for sure. There also exists another state profile such that exactly k′′ ≥ n−k+ 1 out of the
rest of the n − 1 voters disapprove for sure. The intersection of these two sets of voters
who approve or disapprove for sure includes at least k′ + k′′ − (n − 1) voters. These
voters approve under one state and disapprove under the other. It is easily verified that
k′ + k′′ − (n − 1) ≥ k′ − k + 2. If we begin with the previous state profile under which
exactly k′ voters approve, we can flip the states and the decisions of k′ − k + 1 such
voters so that exactly k − 1 voters approve for sure. This makes Ri’s decision pivotal,
contradicting the presumption that Ri is never pivotal. Therefore, it has to be true that
either case (i) holds for all state profiles or case (ii) holds for all state profiles. If f does
not have full support (or, equivalently, the voters’ states are perfectly correlated), then it
is possible that case (i) holds for one state profile and case (ii) holds for the other. Given
that πi(H) ≥ πi(L) for each Ri, the only possibility is that case (i) holds for θH and case
(ii) holds for θL. Note that each voter obtains the highest possible payoff that is strictly
positive. The statement of the proposition holds. Therefore, we can focus on the case in
which either case (i) holds for both θH and θL or case (ii) holds for both θH and θL.

If case (ii) holds for all θ, this is clearly suboptimal for the sender since he obtains
a payoff of 0. Therefore, we assume that case (i) holds for all θ. However, we have ar-
gued previously that the project is not approved for sure. Contradiction. Therefore, Ri

is pivotal with strictly positive probability. For Ri, a high-state project is more likely to
be approved than a low-state project. Due to affiliation, other voters benefit from the
selection effect of Ri.

This shows that for any voter, a high-state project is more likely to be approved than
a low-state project. Individual persuasion is better than general persuasion. �

B.2 Optimal policy when Assumption 1 fails

Our results remain intact when we add voters who prefer to approve ex ante. Once the
sender designs the optimal policy for those voters who are reluctant to approve, those
who prefer to approve ex ante become more optimistic about their own states. The
sender simply recommends that they approve all the time. This is the case under both
general and individual persuasion.

Proposition B.1. Suppose that voter n + 1 prefers to approve ex ante. Under both gen-
eral and individual persuasion, given the optimal policy for the first n voters, voter n + 1
is willing to rubber-stamp the first n voters’ approval decision.

Proof. This result holds for individual persuasion since each voter is weakly more
optimistic about her state conditional on the others’ approval. Therefore, voter n + 1 is
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more optimistic about her state when she conditions on the others’ approvals. We thus
focus on general persuasion. There are n + 1 voters. Let f̃ be the distribution of these
voters’ states. The last voter is convinced, i.e., she approves given the prior belief f̃ :

�n+1 ≤

∑
θ∈{H�L}n

f̃ (θ�H)

∑
θ∈{H�L}n

f̃ (θ�L)
� (B.1)

Let f denote the distribution of the first n voters’ states. We thus have f (θ) = f̃ (θ�H) +
f̃ (θ�L). Let (π(d̂a|θ))θ∈{H�L}n be an optimal policy with the first n voters. We want to
construct a policy for n+ 1 voters (π̃(d̂a|θ̃))θ̃∈{H�L}n+1 such that the sender’s payoff stays

the same as when he faces only n voters. To ease notation, we write π(θ) for π(d̂a|θ) and
π̃(θ̃) for π̃(d̂a|θ̃).

We let π̃(θ�H) = π̃(θ�L) = π(θ). Under this policy, the convinced voter approves
whenever the first n voters approve. Then (i) the sender’s payoff stays the same and
(ii) the first n voters’ IC constraints are still satisfied. We only need to show that the
convinced voter’s IC constraint is satisfied, i.e.,

�n+1 ≤

∑
θ∈{H�L}n

f̃ (θ�H)π̃(θ�H)

∑
θ∈{H�L}n

f̃ (θ�L)π̃(θ�L)
=

∑
θ∈{H�L}n

f̃ (θ�H)π(θ)

∑
θ∈{H�L}n

f̃ (θ�L)π(θ)
� (B.2)

Next, we want to show that the RHS of (B.2) is larger than that of (B.1). This will complete
the proof.

Given the optimal policy π(·) for n voters, we let πk be the average probability of
unanimous approval for state profiles with k high states:

πk :=

∑
|θ|=k

f (θ)π(θ)

∑
|θ|=k

f (θ)
=

∑
|θ|=k

π(θ)

#
{
θ : |θ| = k

} �

Here |θ| is the number of high states in θ. We want to show that πk ≥ πk−1 for k ∈
{1� � � � � n}, that is, a profile with more high states is, on average, more likely to be ap-
proved than that with fewer high states. This, combined with the affiliation assumption,
implies that the RHS of (B.2) is higher than that of (B.1). Intuitively, if πk ≥ πk−1 for
all k ∈ {1� � � � � n}, then the convinced voter is more optimistic about her state when she
conditions on the approval decision by the first n voters.

We illustrate the argument for πk ≥ πk−1 through an example. Suppose that n = 3
and k= 2. We first argue that

π(HHL) ≥ π(HLL)� π(HLH) ≥ π(HLL)� π(LHH)≥ π(LHL)�

π(HHL) ≥ π(LHL)� π(HLH)≥ π(LLH)� π(LHH)≥ π(LLH)�
(B.3)
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Suppose not. Suppose that, for instance, π(HHL) < π(HLL). We can increase π(HHL)

by ε > 0 and decrease π(HLL) by ε′ > 0 such that

f (HHL)ε= f (HLL)ε′�

This change will not affect the sender’s payoff. It will not affect the incentive of any

voter who has the same state in HHL and HLL, i.e., R1’s and R3’s IC constraints are

still satisfied. The change will only make R2’s IC constraint easier to satisfy. Summing

up inequalities in (B.3) and simplifying, we have shown that πk ≥ πk−1 for k = 2. The

argument for any n and k ∈ {1� � � � � n} is similar. This completes the proof. �

B.3 Full-support direct obedient policies

Direct obedient policies Let π : � → �(
∏n

i=1 Si) be an arbitrary information policy.

A mixed strategy for Ri in the induced voting game is given by σi : 
 × Si → �({0�1}).

