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Appendix B

In Appendix B.1, we present the model of measurable dynamic games with partially
perfect information and show the existence of subgame-perfect equilibria in Proposi-
tion B.1. It covers the results in Theorem 3 (Theorem 4) for dynamic games with almost
perfect information (perfect information) and in discounted stochastic games.

In Appendix B.2, we present Lemmas B.1–B.6 as the mathematical preparations for
proving Theorem 3. We present in Appendix B.3 a new equilibrium existence result for
discontinuous games with stochastic endogenous sharing rules. The proof of Theorem 3
is given in Appendix B.4. The proof of Proposition B.1 is provided in Appendix B.5, which
covers Theorem 4 as a special case. One can skip Appendices B.2 and B.3 first, and refer
to the technical results in these two sections whenever necessary.

B.1 Measurable dynamic games with partially perfect information

In this section, we generalize the model of measurable dynamic games in three direc-
tions. The ARM condition is partially relaxed such that (a) perfect information may be
allowed in some stages, (b) the state transitions could have a weakly continuous com-
ponent in all other stages, and (c) the state transition in any period can depend on the
action profile in the current stage as well as on the previous history. The first change
allows us to combine the models of dynamic games with perfect and almost perfect
information. The second generalization implies that the state transitions need not be
norm continuous on the Banach space of finite measures. The last modification covers
the model of stochastic games as a special case.

The changes are described below.

• The state space is a product space of two Polish spaces; that is, St = Ŝt × S̃t for each
t ≥ 1.
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• For each i ∈ I, the action correspondence Ati from Ht−1 to Xti is measurable,
nonempty and compact valued, and sectionally continuous on Xt−1 × Ŝt−1. The
additional component of Nature is given by a measurable, nonempty and closed
valued correspondence Ât0 from Gr(At) to Ŝt , which is sectionally continuous on
Xt × Ŝt−1. Then Ht = Gr(Ât0) × S̃t and H∞ is the subset of X∞ × S∞ such that
(x� s) ∈H∞ if (xt� st) ∈Ht for any t ≥ 0.

• The choice of Nature depends not only on the history ht−1, but also on the action
profile xt in the current stage. The state transition ft0(ht−1�xt) = f̂t0(ht−1�xt) �
f̃t0(ht−1�xt), where f̂t0 is a transition probability from Gr(At) to M(Ŝt) such that
f̂t0(Ât0(ht−1�xt)|ht−1�xt)= 1 for all (ht−1�xt) ∈ Gr(At) and f̃t0 is a transition prob-
ability from Gr(Ât0) to M(S̃t).

• For each i ∈ I, the payoff function ui is a Borel measurable mapping from H∞ to
R++, which is sectionally continuous onX∞ × Ŝ∞.

As in Section 3.3, we allow the possibility for the players to have perfect information
in some stages. For t ≥ 1, let

Nt =

⎧⎪⎪⎨
⎪⎪⎩

1� if ft0(ht−1�xt)≡ δst for some st and∣∣{i ∈ I : Ati is not point-valued}∣∣ = 1�

0� otherwise�

Thus, if Nt = 1 for some stage t, then the player who is active in the period t is the only
active player and has perfect information.

We drop the ARM condition in those periods with only one active player and weaken
the ARM condition in other periods.

Assumption B.1 (ARM′). (i) For any t ≥ 1 with Nt = 1, St is a singleton set {śt} and λt =
δśt .

(ii) For each t ≥ 1 with Nt = 0, f̂t0 is sectionally continuous on Xt × Ŝt−1, where the
range space M(Ŝt) is endowed with topology of weak convergence of measures on
Ŝt . The probability measure f̃t0(·|ht−1�xt� ŝt) is absolutely continuous with respect
to an atomless Borel probability measure λt on S̃t for all (ht−1�xt� ŝt) ∈ Gr(Ât0)
and ϕt0(ht−1�xt� ŝt � s̃t) is the corresponding density.1

(iii) The mapping ϕt0 is Borel measurable and sectionally continuous on Xt × Ŝt , and
integrably bounded in the sense that there is a λt-integrable function φt : S̃t → R+
such that ϕt0(ht−1�xt� ŝt � s̃t � )≤φt(s̃t) for any (ht−1�xt� ŝt).

The following result shows that the existence result is still true in this more general
setting.

1In this section, a property is said to hold for λt -almost all ht ∈Ht if it is satisfied for λt -almost all s̃t ∈ S̃t
and all (xt� ŝt ) ∈Ht(s̃t ).
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Proposition B.1. If an infinite-horizon dynamic game as described above satisfies the
ARM′ condition and is continuous at infinity, then it possesses a subgame-perfect equi-
librium f . In particular, for j ∈ I and t ≥ 1 such that Nt = 1 and player j is the only
active player in this period, ftj can be deterministic. Furthermore, the equilibrium pay-
off correspondence Et is nonempty and compact valued, and essentially sectionally upper
hemicontinuous onXt−1 × Ŝt−1.

Remark B.1. The result above also implies a new existence result of subgame-perfect
equilibria for stochastic games. In the existence result of Mertens and Parthasarathy
(2003), the state transitions are assumed to be norm continuous with respect to the ac-
tions in the previous stage. They did not assume the ARM condition. On the contrary,
our Proposition B.1 allows the state transitions to have a weakly continuous component.

B.2 Technical preparations

The following lemma shows that the space of nonempty compact subsets of a Polish
space is still Polish under the Hausdorff metric topology.

Lemma B.1. Suppose that X is a Polish space and that K is the set of all nonempty com-
pact subsets ofX endowed with the Hausdorff metric topology. Then K is a Polish space.

Proof. By Theorem 3.88(2) of Aliprantis and Border (2006), K is complete. In addi-
tion, Corollary 3.90 and Theorem 3.91 of Aliprantis and Border (2006) imply that K is
separable. Thus, K is a Polish space.

The following result presents a variant of Lemma 5 in terms of transition correspon-
dences.

Lemma B.2. Let X and Y be Polish spaces, and Z a compact subset of Rl+. Let G be a
measurable, nonempty and compact valued correspondence from X to M(Y). Suppose
that F is a measurable, nonempty, convex and compact valued correspondence fromX ×
Y to Z. Define a correspondence � fromX to Z as

�(x)=
{∫

Y
f (x� y)g(dy|x) : g is a Borel measurable selection ofG�

f is a Borel measurable selection of F
}
�

If F is sectionally continuous on Y , then the following statements hold:

(i) The correspondence F̃ : X ×M(Y)→Z as F̃(x� ν)= ∫
Y F(x� y)ν(dy) is sectionally

continuous on M(Y).

(ii) The� is a measurable, nonempty and compact valued correspondence.

(iii) If F andG are both continuous, then � is continuous.
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Proof. (i) For any fixed x ∈ X , the upper hemicontinuity of F̃(x� ·) follows from
Lemma 7.

Next we show the lower hemicontinuity. Fix any x ∈ X . Suppose that {νj}j≥0 is a
sequence in M(Y) such that νj → ν0 as j → ∞. Pick an arbitrary point z0 ∈ F̃(x� ν0).
Then there exists a Borel measurable selection f of F(x� ·) such that z0 = ∫

Y f (y)ν0(dy).
By Lemma 3 (Lusin’s theorem), for each k≥ 1, there exists a compact subset Dk ⊆ Y

such that f is continuous on Dk and ν0(Y \Dk) < 1
3kM , where M > 0 is the bound of Z.

Define a correspondence Fk : Y →Z as

Fk(y)=
{{
f (y)

}
� y ∈Dk�

F(x� y)� y ∈ Y \Dk�

Then Fk is nonempty, convex and compact valued, and lower hemicontinuous. By
Theorem 3.22 in Aliprantis and Border (2006), Y is paracompact. Then by Lemma 3
(Michael’s selection theorem), Fk has a continuous selection fk.

For each k, since νj → ν0, and fk is bounded and continuous,
∫
Y fk(y)νj(dy) →∫

Y fk(y)ν0(dy) as j → ∞. Thus, there exists a subsequence {νjk} such that {jk} is an in-
creasing sequence and, for each k≥ 1,

∥∥∥∥
∫
Y
fk(y)νjk(dy)−

∫
Y
fk(y)ν0(dy)

∥∥∥∥< 1
3k
�

where ‖ · ‖ is the Euclidean norm on R
l.

Since fk coincides with f onDk, ν0(Y \Dk) < 1
3kM , and Z is bounded byM ,

∥∥∥∥
∫
Y
fk(y)ν0(dy)−

∫
Y
f (y)ν0(dy)

∥∥∥∥< 2
3k
�

Thus, ∥∥∥∥
∫
Y
fk(y)νjk(dy)−

∫
Y
f (y)ν0(dy)

∥∥∥∥< 1
k
�

Let zjk = ∫
Y fk(y)νjk(dy) for each k. Then zjk ∈ F̃(x� νjk) and zjk → z0 as k → ∞. By

Lemma 1, F̃(x� ·) is lower hemicontinuous.
(ii) Since G is measurable and compact-valued, there exists a sequence of Borel

measurable selections {gk}k≥1 of G such that G(x) = {g1(x)�g2(x)� � � �} for any x ∈ X
by Lemma 2(v). For each k ≥ 1, define a correspondence �k from X to Z by let-
ting �k(x) = F̃(x�gk(x)) = ∫

Y F(x� y)gk(dy|x). Since F is convex-valued, so is �k. By
Lemma 5, �k is also measurable, nonempty and compact valued.

Fix any x ∈X . It is clear that �(x) = F̃(x�G(x)) is nonempty-valued. Since G(x) is
compact, and F̃(x� ·) is compact-valued and continuous, �(x) is compact by Lemma 2.
Thus,

⋃
k≥1�

k(x)⊆�(x).
Fix any x ∈X and z ∈�(x). There exists a point ν ∈G(x) such that z ∈ F̃(x� ν). Since

{gk(x)}k≥1 is dense in G(x), it has a subsequence {gkm(x)} such that gkm(x) → ν. As
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F̃(x� ·) is continuous, F̃(x�gkm(x))→ F̃(x� ν); that is,

z ∈
⋃
k≥1

F̃
(
x�gk(x)

) =
⋃
k≥1

�k(x)�

Therefore,
⋃
k≥1�

k(x) = �(x) for any x ∈X . Lemma 2(i) and (ii) imply that � is mea-
surable.

(iii) Define a correspondence F̂ : M(X ×Y)→Z as

F̂(τ)=
{∫

X×Y
f (x� y)τ

(
d(x� y)

) : f is a Borel measurable selection of F
}
�

By (i), F̂ is continuous. Define a correspondence Ĝ : X → M(X ×Y) as Ĝ(x)= {δx ⊗ ν :
ν ∈G(x)}. Since Ĝ and F̂ are both nonempty-valued, �(x)= F̂(Ĝ(x)) is nonempty. As
Ĝ is compact-valued and F̂ is continuous, � is compact-valued by Lemma 2. As Ĝ and
F̂ are both continuous, � is continuous by Lemma 1(vii).

The following lemma shows that a measurable and sectionally continuous corre-
spondence on a product space is approximately continuous on the product space.

Lemma B.3. Let S, X , and Y be Polish spaces endowed with the Borel σ-algebras, and λ
a Borel probability measure on S. Denote S as the completion of the Borel σ-algebra B(S)
of S under the probability measure λ. Suppose thatD is a B(S)⊗B(Y)-measurable subset
of S × Y , where D(s) is nonempty and compact for all s ∈ S. Let A be a nonempty and
compact valued correspondence from D to X , which is sectionally continuous on Y and
has a B(S×Y ×X)-measurable graph. Then the following statements hold:

(i) We have that Ã(s) = Gr(A(s� ·)) is an S-measurable mapping from S to the set of
nonempty and compact subsets KY×X of Y ×X .

(ii) There exist countably many disjoint compact subsets {Sm}m≥1 of S such that (a)
λ(

⋃
m≥1 Sm) = 1, and (b) for each m ≥ 1, Dm = D ∩ (Sm × Y) is compact, and A

is nonempty and compact valued, and continuous on eachDm.

Proof. (i) Given that A(s� ·) is continuous and D(s) is compact, Gr(A(s� ·)) ⊆ Y × X

is compact by Lemma 2. Thus, Ã is nonempty and compact valued. Since A has a
measurable graph, Ã is an S-measurable mapping from S to the set of nonempty and
compact subsets KY×X of Y ×X by Lemma 1(iv).

(ii) Define a correspondence D̃ from S toY such that D̃(s)= {y ∈ Y : (s� y) ∈D}. Then
D̃ is nonempty and compact valued. As in (i), D̃ is S-measurable. By Lemma 3 (Lusin’s
theorem), there exists a compact subset S1 ⊆ S such that λ(S \ S1) <

1
2 , and D̃ and Ã are

continuous functions on S1. By Lemma 1(iii), D̃ and Ã are continuous correspondences
on S1. Let D1 = {(s� y) ∈D : s ∈ S1� y ∈ D̃(s)}. Since S1 is compact and D̃ is continuous,
D1 is compact (see Lemma 2 (6)).

Following the same procedure, for any m ≥ 1, there exists a compact subset Sm ⊆ S

such that (a) Sm ∩ (⋃1≤k≤m−1 Sk)= ∅ and Dm =D ∩ (Sm ×Y) is compact, (b) λ(Sm) > 0
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and λ(S \ (⋃1≤k≤m Sm)) < 1
2m , and (c) A is nonempty and compact valued, and contin-

uous onDm. This completes the proof.

