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APPENDIX B

In Appendix B.1, we present the model of measurable dynamic games with partially
perfect information and show the existence of subgame-perfect equilibria in Proposi-
tion B.1. It covers the results in Theorem 3 (Theorem 4) for dynamic games with almost
perfect information (perfect information) and in discounted stochastic games.

In Appendix B.2, we present Lemmas B.1-B.6 as the mathematical preparations for
proving Theorem 3. We present in Appendix B.3 a new equilibrium existence result for
discontinuous games with stochastic endogenous sharing rules. The proof of Theorem 3
is given in Appendix B.4. The proof of Proposition B.1 is provided in Appendix B.5, which
covers Theorem 4 as a special case. One can skip Appendices B.2 and B.3 first, and refer
to the technical results in these two sections whenever necessary.

B.1 Measurable dynamic games with partially perfect information

In this section, we generalize the model of measurable dynamic games in three direc-
tions. The ARM condition is partially relaxed such that (a) perfect information may be
allowed in some stages, (b) the state transitions could have a weakly continuous com-
ponent in all other stages, and (c) the state transition in any period can depend on the
action profile in the current stage as well as on the previous history. The first change
allows us to combine the models of dynamic games with perfect and almost perfect
information. The second generalization implies that the state transitions need not be
norm continuous on the Banach space of finite measures. The last modification covers
the model of stochastic games as a special case.
The changes are described below.

e The state space is a product space of two Polish spaces; that is, S; = S, x §, for each
t>1.
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e For each i € I, the action correspondence A;; from H, ; to X;; is measurable,
nonempty and compact valued, and sectionally continuous on X'~ x §'=1. The
additional component of Nature is given by a measurable, nonempty and closed
valued correspondence /LO from Gr(A;) to St, which is sectionally continuous on
X' x 81, Then H, = Gr(A) x S, and H, is the subset of X*® x $* such that
(x,s) € Hy if (x', s") € H, for any ¢ > 0.

e The choice of Nature depends not only on the history 4,_1, but also on the action
profile x; in the current stage. The state transition fjo(h,_1, x;) = f;o(ht,l, X)) ©
f;o(ht,1 , X¢), where f,g is a transition probability from Gr(A4;) to M(S‘t) such that
f;o(fltg(h,_l, x)|hi_1,x;)=1forall (h,_1, x;) € Gr(A;) and fto is a transition prob-
ability from Gr(Ay) to M(S,).

e For each i € I, the payoff function u; is a Borel measurable mapping from H, to
R+, which is sectionally continuous on X x §°.

As in Section 3.3, we allow the possibility for the players to have perfect information
in some stages. For ¢ > 1, let

1, if fio(hi—1, x;) = 85, for some s, and
Ni= |{i e I: Ay is not point-valued}| =1,
0, otherwise.

Thus, if N, =1 for some stage ¢, then the player who is active in the period ¢ is the only
active player and has perfect information.

We drop the ARM condition in those periods with only one active player and weaken
the ARM condition in other periods.

AssumPTION B.1 (ARM). (i) Foranyt> 1 with N, =1, S, is a singleton set {5,;} and A\, =
b

S‘[‘

(ii) For each t > 1 with N; =0, ﬁo is sectionally continuous on X' x 81, where the
range space M(S;) is endowed with topology of weak convergence of measures on
S’t. The probability measure f,o(- |h:_1, X, S¢) is absolutely continuous with respect
to an atomless Borel probability measure A; on S forall (hy_1,x:,5) € Gr(A,O)
and ¢.(h,_1, X1, 5, 5;) is the corresponding densiry.!

(iii) The mapping ¢, is Borel measurable and sectionally continuous on X' x 8!, and
integrably bounded in the sense that there is a A;-integrable function ¢;: S; — R
such that ¢,(hi—1, X¢, St, 5¢,) < ¢(5;) for any (hi_y, x¢, §¢).

The following result shows that the existence result is still true in this more general
setting.