Let σi(si) := σi(π� si) denote the probability that di = 1 upon observing si. We claim that

given any policy π and any profile of equilibrium strategies (σi)
n
i=1, we can construct a

direct obedient policy that implements the same outcome as the original policy. Con-

sider the direct policy π̃ : �→ �({0�1}n) such that for any d̂ and any θ ∈ �,

π̃(d̂|θ)=
∑
s

π(s|θ)
n∏

i=1

(
d̂iσi(si)+ (1 − d̂i)

(
1 − σi(si)

))
�

Claim B.1. The direct policy π satisfies ICa-i and ICr-i for any i.

Proof. Let us first show that voter Ri obeys an approval recommendation:

∑
�H
i

f (θ)π̃
(
d̂a|θ) − �i

∑
�L
i

f (θ)π̃
(
d̂a|θ)

=
∑
�H
i

f (θ)

(∑
s

π(s|θ)
n∏

i=1

σi(si)

)
− �i

∑
�L
i

f (θ)

(∑
s

π(s|θ)
n∏

i=1

σi(si)

)

=
∑
s

∏
i

σi(si)

{∑
�H
i

f (θ)π(s|θ)− �i
∑
�L
i

f (θ)π(s|θ)
}

=
∑
si∈Si

σi(si)

(∑
s−i

∏
j �=i

σj(sj)

{∑
�H
i

f (θ)π(si� s−i|θ)− �i
∑
�L
i

f (θ)π(si� s−i|θ)
})

≥ 0�

The last inequality follows from the fact that if σi(si) ∈ (0�1) (resp., σi(si) = 1) for some

si, then the term in brackets is 0 (resp., strictly positive). Hence ICa-i is satisfied. Similar
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reasoning shows that ICr constraints are satisfied as well by π̃:∑
�H
i

f (θ)π̃
(
d̂r�i|θ) − �i

∑
�L
i

f (θ)π̃
(
d̂r�i|θ)

=
∑
si∈Si

(
1 − σi(si)

)(∑
s−i

∏
j �=i

σj(sj)

(∑
�H
i

f (θ)π(si� s−i|θ)− �i
∑
�L
i

f (θ)π(si� s−i|θ)
))

�

If σi(si) ∈ (0�1) (resp., σi(si) = 0) for some si, the term in brackets is 0 (resp., strictly
negative). Therefore, π̃ is obedient. �

Full-support policies Our analysis focuses on policies that are the limit of some se-
quence of full-support obedient policies. For this purpose, let us define a full-support
policy for each mode of persuasion. A general policy π is a full-support general policy
if π(d̂|θ) ∈ (0�1) for any d̂ ∈ {0�1}n and for any θ ∈ �. This means that for any given
state profile, all recommendation profiles are sent with strictly positive probability. Sim-
ilarly, a full-support independent general policy (πi(·))i is such that for each voter Ri,
πi(θ) ∈ (0�1) for any θ ∈ �. That is, in each state profile, each voter is recommended
to approve and to reject with strictly positive probability. An individual policy (πi)i has
full support if for each Ri, the probability of Ri receiving each recommendation for each
individual state is bounded away from 0 and 1, i.e. for each Ri, πi(θi) ∈ (0�1) for each
θi ∈ {H�L}. That is, for each individual state θi, each voter is recommended to approve
and to reject with strictly positive probability.

B.4 Individual persuasion with two voters

The optimal policy when the states are perfectly correlated or independent is given by
Proposition 4.1, so here we focus on imperfectly correlated states. Without loss, it is
assumed that �1 > �2. Based on Lemmas 4.1 and 4.2, the optimal policy features π1(H) =
π2(H) = 1 and at least one voter has a binding ICa constraint.

We first want to argue that the stricter voter’s ICa-1 constraint must bind. Suppose
not. Then ICa-2 must bind. We can solve for π2(L) from this binding constraint:

π2(L) = f (LH)π1(L)+ f (HH)π1(H)

�2
(
f (HL)π1(H)+ f (LL)π1(L)

) �
Substituting π1(H) = π2(H) = 1 and π2(L) into the objective of the sender, we obtain
the objective

f (HH)(1 + �2)+ f (LH)π1(L)(1 + �2)

�2
�

which strictly increases in π1(L). Therefore, the sender finds it optimal to set π1(L)

as high as possible. This means that either the ICa-1 constraint binds or π1(L) = 1.
Given the presumption that the ICa-1 constraint does not bind, it has to be the case that
π1(L) = 1. This policy essentially provides the more lenient voter with an informative
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policy and asks the stricter voter to approve with probability 1. We argue that this policy
cannot be incentive-compatible, because ICa-2 binds but R1 is asked to rubber-stamp.
Given that R1 is stricter than R2, R1 learns about her state indirectly from R2’s approval,
and whenever R2 is indifferent between approving and not, R1 must strictly prefer to
reject. This shows that in the optimal policy ICa-1 must bind.

Given that ICa-1 always binds, we can solve for π1(L) as a function of π2(L). Substi-
tuting π1(H) = π2(H) = 1 and π1(L) into the sender’s objective, we obtain that the ob-
jective strictly increases in π2(L). Therefore, the sender sets π2(L) as high as possible.
Either ICa-2 binds or π2(L) = 1. We summarize the discussion above in the following
lemma.

Lemma B.2. Given two voters �1 > �2 whose states are imperfectly correlated, the optimal
policy is unique. The stricter voter’s ICa-1 binds. The more lenient voter’s π2(L) is as high
as ICa-2 allows.

B.5 Individual persuasion with homogeneous thresholds

Consider individual persuasion under the unanimous rule when n voters have the same
thresholds �. Without loss, we assume that πi(L) ≤ πi+1(L) for 1 ≤ i ≤ n − 1. In any
optimal policy, the voter(s) with the highest πi(L) must have binding ICa constraints.
The rest have slack ICa constraints. We also assume that � > 1.

We focus on the following class of distributions f . Nature first draws a grand state
that can be either G or B. If the state is G, each voter’s state is H with probability
λ1 ∈ ( 1

2 �1). If the state is B, each voter’s state is L with probability (1 − λ1) ∈ (0� 1
2).1

Conditional on the grand state, the voters’ states are drawn independently. We let fk
denote the probability of a state profile with k low-state voters. We thus have fk =
p0λ

n−k
1 (1 − λ1)

k + (1 −p0)(1 − λ1)
n−kλk1 .