The lemma below states an equivalence property for the weak convergence of Borel
probability measures obtained from the product of transition probabilities.

Lemma B.4. Let S and X be Polish spaces, and λ a Borel probability measure on S. Sup-
pose that {Sk}k≥1 is a sequence of disjoint compact subsets of S such that λ(

⋃
k≥1 Sk)= 1.

For each k, define a probability measure on Sk as λk(D)= λ(D)
λ(Sk)

for any measurable sub-
set D ⊆ Sk. Let {νm}m≥0 be a sequence of transition probabilities from S to M(X) and
τm = λ � νm for any m ≥ 0. Then τm weakly converges to τ0 if and only if λk � νm weakly
converges to λk � ν0 for each k≥ 1.

Proof. First, we assume that τm weakly converges to τ0. For any closed subset E ⊆
Sk×X , we have lim supm→∞ τm(E)≤ τ0(E); that is, lim supm→∞ λ�νm(E)≤ λ�ν0(E). For
any k, 1

λ(Sk)
lim supm→∞ λ � νm(E) ≤ 1

λ(Sk)
λ � ν0(E), which implies that lim supm→∞ λk �

νm(E)≤ λk � ν0(E). Thus, λk � νm weakly converges to λk � ν0 for each k≥ 1.
Second, we consider the case that λk � νm weakly converges to λk � ν0 for each

k ≥ 1. For any closed subset E ⊆ S × X , let Ek = E ∩ (Sk × X) for each k ≥ 1.
Then {Ek} are disjoint closed subsets and lim supm→∞ λk � νm(Ek) ≤ λk � ν0(Ek). Since
λk � νm(E′)= 1

λ(Sk)
λ � νm(E′) for any k, m, and measurable subset E′ ⊆ Sk ×X , we have

that lim supm→∞ λ � νm(Ek)≤ λ � ν0(Ek). Thus,

∑
k≥1

lim sup
m→∞

λ � νm(Ek)≤
∑
k≥1

λ � ν0(Ek)= λ � ν0(E)�

Since the limit superior is subadditive, we have

∑
k≥1

lim sup
m→∞

λ � νm(Ek)≥ lim sup
m→∞

∑
k≥1

λ � νm(Ek)= lim sup
m→∞

λ � νm(E)�

Therefore, lim supm→∞ λ � νm(E)≤ λ � ν0(E), which implies that τm weakly converges to
τ0.

The following lemma is a key that allows one to drop the continuity condition on the
state variables through a reference measure in Theorem 3.

Lemma B.5. Suppose that X , Y , and S are Polish spaces, and that Z is a compact met-
ric space. Let λ be a Borel probability measure on S, and A a nonempty and compact
valued correspondence from Z × S to X that is sectionally upper hemicontinuous on Z
and has a B(Z × S ×X)-measurable graph. Let G be a nonempty and compact valued,
and continuous correspondence from Z to M(X × S). We assume that for any z ∈Z and
τ ∈ G(z), the marginal of τ on S is λ and τ(Gr(A(z� ·))) = 1. Let F be a measurable,
nonempty, convex and compact valued correspondence from Gr(A)→ M(Y) such that
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F is sectionally continuous onZ×X . Define a correspondence� fromZ to M(X×S×Y)
by letting

�(z)= {
g(z) � f (z� ·) : g is a Borel measurable selection ofG�

f is a Borel measurable selection of F
}
�

Then the correspondence� is nonempty and compact valued, and continuous.

Proof. Let S be the completion of B(S) under the probability measure λ. By Lem-
ma B.3, Ã(s)= Gr(A(s� ·)) can be viewed as an S-measurable mapping from S to the set
of nonempty and compact subsets KZ×X of Z ×X . For any s ∈ S, the correspondence
Fs = F(·� s) is continuous on Ã(s). By Lemma 3, there exists a measurable, nonempty
and compact valued correspondence F̃ fromZ×X×S to M(Y) and a Borel measurable
subset S′ of S with λ(S′)= 1 such that for each s ∈ S′, F̃s is continuous on Z×X , and the
restriction of F̃s to Ã(s) is Fs .

By Lemma 3 (Lusin’s theorem), there exists a compact subset S1 ⊆ S′ such that Ã is
continuous on S1 and λ(S1) >

1
2 . LetK1 = Ã(S1). ThenK1 ⊆Z ×X is compact.

Let C(K1�KM(Y)) be the space of continuous functions from K1 to KM(Y), where
KM(Y) is the set of nonempty and compact subsets of M(Y). Suppose that the re-
striction of S on S1 is S1. Let F̃1 be the restriction of F̃ to K1 × S1. Then F̃1 can be
viewed as an S1-measurable function from S1 to C(K1�KM(Y)) (see Theorem 4.55 in
Aliprantis and Border (2006)). Again by Lemma 3 (Lusin’s theorem), there exists a com-
pact subset of S1, say itself, such that λ(S1) >

1
2 and F̃1 is continuous on S1. As a re-

sult, F̃1 is a continuous correspondence on Gr(A) ∩ (S1 × Z × X) and so is F . Let
λ1 be a probability measure on S1 such that λ1(D) = λ(D)

λ(S1)
for any measurable subset

D⊆ S1.
For any z ∈ Z and τ ∈ G(z), the definition of G implies that there exists a transi-

tion probability ν from S to X such that λ � ν = τ. Define a correspondence G1 from
Z to M(X × S) as follows: for any z ∈ Z, G1(z) is the set of all τ1 = λ1 � ν such that
τ = λ � ν ∈ G(z). It can be easily checked that G1 is also a nonempty and compact
valued, and continuous correspondence. Let

�1(z)= {
τ1 � f (z� ·) : τ1 = λ1 � ν ∈G1(z)�

f is a Borel measurable selection of F̃
}
�

By Lemma 9, �1 is nonempty and compact valued, and continuous. Furthermore, it is
easy to see that for any z, �1(z) coincides with the set

{
(λ1 � ν) � f (z� ·) : λ � ν ∈G(z)� f is a Borel measurable selection of F

}
�

Repeating this procedure, one can find a sequence of compact subsets {St} such
that (a) for any t ≥ 1, St ⊆ S′, St ∩ (S1 ∪ � � � St−1) = ∅ and λ(S1 ∪ · · · ∪ St) ≥ t

t+1 ,
(b) F is continuous on Gr(A) ∩ (St × Z × X), λt is a probability measure on St
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such that λt(D) = λ(D)
λ(St)

for any measurable subset D ⊆ St , and (c) the correspon-
dence

�t(z)= {
(λt � ν) � f (z� ·) : λ � ν ∈G(z)�
f is a Borel measurable selection of F

}
�

is nonempty and compact valued, and continuous.
Pick a sequence {zk}, {νk}, and {fk} such that (λ� νk)� fk(zk� ·) ∈�(zk), zk → z0, and

(λ � νk) � fk(zk� ·) weakly converges to some κ. It is easy to see that (λt � νk) � fk(zk� ·) ∈
�t(zk) for each t. As �1 is compact-valued and continuous, it has a subsequence, say
itself, such that zk converges to some z0 ∈ Z and (λ1 � νk) � fk(zk� ·) weakly converges
to some (λ1 �μ1) � f 1(z0� ·) ∈�1(z0). Repeating this procedure, one can get a sequence
of {μm} and fm. Let μ(s)= μm(s) and f (z0� s�x)= fm(z0� s�x) for any x ∈A(z0� s) when
s ∈ Sm. By Lemma B.4, (λ �μ) � f (z0� ·)= κ, which implies that� is upper hemicontinu-
ous.

Similarly, the compactness and lower hemicontinuity of� follow from the compact-
ness and lower hemicontinuity of �t for each t.

The next lemma presents the convergence property for the integrals of a sequence
of functions and probability measures.

Lemma B.6. Let S andX be Polish spaces, and letA be a measurable, nonempty and com-
pact valued correspondence from S toX . Suppose that λ is a Borel probability measure on
S and that {νn}1≤n≤∞ is a sequence of transition probabilities from S to M(X) such that
νn(A(s)|s)= 1 for each s and n. For each n≥ 1, let τn = λ � νn. Assume that the sequence
{τn} of Borel probability measures on S ×X converges weakly to a Borel probability mea-
sure τ∞ on S×X . Let {gn}1≤n≤∞ be a sequence of functions that satisfy the following three
properties.

(i) For each n between 1 and ∞, gn : S ×X → R+ is measurable and sectionally con-
tinuous onX .

(ii) For any s ∈ S and any sequence xn → x∞ inX , gn(s�xn)→ g∞(s�x∞) as n→ ∞.

(iii) The sequence {gn}1≤n≤∞ is integrably bounded in the sense that there exists a λ-
integrable function ψ : S→R+ such that for any n, s, and x, gn(s�x)≤ψ(s).

Then we have ∫
S×X

gn(s�x)τn
(
d(s�x)

) →
∫
S×X

g∞(s�x)τ∞
(
d(s�x)

)
�

Proof. By Theorem 2.1.3 in Castaing et al. (2004), for any integrably bounded function
g : S×X →R+ that is sectionally continuous onX , we have∫

S×X
g(s�x)τn

(
d(s�x)

) →
∫
S×X

g(s�x)τ∞
(
d(s�x)

)
� (B1)
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Let {yn}1≤n≤∞ be a sequence such that yn = 1
n and y∞ = 0. Then yn → y∞. Define a

mapping g̃ from S×X×{y1� � � � � y∞} such that g̃(s�x� yn)= gn(s�x). Then g̃ is measurable
on S and continuous on X × {y1� � � � � y∞}. Define a correspondence G from S to X ×
{y1� � � � � y∞} ×R+ such that

G(s)= {
(x� yn� c) : c ∈ g̃(s�x� yn)�x ∈A(s)�1 ≤ n≤ ∞}

�

For any s, A(s) × {y1� � � � � y∞} is compact and g̃(s� ·� ·) is continuous. By Lemma 2(vi),
G(s) is compact. By Lemma 1(ii), G can be viewed as a measurable mapping from S to
the space of nonempty compact subsets of X × {y1� � � � � y∞} × R+. Similarly, A can be
viewed as a measurable mapping from S to the space of nonempty compact subsets of
X .

Fix an arbitrary ε > 0. By Lemma 3 (Lusin’s theorem), there exists a compact subset
S1 ⊆ S such that A and G are continuous on S1 and λ(S \ S1) < ε. Without loss of gen-
erality, we can assume that λ(S \ S1) is sufficiently small such that

∫
S\S1

ψ(s)λ(ds) < ε
6 .

Thus, for any n, ∫
(S\S1)×X

ψ(s)τn
(
d(s�x)

) =
∫
(S\S1)

ψ(s)νn(X)λ(ds) <
ε

6
�

By Lemma 2(vi), the set E = {(s�x) : s ∈ S1�x ∈A(s)} is compact. Since G is contin-
uous on S1, g̃ is continuous on E × {y1� � � � � y∞}. Since E × {y1� � � � � y∞} is compact, g̃ is
uniformly continuous on E × {y1� � � � � y∞}. Thus, there exists a positive integer N1 > 0
such that for any n≥N1, |gn(s�x)− g∞(s�x)|< ε

3 for any (s�x) ∈E.
By (B1), there exists a positive integerN2 such that for any n≥N2,∣∣∣∣

∫
S×X

g∞(s�x)τn
(
d(s�x)

) −
∫
S×X

g∞(s�x)τ∞
(
d(s�x)

)∣∣∣∣< ε

3
�

LetN0 = max{N1�N2}. For any n≥N0,∣∣∣∣
∫
S×X

gn(s�x)τn
(
d(s�x)

) −
∫
S×X

g∞(s�x)τ∞
(
d(s�x)

)∣∣∣∣
≤

∣∣∣∣
∫
S×X

gn(s�x)τn
(
d(s�x)

) −
∫
S×X

g∞(s�x)τn
(
d(s�x)

)∣∣∣∣
+

∣∣∣∣
∫
S×X

g∞(s�x)τn
(
d(s�x)

) −
∫
S×X

g∞(s�x)τ∞
(
d(s�x)

)∣∣∣∣
≤

∣∣∣∣
∫
S1×X

gn(s�x)τn
(
d(s�x)

) −
∫
S1×X

g∞(s�x)τn
(
d(s�x)

)∣∣∣∣
+

∣∣∣∣
∫
(S\S1)×X

gn(s�x)τn
(
d(s�x)

) −
∫
(S\S1)×X

g∞(s�x)τn
(
d(s�x)

)∣∣∣∣
+

∣∣∣∣
∫
S×X

g∞(s�x)τn
(
d(s�x)

) −
∫
S×X

g∞(s�x)τ∞
(
d(s�x)

)∣∣∣∣
≤

∫
E

∣∣gn(s�x)− g∞(s�x)
∣∣τn(d(s�x)) + 2 ·

∫
(S\S1)×X

ψ(s)τn
(
d(s�x)

)
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+
∣∣∣∣
∫
S×X

g∞(s�x)τn
(
d(s�x)

) −
∫
S×X

g∞(s�x)τ∞
(
d(s�x)

)∣∣∣∣
<
ε

3
+ 2 · ε

6
+ ε

3

= ε�
This completes the proof.