11n this section, a property is said to hold for A’-almost all &, € H, if it is satisfied for A‘-almost all §* € §*
and all (x?, §") € H,(5").
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ProrosiTiON B.1. If an infinite-horizon dynamic game as described above satisfies the
ARM’ condition and is continuous at infinity, then it possesses a subgame-perfect equi-
librium f. In particular, for j € I and t > 1 such that N; = 1 and player j is the only
active player in this period, f;; can be deterministic. Furthermore, the equilibrium pay-
off correspondence E; is nonempty and compact valued, and essentially sectionally upper
hemicontinuous on X'~! x §-1,

REMARK B.1. The result above also implies a new existence result of subgame-perfect
equilibria for stochastic games. In the existence result of Mertens and Parthasarathy
(2003), the state transitions are assumed to be norm continuous with respect to the ac-
tions in the previous stage. They did not assume the ARM condition. On the contrary,
our Proposition B.1 allows the state transitions to have a weakly continuous component.

B.2 Technical preparations

The following lemma shows that the space of nonempty compact subsets of a Polish
space is still Polish under the Hausdorff metric topology.

LeMmwMmA B.1. Suppose that X is a Polish space and that K is the set of all nonempty com-
pact subsets of X endowed with the Hausdorff metric topology. Then K is a Polish space.

Prookr. By Theorem 3.88(2) of Aliprantis and Border (2006), K is complete. In addi-
tion, Corollary 3.90 and Theorem 3.91 of Aliprantis and Border (2006) imply that K is
separable. Thus, K is a Polish space. O

The following result presents a variant of Lemma 5 in terms of transition correspon-
dences.

LeMMA B.2. Let X and Y be Polish spaces, and Z a compact subset of Rﬂr. Let G be a
measurable, nonempty and compact valued correspondence from X to M(Y). Suppose
that F is a measurable, nonempty, convex and compact valued correspondence from X x
Y to Z. Define a correspondence 1l from X to Z as

II(x) = {/ f(x,y)g(dy|x): g is a Borel measurable selection of G,
Y

f is a Borel measurable selection of F } .

If F is sectionally continuous on Y, then the following statements hold:

(i) The correspondenceﬁ: X x M(Y)— ZasF(x,v)= fY F(x, y)v(dy) is sectionally
continuous on M(Y).

(ii) Thell is a measurable, nonempty and compact valued correspondence.

(iii) IfF and G are both continuous, then 11 is continuous.
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PrOOE. (i) For any fixed x € X, the upper hemicontinuity of F(x,-) follows from
Lemma 7.

Next we show the lower hemicontinuity. Fix any x € X. Suppose that {v;};>¢ is a
sequence in M(Y) such that »; — vy as j — oo. Pick an arbitrary point z, € F(x,1p).
Then there exists a Borel measurable selection f of F(x, -) such that zg = [}, f(y)vo(dy).

By Lemma 3 (Lusin’s theorem), for each k > 1, there exists a compact subset D, C Y
such that f is continuous on D and vo(Y \ Dy) < ﬁ, where M > 0 is the bound of Z.
Define a correspondence Fj.: Y — Z as

{fm}, yeDy,

F =
k) {F(x,y), ye Y\ Dg.

Then Fj is nonempty, convex and compact valued, and lower hemicontinuous. By
Theorem 3.22 in Aliprantis and Border (2006), Y is paracompact. Then by Lemma 3
(Michael’s selection theorem), F; has a continuous selection fj.

For each k, since v; — vy, and f; is bounded and continuous, [ fx(y)vj(dy) —
fY fk(Mro(dy) as j — oo. Thus, there exists a subsequence {v;, } such that {ji} is an in-
creasing sequence and, for each k > 1,

1
H/ fevj, (dy) —/ fk(}’)VO(dJ’)H < 3%
Y Y

where | - || is the Euclidean norm on R,
Since f; coincides with f on Dy, vo(Y \ Dy) < ﬁ’ and Z is bounded by M,

2
/fk()’)VO(dY)—/ f(y)vo(dy)H <3
Y Y

Thus,

1
< —.
k

/ fxvj (dy) — / Fvo(dy)
Y Y

Let zj, = [y fc(»)vj (dy) for each k. Then zj, e F(x,v;) and zj, — z as k — co. By
Lemma 1, F(x, -) is lower hemicontinuous.

(ii) Since G is measurable and compact-valued, there exists a sequence of Borel
measurable selections {gi}r>1 of G such that G(x) = {gi(x), g2(x),...} for any x € X
by Lemma 2(v). For each k > 1, define a correspondence IT* from X to Z by let-
ting 1K (x) = F(x, gk (x)) = [y F(x, y)gk(dylx). Since F is convex-valued, so is ITI¥. By
Lemma 5, IT¥ is also measurable, nonempty and compact valued.