We first argue that the support of (πi(L))
n
i=1 has at most three elements. Suppose

not. Then there exist i and j such that πi(L)�πj(L) ∈ (0�1) and both ICa-i and ICa-j
are slack. This violates Proposition 4.3.2 This argument also shows that the support of
(πi(L))

n
i=1 has at most two interior-valued elements.

Therefore, any optimal policy can be characterized by three numbers (n0� y�x) with
n0 ≥ 0 and 0 < y ≤ x ≤ 1 such that (i) πi(L) = 0 for i ∈ {1� � � � � n0}, (ii) πn0+1(L) = y, and
(iii) πi(L) = x for i ∈ {n0 + 2� � � � � n}.3 Only the ICa constraints of voters with πi(L) = x

bind:

�=

n−n0−2∑
k=0

Ck
n−n0−2fkx

k +
n−n0−2∑
k=0

Ck
n−n0−2fk+1x

ky

n−n0−2∑
k=0

Ck
n−n0−2fk+1x

k+1 +
n−n0−2∑
k=0

Ck
n−n0−2fk+2x

k+1y

� (ICa)

1If λ1 = 1, voters’ states are perfectly correlated. If λ1 = 1
2 , voters’ states are independent. Both these

polar cases were addressed in Proposition 4.1.
2It is easy to verify that the states of any three voters are strictly affiliated for this class of distributions.
3If y �= x, only one voter has the policy y . If, instead, two or more voters had y , at least two voters would

have interior πi(L) and slack ICa constraints, contradicting Proposition 4.3.
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The sender’s payoff is the sum of the numerator and the denominator of the right-hand
side.

We let λ∗
k denote the value of λ1 such that conditional on k voters’ states being high,

a voter is just willing to rubber-stamp. In other words, conditional on k voters’ states
being high, a voter’s belief of being high is exactly �/(1 + �). Therefore, λ1 = λ∗

k solves

p0λ
k
1

p0λ
k
1 + (1 −p0)(1 − λ1)

k
λ1 + (1 −p0)(1 − λ1)

k

p0λ
k
1 + (1 −p0)(1 − λ1)

k
(1 − λ1) = �

1 + �
�

We let ph denote the ex ante probability of being H, that is, ph = p0λ1 + (1 −p0)(1 −λ1).
The domain of ph is (1 − λ1�λ1). Assumption 1 that no voter prefers to approve ex ante
is equivalent to ph − �(1 − ph) < 0. Substituting p0 = (ph − (1 − λ1))/(2λ1 − 1) into the
equation above, we obtain the equation that defines λ∗

k:

λk+1
1

(
ph − (1 − λ1)

) + (1 − λ1)
k+1(λ1 −ph)

λk1
(
ph − (1 − λ1)

) + (1 − λ1)
k(λ1 −ph)

= �

1 + �
�

Note that λ∗
k depends on ph, �, and k but not on n. The left-hand side increases in ph, k,

and λ1.4 The right-hand side increases in �. Therefore, λ∗
k decreases in ph and k, and it

increases in �.
The sequence (λ∗

k)
∞
k=1 is a decreasing sequence that converges to �/(1 + �). Each

voter learns about the grand state from the information regarding other voters’ states. If
λ1 < �/(1+�), even if a voter is certain that the grand state is G, this voter is not willing to
rubber-stamp the project. Therefore, if λ1 ≤ �/(1 + �), no matter how many other voters’
states are high, a voter is unwilling to rubber-stamp. Alternatively, for any λ1 > �/(1 + �),
there exists k ≥ 1 such that λ1 > λ∗

k. We next argue that if λ1 > λ∗
k, then n0 < k in any

optimal policy. Because a voter is willing to rubber-stamp if k− 1 voters have πi(L) = 0
and another voter has πi(L) ∈ (0�1), the sender can strictly improve his payoff if at least
k voters learn their states fully. For instance, if λ1 > λ∗

1, the sender is able to persuade
R2 through Rn to rubber-stamp even if he only partially reveals the state to R1. No voter
will learn her state fully, so n0 = 0. For λ1 > λ∗

1, we are left with two possible cases: either
y < x or y = x. In the former case, R1’s ICa is slack. The sender provides more precise
information to R1 so as to persuade the other voters more effectively. In the latter case,
all voters’ ICa constraints bind. In general, if λ1 ∈ (λ∗

k�λ
∗
k−1], we must have n0 <k.

We next show that it is not possible that both y and x are interior, and they are not
equal to each other.

Lemma B.3. The support of (πi(L))
n
i=1 does not have two interior values.

Proof. The first n0 ≥ 0 voters learn their states fully. Voter Rn0+1’s policy is πn0+1(L) = y.
Subsequent voters from Rn0+2 through Rn have the policy πi(L) = x. Suppose that both
y and x are interior and y < x. We want to show that the sender can strictly improve his
payoff.

4We fix the probability ph that a voter’s state is high, so varying λ1 only varies the correlation of the states
across voters.
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The sender’s payoff can be written as

c0(x)(1 − λ1)
n0(λ1 −ph)(1 − λ1 + λ1x)(1 − λ1 + λ1y)

2λ1 − 1

+ c1(x)λ
n0
1 (ph − 1 + λ1)

(
λ1 + (1 − λ1)x

)(
λ1 + (1 − λ1)y

)
2λ1 − 1

�

where

c0(x) = (1 − λ1 + λ1x)
n−n0−2� c1(x) = (

λ1 + (1 − λ1)x
)n−n0−2

�

The binding ICa constraint can be written as

c0(x)

c1(x)
= λ

n0
1 (λ1 +ph − 1)

(
λ1 + (1 − λ1)y

)(
�(λ1 − 1)x+ λ1

)
(1 − λ1)

n0(λ1 −ph)
(
λ1(y − 1)+ 1

)
(�λ1x+ λ1 − 1)

�

Given (��ph�λ1� n�n0), the binding ICa constraint implicitly defines y as a function of x.
The domain of x depends on the values of (��ph�λ1� n�n0). The lowest value that x can
take is denoted x, which is obtained when we set y to be equal to x. The highest value of
x is denoted by x, which is either equal to 1 or obtained by setting y to be 0. The domain
of x is [x�x].