B.3 Discontinuous games with endogenous stochastic sharing rules

It was proved in Simon and Zame (1990) that a Nash equilibrium exists in discontinuous
games with endogenous sharing rules. In particular, they considered a static game with
a payoff correspondence P that is bounded, nonempty, convex and compact valued, and
upper hemicontinuous. They showed that there exists a Borel measurable selection p of
the payoff correspondence, namely the endogenous sharing rule, and a mixed-strategy
profile α such that α is a Nash equilibrium when players take p as the payoff function
(see Lemma 10).

In this section, we consider discontinuous games with endogenous stochastic shar-
ing rules. That is, we allow the payoff correspondence to depend on some state variable
in a measurable way as follows:

• Let S be a Borel subset of a Polish space,Y a Polish space, and λ a Borel probability
measure on S.

• We have that D is a B(S)⊗ B(Y)-measurable subset of S ×Y , where D(s) is com-
pact for all s ∈ S and λ({s ∈ S : D(s) �=∅}) > 0.

• We haveX = ∏
1≤i≤nXi, where eachXi is a Polish space.

• For each i, Ai is a measurable, nonempty and compact valued correspondence
fromD toXi, which is sectionally continuous on Y .

• We haveA= ∏
1≤i≤nAi and E = Gr(A).

• We have that P is a bounded, measurable, nonempty, convex and compact valued
correspondence fromE to R

n that is essentially sectionally upper hemicontinuous
on Y ×X .

A stochastic sharing rule at (s� y) ∈D is a Borel measurable selection of the correspon-
dence P(s� y� ·); i.e., a Borel measurable function p : A(s� y) → R

n such that p(x) ∈
P(s� y�x) for all x ∈A(s� y). Given (s� y) ∈ D, P(s� y� ·) represents the set of all possible
payoff profiles, and a sharing rule p is a particular choice of the payoff profile.

Now we prove the following proposition.

Proposition B.2. There exists a B(D)-measurable, nonempty and compact valued cor-
respondence � fromD to R

n ×M(X)× �(X) such that � is essentially sectionally upper
hemicontinuous on Y , and for λ-almost all s ∈ S with D(s) �= ∅ and y ∈D(s), �(s� y) is
the set of points (v�α�μ) that the following statements hold:
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(i) We have v = ∫
X p(s� y�x)α(dx) such that p(s� y� ·) is a Borel measurable selection

of P(s� y� ·).2

(ii) We have that α ∈ ⊗
i∈IM(Ai(s� y)) is a Nash equilibrium in the subgame (s� y)

with payoff profile p(s� y� ·) and action spaceAi(s� y) for each player i.

(iii) We have μ= p(s� y� ·) ◦ α.3

In addition, denote the restriction of � on the first component Rn as �|Rn , which is a cor-
respondence from D to R

n. Then �|Rn is bounded, measurable, nonempty and compact
valued, and essentially sectionally upper hemicontinuous on Y .

Proof. There exists a Borel subset Ŝ ⊆ S with λ(Ŝ)= 1 such thatD(s) �= ∅ for each s ∈ Ŝ
and P is sectionally upper hemicontinuous on Y when it is restricted on D ∩ (Ŝ × Y).
Without loss of generality, we assume that Ŝ = S.

Suppose that S is the completion of B(S) under the probability measure λ. Let D
and E be the restrictions of S ⊗B(Y) and S ⊗B(Y)⊗B(X) onD and E, respectively.

Define a correspondence D̃ from S to Y such that D̃(s)= {y ∈ Y : (s� y) ∈D}. Then D̃
is nonempty and compact valued. By Lemma 1(iv), D̃ is S-measurable.

Since D̃(s) is compact and A(s� ·) is upper hemicontinuous for any s ∈ S, E(s) is
compact by Lemma 2(vi). Define a correspondence � from S to Y ×X × R

n as �(s) =
Gr(P(s� ·� ·)). For all s, P(s� ·� ·) is bounded, upper hemicontinuous, and compact-valued
on E(s); hence, it has a compact graph. As a result, � is compact-valued. By Lemma 1(i),
P has an S ⊗ B(Y × X × R

n)-measurable graph. Since Gr(�) = Gr(P), Gr(�) is S ⊗
B(Y×X×R

n)-measurable. Due to Lemma 1(iv), the correspondence � is S-measurable.
We can view � as a function from S into the space K of nonempty compact subsets of
Y × X × R

n. By Lemma B.1, K is a Polish space endowed with the Hausdorff metric
topology. Then by Lemma 1(ii), � is an S-measurable function from S to K. One can also
define a correspondence Ãi from S to Y ×X as Ãi(s) = Gr(Ai(s� ·)). It is easy to show
that Ãi can be viewed as an S-measurable function from S to the space of nonempty
compact subsets of Y ×X , which is endowed with the Hausdorff metric topology. By a
similar argument, D̃ can be viewed as an S-measurable function from S to the space of
nonempty compact subsets of Y .

By Lemma 3 (Lusin’s theorem), there exists a compact subset S1 ⊆ S such that λ(S \
S1) <

1
2 , �, D̃ and {Ãi}1≤i≤n are continuous functions on S1. By Lemma 1(iii), �, D̃, and

Ãi are continuous correspondences on S1. Let D1 = {(s� y) ∈D : s ∈ S1� y ∈ D̃(s)}. Since
S1 is compact and D̃ is continuous, D1 is compact (see Lemma 2(vi)). Similarly, E1 =
E ∩ (S1 ×Y ×X) is also compact. Thus, P is an upper hemicontinuous correspondence
onE1. Define a correspondence�1 fromD1 to R

n×M(X)×�(X) as in Lemma 10; then
it is nonempty and compact valued, and upper hemicontinuous onD1.

Following the same procedure, for any m ≥ 1, there exists a compact subset Sm ⊆ S

such that (a) Sm ∩ (⋃1≤k≤m−1 Sk)= ∅ and Dm =D ∩ (Sm ×Y) is compact, (b) λ(Sm) > 0
and λ(S \ (⋃1≤k≤m Sm)) < 1

2m , and (c) there is a nonempty and compact valued, up-
per hemicontinuous correspondence �m from Dm to R

n × M(X)× �(X) that satisfies

2Note that we require p(s� y� ·) to be measurable for each (s� y), but pmay not be jointly measurable.
3The finite measure μ= p(s� y� ·) ◦ α if μ(B)= ∫

B p(s� y�x)α(dx) for any Borel subset B⊆X .
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conditions (i)–(iii) in Lemma 10. Thus, we have countably many disjoint sets {Sm}m≥1
such that (i) λ(

⋃
m≥1 Sm) = 1, and (ii) �m is nonempty and compact valued, and upper

hemicontinuous on eachDm,m≥ 1.
Since Ai is a B(S)⊗ B(Y)-measurable, nonempty and compact valued correspon-

dence, it has a Borel measurable selection ai by Lemma 2(iii). Fix a Borel measurable
selection p of P (such a selection exists also due to Lemma 2(iii)). Define a mapping
(v0�α0�μ0) from D to R

n × M(X)× �(X) such that (a) αi(s� y) = δai(s�y) and α0(s� y) =⊗
i∈I αi(s� y), (b) v0(s� y) = p(s� y�a1(s� y)� � � � � an(s� y)), and (c) μ0(s� y) = p(s� y� ·) ◦ α0.

LetD0 =D \ (⋃m≥1Dm) and�0(s� y)= {(v0(s� y)�α0(s� y)�μ0(s� y))} for (s� y) ∈D0. Then
�0 is B(S)⊗B(Y)-measurable, nonempty and compact valued.

Let �(s� y)=�m(s� y) if (s� y) ∈Dm for somem≥ 0. Then �(s� y) satisfies conditions
(i)–(iii) if (s� y) ∈Dm for m ≥ 1. That is, � is B(D)-measurable, nonempty and compact
valued, and essentially sectionally upper hemicontinuous onY , and satisfies conditions
(i)–(iii) for λ-almost all s ∈ S.

Then consider �|Rn , which is the restriction of � on the first component R
n. Let

�m|Rn be the restriction of �m on the first component Rn with the domain Dm for each
m ≥ 0. It is obvious that �0|Rn is measurable, nonempty and compact valued. For
each m≥ 1, Dm is compact, and �m is upper hemicontinuous and compact-valued. By
Lemma 2(vi), Gr(�m) is compact. Thus, Gr(�m|Rn) is also compact. By Lemma 2(iv),
�m|Rn is measurable. In addition, �m|Rn is nonempty and compact valued, and up-
per hemicontinuous on Dm. Notice that �|Rn(s� y)=�m|Rn(s� y) if (s� y) ∈Dm for some
m ≥ 0. Thus, �|Rn is measurable, nonempty and compact valued, and essentially sec-
tionally upper hemicontinuous on Y .

The proof is complete.

B.4 Proof of Theorem 3

B.4.1 Backward induction For any t ≥ 1, suppose that the correspondence Qt+1 from
Ht to R

n is bounded, measurable, nonempty and compact valued, and essentially sec-
tionally upper hemicontinuous onXt . For any ht−1 ∈Ht−1 and xt ∈At(ht−1), let

Pt(ht−1�xt)=
∫
St

Qt+1(ht−1�xt� st)ft0(dst |ht−1)

=
∫
St

Qt+1(ht−1�xt� st)ϕt0(ht−1� st)λt(dst)�

It is obvious that the correspondence Pt is measurable and nonempty-valued. Since
Qt+1 is bounded, Pt is bounded. For λt-almost all st ∈ St , Qt+1(·� st) is bounded and
upper hemicontinuous on Ht(st), and ϕt0(st� ·) is continuous on Gr(At0)(s

t). As ϕt0 is
integrably bounded, Pt(st−1� ·) is also upper hemicontinuous on Gr(At)(st−1) for λt−1-
almost all st−1 ∈ St−1 (see Lemma 4); that is, the correspondence Pt is essentially section-
ally upper hemicontinuous onXt . Again by Lemma 4, Pt is convex and compact valued
since λt is an atomless probability measure. That is, Pt : Gr(At) → R

n is a bounded,
measurable, nonempty, convex and compact valued correspondence that is essentially
sectionally upper hemicontinuous onXt .
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By Proposition B.2, there exists a bounded, measurable, nonempty and compact
valued correspondence �t from Ht−1 to R

n × M(Xt) × �(Xt) such that �t is essen-
tially sectionally upper hemicontinuous on Xt−1, and for λt−1-almost all ht−1 ∈ Ht−1,
(v�α�μ) ∈�t(ht−1) if the following conditions hold:

(i) We have v = ∫
At(ht−1)

pt(ht−1�x)α(dx) such that pt(ht−1� ·) is a Borel measurable
selection of Pt(ht−1� ·).

(ii) We have that α ∈ ⊗
i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1

with payoff pt(ht−1� ·) and action space
∏
i∈I Ati(ht−1).

(iii) We have μ= pt(ht−1� ·) ◦ α.

Denote the restriction of�t on the first component Rn as�(Qt+1), which is a correspon-
dence fromHt−1 to R

n. By Proposition B.2,�(Qt+1) is bounded, measurable, nonempty
and compact valued, and essentially sectionally upper hemicontinuous onXt−1.

B.4.2 Forward induction The following proposition presents the result on the step of
forward induction.

Proposition B.3. For any t ≥ 1 and any Borel measurable selection qt of �(Qt+1),
there exists a Borel measurable selection qt+1 of Qt+1 and a Borel measurable mapping
ft : Ht−1 → ⊗

i∈IM(Xti) such that for λt−1-almost all ht−1 ∈ Ht−1, the following state-
ments hold:

(i) We have ft(ht−1) ∈ ⊗
i∈IM(Ati(ht−1)).

(ii) We have qt(ht−1)= ∫
At(ht−1)

∫
St
qt+1(ht−1�xt� st)ft0(dst |ht−1)ft(dxt |ht−1).

(iii) We have that ft(·|ht−1) is a Nash equilibrium in the subgame ht−1 with action
spacesAti(ht−1)� i ∈ I, and payoff functions∫

St

qt+1(ht−1� ·� st)ft0(dst |ht−1)�

Proof. We divide the proof into three steps. In Step 1, we show that there exist
Borel measurable mappings ft : Ht−1 → ⊗

i∈IM(Xti) and μt : Ht−1 → �(Xt) such that
(qt� ft�μt) is a selection of �t . In Step 2, we obtain a Borel measurable selection gt of Pt
such that for λt−1-almost all ht−1 ∈Ht−1, the following statements hold:

• We have qt(ht−1)= ∫
At(ht−1)

gt(ht−1�x)ft(dx|ht−1).

• We have that ft(ht−1) is a Nash equilibrium in the subgame ht−1 with payoff
gt(ht−1� ·) and action spaceAt(ht−1).

In Step 3, we show that there exists a Borel measurable selection qt+1 of Qt+1 such that
for all ht−1 ∈Ht−1 and xt ∈At(ht−1),

gt(ht−1�xt)=
∫
St

qt+1(ht−1�xt� st)ft0(dst |ht−1)�

Combining Steps 1–3, the proof is complete.
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Step 1. Let�t : Gr(�t(Qt+1))→ M(Xt)× �(Xt) be

�t(ht−1� v)= {
(α�μ) : (v�α�μ) ∈�t(ht−1)

}
�

Recall that the construction of �t and the proof of Proposition B.2, Ht−1 can be divided
into countably many Borel subsets {Hm

t−1}m≥0 such that the following statements hold:

(i) We have Ht−1 = ⋃
m≥0H

m
t−1 and

λt−1(
⋃
m≥1 proj

St−1 (H
m
t−1))

λt−1(proj
St−1 (Ht−1))

= 1, where projSt−1(Hm
t−1)

and projSt−1(Ht−1) are projections ofHm
t−1 andHt−1 on St−1.