Fix any x € X. It is clear that I[1(x) = F(x,G(x)) is nonempty-valued. Since G(x) is
compact, and F(x,)is compact-valued and continuous, I1(x) is compact by Lemma 2.
Thus, Uy~ % (x) S (x).

Fix any x € X and z € I1(x). There exists a point » € G(x) such that z € F(x,v). Since
{gk(x)}k>1 is dense in G(x), it has a subsequence {gi, (x)} such that g, (x) — v. As
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F(x, ) is continuous, F(x, 8k, (X)) = F(x,v); that is,

ze U F(x, gi(x)) = U 1% (x).

k=1 k>1

Therefore, | J k=1 T4 (x) = TI(x) for any x € X. Lemma 2(i) and (ii) imply that IT is mea-
surable.
(iii) Define a correspondence F: MX xY)—> Zas

F(r)= { f(x,y)7(d(x,y)): fis a Borel measurable selection ofF}.
Y

X x

By (i), F is continuous. Define a correspondence G: X — M(X x Y) as G(x) = {8, Qv:
v € G(x)}. Since G and F are both nonempty-valued, I1(x) = F(G(x)) is nonempty. As
G is compact-valued and F is continuous, II is compact-valued by Lemma 2. As G and
F are both continuous, I1 is continuous by Lemma 1(vii). O

The following lemma shows that a measurable and sectionally continuous corre-
spondence on a product space is approximately continuous on the product space.

LEMMA B.3. Let S, X, and Y be Polish spaces endowed with the Borel o-algebras, and A
a Borel probability measure on S. Denote S as the completion of the Borel o-algebra B(S)
of S under the probability measure A. Suppose that D is a B(S) ® B(Y)-measurable subset
of S x Y, where D(s) is nonempty and compact for all s € S. Let A be a nonempty and
compact valued correspondence from D to X, which is sectionally continuous on Y and
has a B(S x Y x X)-measurable graph. Then the following statements hold:

(i) We have that A(s) = Gr(A(s, -)) is an S-measurable mapping from S to the set of
nonempty and compact subsets Ky x of Y x X.

(ii) There exist countably many disjoint compact subsets {Si}m>1 of S such that (a)
)\(UmZl Sm) =1, and (b) for each m > 1, D,,, = DN (S, x Y) is compact, and A
is nonempty and compact valued, and continuous on each D,,.

Prookr. (i) Given that A(s,-) is continuous and D(s) is compact, Gr(A(s,-)) €Y x X
is compact by Lemma 2. Thus, A4 is nonempty and compact valued. Since A4 has a
measurable graph, A is an S-measurable mapping from S to the set of nonempty and
compact subsets Ly, y of Y x X by Lemma 1(iv).

(ii) Define a correspondence D from S to Y such that D(s) = {yeY: (s,y) e D}. Then
D is nonempty and compact valued. As in (i), D is S-measurable. By Lemma 3 (Lusin’s
theorem), there exists a compact subset S; C S such that A(S\ §7) < %, and D and A are
continuous functions on §;. By Lemma 1(iii), D and A are continuous correspondences
onSi. Let D ={(s,y)eD:seS,ye D(s)}. Since S; is compact and D is continuous,
D1 is compact (see Lemma 2 (6)).

Following the same procedure, for any m > 1, there exists a compact subset S, €S
such that (@) Sy N (Uj<k<m—1 k) = @ and Dy, = D N (Sy x Y) is compact, (b) A(Sp) > 0



6 Heand Sun Supplementary Material

and A(S\ (Uj<g<m Sm)) < ﬁ, and (c) A4 is nonempty and compact valued, and contin-
uous on D,,. This completes the proof. O

The lemma below states an equivalence property for the weak convergence of Borel
probability measures obtained from the product of transition probabilities.

LemmA B4. Let S and X be Polish spaces, and A a Borel probability measure on S. Sup-
pose that {Sy}>1 is a sequence of disjoint compact subsets of S such that A( Uy Sk) = 1.
For each k, define a probability measure on Sy, as A, (D) = ))\‘((TLZ)) for any measurable sub-
set D C Sy. Let {vim}m>0 be a sequence of transition probabilities from S to M(X) and
Tm = A o vy, for any m > 0. Then T, weakly converges to 7 if and only if A ¢ v, weakly

converges to A ¢ vy foreach k > 1.