Suppose that the pair (x� y) solves ICa. We can replace (x� y) with (x + εx� y + εy�ic)

so that the ICa constraint still holds as an equality. Similarly, we can replace (x� y) with
(x + εx� y + εy�obj) so that the sender’s payoff remains constant. We define ε′

y�ic(x) and
ε′
y�obj(x) as

ε′
y�ic(x) = lim

εx→0

y + εy�ic − y

x+ εx − x
� ε′

y�obj(x) = lim
εx→0

y + εy�obj − y

x+ εx − x
�

It is easy to show that both derivatives ε′
y�ic(x) and ε′

y�obj(x) are negative over the domain

of x. It is easily verified that ε′
y�ic(x) is negative, since a voter with the policy x must

become more optimistic about her state based on policy y after we increase x by a small
amount. Therefore, the binding ICa defines y as a decreasing function of x. It is also
easily verified that ε′

y�obj(x) is negative as well: So as to keep the sender’s payoff constant,
we must decrease y as we increase x.

If ε′
y�obj(x) < ε′

y�ic(x) over some region of x, then the decrease in y required for ICa to
hold is smaller than the decrease in y required for the sender’s payoff to stay constant.
In this case, the sender can improve by increasing x. Analogously, if ε′

y�obj(x) > ε′
y�ic(x)

over some region of x, then the sender can improve by decreasing x. We want to argue
that in the domain of x, one of the following three cases occurs: (i) ε′

y�obj(x) > ε′
y�ic(x)

for any x ∈ [x�x]; (ii) ε′
y�obj(x) < ε′

y�ic(x) for any x ∈ [x�x]; (iii) there exists x′ such that

ε′
y�obj(x) < ε′

y�ic(x) if x > x′ and ε′
y�obj(x) > ε′

y�ic(x) if x < x′. In all three cases, the sender
finds it optimal to set x either as high as possible or as low as possible. Therefore, the
support of any optimal policy cannot have two interior values x� y ∈ (0�1) with x �= y.
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We next show that one of three cases occurs by examining the sign of ε′
y�obj(x) −

ε′
y�ic(x). The term ε′

y�obj(x)− ε′
y�ic(x) is positive if and only if

(
λ1 + (1 − λ1)x

1 − λ1 + λ1x

)n−n0−1

>

(
1 − λ1

λ1

)n0

(λ1 −ph)
(
�λ1x

2(−n+ n0 + 2)− (λ1 − 1)x(n− n0 − 1)+ λ1
)

(ph − 1 + λ1)
(
�(1 − λ1)x

2(n− n0 − 2)+ λ1x(−n+ n0 + 1)+ λ1 − 1
) � (B.4)

Let us first show that the second term in the denominator is negative:

�(1 − λ1)x
2(n− n0 − 2)+ λ1x(−n+ n0 + 1)+ λ1 − 1 < 0�

This inequality holds when n = n0 + 2, which is the lowest value that n can take. The
derivative of the left-hand side with respect to n is −x(λ1 − �(1 − λ1)x). We want to
argue that λ1 − �(1 − λ1)x is weakly positive. If λ1 ≥ �/(1 + �), then λ1 − �(1 − λ1)x is
positive for any x. If λ1 < �/(1 + �), no voter will ever rubber-stamp. The highest value
of x is obtained when we set y to be 0. It is easily verified that x < λ1/(�(1 − λ1)) in this
case. Therefore, the derivative of the left-hand side with respect to n is weakly negative,
so the inequality holds for any n ≥ n0 + 2.

The left-hand side of (B.4) decreases in x whereas the right-hand side increases in x.
Therefore, either the above inequality holds for any x in the domain, or it does not hold
for any x in the domain, or it holds only when x is below a threshold x′. This completes
the proof. �

Based on Lemma B.3, we are left with four possible cases:

(i) We have n0 = 0 and y = x ∈ (0�1). In this case, all voters have the same policy. All
ICa constraints bind. This is the only symmetric policy.

(ii) We have n0 = 0, y ∈ (0�1), and x = 1. Voter R1’s information is more precise than
her ICa constraint requires. The other voters are willing to rubber-stamp given
that R1’s policy is partially informative. This case is possible if and only if λ1 > λ∗

1.

(iii) We have n0 > 0 and y = x ∈ (0�1]. The sender provides fully revealing policies to
R1 through Rn0 .

(iv) We have n0 > 0, y ∈ (0�1), and x = 1. The sender provides fully revealing policies
to R1 through Rn0 and partial information to Rn0+1.

The theme that the sender provides more precise information to some voters so as to
persuade the others more effectively is reflected in the latter three cases. Moreover,
when λ1 ≤ �/(1 + �), no voter ever rubber-stamps. The optimal policy must take the
form of either case (i) or case (iii). If it is optimal to set n0 to be 0, the optimal policy
is the symmetric one. For λ1 > �/(1 + �), the policy is either (n0� y�1) with n0 ≥ 0 or
(n0� y�x) with n0 ≥ 0 and y = x. In the rest of this section, we analyze the parameter
regions (λ∗

1�1), (�/(1 + �)�λ∗
1], and ( 1

2 � �/(1 + �)] separately.
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When λ1 ∈ (λ∗
1�1), only case (i) and case (ii) are possible. The threshold λ∗

1 is given
by

λ∗
1 = 1

2

(
1 +

√
1 + �− 4ph

1 + �

)
�

We are interested in characterizing how the optimal policy varies as we increase the
number of voters n. If the sender chooses a policy as in case (ii), the sender’s payoff
is

(�+ 1)(λ1 −ph)(λ1 +ph − 1)
�
(
(λ1 − 1)λ1 −ph + 1

) + (λ1 − 1)λ1
� (B.5)

The sender chooses y so that the other voters are willing to rubber-stamp. The payoff of
the sender is given by offering the policy π1(L) = y to R1, since the other voters approve
for sure. If λ1 = λ∗

1, the sender’s payoff is equal to ph, since at this correlation level, the
other voters are willing to rubber-stamp only if the sender fully reveals θ1 through R1. As
λ1 increases, the sender’s payoff increases as well. When states are perfectly correlated,
i.e., λ1 = 1, the sender’s payoff is (1 + 1/�)ph, which is the same as if he were facing R1
alone. In case (ii), the number of voters has no impact on the sender’s payoff.