(ii) Form≥ 1,Hm
t−1 is compact,�t is upper hemicontinuous onHm

t−1, and Pt is upper
hemicontinuous on {

(ht−1�xt) : ht−1 ∈Hm
t−1�xt ∈At(ht−1)

}
�

(iii) There exists a Borel measurable mapping (v0�α0�μ0) fromH0
t−1 to R

n×M(Xt)×
�(Xt) such that �t(ht−1)≡ {(v0(ht−1)�α0(ht−1)�μ0(ht−1))} for any ht−1 ∈H0

t−1.

Denote the restriction of�t onHm
t−1 as�mt . Form≥ 1, Gr(�mt ) is compact, and hence the

correspondence �mt (ht−1� v) = {(α�μ) : (v�α�μ) ∈ �mt (ht−1)} has a compact graph. For
m≥ 1, �mt is measurable by Lemma 2(iv), and has a Borel measurable selection ψmt due
to Lemma 2(iii). Define ψ0

t (ht−1� v0(ht−1)) = (α0(ht−1)�μ0(ht−1)) for ht−1 ∈ H0
t−1. For

(ht−1� v) ∈ Gr(�(Qt+1)), let ψt(ht−1� v) = ψmt (ht−1� v) if ht−1 ∈Hm
t−1. Then ψt is a Borel

measurable selection of�t .
Given a Borel measurable selection qt of �(Qt+1), let

φt(ht−1)= (
qt(ht−1)�ψt

(
ht−1� qt(ht−1)

))
�

Then φt is a Borel measurable selection of �t . Denote H̃t−1 = ⋃
m≥1H

m
t−1. By the con-

struction of �t , there exist Borel measurable mappings ft : Ht−1 → ⊗
i∈IM(Xti) and

μt : Ht−1 → �(Xt) such that for all ht−1 ∈ H̃t−1, the following relationships hold:

(a) We have qt(ht−1) = ∫
At(ht−1)

pt(ht−1�x)ft(dx|ht−1) such that pt(ht−1� ·) is a Borel
measurable selection of Pt(ht−1� ·).

(b) We have that ft(ht−1) ∈ ⊗
i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame

ht−1 with payoff pt(ht−1� ·) and action space
∏
i∈I Ati(ht−1).

(c) We have μt(·|ht−1)= pt(ht−1� ·) ◦ ft(·|ht−1).

Step 2. Since Pt is upper hemicontinuous on {(ht−1�xt) : ht−1 ∈Hm
t−1�xt ∈At(ht−1)},

due to Lemma 6, there exists a Borel measurable mapping gm such that (i) gm(ht−1�xt) ∈
Pt(ht−1�xt) for any ht−1 ∈Hm

t−1 and xt ∈At(ht−1), and (ii) gm(ht−1�xt)= pt(ht−1�xt) for
ft(·|ht−1)-almost all xt . Fix an arbitrary Borel measurable selection g′ of Pt . Define a
Borel measurable mapping from Gr(At) to R

n as

g(ht−1�xt)=
{
gm(ht−1�xt) if ht−1 ∈Hm

t−1 form≥ 1�

g′(ht−1�xt) otherwise.

Then g is a Borel measurable selection of Pt .
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In a subgame ht−1 ∈ H̃t−1, let

Bti(ht−1)=
{
yi ∈Ati(ht−1) :∫
At(−i)(ht−1)

gi(ht−1� yi� xt(−i))ft(−i)(dxt(−i)|ht−1)

>

∫
At(ht−1)

pti(ht−1�xt)ft(dxt |ht−1)

}
�

Since g(ht−1�xt)= pt(ht−1�xt) for ft(·|ht−1)-almost all xt ,∫
At(ht−1)

g(ht−1�xt)ft(dxt |ht−1)=
∫
At(ht−1)

pt(ht−1�xt)ft(dxt |ht−1)�

Thus, Bti is a measurable correspondence from H̃t−1 to Ati(ht−1). Let Bcti(ht−1) =
Ati(ht−1) \ Bti(ht−1) for each ht−1 ∈Ht−1. Then Bcti is a measurable and closed-valued
correspondence, which has a Borel measurable graph by Lemma 1. As a result, Bti
also has a Borel measurable graph. As ft(ht−1) is a Nash equilibrium in the subgame
ht−1 ∈ H̃t−1 with payoff pt(ht−1� ·), fti(Bti(ht−1)|ht−1)= 0.

Denote βi(ht−1�xt) = minPti(ht−1�xt), where Pti(ht−1�xt) is the projection of
Pt(ht−1�xt) on the ith dimension. Then the correspondence Pti is measurable and
compact-valued, and βi is Borel measurable. Let�i(ht−1�xt)= {βi(ht−1�xt)}× [0�γ]n−1,
where γ > 0 is the upper bound of Pt . Denote �′

i(ht−1�xt) = �i(ht−1�xt) ∩ Pt(ht−1�xt).
Then �′

i is a measurable and compact-valued correspondence, and hence it has a Borel
measurable selection β′

i. Note that β′
i is a Borel measurable selection of Pt . Let

gt(ht−1�xt)

=
{
β′
i(ht−1�xt) if ht−1 ∈ H̃t−1�xti ∈ Bti(ht−1) and xtj /∈ Btj(ht−1)�∀j �= i�
g(ht−1�xt) otherwise.

Notice that

{
(ht−1�xt) ∈ Gr(At) : ht−1 ∈ H̃t−1�xti ∈ Bti(ht−1) and xtj /∈ Btj(ht−1)�∀j �= i;}

= Gr(At)∩
⋃
i∈I

((
Gr(Bti)×

∏
j �=i
Xtj

)
\

(⋃
j �=i

(
Gr(Btj)×

∏
k�=j

Xtk

)))
�

which is a Borel set. As a result, gt is a Borel measurable selection of Pt . Moreover,
gt(ht−1�xt)= pt(ht−1�xt) for all ht−1 ∈ H̃t−1 and ft(·|ht−1)-almost all xt .

Fix a subgame ht−1 ∈ H̃t−1. We show that ft(·|ht−1) is a Nash equilibrium given the
payoff gt(ht−1� ·) in the subgame ht−1. Suppose that player i deviates to some action x̃ti.

If x̃ti ∈ Bti(ht−1), then player i’s expected payoff is∫
At(−i)(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)
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=
∫

∏
j �=i Bctj(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j �=i Bctj(ht−1)

βi(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫

∏
j �=i Bctj(ht−1)

pti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫
At(−i)(ht−1)

pti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
At(ht−1)

pti(ht−1�xt)ft(dxt |ht−1)

=
∫
At(ht−1)

gti(ht−1�xt)ft(dxt |ht−1)�

The first and the third equalities hold since ftj(Btj(ht−1)|ht−1) = 0 for each j, and

hence, ft(−i)(
∏
j �=i Bctj(ht−1)|ht−1) = ft(−i)(At(−i)(ht−1)|ht−1). The second equality and

the first inequality are due to the fact that gti(ht−1� x̃ti� xt(−i)) = βi(ht−1� x̃ti� xt(−i)) =
minPti(ht−1� x̃ti� xt(−i)) ≤ pti(ht−1� x̃ti� xt(−i)) for xt(−i) ∈ ∏

j �=i Bctj(ht−1). The second in-

equality holds since ft(·|ht−1) is a Nash equilibrium given the payoff pt(ht−1� ·) in the

subgame ht−1. The fourth equality follows from the fact that gt(ht−1�xt) = pt(ht−1�xt)

for ft(·|ht−1)-almost all xt .

If x̃ti /∈ Bti(ht−1), then player i’s expected payoff is

∫
At(−i)(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j �=i Bctj(ht−1)

gti(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫

∏
j �=i Bctj(ht−1)

gi(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

=
∫
At(−i)(ht−1)

gi(ht−1� x̃ti� xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
At(ht−1)

pti(ht−1�xt)ft(dxt |ht−1)

=
∫
At(ht−1)

gti(ht−1�xt)ft(dxt |ht−1)�

The first and the third equalities hold since

ft(−i)
(∏
j �=i
Bctj(ht−1)|ht−1

)
= ft(−i)

(
At(−i)(ht−1)|ht−1

)
�
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The second equality is due to the fact that gti(ht−1� x̃ti� xt(−i)) = gi(ht−1� x̃ti� xt(−i)) for
xt(−i) ∈ ∏

j �=i Bctj(ht−1). The first inequality follows from the definition of Bti, and the
fourth equality holds since gt(ht−1�xt)= pt(ht−1�xt) for ft(·|ht−1)-almost all xt .

Thus, player i cannot improve his payoff in the subgame ht by a unilateral change
in his strategy for any i ∈ I, which implies that ft(·|ht−1) is a Nash equilibrium given the
payoff gt(ht−1� ·) in the subgame ht−1.

Step 3. For any (ht−1�xt) ∈ Gr(At),

Pt(ht−1�xt)=
∫
St

Qt+1(ht−1�xt� st)ft0(dst |ht−1)�

By Lemma 5, there exists a Borel measurable mapping q from Gr(Pt)×St to R
n such that

the following relationships hold:

(i) We have q(ht−1�xt� e� st) ∈Qt+1(ht−1�xt� st) for any (ht−1�xt� e� st) ∈ Gr(Pt)× St .
(ii) We have e = ∫

St
q(ht−1�xt� e� st)ft0(dst |ht−1) for any (ht−1�xt� e) ∈ Gr(Pt), where

(ht−1�xt) ∈ Gr(At).

Let

qt+1(ht−1�xt� st)= q(ht−1�xt� gt(ht−1�xt)� st
)

for any (ht−1�xt� st) ∈Ht . Then qt+1 is a Borel measurable selection ofQt+1.
For (ht−1�xt) ∈ Gr(At),

gt(ht−1�xt)=
∫
St

q
(
ht−1�xt� gt(ht−1�xt)� st

)
ft0(dst |ht−1)

=
∫
St

qt+1(ht−1�xt� st)ft0(dst |ht−1)�

Therefore, we have a Borel measurable selection qt+1 of Qt+1 and a Borel-
measurable mapping ft : Ht−1 → ⊗

i∈IM(Xti) such that for all ht−1 ∈ H̃t−1, properties
(i)–(iii) are satisfied. The proof is complete.

If a dynamic game has only T stages for some positive integer T ≥ 1, then let
QT+1(hT ) = {u(hT )} for any hT ∈HT and Qt = �(Qt+1) for 1 ≤ t ≤ T − 1. We can start
with the backward induction from the last period and stop at the initial period, and then
run the forward induction from the initial period to the last period. Thus, the following
result is immediate.

Proposition B.4. Any finite-horizon dynamic game with the ARM condition has a
subgame-perfect equilibrium.

B.4.3 Infinite-horizon case Pick a sequence ξ = (ξ1� ξ2� � � �) such that (a) ξm is a tran-
sition probability from Hm−1 to M(Xm) for any m≥ 1, and (b) ξm(Am(hm−1)|hm−1)= 1
for anym≥ 1 and hm−1 ∈Hm−1. Denote the set of all such ξ as ϒ.
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Fix any t ≥ 1, and define correspondences�tt and �tt as follows: in the subgame ht−1,

�tt(ht−1)= M
(
At(ht−1)

) ⊗ λt

and

�tt(ht−1)= M
(
At(ht−1)

) ⊗ ft0(ht−1)�

For any m1 > t, suppose that the correspondences �m1−1
t and �

m1−1
t have been de-

fined. Then we can define correspondences �m1
t : Ht−1 → M(

∏
t≤m≤m1

(Xm × Sm)) and
�
m1
t : Ht−1 → M(

∏
t≤m≤m1

(Xm × Sm)) as

�
m1
t (ht−1)= {

g(ht−1) � (
ξm1(ht−1� ·)⊗ λm1

) :
g is a Borel measurable selection of�m1−1

t �

ξm1 is a Borel measurable selection of M(Am1)
}

and

�
m1
t (ht−1)= {

g(ht−1) � (
ξm1(ht−1� ·)⊗ fm10(ht−1� ·)

) :
g is a Borel measurable selection of �m1−1

t �

ξm1 is a Borel measurable selection of M(Am1)
}
�

where M(Am1) is regarded as a correspondence fromHm1−1 to the space of Borel prob-
ability measures on Xm1 . For any m1 ≥ t, let ρm1

(ht−1�ξ)
∈ �m1

t be the probability measure

on
∏
t≤m≤m1

(Xm × Sm) induced by {λm}t≤m≤m1 and {ξm}t≤m≤m1 , and �m1
(ht−1�ξ)

∈ �m1
t be

the probability measure on
∏
t≤m≤m1

(Xm×Sm) induced by {fm0}t≤m≤m1 and {ξm}t≤m≤m1 .
Then �

m1
t (ht−1) is the set of all such ρ

m1
(ht−1�ξ)

, while �m1
t (ht−1) is the set of all such

�
m1
(ht−1�ξ)

. Note that �m1
(ht−1�ξ)

∈ �m1
t (ht−1) if and only if ρm1

(ht−1�ξ)
∈�m1

t (ht−1). Both �m1
(ht−1�ξ)

and ρm1
(ht−1�ξ)

can be regarded as probability measures onHm1(ht−1).
Similarly, let ρ(ht−1�ξ) be the probability measure on