Proor. First, we assume that 7,, weakly converges to 7g. For any closed subset E C
Sk x X, wehavelimsup,,_, ., Tm(E) < 79(E); thatis, limsup,, _, ., Aov,,(E) < Aovy(E). For
any k, ﬁk) limsup,,_, .o A O v (E) < %Sk)/\ o vo(E), which implies that limsup,,,_, ., Ax ¢
vm(E) < A o vg(E). Thus, Ay ¢ v, weakly converges to A; ¢ vy for each £ > 1.

Second, we consider the case that A, ¢ v, weakly converges to A, ¢ vy for each
k > 1. For any closed subset E € § x X, let Ex = E N (S x X) for each k > 1.
Then {E}} are disjoint closed subsets and limsup,,,_, ., A © vm(Eg) < Ax ¢ vo(Ey). Since
A ovm(E) = ﬁk))\ o vy (E") for any k, m, and measurable subset E’ C S, x X, we have
that limsup,,,_, ., A 0 v (Ex) < Ao vg(Ey). Thus,

Zlimsup/\ovm(Ek) < Z)\ ovg(Er) = Aoyy(E).

k>1 "7 k>1

Since the limit superior is subadditive, we have

Zlimsup/\ ovm(Er) > limsupZ)\ oV (Er) =limsup A o vy, (E).

Therefore, limsup,,,_, ., A © v (E) < A o vy(E), which implies that 7, weakly converges to
T0. O

The following lemma is a key that allows one to drop the continuity condition on the
state variables through a reference measure in Theorem 3.

LeMmMaA B.5. Suppose that X, Y, and S are Polish spaces, and that Z is a compact met-
ric space. Let A be a Borel probability measure on S, and A a nonempty and compact
valued correspondence from Z x S to X that is sectionally upper hemicontinuous on Z
and has a B(Z x S x X)-measurable graph. Let G be a nonempty and compact valued,
and continuous correspondence from Z to M(X x S). We assume that for any z € Z and
T € G(2), the marginal of T on S is A and 7(Gr(A(z,-))) = 1. Let F be a measurable,
nonempty, convex and compact valued correspondence from Gr(A) — M(Y) such that
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F is sectionally continuous on Z x X. Define a correspondencell from Z to M(X xS x Y)
by letting

II(z) = {g(z) o f(z,-): g is a Borel measurable selection of G,

[ is a Borel measurable selection of F}.

Then the correspondence 11 is nonempty and compact valued, and continuous.

Proor. Let S be the completion of B(S) under the probability measure A. By Lem-
ma B.3, A(s) = Gr(A(s, -)) can be viewed as an S-measurable mapping from S to the set
of nonempty and compact subsets Kz, x of Z x X. For any s € S, the correspondence
Fy; = F(-,s) is continuous on /~1(s). By Lemma 3, there exists a measurable, nonempty
and compact valued correspondence F from Z x X x S to M(Y) and a Borel measurable
subset S of S with A(S’) = 1 such that for each s € §/, F, is continuous on Z x X, and the
restriction of F; to A(s) is Fj.

By Lemma 3 (Lusin’s theorem), there exists a compact subset §; € §’ such that A is
continuous on S; and A(S7) > % Let K; = A(S;). Then K; € Z x X is compact.

Let C(K1, Ka(y)) be the space of continuous functions from K to Ca(y), where
Kam(y) is the set of nonempty and compact subsets of M(Y). Suppose that the re-
striction of S on S is S;. Let F; be the restriction of F to K; x S;. Then F; can be
viewed as an Sj-measurable function from $; to C(K1, Kaqy)) (see Theorem 4.55 in
Aliprantis and Border (2006)). Again by Lemma 3 (Lusin’s theorem), there exists a com-
pact subset of Sy, say itself, such that A(S7) > % and F, is continuous on S;. As a re-
sult, F; is a continuous correspondence on Gr(A4) N (§1 x Z x X) and so is F. Let
A1 be a probability measure on §; such that A(D) = % for any measurable subset
D CS;.

For any z € Z and 7 € G(z), the definition of G implies that there exists a transi-
tion probability v from S to X such that A ¢ v = 7. Define a correspondence G; from
Z to M(X x §) as follows: for any z € Z, G1(z) is the set of all 7; = A1 ¢ v such that
T=Aove G(z). It can be easily checked that G; is also a nonempty and compact
valued, and continuous correspondence. Let

I (z) ={r10f(z,): T1=A 0veG(2),
f is a Borel measurable selection of F }.