If the sender chooses a policy as in case (i), the ICa constraint can be written as

(λ1 +ph − 1)
(
�(λ1 − 1)x+ λ1

)
(λ1 −ph)(�λ1x+ λ1 − 1)

=
(
λ1x+ (1 − λ1)

λ1 + (1 − λ1)x

)n−1
� (B.6)

This equation implicitly defines x. The sender’s payoff is given by

(�+ 1)x(λ1 +ph − 1)
�λ1x+ λ1 − 1

(
λ1 + x(1 − λ1)

)n−1
� (B.7)

We will show that x, the probability that a low-state voter approves, increases in n. More-
over, the sender’s payoff decreases in n. The limit of the sender’s payoff as n approaches
infinity is given by

(�+ 1)(λ1 +ph − 1)
((

�(λ1 − 1)+ λ1
)
(λ1 +ph − 1)

(�λ1 + λ1 − 1)(λ1 −ph)

) 1−λ1
2λ1−1

�λ1 + λ1 − 1
� (B.8)

This limiting payoff as n → ∞ is lower than the payoff in case (ii). Moreover, when n

equals 2, (B.7) is strictly higher than (B.5), so the sender obtains a strictly higher payoff
in case (i) than in case (ii). Therefore, for each �, ph, and λ1 ∈ (λ∗

1�1), there exists n′ ≥ 3
such that the sender is strictly better off in case (ii) than in case (i) if and only if n≥ n′.

Proposition B.2. Suppose λ1 ∈ [λ∗
1�1). For each �, ph, and λ1, there exists n′ ≥ 3 such

that for n ≥ n′, the sender is strictly better off in case (ii) than in case (i), so the case (ii)
policy is uniquely optimal.

Proof. We first show that (B.5) is strictly higher than (B.8). Then we show that (B.7)
strictly decreases in n. This completes the proof.
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The ratio of (B.5) over (B.8) is given by

(�λ1 + λ1 − 1)(λ1 −ph)

((
�(λ1 − 1)+ λ1

)
(λ1 +ph − 1)

(�λ1 + λ1 − 1)(λ1 −ph)

) λ1−1
2λ1−1

�
(
(λ1 − 1)λ1 −ph + 1

) + (λ1 − 1)λ1
� (B.9)

This ratio equals 1 when λ1 = 1. We want to show that this ratio is strictly above 1 for
λ1 ∈ [λ∗

1�1). The derivative of this ratio with respect to ph is negative if and only if

((
�(λ1 − 1)+ λ1

)
(λ1 +ph − 1)

(�λ1 + λ1 − 1)(λ1 −ph)

) λ1+1
2λ1−1

> 0�

Since this inequality holds, the ratio (B.9) decreases in ph. Assumption 1 ensures that
ph < �/(1 + �). Substituting ph = �/(1 + �) into (B.9), the ratio equals 1. Therefore, for
any ph < �/(1+�), the ratio (B.9) is above 1. This completes the proof that (B.5) is strictly
higher than (B.8) for λ1 ∈ [λ∗

1�1).
Now we restrict attention to the policy of case (i). We first show that the solution x to

(B.6) increases in n. The right-hand side of (B.6) increases in x and decreases in n. The
left-hand side decreases in x. Therefore, as n increases, x must increase as well.

We next show that (B.7) decreases in n. It is easily verified that ((� + 1) ×
x(λ1 + ph − 1))/(�λ1x + λ1 − 1) decreases in x. So it also decreases in n, since x in-
creases in n. Therefore, if we can show that (λ1 + x(n)(1 − λ1))

n−1 decreases in n, then
(B.7) must decrease in n. For the rest of this proof, we use x(n) instead of x to highlight
the dependence of x on n. From the analysis of the previous paragraph, we know that
the left-hand side of (B.6) decreases in n. Therefore, the total derivative of the right-hand
side of (B.6) with respect to n is negative. This puts an upper bound on x′(n):

x′(n) <

(
λ1x(n)− λ1 + 1

)(
λ1x(n)− λ1 − x(n)

)
log

(
λ1

(
x(n)− 1

) + 1

λ1
(−x(n)

) + λ1 + x(n)

)
(2λ1 − 1)(n− 1)

�

For (λ1 + x(n)(1 − λ1))
n−1 to be increasing in n, the derivative x′(n) must be at least

x′(n) >
(
λ1 + x(n)− λ1x(n)

)
log

(
λ1

(−x(n)
) + λ1 + x(n)

)
(λ1 − 1)(n− 1)

�

We want to show that this is impossible. The lower bound on x′(n) is higher than the
upper bound if and only if

(
λ1x(n)− λ1 + 1

)
log

(
λ1

(
x(n)− 1

) + 1

λ1
(−x(n)

) + λ1 + x(n)

)
2λ1 − 1

− log
(
λ1

(−x(n)
) + λ1 + x(n)

)
1 − λ1

> 0�

The left-hand side of the above inequality decreases in x(n). Moreover, the left-hand
side equals 0 when x(n) equals 1. Therefore, the above inequality always holds. This
shows that the lower bound on x′(n) is indeed higher than the upper bound. Therefore,
(λ1 + x(n)(1 − λ1))

n−1 and (B.7) decreases in n. �
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We next focus on the parameter region λ1 ∈ (�/(1 + �)�λ∗
1]. The optimal policy might

take the form of case (i), case (iii), or case (iv). We show that case (iv) dominates case (i)
and case (iii) for n large enough. This implies that some voters learn their states fully for
n large enough.

Proposition B.3. Suppose λ1 ∈ (�/(1 + �)�λ∗
1]. For each �, ph, and λ1, there exists n′ ≥ 3

such that for n ≥ n′, the sender is strictly better off in case (iv) than in cases (i) and (iii), so
case (iv) policy is uniquely optimal.

Proof. For any λ1 ∈ (�/(1 + �)�λ∗
1], there exists k ≥ 1 such that λ1 ∈ (λ∗

k+1�λ
∗
k]. We first

argue that the policy in case (iv) with n0 being k leads to a higher payoff than the sym-
metric policy in case (i) when n is large enough.