∏
m≥t (Xm × Sm) induced by

{λm}m≥t and {ξm}m≥t , and �(ht−1�ξ) the probability measure on
∏
m≥t (Xm × Sm) induced

by {fm0}m≥t and {ξm}m≥t . Denote the correspondence

�t : Ht−1 → M
(∏
m≥t

(Xm × Sm)
)

as the set of all such ρ(ht−1�ξ) and

�t : Ht−1 → M
(∏
m≥t

(Xm × Sm)
)

as the set of all such �(ht−1�ξ).
The following lemma demonstrates the relationship between �m1

(ht−1�ξ)
and ρm1

(ht−1�ξ)
.
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Lemma B.7. For anym1 ≥ t and ht−1 ∈Ht−1,

�
m1
(ht−1�ξ)

=
( ∏
t≤m≤m1

ϕm0(ht−1� ·)
)

◦ ρm1
(ht−1�ξ)

�4

Proof. Fix ξ ∈ϒ, and Borel subsets Cm ⊆Xm andDm ⊆ Sm form≥ t. First, we have

�t(ht−1�ξ)
(Ct ×Dt)

= ξt(Ct |ht−1) · ft0(Dt |ht−1)

=
∫
Xt×St

1Ct×Dt (xt� st)ϕt0(ht−1� st)
(
ξt(ht−1)⊗ λt

)(
d(xt� st)

)
�

which implies that �t(ht−1�ξ)
= ϕt0(ht−1� ·) ◦ ρt(ht−1�ξ)

.5

Suppose that �m2
(ht−1�ξ)

= (∏t≤m≤m2
ϕm0(ht−1� ·)) ◦ ρm2

(ht−1�ξ)
for somem2 ≥ t. Then

�
m2+1
(ht−1�ξ)

( ∏
t≤m≤m2+1

(Cm ×Dm)
)

= �m2
(ht−1�ξ)

� (
ξm2+1(ht−1� ·)⊗ f(m2+1)0(ht−1� ·)

)( ∏
t≤m≤m2+1

(Cm ×Dm)
)

=
∫

∏
t≤m≤m2

(Xm×Sm)

∫
Xm2+1×Sm2+1

1∏
t≤m≤m2+1(Cm×Dm)(xt� � � � � xm2+1� st� � � � � sm2+1)·

ξm2+1 ⊗ f(m2+1)0
(
d(xm2+1� sm2+1)|ht−1�xt� � � � � xm2� st� � � � � sm2

)
�
m2
(ht−1�ξ)

(
d(xt� � � � � xm2� st� � � � � sm2)|ht−1

)
=

∫
∏
t≤m≤m2

(Xm×Sm)

∫
Sm2+1

∫
Xm2+1

1∏
t≤m≤m2+1(Cm×Dm)(xt� � � � � xm2+1� st� � � � � sm2+1)·

×ϕ(m2+1)0(ht−1�xt� � � � � xm2� st� � � � � sm2+1)

ξm2+1(dxm2+1|ht−1�xt� � � � � xm2� st� � � � � sm2)

λ(m2+1)0(dsm2+1)
∏

t≤m≤m2

ϕm0(ht−1�xt� � � � � xm−1� st� � � � � sm)

ρ
m2
(ht−1�ξ)

(
d(xt� � � � � xm2� st� � � � � sm2)|ht−1

)
4For m ≥ t ≥ 1 and ht−1 ∈ Ht−1, the function ϕm0(ht−1� ·) is defined on Hm−1(ht−1) × Sm, which is

measurable and sectionally continuous on
∏
t≤k≤m−1Xk. By Lemma 3, ϕm0(ht−1� ·) can be extended to

be a measurable function ϕ́m0(ht−1� ·) on the product space
(∏

t≤k≤m−1Xk

)
×

(∏
t≤k≤m Sk

)
, which is

also sectionally continuous on
∏
t≤k≤m−1Xk. Given any ξ ∈ ϒ, since ρm(ht−1�ξ)

concentrates on Hm(ht−1),
ϕm0(ht−1� ·) ◦ρm(ht−1�ξ)

= ϕ́m0(ht−1� ·) ◦ρm(ht−1�ξ)
. For notational simplicity, we still use ϕm0(ht−1� ·), instead of

ϕ́m0(ht−1� ·), to denote the above extension. Similarly, we can work with a suitable extension of the payoff
function u as needed.

5For a setA in a spaceX , 1A is the indicator function of A, which is 1 onA and is 0 onX \A.
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=
∫

∏
t≤m≤m2+1(Xm×Sm)

1∏
t≤m≤m2+1(Cm×Dm)(xt� � � � � xm2+1� st� � � � � sm2+1)·

×
∏

t≤m≤m2+1

ϕm0(ht−1�xt� � � � � xm−1� st� � � � � sm)

ρ
m2+1
(ht−1�ξ)

(
d(xt� � � � � xm2� st� � � � � sm2)|ht−1

)
�

which implies that

�
m2+1
(ht−1�ξ)

=
( ∏
t≤m≤m2+1

ϕm0(ht−1� ·)
)

◦ ρm2+1
(ht−1�ξ)

�

The proof is thus complete.

The next lemma shows that the correspondences �m1
t and �t are nonempty and

compact valued, and sectionally continuous.

Lemma B.8. (i) For any t ≥ 1, the correspondence �m1
t is nonempty and compact valued,

and sectionally continuous onXt−1 for anym1 ≥ t.
(ii) For any t ≥ 1, the correspondence�t is nonempty and compact valued, and section-

ally continuous onXt−1.

Proof. (i) We first show that the correspondence �m1
t is nonempty and compact val-

ued, and sectionally continuous onXt−1 for anym1 ≥ t.
Consider the casem1 = t ≥ 1, where

�tt(ht−1)= M
(
At(ht−1)

) ⊗ λt�

Since Ati is nonempty and compact valued, and sectionally continuous on Xt−1, �tt is
nonempty and compact valued, and sectionally continuous onXt−1.

Now suppose that�m2
t is nonempty and compact valued, and sectionally continuous

onXt−1 for somem2 ≥ t ≥ 1. Notice that

�
m2+1
t (ht−1)= {

g(ht−1) � (
ξm2+1(ht−1� ·)⊗ λ(m2+1)

) :
g is a Borel measurable selection of�m2

t �

ξm2+1 is a Borel measurable selection of M(Am2+1)
}
�

First, we claim that Ht(s0� s1� � � � � st) is compact for any (s0� s1� � � � � st) ∈ St . We prove
this claim by induction.

(a) Notice thatH0(s0)=X0 for any s0 ∈ S0, which is compact.

(b) Suppose that Hm′(s0� s1� � � � � sm′) is compact for some 0 ≤ m′ ≤ t − 1 and any
(s0� s1� � � � � sm′) ∈ Sm′

.



Supplementary Material Dynamic games with (almost) perfect information 21

(c) Since Am′+1(·� s0� s1� � � � � sm′) is continuous and compact-valued, it has a compact
graph by Lemma 2(vi), which is Hm′+1(s0� s1� � � � � sm′+1) for any (s0� s1� � � � � sm′+1) ∈
Sm

′+1.

Thus, we prove the claim.
Define a correspondenceAtt fromHt−1 ×St toXt asAtt(ht−1� st)=At(ht−1). ThenAtt

is nonempty and compact valued, sectionally continuous onXt−1, and has a B(Xt×St)-
measurable graph. Since the graph of Att(·� s0� s1� � � � � st) is Ht(s0� s1� � � � � st) and since
Ht(s0� s1� � � � � st) is compact,Att(·� s0� s1� � � � � st) has a compact graph. For any ht−1 ∈Ht−1

and τ ∈�tt(ht−1), the marginal of τ on St is λt and τ(Gr(Att(ht−1� ·)))= 1.
For anym1 > t, suppose that the correspondence

A
m1−1
t : Ht−1 ×

∏
t≤m≤m1−1

Sm →
∏

t≤m≤m1−1

Xm

has been defined such that the following statements hold:

• It is nonempty and compact valued, sectionally upper hemicontinuous on Xt−1,
and has a B(Xm1−1 × Sm1−1)-measurable graph.

• For any (s0� s1� � � � � sm1−1),A
m1−1
t (·� s0� s1� � � � � sm1−1) has a compact graph.

• For any ht−1 ∈ Ht−1 and τ ∈ �m1−1
t (ht−1), the marginal of τ on

∏
t≤m≤m1−1 Sm is⊗

t≤m≤m1−1 λm and τ(Gr(Am1−1
t (ht−1� ·)))= 1.

We define a correspondenceAm1
t : Ht−1 × ∏

t≤m≤m1
Sm → ∏

t≤m≤m1
Xm as

A
m1
t (ht−1� st� � � � � sm1)= {

(xt� � � � � xm1) :
xm1 ∈Am1(ht−1�xt� � � � � xm1−1� st� � � � � sm1−1)�

(xt� � � � � xm1−1) ∈Am1−1
t (ht−1� st� � � � � sm1−1)

}
�

It is obvious thatAm1
t is nonempty-valued. For any (s0� s1� � � � � sm1), sinceAm1−1

t (·� s0� s1�
� � � � sm1−1) has a compact graph, and since Am1(·� s0� s1� � � � � sm1−1) is continuous and
compact-valued, Am1

t (·� s0� s1� � � � � sm1) has a compact graph by Lemma 2(vi), which
implies that Am1

t is compact-valued and sectionally upper hemicontinuous on Xt−1.
In addition, Gr(Am1

t ) = Gr(Am1) × Sm1 , which is B(Xm1 × Sm1)-measurable. For any
ht−1 ∈ Ht−1 and τ ∈ �m1

t (ht−1), it is obvious that the marginal of τ on
∏
t≤m≤m1

Sm is⊗
t≤m≤m1

λm and τ(Gr(Am1
t (ht−1� ·)))= 1.

By Lemma B.5,�m2+1
t is nonempty and compact valued, and sectionally continuous

onXt−1.
Now we show that the correspondence �m1

t is nonempty and compact valued, and
sectionally continuous onXt−1 for anym1 ≥ t.

Given st−1 and a sequence {xk0 �xk1 � � � � � xkt−1} ∈Ht−1(s
t−1) for 1 ≤ k ≤ ∞. Let hkt−1 =

(st−1� (xk0 �x
k
1 � � � � � x

k
t−1)). It is obvious that �m1

t is nonempty-valued. We first show that

�
m1
t is sectionally upper hemicontinuous on Xt−1. Suppose that �m1

(hkt−1�ξ
k)

∈ �m1
t (h

k
t−1)
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for 1 ≤ k <∞ and (xk0 �x
k
1 � � � � � x

k
t−1)→ (x∞

0 �x
∞
1 � � � � � x

∞
t−1). We need to show that there

exists some ξ∞ such that a subsequence of �m1
(hkt−1�ξ

k)
weakly converges to �m1

(h∞
t−1�ξ

∞) and

�
m1
(h∞
t−1�ξ

∞) ∈ �m1
t (h

∞
t−1).

Since �m1
t is sectionally upper hemicontinuous on Xt−1, there exists some ξ∞ such

that a subsequence of ρm1
(hkt−1�ξ

k)
, say itself, weakly converges to ρm1

(h∞
t−1�ξ

∞) and ρm1
(h∞
t−1�ξ

∞) ∈
�
m1
t (h

∞
t−1). Then �m1

(h∞
t−1�ξ

∞) ∈ �m1
t (h

∞
t−1).

For any bounded continuous function ψ on
∏
t≤m≤m1

(Xm × Sm), let

χk(xt� � � � � xm1� st� � � � � sm1)

=ψ(xt� � � � � xm1� st� � � � � sm1) ·
∏

t≤m≤m1

ϕm0
(
hkt−1�xt� � � � � xm−1� st� � � � � sm

)
�

Then {χk} is a sequence of functions satisfying the following three properties.

(i) For each k, χk is jointly measurable and sectionally continuous on
∏
t≤m≤m1

Xm.

(ii) For any (st� � � � � sm1) and any sequence (xkt � � � � � x
k
m1
) → (x∞

t � � � � � x
∞
m1
) in∏

t≤m≤m1
Xm, χk(xkt � � � � � x

k
m1
� st� � � � � sm1) → χ∞(x∞

t � � � � � x
∞
m1
� st� � � � � sm1) as k →

∞.

(iii) The sequence {χk}1≤k≤∞ is integrably bounded in the sense that there exists a
function χ′ : ∏

t≤m≤m1
Sm → R+ such that χ′ is

⊗
t≤m≤m1

λm-integrable, and for
any k and (xt� � � � � xm1� st� � � � � sm1), χk(xt� � � � � xm1� st� � � � � sm1)≤ χ′(st� � � � � sm1).