By Lemma 9, I1; is nonempty and compact valued, and continuous. Furthermore, it is
easy to see that for any z, I1;(z) coincides with the set

{(Aiov)o f(z,): AoveG(z), f is aBorel measurable selection of F}.
Repeating this procedure, one can find a sequence of compact subsets {S;} such

that (a) for any t > 1, S, €S, SN (S U...8 1) =@ and A(S; U ---US)) > tﬁ,
(b) F is continuous on Gr(A4) N (S; x Z x X), A; is a probability measure on S;
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such that A;(D) = f\‘((?[ ; for any measurable subset D C §;, and (c) the correspon-
dence

Mi(z) ={(Arov)o f(z,): AoveG(2),

f is a Borel measurable selection of F}.

is nonempty and compact valued, and continuous.

Pick a sequence {z;}, {vx}, and {fi} such that (A o vg) ¢ fi(zk, -) € 1(zk), zi — zp, and
(Aowvg) < fr(zk, ) weakly converges to some k. It is easy to see that (A; o vg) ¢ fr(zk, ) €
I1;(zy) for each . As I1; is compact-valued and continuous, it has a subsequence, say
itself, such that z; converges to some zy € Z and (A1 ¢ vg) ¢ fi(z, -) weakly converges
to some (A o ul) o fl(z(), ) € 111 (zp). Repeating this procedure, one can get a sequence
of {} and f™. Let u(s) = u™(s) and f(zg, s, x) = f" (29, s, x) for any x € A(zy, s) when
s € S;y. By Lemma B.4, (Ao p) ¢ f(z9, -) = x, which implies that I1 is upper hemicontinu-
ous.

Similarly, the compactness and lower hemicontinuity of I1 follow from the compact-
ness and lower hemicontinuity of I, for each . O

The next lemma presents the convergence property for the integrals of a sequence
of functions and probability measures.

LeMMA B.6. LetS and X be Polish spaces, and let A be a measurable, nonempty and com-
pact valued correspondence from S to X. Suppose that A is a Borel probability measure on
S and that {vn}1<n<c0 1S a Sequence of transition probabilities from S to M(X) such that
vn(A(s)|s) =1 for each s and n. For each n > 1, let 7,, = A ¢ v,. Assume that the sequence
{rn} of Borel probability measures on S x X converges weakly to a Borel probability mea-
sure Too on S x X. Let {gn}1<n<o00 De a sequence of functions that satisfy the following three
properties.

(i) For each n between 1 and oo, g,: S x X — R is measurable and sectionally con-
tinuous on X.

(ii) Forany s € S and any sequence x,, — Xoo i X, g,(8, X5) = €00 (S, Xo0) AS N —> 00.

(iii) The sequence {gn}1<n<co IS integrably bounded in the sense that there exists a A-
integrable function i : S — R such that for any n, s, and x, g,(s, x) < ¥ (s).

Then we have
/ gn(s, )7, (d(s, x)) —>/ oo (8, X)Too (d(s, X)).
SxX SxX

Prookr. By Theorem 2.1.3 in Castaing et al. (2004), for any integrably bounded function
g: S x X — R; that is sectionally continuous on X, we have

/S Xg(s,x)rn(d(s,x))a f 8(s, X)Too (d(s, x)). (B1)

SxX
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Let {yn}1<n<co b€ a sequence such that y, = % and yo, =0. Then y,, — y. Define a
mapping g from S x X x {y, ..., yso} sSuch that g(s, x, y,) = gn(s, x). Then g is measurable
on S and continuous on X x {yi,..., yso}. Define a correspondence G from § to X x
V1, -+, Yoo} x Ry such that

G(s)={(x,yn,¢): c€Z(s,x,yn), x € A(s),1 <n < c0}.