If the sender uses the policy in case (iv) with n0 being k, the ICa constraint can be
written as

�= λk+1
1 (λ1 +ph − 1)

(
λ1 + (1 − λ1)y

) + (1 − λ1)
k+1(λ1 −ph)

(
λ1y + (1 − λ1)

)
(1 − λ1)λ

k
1 (λ1 +ph − 1)

(
λ1 + (1 − λ1)y

) + λ1(1 − λ1)
k(λ1 −ph)

(
λ1y + (1 − λ1)

) �
This allows us to solve for y. Substituting this value of y into the sender’s payoff, we
obtain the sender’s payoff as

(�+ 1)(2λ1 − 1)
(
(1 − λ1)λ1

)k
(λ1 −ph)(λ1 +ph − 1)

(λ1 − 1)
(
�(λ1 − 1)+ λ1

)
λk1 (λ1 +ph − 1)+ λ1(�λ1 + λ1 − 1)(1 − λ1)

k(λ1 −ph)
� (B.10)

The ICa constraint holds as an equality for some y in [0�1]. The right-hand side of the
ICa constraint decreases in y. After substituting y = 1 into the ICa constraint, we obtain

�≥ λk+1
1 (λ1 +ph − 1)+ (1 − λ1)

k+1(λ1 −ph)

λ1(1 − λ1)
k(λ1 −ph)− (λ1 − 1)λk1 (λ1 +ph − 1)

�

This inequality imposes an upper bound on ph:

ph ≤ (1 − λ1)
(
�(λ1 − 1)+ λ1

)
λk1 + λ1(�λ1 + λ1 − 1)(1 − λ1)

k(
�(λ1 − 1)+ λ1

)
λk1 + (�λ1 + λ1 − 1)(1 − λ1)

k
� (B.11)

The payoff from the symmetric policy in case (i) approaches (B.8) as n goes to infinity.
The ratio of (B.10) over (B.8) is given by

(2λ1 − 1)(�λ1 + λ1 − 1)
(
(1 − λ1)λ1

)k
(λ1 −ph)

((
�(λ1 − 1)+ λ1

)
(λ1 +ph − 1)

(�λ1 + λ1 − 1)(λ1 −ph)

) λ1−1
2λ1−1

(λ1 − 1)
(
�(λ1 − 1)+ λ1

)
λk1 (λ1 +ph − 1)+ λ1(�λ1 + λ1 − 1)(1 − λ1)

k(λ1 −ph)
�

This ratio decreases in ph given the inequality (B.11). Moreover, if we substitute the
upper bound on ph as in (B.11) into the ratio above, this ratio equals

λk1
(
(1 − λ1)

kλ−k
1

) λ1
1−2λ1

+1
� (B.12)
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The term above strictly decreases in λ1 if λ1 ∈ ( 1
2 �1). Moreover, the limit of the term

above when λ1 goes to 1 is equal to 1. This shows that the ratio of (B.10) over (B.8) is
strictly greater than 1. Therefore, the symmetric policy in case (i) is dominated by the
asymmetric policy in case (iv) when n is large enough.

We next argue that the policy in case (iii) with n0 ≤ k leads to a lower payoff than the
policy in case (iv) when n is large enough. If the sender uses the policy in case (iii), the
ICa constraint can be written as

λ
n0
1

(1 − λ1)
n0

(λ1 +ph − 1)
(
�(λ1 − 1)x+ λ1

)
(λ1 −ph)(�λ1x+ λ1 − 1)

=
(
λ1x+ (1 − λ1)

λ1 + (1 − λ1)x

)n−n0−1
�

This equation implicitly defines x. The limit of x as n goes to infinity is 1. The limit of
the sender’s payoff as n approaches infinity is given by

(�+ 1)(λ1 +ph − 1)λn0
1

(
λ
n0
1

(1 − λ1)
n0

(
�(λ1 − 1)+ λ1

)
(λ1 +ph − 1)

(�λ1 + λ1 − 1)(λ1 −ph)

) 1−λ1
2λ1−1

�λ1 + λ1 − 1
� (B.13)

The ratio of the limit payoff in case (iii) over the limit payoff in case (i) is given by the
ratio of (B.13) over (B.8): (

1
λ1

− 1
) (λ1−1)n0

2λ1−1
λ
n0
1 �

This ratio is strictly smaller than (B.12) if n0 < k. This ratio is equal to (B.12) If n0 = k.
Note that (B.12) is strictly higher than the ratio of the payoff in case (iv) over the limit
payoff in case (i). This shows that the payoff in case (iv) is strictly higher than the limit
payoff in case (iii). �

Let us now consider the case of a low λ1: let λ1 ∈ ( 1
2 � �/(1 + �)]. For this parameter

region, even if a voter is certain that the realized grand state is G, she is still not willing to
approve the project if λ1 − �(1 − λ1) < 0. Due to this, no voter is willing to rubber-stamp
the project; hence, there is no voter for whom πi(L) = 1. A symmetric policy assigns the
same πi(L) ∈ (0�1) for any i. An asymmetric policy assigns a fully revealing policy to a
subgroup of the voters and a symmetric interior policy to the remaining voters, due to
Lemma B.3. Hence, any asymmetric policy is indexed by n0, the number of voters who
receive fully revealing recommendations. Let P(n0� n) denote the payoff from a policy
with exactly n0 voters with fully revealing recommendations among n voters in total.

For a policy with n0 ≥ 0 and x ∈ (0�1) denoting the recommendation probability
πi(L) for the partially informed voters, the binding ICa is

(
λ1 + (1 − λ1)x

1 − λ1 + λ1x

)n−n0−1
= λ

n0
1 (ph − 1 + λ1)

(
λ1 − �(1 − λ1)x

)
(1 − λ1)

n0(λ1 −ph)(λ1 − 1 + �λ1x)
� (B.14)

The corresponding payoff to the sender is

P(n0� n)= (�+ 1)λn0
1 (ph + λ1 − 1)x

(
λ1 + (1 − λ1)x

)n−n0−1

λ1 − 1 + �λ1x
�
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The approval probability x implicitly depends on n. For any fixed n0 ≥ 0, x(n) is increas-
ing in n. To see this, notice that the right-hand side of (B.14) increases in x and decreases
in n, while the left-hand side decreases in x. Therefore, an increase in n makes the right-
hand side smaller, while it does not directly affect the left-hand side: for equality to hold,
x(n) has to increase as well.