By Lemma B.6, as k→ ∞,∫
∏
t≤m≤m1

(Xm×Sm)
χk(xt� � � � � xm1� st� � � � � sm1)ρ

m1
(hkt−1�ξ

k)

(
d(xt� � � � � xm1� st� � � � � sm1)

)

→
∫

∏
t≤m≤m1

(Xm×Sm)
χ∞(xt� � � � � xm1� st� � � � � sm1)ρ

m1
(h∞
t−1�ξ

∞)
(
d(xt� � � � � xm1� st� � � � � sm1)

)
�

Then by Lemma B.7,∫
∏
t≤m≤m1

(Xm×Sm)
ψ(xt� � � � � xm1� st� � � � � sm1)�

m1
(hkt−1�ξ

k)

(
d(xt� � � � � xm1� st� � � � � sm1)

)

→
∫

∏
t≤m≤m1

(Xm×Sm)
ψ(xt� � � � � xm1� st� � � � � sm1)�

m1
(h∞
t−1�ξ

∞)
(
d(xt� � � � � xm1� st� � � � � sm1)

)
�

which implies that �m1
(hkt−1�ξ

k)
weakly converges to �m1

(h∞
t−1�ξ

∞). Therefore, �m1
t is sectionally

upper hemicontinuous onXt−1. If one chooses h1
t−1 = h2

t−1 = · · · = h∞
t−1, then we indeed

show that �m1
t is compact-valued.

In the argument above, we indeed proved that if ρm1
(hkt−1�ξ

k)
weakly converges to

ρ
m1
(h∞
t−1�ξ

∞), then �m1
(hkt−1�ξ

k)
weakly converges to �m1

(h∞
t−1�ξ

∞).
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All that is left is to show that �m1
t is sectionally lower hemicontinuous onXt−1. Sup-

pose that (xk0 �x
k
1 � � � � � x

k
t−1)→ (x∞

0 �x
∞
1 � � � � � x

∞
t−1) and �m1

(h∞
t−1�ξ

∞) ∈ �m1
t (h

∞
t−1), we need to

show that there exists a subsequence {(xkm0 �xkm1 � � � � � xkmt−1)} of {(xk0 �xk1 � � � � � xkt−1)} and

�
m1

(hkmt−1�ξ
km)

∈ �m1
t (h

km
t−1) for each km such that �m1

(hkmt−1�ξ
km)

weakly converges to �m1
(h∞
t−1�ξ

∞).

Since �m1
(h∞
t−1�ξ

∞) ∈ �m1
t (h

∞
t−1), we have ρm1

(h∞
t−1�ξ

∞) ∈�m1
t (h

∞
t−1). Because�m1

t is section-

ally lower hemicontinuous on Xt−1, there exists a subsequence of {(xk0 �xk1 � � � � � xkt−1)},

say itself, and ρm1
(hkt−1�ξ

k)
∈ �m1

t (h
k
t−1) for each k such that ρm1

(hkt−1�ξ
k)

weakly converges to

ρ
m1
(h∞
t−1�ξ

∞). As a result, �m1
(hkt−1�ξ

k)
weakly converges to �m1

(h∞
t−1�ξ

∞), which implies that �m1
t is

sectionally lower hemicontinuous onXt−1.

Therefore, �m1
t is nonempty and compact valued, and sectionally continuous on

Xt−1 for anym1 ≥ t.
(ii) We show that �t is nonempty and compact valued, and sectionally continuous

onXt−1.

It is obvious that �t is nonempty-valued, so we first prove that it is compact-valued.

Given ht−1 and a sequence {τk} ⊆ �t(ht−1), there exists a sequence of {ξk}k≥1 such

that ξk = (ξk1 � ξk2 � � � �) ∈ϒ and τk = �(ht−1�ξk)
for each k.

By (i), �tt is compact. Then there exists a measurable mapping gt such that (a) gt =
(ξ1

1� � � � � ξ
1
t−1� gt� ξ

1
t+1� � � �) ∈ ϒ and (b) a subsequence of {ρt

(ht−1�ξk)
}, say {ρt

(ht−1�ξ
k1l )

}l≥1,

that weakly converges to ρt
(ht−1�gt)

. Note that {ξkt+1} is a Borel measurable selection of

M(At+1). By Lemma B.5, there is a Borel measurable selection gt+1 of M(At+1) such

that there is a subsequence of {ρt+1
(ht−1�ξ

k1l )
}l≥1, say {ρt+1

(ht−1�ξ
k2l )

}l≥1, that weakly converges

to ρt+1
(ht−1�gt+1)

, where gt+1 = (ξ1
1� � � � � ξ

1
t−1� gt� gt+1� ξ

1
t+2� � � �) ∈ϒ.

By repeating this procedure, one can construct a Borel measurable mapping g such

that ρ(ht−1�ξ
k11 )� ρ(ht−1�ξ

k22 )� ρ(ht−1�ξ
k33 )� � � � weakly converges to ρ(ht−1�g). That is, ρ(ht−1�g)

is a convergent point of {ρ(ht−1�ξk)
}, which implies that �(ht−1�g) is a convergent point of

{�(ht−1�ξk)
}.

The sectional upper hemicontinuity of �t follows a similar argument as above. In

particular, given st−1 and a sequence {xk0 �xk1 � � � � � xkt−1} ⊆Ht−1(s
t−1) for k≥ 0. Let hkt−1 =

(st−1� (xk0 �x
k
1 � � � � � x

k
t−1)). Suppose that (xk0 �x

k
1 � � � � � x

k
t−1)→ (x0

0�x
0
1� � � � � x

0
t−1). If {τk} ⊆

�t(h
k
t−1) for k ≥ 1 and τk → τ0, then one can show that τ0 ∈ �t(h0

t−1) by repeating a

similar argument as in the proof above.

Finally, we consider the sectional lower hemicontinuity of �t . Suppose that τ0 ∈
�t(h

0
t−1). Then there exists some ξ ∈ ϒ such that τ0 = �(h0

t−1�ξ)
. Denote τ̃m = �m

(h0
t−1�ξ)

∈
�mt (h

0
t−1) form≥ t. As �mt is sectionally continuous, for eachm, there exists some ξm ∈ϒ

such that d(�m
(hkmt−1�ξ

m)
� τ̃m)≤ 1

m for km sufficiently large, where d is the Prokhorov metric.

Let τm = �
(hkmt−1�ξ

m)
. Then τm weakly converges to τ0, which implies that �t is sectionally

lower hemicontinuous.
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Define a correspondenceQτt : Ht−1 →R
n++ as

Qτt (ht−1)

=

⎧⎪⎨
⎪⎩

{∫
∏
m≥t (Xm×Sm)

u(ht−1�x� s)�(ht−1�ξ)

(
d(x� s)

) : �(ht−1�ξ) ∈ �t(ht−1)

}
� t > τ�

�
(
Qτt+1

)
(ht−1)� t ≤ τ�

The lemma below presents several properties of the correspondenceQτt .

Lemma B.9. For any t� τ ≥ 1,Qτt is bounded, measurable, nonempty and compact valued,
and essentially sectionally upper hemicontinuous onXt−1.

Proof. We prove the lemma in three steps.
Step 1. Fix t > τ. We show that Qτt is bounded, nonempty and compact valued, and

sectionally upper hemicontinuous onXt−1.
The boundedness and nonemptiness of Qτt are obvious. We prove that Qτt is sec-

tionally upper hemicontinuous on Xt−1. Given st−1 and a sequence {xk0 �xk1 � � � � � xkt−1} ⊆
Ht−1(s

t−1) for k ≥ 0, let hkt−1 = (st−1� (xk0 �x
k
1 � � � � � x

k
t−1)). Suppose that ak ∈ Qτt (hkt−1)

for k ≥ 1, (xk0 �x
k
1 � � � � � x

k
t−1) → (x0

0�x
0
1� � � � � x

0
t−1), and ak → a0, we need to show that

a0 ∈Qτt (h0
t−1).

By the definition, there exists a sequence {ξk}k≥1 such that

ak =
∫

∏
m≥t (Xm×Sm)

u
(
hkt−1�x� s

)
�(hkt−1�ξ

k)

(
d(x� s)

)
�

where ξk = (ξk1 � ξ
k
2 � � � �) ∈ ϒ for each k. As �t is compact-valued and sectionally contin-

uous on Xt−1, there exist some �(h0
t−1�ξ

0) ∈ �t(h0
t−1) and a subsequence of �(hkt−1�ξ

k), say

itself, that weakly converges to �(h0
t−1�ξ

0) for ξ0 = (ξ0
1� ξ

0
2� � � �) ∈ϒ.

We show that

a0 =
∫

∏
m≥t (Xm×Sm)

u
(
h0
t−1�x� s

)
�(h0

t−1�ξ
0)

(
d(x� s)

)
�

Toward this aim, we need to show only that for any δ > 0,∣∣∣∣a0 −
∫

∏
m≥t (Xm×Sm)

u
(
h0
t−1�x� s

)
�(h0

t−1�ξ
0)

(
d(x� s)

)∣∣∣∣< δ� (B2)

Since the game is continuous at infinity, there exists a positive integer M̃ ≥ t such
that wm < 1

5δ for anym> M̃ .
For each j > M̃ , by Lemma 3, there exists a measurable selection ξ′

j of M(Aj) such

that ξ′
j is sectionally continuous on Xj−1. Let μ : HM̃ → ∏

m>M̃(Xm × Sm) be the tran-
sition probability that is induced by (ξ′

M̃+1
� ξ′
M̃+2

� � � �) and {f(M̃+1)0� f(M̃+2)0� � � �}. By

Lemma 9, μ is measurable and sectionally continuous onXM̃ . Let

VM̃(ht−1�xt� � � � � xM̃� st� � � � � sM̃)
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=
∫

∏
m>M̃(Xm×Sm)

u(ht−1�xt� � � � � xM̃� st� � � � � sM̃�x� s)

dμ(x� s|ht−1�xt� � � � � xM̃� st� � � � � sM̃)�

Then VM̃ is bounded and measurable. In addition, VM̃ is sectionally continuous on XM̃

by Lemma B.6.
For any k≥ 0, we have

∣∣∣∣
∫

∏
m≥t (Xm×Sm)

u
(
hkt−1�x� s

)
�(hkt−1�ξ

k)

(
d(x� s)

)

−
∫

∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
hkt−1�xt� � � � � xM̃� st� � � � � sM̃

)

�M̃
(hkt−1�ξ

k)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)∣∣∣∣
≤wM̃+1

<
1
5
δ�

Since �(hkt−1�ξ
k) weakly converges to �(h0

t−1�ξ
0) and �M̃

(hkt−1�ξ
k)

is the marginal of

�(hkt−1�ξ
k) on

∏
t≤m≤M̃(Xm × Sm) for any k ≥ 0, the sequence �M̃

(hkt−1�ξ
k)

also weakly con-

verges to �M̃
(h0
t−1�ξ

0)
. By Lemma B.6, we have

∣∣∣∣
∫

∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
hkt−1�xt� � � � � xM̃� st� � � � � sM̃

)
�M̃
(hkt−1�ξ

k)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)

−
∫

∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
h0
t−1�xt� � � � � xM̃� st� � � � � sM̃

)

�M̃
(h0
t−1�ξ

0)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)∣∣∣∣
<

1
5
δ

for k ≥ K1, where K1 is a sufficiently large positive integer. In addition, there exists a
positive integerK2 such that |ak − a0|< 1

5δ for k≥K2.
Fix k >max{K1�K2}. Combining the inequalities above, we have

∣∣∣∣
∫

∏
m≥t (Xm×Sm)

u
(
h0
t−1�x� s

)
�(h0

t−1�ξ
0)

(
d(x� s)

) − a0
∣∣∣∣

≤
∣∣∣∣
∫

∏
m≥t (Xm×Sm)

u
(
h0
t−1�x� s

)
�(h0

t−1�ξ
0)

(
d(x� s)

)
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−
∫

∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
h0
t−1�xt� � � � � xM̃� st� � � � � sM̃

)

�M̃
(h0
t−1�ξ

0)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)∣∣∣∣
+

∣∣∣∣
∫

∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
h0
t−1�xt� � � � � xM̃� st� � � � � sM̃

)

�M̃
(h0
t−1�ξ

0)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)
−

∫
∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
hkt−1�xt� � � � � xM̃� st� � � � � sM̃

)

�M̃
(hkt−1�ξ

k)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)∣∣∣∣
+

∣∣∣∣
∫

∏
t≤m≤M̃ (Xm×Sm)

VM̃
(
hkt−1�xt� � � � � xM̃� st� � � � � sM̃

)

�M̃
(hkt−1�ξ

k)

(
d(xt� � � � � xM̃� st� � � � � sM̃)

)

−
∫

∏
m≥t (Xm×Sm)

u
(
hkt−1�x� s

)
�(hkt−1�ξ

k)

(
d(x� s)

)∣∣∣∣
+

∣∣∣∣
∫

∏
m≥t (Xm×Sm)

u
(
hkt−1�x� s

)
�(hkt−1�ξ

k)

(
d(x� s)

) − a0
∣∣∣∣

< δ�

Thus, we proved inequality (B2), which implies thatQτt is sectionally upper hemicontin-
uous onXt−1 for t > τ.

Furthermore, to prove thatQτt is compact-valued, we need to consider only the case
that {xk0 �xk1 � � � � � xkt−1} = {x0

0�x
0
1� � � � � x

0
t−1} for any k≥ 0 and repeat the above proof.

Step 2. Fix t > τ. We show thatQτt is measurable.
Fix a sequence (ξ′

1� ξ
′
2� � � �), where ξ′

j is a selection of M(Aj) measurable in sj−1 and

continuous in xj−1 for each j. For anyM ≥ t, let

W M
M (ht−1�xt� � � � � xM� st� � � � � sM)

=
{∫

∏
m>M(Xm×Sm)

u(ht−1�xt� � � � � xM� st� � � � � sM�x� s)�(ht−1�xt �����xM�st �����sM�ξ′)
(
d(x� s)

)}
�

By Lemma 9, �(ht−1�xt �����xM�st �����sM�ξ′) is measurable from HM to M(
∏
m>M(Xm × Sm))

and is sectionally continuous on XM . Thus, W M
M is bounded, measurable, nonempty,

convex and compact valued. By Lemma B.6,W M
M is sectionally continuous onXM .