For any s, A(s) x {y1, ..., Yso} is compact and g(s, -, -) is continuous. By Lemma 2(vi),
G (s) is compact. By Lemma 1(ii), G can be viewed as a measurable mapping from S to
the space of nonempty compact subsets of X x {yi,..., Yoo} x Ry. Similarly, 4 can be

viewed as a measurable mapping from S to the space of nonempty compact subsets of
X.
Fix an arbitrary € > 0. By Lemma 3 (Lusin’s theorem), there exists a compact subset
S1 € S such that 4 and G are continuous on S; and A(S \ S1) < e. Without loss of gen-
€

erality, we can assume that A(S \ §) is sufficiently small such that [, $\S; P(s)A(ds) < .
Thus, for any #,

f ()7 (d(s, X)) = / Y ($)va(X)A(ds) < g
(S\S)xX (S\S1)

By Lemma 2(vi), the set E = {(s, x): s € §1, x € A(s)} is compact. Since G is contin-
uous on S, g is continuous on E x {y{, ..., ¥so}. Since E X {yi,..., Yoo} is compact, g is
uniformly continuous on E x {yi, ..., y}. Thus, there exists a positive integer N1 > 0
such that for any n > Ny, [gx(s, X) — oo (s, X)| < 5 forany (s, x) € E.

By (B1), there exists a positive integer N, such that for any n > N,

/ goo(s,X)Tn(d(s,x))—f oo (8, X)Too(d (s, X))
SxX SxX

€
< —=.

3
Let Ng = max{N1, N,}. For any n > Ny,

‘[ gn(s,x)fn(d(s,X))—/ goo(S,x)Too(d(Sax))‘
SxX SxX

<

/ gn(s,x)fn(d(s,x))—/ goo(s,x)fn(d(s,x))‘
SxX SxX

+

f goo(s,x)m(d(s,x))—[ goo(s,X)Too(d(s,x))‘
SxX SxX

<

f gn(s,x)Tn(d(s,x))—/ goo(s,x)fn(d(s,x))‘
SIXX SIXX

_|_

/ gn(sax)Tn(d(S, x)) _/ gOO(s’x)Tn(d(Sa x))
(S\S1)xX

(S\S})xX

+

f goo(s,x)rn(d(s,x))—/ gOO(sax)TOO(d(s’x))‘
SxX SxX

E/|g}’l(sax)_gOO(sax)|Tn(d(s’x))+2'/ ¢(S)Tn(d(5ax))
E (S\S1)xX



10 He and Sun Supplementary Material

+

/ goo(s,X)Tn(d(s,X))—f 8oo (S, X)Too(d(s, X))
SxX SxX

e+2 e+e
< — . — J—
3 6 3

= €.

This completes the proof. O

B.3 Discontinuous games with endogenous stochastic sharing rules

It was proved in Simon and Zame (1990) that a Nash equilibrium exists in discontinuous
games with endogenous sharing rules. In particular, they considered a static game with
a payoff correspondence P that is bounded, nonempty, convex and compact valued, and
upper hemicontinuous. They showed that there exists a Borel measurable selection p of
the payoff correspondence, namely the endogenous sharing rule, and a mixed-strategy
profile a such that « is a Nash equilibrium when players take p as the payoff function
(see Lemma 10).

In this section, we consider discontinuous games with endogenous stochastic shar-
ing rules. That is, we allow the payoff correspondence to depend on some state variable
in a measurable way as follows:

e Let S be a Borel subset of a Polish space, Y a Polish space, and A a Borel probability
measure on S.

e We have that D is a B(S) ® B(Y)-measurable subset of § x Y, where D(s) is com-
pactforalls e Sand A({s € S: D(s) # @}) > 0.

e We have X =[], X;, where each X; is a Polish space.

e For each i, A; is a measurable, nonempty and compact valued correspondence
from D to X;, which is sectionally continuous on Y.

e We have A = ]_[151.5” A;and E =Gr(A).

e We have that P is a bounded, measurable, nonempty, convex and compact valued
correspondence from E to R” that is essentially sectionally upper hemicontinuous
onY x X.

A stochastic sharing rule at (s, y) € D is a Borel measurable selection of the correspon-
dence P(s, y,-); i.e., a Borel measurable function p: A(s,y) — R” such that p(x) €
P(s,y,x) for all x € A(s,y). Given (s, y) € D, P(s, y, -) represents the set of all possible
payoff profiles, and a sharing rule p is a particular choice of the payoff profile.

Now we prove the following proposition.