Moreover, it is straightforward to see from the ICa constraint that x(n) increases in n0
for a fixed group size n. Naturally, if more voters are offered fully revealing recommen-
dations, this allows the sender to recommend the partially informed voters to approve
more frequently.

The following result establishes that as n → ∞, the payoff of the sender decreases in
n0; hence, for an infinitely large group, it is optimal for the sender to assign the symmet-
ric policy with n0 = 0.

Proposition B.4. Suppose that λ1 ∈ ( 1
2 � �/(1 + �)]. For any n0 ≥ 0,

lim
n→∞

P(n0� n)

P(n0 + 1� n)
= �+ 1

�
> 1�

that is, for sufficiently large n, the sender’s payoff is decreasing in n0.

Proof. Let x0(n) and x1(n) denote the probability of recommendation to a low-state
voter corresponding to the policies with n0 and n0 + 1 fully revealing recommendations.
The ratio of payoffs is

P(n0� n)

P(n0 + 1� n)
= λ1 + (1 − λ1)x0(n)

λ1

(
λ1 + (1 − λ1)x0(n)

λ1 + (1 − λ1)x1(n)

)n−n0−1x1(n)

x0(n)

�x0(n)λ1 + λ1 − 1
�x1(n)λ1 + λ1 − 1

�

It follows from a comparison of the two ICa constraints that x1(n) > x0(n) for any n.
Moreover, (x1(n) − x0(n)) → 0 as n → ∞. Both x1(n) and x0(n) tend to λ1/((1 − λ1)�).
Therefore,

lim
n→∞

x1(n)

x0(n)
= lim

n→∞
�x0(n)λ1 + λ1 − 1
�x1(n)λ1 + λ1 − 1

= 1� lim
n→∞

λ1 + (1 − λ1)x0(n)

λ1
= �+ 1

�
�

Hence, the limit ratio of the payoffs reduces to

lim
n→∞

P(n0� n)

P(n0 + 1� n)
= �+ 1

�
lim
n→∞

(
λ1 + (1 − λ1)x0(n)

λ1 + (1 − λ1)x1(n)

)n−n0−1
�

So as to evaluate the remaining limit term, we need to approximate the rate at which
x1(n) and x0(n) converge to λ1/(�(1 − λ1)) as n → ∞. From the ICa constraint when n0
voters receive fully revealing recommendations, we have

λ1

�(1 − λ1)
− x0(n) = (2λ1 − 1)(1 − λ1)

n0−2(λ1 −ph)w0(n)
n−n0−1

�
(
λ
n0
1 (λ1 +ph − 1)+ λ1(1 − λ1)

n0−1(λ1 −ph)w0(n)
n−n0−1) �

where w0(n) = (1 − λ1 + λ1x0(n))/(λ1 + (1 − λ1)x0(n)). Since x0(n) converges to
λ1/(�(1 − λ1)) as n → ∞, there exist constants w0 <w0 ∈ (0�1) such that w0(n) ∈ (w0�w0)
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when n is sufficiently large. Similarly, from the ICa constraint when n0 + 1 voters receive
fully revealing recommendations, we have

λ1

�(1 − λ1)
− x1(n) = (2λ1 − 1)(1 − λ1)

n0−1(λ1 −ph)w1(n)
n−n0−2

�
(
λ
n0+1
1 (λ1 +ph − 1)+ λ1(1 − λ1)

n0(λ1 −ph)w1(n)
n−n0−2) �

where w1(n) = (1 − λ1 + λ1x1(n))/(λ1 + (1 − λ1)x1(n)). Since x1(n) converges to
λ1/(�(1 − λ1)) as n → ∞, there exist constants w1 <w1 ∈ (0�1) such that w1(n) ∈ (w1�w1)

when n is sufficiently large.
Notice that for any a0� a1 ∈ (0�1) and any κ0�κ1 > 0,

lim
n→∞

(
1 − κ0a

n
0

1 − κ1a
n
1

)n−1
= 1�

Therefore,

lim
n→∞

(
λ1 + (1 − λ1)x0(n)

λ1 + (1 − λ1)x1(n)

)n−n0−1
= lim

n→∞

(1 − �(1 − λ1)

(1 + �)λ1

(
λ1

�(1 − λ1)
− x0(n)

)

1 − �(1 − λ1)

(1 + �)λ1

(
λ1

�(1 − λ1)
− x1(n)

))n−n0−1

= 1�

This concludes the proof. �

An immediate implication of Proposition B.4 is the following corollary, which pins
down the exact limiting ratio of the payoffs from the symmetric policy and any asym-
metric policy with n0 > 0. This ratio depends only on � and n0: the larger is the threshold
�, the smaller is the comparative benefit from a symmetric policy.

Corollary B.4. For any asymmetric policy with n0 > 0 fully informed voters,

lim
n→∞

P(0� n)
P(n0� n)

=
(
�+ 1
�

)n0

�

To sum up, we analyzed optimal individual persuasion for the case of homogeneous
thresholds when the group size n is sufficiently large. We have established that when λ1

is above �/(�+ 1), the sender finds it optimal to rely on an asymmetric policy, which
assigns different recommendation probabilities πi(L) across voters. For instance, if
λ1 > λ∗

1, the optimal policy consists of a partially informed voter and all other voters
rubber-stamping; if λ1 ∈ (λ∗

2�λ
∗
1), the optimal policy consists of one fully informed voter,

another partially informed voters, and all other voters as rubber-stampers, and so on. If,
alternatively, λ1 is below �/(�+ 1), it is optimal for the sender to offer the same proba-
bility of recommendation in state L to all voters when the size group is sufficiently high.
No voter is fully revealed her state for such low λ1.
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Figure B.1. Optimal individual persuasion with homogeneous thresholds.