Suppose that for some t ≤ j ≤M ,W j
M is defined such that it is bounded, measurable,

nonempty, convex and compact valued, and sectionally continuous onXj . Let

W
j−1
M (ht−1�xt� � � � � xj−1� st� � � � � sj−1)
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=
{∫

Xj×Sj
w
j
M(ht−1�xt� � � � � xj� st� � � � � sj)�

j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

(
d(xj� sj)

) :

�
j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

∈ �jj(ht−1�xt� � � � � xj−1� st� � � � � sj−1)�

w
j
M is a Borel measurable selection ofW j

M

}
�

Let Šj = Sj .6 Since∫
Xj×Sj

W
j
M(ht−1�xt� � � � � xj� st� � � � � sj)�

j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

(
d(xj� sj)

)

=
∫
Sj

∫
Xj×Šj

W
j
M(ht−1�xt� � � � � xj� st� � � � � sj)ρ

j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

(
d(xj� šj)

)
×ϕj0(ht−1�xt� � � � � xj−1� st� � � � � sj)λj(dsj)�

we have

W
j−1
M (ht−1�xt� � � � � xj−1� st� � � � � sj−1)

=
{∫

Sj

∫
Xj×Šj

w
j
M(ht−1�xt� � � � � xj� st� � � � � sj)ρ

j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

(
d(xj� šj)

)
×ϕj0(ht−1�xt� � � � � xj−1� st� � � � � sj)λj(dsj) :
ρ
j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

∈�jj(ht−1�xt� � � � � xj−1� st� � � � � sj−1)�

w
j
M is a Borel measurable selection ofW j

M

}
�

Let

W̌
j
M(ht−1�xt� � � � � xj−1� st� � � � � sj)

=
{∫

Xj×Šj
w
j
M(ht−1�xt� � � � � xj� st� � � � � sj) · ρj(ht−1�xt �����xj−1�st �����sj−1�ξ)

(
d(xj� šj)

) :

ρ
j
(ht−1�xt �����xj−1�st �����sj−1�ξ)

∈�jj(ht−1�xt� � � � � xj−1� st� � � � � sj−1)�

w
j
M is a Borel measurable selection ofW j

M

}
�

Since W j
M(ht−1�xt� � � � � xj� st� � � � � sj) is continuous in xj and does not depend on šj , it is

continuous in (xj� šj). In addition, W j
M is bounded, measurable, nonempty, convex and

compact valued. By Lemma B.2, W̌ j
M is bounded, measurable, nonempty and compact

valued, and sectionally continuous onXj−1.

6We need to use Lemma B.2 below, which requires the continuity of the correspondences in terms of the

integrated variables. Since W j
M is only measurable, but not continuous, in sj , we add a dummy variable s̃j

so thatW j
M is trivially continuous in such a variable.
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It is easy to see that

W
j−1
M (ht−1�xt� � � � � xj−1� st� � � � � sj−1)

=
∫
Sj

W̌
j
M(ht−1�xt� � � � � xj−1� st� � � � � sj)ϕj0(ht−1�xt� � � � � xj−1� st� � � � � sj)λj(dsj)�

By Lemma 4, it is bounded, measurable, nonempty and compact valued, and sectionally
continuous on Xj−1. By induction, one can show that W t−1

M is bounded, measurable,
nonempty and compact valued, and sectionally continuous on Xt−1.

LetW t−1 = ⋃
M≥t W

t−1
M . That is, W t−1 is the closure of

⋃
M≥t W

t−1
M , which is measur-

able due to Lemma 2.
First, W t−1 ⊆Qτt because W t−1

M ⊆Qτt for each M ≥ t and Qτt is compact-valued. Sec-
ond, fix ht−1 and q ∈Qτt (ht−1). Then there exists a mapping ξ ∈ϒ such that

q=
∫

∏
m≥t (Xm×Sm)

u(ht−1�x� s)�(ht−1�ξ)

(
d(x� s)

)
�

ForM ≥ t, let

VM(ht−1�xt� � � � � xM� st� � � � � sM)

=
∫

∏
m>M(Xm×Sm)

u(ht−1�xt� � � � � xM� st� � � � � sM�x� s)�(ht−1�xt �����xM�st �����sM�ξ)(x� s)

and

qM =
∫

∏
t≤m≤M(Xm×Sm)

VM(ht−1�x� s)�
M
(ht−1�ξ)

(
d(x� s)

)
�

Hence, qM ∈W t−1
M . Because the dynamic game is continuous at infinity, qM → q, which

implies that q ∈W t−1(ht−1) andQτt ⊆W t−1.
Therefore,W t−1 =Qτt , and henceQτt is measurable for t > τ.
Step 3. For t ≤ τ, we can start with Qττ+1. Repeating the backward induction in Ap-

pendix B.4.1, we have that Qτt is also bounded, measurable, nonempty and compact
valued, and essentially sectionally upper hemicontinuous on Xt−1.

Denote

Q∞
t =

⎧⎪⎪⎨
⎪⎪⎩
Qt−1
t � if

⋂
τ≥1

Qτt =∅�

⋂
τ≥1

Qτt � otherwise�

The following three lemmas show that Q∞
t (ht−1) = �(Q∞

t+1)(ht−1) = Et(ht−1) for λt−1-
almost all ht−1 ∈Ht−1.7

7The proofs for Lemmas B.10 and B.12 follow the standard ideas with various modifications; see, for
example, Harris (1990), Harris et al. (1995), and Mariotti (2000).
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Lemma B.10. (i) The correspondence Q∞
t is bounded, measurable, nonempty and com-

pact valued, and essentially sectionally upper hemicontinuous onXt−1.

(ii) For any t ≥ 1,Q∞
t (ht−1)=�(Q∞

t+1)(ht−1) for λt−1-almost all ht−1 ∈Ht−1.

Proof. (i) It is obvious that Q∞
t is bounded. By the definition of Qτt , for λt−1-almost

all ht−1 ∈ Ht−1, Qτ1
t (ht−1) ⊆ Q

τ2
t (ht−1) for τ1 ≥ τ2. Since Qτt is nonempty and compact

valued,Q∞
t = ⋂

τ≥1Q
τ
t is nonempty and compact valued for λt−1-almost all ht−1 ∈Ht−1.

If
⋂
τ≥1Q

τ
t = ∅, then Q∞

t = Qt−1
t . Thus, Q∞

t (ht−1) is nonempty and compact valued
for all ht−1 ∈ Ht−1. By Lemma 2(ii),

⋂
τ≥1Q

τ
t is measurable, which implies that Q∞

t is
measurable.

Fix any st−1 ∈ St−1 such that Qτt (·� st−1) is upper hemicontinuous on Ht−1(s
t−1) for

any τ. By Lemma 2(vii), Qτt (·� st−1) has a closed graph for each τ, which implies that
Q∞
t (·� st−1) has a closed graph. Referring to Lemma 2(vii) again, Q∞

t (·� st−1) is upper
hemicontinuous on Ht−1(s

t−1). Since Qτt is essentially upper hemicontinuous on Xt−1

for each τ,Q∞
t is essentially upper upper hemicontinuous onXt−1.

(ii) For any τ ≥ 1 and λt−1-almost all ht−1 ∈Ht−1, �(Q∞
t+1)(ht−1)⊆�(Qτt+1)(ht−1)⊆

Qτt (ht−1), and hence, �(Q∞
t+1)(ht−1)⊆Q∞

t (ht−1).
The space {1�2� � � � �∞} is a countable compact set endowed with the metric

d(k�m) = | 1
k − 1

m | for any 1 ≤ k�m ≤ ∞. The sequence {Qτt+1}1≤τ≤∞ can be re-
garded as a correspondence Qt+1 from Ht × {1�2� � � � �∞} to R

n, which is measurable,
nonempty and compact valued, and essentially sectionally upper hemicontinuous on
Xt × {1�2� � � � �∞}. The backward induction in Appendix B.4.1 shows that �(Qt+1) is
measurable, nonempty and compact valued, and essentially sectionally upper hemi-
continuous onXt × {1�2� � � � �∞}.

Since�(Qt+1) is essentially sectionally upper hemicontinuous onXt ×{1�2� � � � �∞},
there exists a measurable subset Št−1 ⊆ St−1 such that λt−1(Št−1) = 1, and �(Qt+1)(·� ·�
št−1) is upper hemicontinuous for any št−1 ∈ Št−1. Fix št−1 ∈ Št−1. For ht−1 =
(xt−1� št−1) ∈ Ht−1 and a ∈ Q∞

t (ht−1), by its definition, a ∈ Qτt (ht−1) = �(Qτt+1)(ht−1)

for τ ≥ t. Thus, a ∈�(Q∞
t+1)(ht−1).

In summary,Q∞
t (ht−1)=�(Q∞

t+1)(ht−1) for λt−1-almost all ht−1 ∈Ht−1.

Though the definition of Qτt involves correlated strategies for τ < t, the following
lemma shows that one can work with mixed strategies in terms of equilibrium payoffs
via the combination of backward and forward inductions in multiple steps.

Lemma B.11. If ct is a measurable selection of�(Q∞
t+1), then ct(ht−1) is a subgame-perfect

equilibrium payoff vector for λt−1-almost all ht−1 ∈Ht−1.

Proof. Without loss of generality, we only prove the case t = 1.
Suppose that c1 is a measurable selection of �(Q∞

2 ). Apply Proposition B.3 recur-
sively to obtain Borel measurable mappings {fki}i∈I for k≥ 1. That is, for any k≥ 1, there
exists a Borel measurable selection ck of Q∞

k such that for λk−1-almost all hk−1 ∈Hk−1,
the following statements hold:
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(i) We have that fk(hk−1) is a Nash equilibrium in the subgame hk−1, where the ac-
tion space isAki(hk−1) for player i ∈ I and the payoff function is given by∫

Sk

ck+1(hk−1� ·� sk)fk0(dsk|hk−1)�

(ii) We have

ck(hk−1)=
∫
Ak(hk−1)

∫
Sk

ck+1(hk−1�xk� sk)fk0(dsk|hk−1)fk(dxk|hk−1)�

We need to show that c1(h0) is a subgame-perfect equilibrium payoff vector for λ0-
almost all h0 ∈H0.

Step 1. We show that for any k≥ 1 and λk−1-almost all hk−1 ∈Hk−1,

ck(hk−1)=
∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�f )

(
d(x� s)

)
�

Since the game is continuous at infinity, there exists some positive integer M > k

such that wM is sufficiently small. By Lemma B.10, ck(hk−1) ∈ Q∞
k (hk−1) =⋂

τ≥1Q
τ
k(hk−1) for λk−1-almost all hk−1 ∈ Hk−1. Since Qτk = �τ−k+1(Qττ+1) for k ≤

τ, ck(hk−1) ∈ ⋂
τ≥k �τ−k+1(Qττ+1)(hk−1) ⊆ �M−k+1(QMM+1)(hk−1) for λk−1-almost all

hk−1 ∈Hk−1. Thus, there exists a Borel measurable selection w of QMM+1 and some ξ ∈ϒ
such that for λM−1-almost all hM−1 ∈HM−1, the following statements hold:

(i) We have that fM(hM−1) is a Nash equilibrium in the subgame hM−1, where the
action space isAMi(hM−1) for player i ∈ I and the payoff function is given by∫

SM

w(hM−1� ·� sM)fM0(dsM |hM−1)�

(ii) We have

cM(hM−1)=
∫
AM(hM−1)

∫
SM

w(hM−1�xM� sM)fM0(dsM |hM−1)fM(dxM |hM−1)�

(iii) We have w(hM)= ∫∏
m≥M+1(Xm×Sm) u(hM�x� s)�(hM�ξ)(d(x� s)).

Then for λk−1-almost all hk−1 ∈Hk−1,

ck(hk−1)=
∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�fM)

(
d(x� s)

)
�

where fMk is fk if k≤M and is ξk if k≥M + 1. Since the game is continuous at infinity,∫
∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�fM)

(
d(x� s)

)
converges to ∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�f )

(
d(x� s)

)
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whenM goes to infinity. Thus, for λk−1-almost all hk−1 ∈Hk−1,

ck(ht−1)=
∫

∏
m≥k(Xm×Sm)

u(hk−1�x� s)�(hk−1�f )

(
d(x� s)

)
� (B3)

Step 2. We show that {fki}i∈I is a subgame-perfect equilibrium.
Fix a player i and a strategy gi = {gki}k≥1. For each k≥ 1, define a new strategy f̃ ki as

f̃ ki = (g1i� � � � � gki� f(k+1)i� f(k+2)i� � � �). That is, we simply replace the initial k stages of fi
by gi. Denote f̃ k = (f̃ ki � f−i).

Fix k ≥ 1 and a measurable subset Dk ⊆ Sk such that (i) and (ii) of Step 1 and
(B3) hold for all sk ∈ Dk and xk ∈ Hk(sk), and λk(Dk) = 1. For each M̃ > k, by the

Fubini property, there exists a measurable subset EM̃k ⊆ Sk such that λk(EM̃k ) = 1 and⊗
k+1≤j≤M̃ λj(D

M̃(sk))= 1 for all sk ∈EM̃k , where

DM̃
(
sk

) = {
(sk+1� � � � � sM̃) :

(
sk� sk+1� � � � � sM̃

) ∈DM̃}
�

Let D̂k = (⋂M̃>k E
M̃
k )∩Dk. Then λk(D̂k)= 1.