B.6 Strict Ahlswede–Daykin theorem

Theorem B.5. Suppose (���) is a finite distributive lattice and that functions
f1� f2� f3� f4 : �→R

+ satisfy the relation that

f1(a)f2(b) < f3(a∧ b)f4(a∨ b)

∀a�b ∈ �. Furthermore, suppose that f3(c) > 0 and f4(c) > 0 for any c ∈ �. Then

f1(A)f2(B) < f3(A∧B)f4(A∨B)

∀A�B ⊂ �, where fk(A) = ∑
a∈A fk(a) for all A ⊂ �, k ∈ {1�2�3�4}, and A ∨ B = {a ∨ b :

a ∈A�b ∈ B}, A∧B = {a∧ b : a ∈A�b ∈ B}.

Proof.5 Because � is a finite distributive lattice, it suffices6 to prove that the result holds
for � = 2N , the lattice of subsets of the set N = {1� � � � � n} partially ordered by the inclu-
sion relation. Then a ∈ � is a particular subset of N and A ⊂ � is a subset of subsets
of N .

First, let us establish the result for n = 1, so N = {1}. Then � = {∅� {1}}. Let f 0
k and

f 1
k denote the function fk for k = 1�2�3�4 evaluated at ∅ and {1}, respectively. By the

premise, given that f 0
3 � f

1
3 � f

0
4 � f

1
4 �= 0,

f 0
1 f

0
2 < f 0

3 f
0
4 � f 1

1 f
0
2 < f 0

3 f
1
4 � f 0

1 f
1
2 < f 0

3 f
1
4 � f 1

1 f
1
2 < f 1

3 f
1
4 �

It is straightforward to check that the result holds for any A and B that are singletons.
This leaves only the case of A= B = {∅� {1}}. We need to show that

(
f 0

1 + f 1
1
)(
f 0

2 + f 1
2
)
<

(
f 0

3 + f 1
3
)(
f 0

4 + f 1
4
)
�

If either f1 or f2 is 0, then the result follows trivially. So let us now consider the case in
which they all nonzero. It is sufficient to consider the case for which f 0

k = 1 for all k. It

5This proof adapts the proof presented in Graham (1983).
6Every distributive lattice can be embedded in a power set algebra so that all existing finite joins and

meets are preserved.
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follows that

f 1
1 < f 1

4 � f 1
2 < f 1

4 � f 1
1 f

1
2 < f 1

3 f
1
4 �

We would like to show that

(
1 + f 1

1
)(

1 + f 1
2
)
<

(
1 + f 1

3
)(

1 + f 1
4
)
� (B.15)

If f 1
4 = 0, the result follows immediately. So let us consider the case for which f 1

4 > 0. The
result we want to show becomes easier to satisfy as f 1

4 : hence, it is sufficient to establish
it for a very low f 1

4 . From the inequality f 1
1 f

1
2 < f 1

3 f
1
4 , we know that

f 1
4 >

f 1
1 f

1
2

f 1
3

�

For some small fixed ε > 0, let f 1
4 = f 1

1 f
1
2 /f

1
3 + ε. From the fact that f 1

1 < f 1
4 and f 1

2 < f 1
4 ,

it follows that

(
f 1

4 − f 1
1
)(
f 1

4 − f 1
2
)
> 0� (B.16)

We want to prove that

(
1 + f 1

1
)(

1 + f 1
2
)
<

(
1 + f 1

3
)(

1 + f 1
1 f

1
2

f 1
3

+ ε

)
� (B.17)

which is equivalent to

f 1
4

2 + f 1
1 f

1
2 − f 1

4 f
1
1 − f 1

4 f
1
2 >−f 1

4 ε− f 1
4

2
ε�

But from (B.16),

f 1
4

2 + f 1
1 f

1
2 − f 1

4 f
1
1 − f 1

4 f
1
2 > 0 > −f 1

4 ε− f 1
4

2
ε

for any ε > 0. This establishes (B.17) for any arbitrarily small ε; hence, inequality (B.15)
is satisfied. So the proof for n = 1 is concluded.

Let us now assume that the result holds for n =m for some m≥ 1, and we would like
to show that it holds for n= m+1 as well. Suppose fk, k= 1�2�3�4, satisfy the premise of
the result for n = m+ 1 for � = 2{1�����m+1}. Let A and B be two fixed subsets of the power
set 2{1�����m+1}. Let us define f ′

k : 2{1�����m} →R
+ such that

f ′
1
(
a′) =

∑
a∈A�a′=a\{m+1}

f1(a)� f ′
2
(
b′) =

∑
b∈B�b′=b\{m+1}

f2(b)�

f ′
3
(
w′) =

∑
w∈A∩B�w′=w\{m+1}

f3(w)� f ′
4
(
v′) =

∑
v∈A∪B�v′=v\{m+1}

f4(v)�
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For any a′ ∈ 2{1�����m},

f ′
1
(
a′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(a)+ f1
(
a∪ {m+ 1}) if a′ ∈A�a′ ∪ {m+ 1} ∈A�

f1(a) if a′ ∈A�a′ ∪ {m+ 1} /∈A�

f1
(
a∪ {m+ 1}) if a′ /∈A�a′ ∪ {m+ 1} ∈A�

0 if a′ /∈A�a′ ∪ {m+ 1} /∈A�

With such a definition,

f1(A) = f ′
1
(
2{1�����m})�

Similarly, f2(B) = f ′
2(2

{1�����m}), f3(A ∧ B) = f ′
3(2

{1�����m}), and f4(A ∨ B) = f ′
4(2

{1�����m}).
Now, a similar argument to that for n = 1 with a′ corresponding to ∅ before and a′ ∪ {n}
corresponding to {1}, gives us that

f ′
1
(
a′)f ′

2
(
b′)< f ′

3
(
a′ ∧ b′)f ′

4
(
a′ ∨ b′)

∀a′� b′ ∈ 2{1�����m}. But by the induction hypothesis for n= m,

f ′
1
(
2{1�����m})f ′

2
(
2{1�����m}) < f ′

3
(
2{1�����m})f ′

4
(
2{1�����m})

since 2{1�����m} ∧ 2{1�����m} = 2{1�����m} and 2{1�����m} ∨ 2{1�����m} = 2{1�����m}. This implies the de-
sired result for n= m+ 1:

f1(A)f2(B) < f3(A∧B)f4(A∨B)�

This concludes the proof. �
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