For any hk = (xk� sk) such that sk ∈ D̂k and xk ∈Hk(sk), we have∫
∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f )
(
d(x� s)

)

=
∫
Ak+1(hk)

∫
Sk+1

c(k+2)i(hk�xk+1� sk+1)f(k+1)0(dsk+1|hk)fk+1(dxk+1|hk)

≥
∫
Ak+1(hk)

∫
Sk+1

c(k+2)i(hk�xk+1� sk+1)f(k+1)0(dsk+1|hk)

(f(k+1)(−i) ⊗ g(k+1)i)(dxk+1|hk)

=
∫
Ak+1(hk)

∫
Sk+1

∫
Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ f(k+2)i(dxk+2|hk�xk+1� sk+1)

f(k+1)0(dsk+1|hk)f(k+1)(−i) ⊗ g(k+1)i(dxk+1|hk)

≥
∫
Ak+1(hk)

∫
Sk+1

∫
Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ g(k+2)i(dxk+2|hk�xk+1� sk+1)

f(k+1)0(dsk+1|hk)f(k+1)(−i) ⊗ g(k+1)i(dxk+1|hk)

=
∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f̃ k+2)

(
d(x� s)

)
�

The first and the last equalities follow from (B3) in the end of Step 1. The second equality
is due to (ii) in Step 1. The first inequality is based on (i) in Step 1. The second inequality
holds by the following arguments:
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(i) By the choice of hk and (i) in Step 1, for λk+1-almost all sk+1 ∈ Sk+1 and all xk+1 ∈
Xk+1 such that (hk�xk+1� sk+1) ∈Hk+1, we have∫

Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ f(k+2)i(dxk+2|hk�xk+1� sk+1)

≥
∫
Ak+2(hk�xk+1�sk+1)

∫
Sk+2

c(k+3)i(hk�xk+1� sk+1�xk+2� sk+2)

f(k+2)0(dsk+2|hk�xk+1� sk+1)f(k+2)(−i) ⊗ g(k+2)i(dxk+2|hk�xk+1� sk+1)�

(ii) Since f(k+1)0 is absolutely continuous with respect to λk+1, the above inequal-
ity also holds for f(k+1)0(hk)-almost all sk+1 ∈ Sk+1 and all xk+1 ∈Xk+1 such that
(hk�xk+1� sk+1) ∈Hk+1.

Repeating the above argument, one can show that∫
∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f )
(
d(x� s)

)

≥
∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f̃ M̃+1)

(
d(x� s)

)

for any M̃ > k. Since ∫
∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f̃ M̃+1)

(
d(x� s)

)
converges to ∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�(gi�f−i))
(
d(x� s)

)
as M̃ goes to infinity, we have∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�f )
(
d(x� s)

)

≥
∫

∏
m≥k+1(Xm×Sm)

u(hk�x� s)�(hk�(gi�f−i))
(
d(x� s)

)
�

Therefore, {fki}i∈I is a subgame-perfect equilibrium.

By Lemma B.10 and Proposition B.2, the correspondence �(Q∞
t+1) is measurable,

nonempty and compact valued; by Lemma 2(iii), it has a measurable selection. Then
Theorem 3 follows from the above lemma.

For t ≥ 1 and ht−1 ∈Ht−1, recall that Et(ht−1) is the set of payoff vectors of subgame-
perfect equilibria in the subgame ht−1. The following lemma shows that Et(ht−1) is es-
sentially the same asQ∞

t (ht−1).
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Lemma B.12. For any t ≥ 1, Et(ht−1)=Q∞
t (ht−1) for λt−1-almost all ht−1 ∈Ht−1.

Proof. (a) We first prove the following claim: for any t and τ, if Et+1(ht)⊆Qτt+1(ht) for
λt-almost all ht ∈Ht , then Et(ht−1)⊆Qτt (ht−1) for λt−1-almost all ht−1 ∈Ht−1. We need
to consider only the case that t ≤ τ.

By the construction of �(Qτt+1) in Appendix B.4.1, there exists a measurable subset

Śt−1 ⊆ St−1 with λt−1(Śt−1) = 1 such that for any ct and ht−1 = (xt−1� śt−1) ∈Ht−1 with
śt−1 ∈ Śt−1, if the following relationships hold, then ct ∈�(Qτt+1)(ht−1).

• We have ct =
∫
At(ht−1)

∫
St
qt+1(ht−1�xt� st)ft0(dst |ht−1)α(dxt), where qt+1(ht−1� ·) is

measurable and qt+1(ht−1�xt� st) ∈ Qτt+1(ht−1�xt� st) for λt-almost all st ∈ St and
xt ∈At(ht−1).

• We have that α ∈ ⊗
i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1

with payoff
∫
St
qt+1(ht−1� ·� st)ft0(dst |ht−1) and action space

∏
i∈I Ati(ht−1).

Fix a subgame ht−1 = (xt−1� śt−1) such that śt−1 ∈ Śt−1. Pick a point ct ∈ Et(ht−1).
There exists a strategy profile f such that f is a subgame-perfect equilibrium in the
subgame ht−1 and the payoff is ct . Let ct+1(ht−1�xt� st) be the payoff vector induced by
{fti}i∈I in the subgame (ht�xt� st) ∈ Gr(At)× St . Then the following relationships hold:

• We have ct =
∫
At(ht−1)

∫
St
ct+1(ht−1�xt� st)ft0(dst |ht−1)ft(dxt |ht−1).

• We have that ft(·|ht−1) is a Nash equilibrium in the subgame ht−1 with action
spaceAt(ht−1) and payoff

∫
St
ct+1(ht−1� ·� st)ft0(dst |ht−1).

Since f is a subgame-perfect equilibrium in the subgame ht−1, ct+1(ht−1�xt� st) ∈
Et+1(ht−1�xt� st) ⊆ Qτt+1(ht−1�xt� st) for λt-almost all st ∈ St and xt ∈ At(ht−1), which
implies that ct ∈�(Qτt+1)(ht−1)=Qτt (ht−1).

Therefore, Et(ht−1)⊆Qτt (ht−1) for λt−1-almost all ht−1 ∈Ht−1.
(b) For any t > τ, Et ⊆ Qτt . If t ≤ τ, we can start with Eτ+1 ⊆ Qττ+1 and repeat the

argument in (a). Then we can show that Et(ht−1) ⊆Qτt (ht−1) for λt−1-almost all ht−1 ∈
Ht−1. Thus, Et(ht−1)⊆Q∞

t (ht−1) for λt−1-almost all ht−1 ∈Ht−1.
(c) Suppose that ct is a measurable selection from �(Q∞

t+1). Apply Proposition B.3
recursively to obtain Borel measurable mappings {fki}i∈I for k ≥ t. By Lemma B.11,
ct(ht−1) is a subgame-perfect equilibrium payoff vector for λt−1-almost all ht−1 ∈Ht−1.
Consequently,�(Q∞

t+1)(ht−1)⊆Et(ht−1) for λt−1-almost all ht−1 ∈Ht−1.
By Lemma B.10, Et(ht−1) = Q∞

t (ht−1) = �(Q∞
t+1)(ht−1) for λt−1-almost all ht−1 ∈

Ht−1.

B.5 Proof of Proposition B.1

We highlight the needed changes in comparison with the proofs presented in Appen-
dices B.4.1–B.4.3.

Step 1: Backward induction. We first consider stage t withNt = 1.
If Nt = 1, then St = {śt}. Thus, Pt(ht−1�xt) = Qt+1(ht−1�xt� śt), which is nonempty

and compact valued, and essentially sectionally upper hemicontinuous on Xt × Ŝt−1.
Notice that Pt may not be convex-valued.
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We first assume that Pt is upper hemicontinuous. Suppose that j is the player who
is active in this period. Consider the correspondence �t : Ht−1 → R

n × M(Xt)× �(Xt)
defined as (v�α�μ) ∈�t(ht−1) if the following relationships hold:

(i) We have v= pt(ht−1�At(−j)(ht−1)�x
∗
tj) such that pt(ht−1� ·) is a measurable selec-

tion of Pt(ht−1� ·).8

(ii) We have that x∗
tj ∈Atj(ht−1) is a maximization point of player j given the payoff

function ptj(ht−1�At(−j)(ht−1)� ·) and the action space Atj(ht−1), αi = δAti(ht−1)

for i �= j and αj = δx∗
tj

.

(iii) We have μ= pt(ht−1�At(−j)(ht−1)�x
∗
tj) ◦ α.

This is a single agent problem. We need to show that �t is nonempty and compact val-
ued, and upper hemicontinuous.

If Pt is nonempty, convex and compact valued, and upper hemicontinuous, then we
can use Lemma 10, the main result of Simon and Zame (1990), to prove the nonempti-
ness, compactness, and upper hemicontinuity of �t . In Simon and Zame (1990), the
only step they need the convexity of Pt for the proof of their main theorem is Lemma 2
therein. However, the one-player pure-strategy version of their Lemma 2, stated in the
following, directly follows from the upper hemicontinuity of Pt without requiring the
convexity.

Let Z be a compact metric space, and {zn}n≥0 ⊆ Z. Let P : Z → R+ be a bounded, upper
hemicontinuous correspondence with nonempty and compact values. For each n ≥ 1, let
qn be a Borel measurable selection of P such that qn(zn)= dn. If zn converges to z0 and dn
converges to some d0, then d0 ∈ P(z0).

Repeating the argument in the proof of the main theorem of Simon and Zame (1990),
one can show that�t is nonempty and compact valued, and upper hemicontinuous.

Then we go back to the case that Pt is nonempty and compact valued, and essentially
sectionally upper hemicontinuous on Xt × Ŝt−1. Recall that we proved Proposition B.2
based on Lemma 10. If Pt is essentially sectionally upper hemicontinuous onXt × Ŝt−1,
we can show the following result based on a similar argument as in Appendix B.3: there
exists a bounded, measurable, nonempty and compact valued correspondence �t from
Ht−1 to R

n ×M(Xt)× �(Xt) such that �t is essentially sectionally upper hemicontinu-
ous on Xt−1 × Ŝt−1 and for λt−1-almost all ht−1 ∈Ht−1, (v�α�μ) ∈�t(ht−1) if the follow-
ing relationships hold:

(i) We have v= pt(ht−1�At(−j)(ht−1)�x
∗
tj) such that pt(ht−1� ·) is a measurable selec-

tion of Pt(ht−1� ·).
(ii) We that x∗

tj ∈Atj(ht−1) is a maximization point of player j given the payoff func-
tion ptj(ht−1�At(−j)(ht−1)� ·) and the action space Atj(ht−1), αi = δAti(ht−1) for
i �= j and αj = δx∗

tj
.

(iii) We have μ= pt(ht−1�At(−j)(ht−1)�x
∗
tj) ◦ α.

8Note thatAt(−j) is point-valued since all players other than j are inactive.
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Next we consider the case that Nt = 0. Suppose that the correspondence Qt+1 from
Ht to R

n is bounded, measurable, nonempty and compact valued, and essentially sec-
tionally upper hemicontinuous onXt × Ŝt . For any (ht−1�xt� ŝt) ∈ Gr(Ât), let

Rt(ht−1�xt� ŝt)=
∫
S̃t

Qt+1(ht−1�xt� ŝt � s̃t)f̃t0(ds̃t |ht−1�xt� ŝt)

=
∫
S̃t

Qt+1(ht−1�xt� ŝt � s̃t)ϕt0(ht−1�xt� ŝt � s̃t)λt(ds̃t)�

Then following the same argument as in Appendix B.4.1, one can show that Rt is a
nonempty, convex and compact valued, and essentially sectionally upper hemicontinu-
ous correspondence onXt × Ŝt .

For any ht−1 ∈Ht−1 and xt ∈At(ht−1), let

Pt(ht−1�xt)=
∫
Ât0(ht−1�xt)

Rt(ht−1�xt� ŝt)f̂t0(dŝt |ht−1�xt)�

By Lemma 7, Pt is nonempty, convex and compact valued, and essentially sectionally
upper hemicontinuous on Xt × Ŝt−1. The rest of the step remains the same as in Ap-
pendix B.4.1.

Step 2: Forward induction. This step is unchanged.
Step 3: Infinite horizon. We need to slightly modify the definition of �m1

t for any
m1 ≥ t ≥ 1. Fix any t ≥ 1. Define a correspondence �tt as follows: in the subgame ht−1,

�tt(ht−1)= (
M

(
At(ht−1)

) � f̂t0(ht−1� ·)
) ⊗ λt�

For anym1 > t, suppose that the correspondence �m1−1
t has been defined. Then we can

define a correspondence �m1
t : Ht−1 → M(

∏
t≤m≤m1

(Xm × Sm)) as

�
m1
t (ht−1)= {

g(ht−1) � ((
ξm1(ht−1� ·) � f̂m10(ht−1� ·)

) ⊗ λm1

) :
g is a Borel measurable selection of�m1−1

t �

ξm1 is a Borel measurable selection of M(Am1)
}
�

Then the result in Appendix B.4.3 is true with the above �m1
t .

Consequently, a subgame-perfect equilibrium exists.
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