ProrosITION B.2. There exists a B(D)-measurable, nonempty and compact valued cor-
respondence ® from D to R" x M(X) x A(X) such that ® is essentially sectionally upper
hemicontinuous on Y, and for A-almost all s € S with D(s) # @ and y € D(s), ®(s, y) is
the set of points (v, a, p) that the following statements hold:
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(i) We have v = fX p(s, y, x)a(dx) such that p(s, y,-) is a Borel measurable selection
OfP(S’ y: ')'2

(ii) We have that a € Q;.; M(A;(s,y)) is a Nash equilibrium in the subgame (s, y)
with payoff profile p(s, y, -) and action space A;(s, y) for each player i.

(iii) We have u = p(s, y,-) o .3

In addition, denote the restriction of ® on the first component R" as ®|rn, which is a cor-
respondence from D to R". Then ®|r is bounded, measurable, nonempty and compact
valued, and essentially sectionally upper hemicontinuouson'Y .

Proor. There exists a Borel subset $ C S with )\(5) = 1 such that D(s) # @ foreach s € S
and P is sectionally upper hemicontinuous on Y when it is restricted on D N (S xY).
Without loss of generality, we assume that S=S§.

Suppose that S is the completion of B(S) under the probability measure A. Let D
and & be the restrictions of S® B(Y) and S ® B(Y) ® B(X) on D and E, respectively.

Define a correspondence D from S to Y such that D(s) = {yeY: (s,y) € D}. Then D
is nonempty and compact valued. By Lemma 1(iv), D is S-measurable.

Since D(s) is compact and A(s, -) is upper hemicontinuous for any s € S, E(s) is
compact by Lemma 2(vi). Define a correspondence I' from S to Y x X x R" as I'(s) =
Gr(P(s,-,-)). Foralls, P(s, -, -) is bounded, upper hemicontinuous, and compact-valued
on E(s); hence, it has a compact graph. As aresult, I' is compact-valued. By Lemma 1(i),
P has an § ® B(Y x X x R")-measurable graph. Since Gr(I') = Gr(P), Gr(I') is S ®
B(Y x X x R")-measurable. Due to Lemma 1(iv), the correspondence I is S-measurable.
We can view I as a function from S into the space X of nonempty compact subsets of
Y x X x R". By Lemma B.1, K is a Polish space endowed with the Hausdorff metric
topology. Then by Lemma 1(ii), I is an S-measurable function from S to . One can also
define a correspondence A; from Sto Y x X as A;(s) = Gr(A(s, ). Itis easy to show
that A4; can be viewed as an S-measurable function from S to the space of nonempty
compact subsets of Y x X, which is endowed with the Hausdorff metric topology. By a
similar argument, D can be viewed as an S-measurable function from S to the space of
nonempty compact subsets of Y.

By Lemma 3 (Lusin’s theorem), there exists a compact subset S; € S such that A(S'\
S}) < %, T, D and {/L}ls,-fn are continuous functions on S;. By Lemma l(iiiz, T, D, and
A; are continuous correspondences on S;. Let D1 = {(s, y) € D: s € 81, y € D(s)}. Since
S} is compact and D is continuous, D is compact (see Lemma 2(vi)). Similarly, E; =
EN(S1 x Y x X) is also compact. Thus, P is an upper hemicontinuous correspondence
on E1. Define a correspondence ®; from D; to R” x M(X) x A(X) asin Lemma 10; then
it is nonempty and compact valued, and upper hemicontinuous on D;.

Following the same procedure, for any m > 1, there exists a compact subset S, €S
such that (@) S, N (Uj<f<m_15k) =@ and D, = DN (S, x Y) is compact, (b) A(S,,) >0
and A(S\ (Uy<x<m Spm)) < ﬁ, and (c) there is a nonempty and compact valued, up-
per hemicontinuous correspondence ®,, from D,, to R"” x M(X) x A(X) that satisfies

2Note that we require p(s, y, -) to be measurable for each (s, y), but p may not be jointly measurable.
3The finite measure u = p(s, y,-) o a if u(B) = Jg (s, y, ¥)a(dx) for any Borel subset B C X.
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conditions (i)—(iii) in Lemma 10. Thus, we have countably many disjoint sets {S,;};;>1
such that (i) A(U,,,~1 Sm) =1, and (ii) ®,, is nonempty and compact valued, and upper
hemicontinuous on each D,,, m > 1.

Since A; is a B(S) ® B(Y)-measurable, nonempty and compact valued correspon-
dence, it has a Borel measurable selection a; by Lemma 2(iii). Fix a Borel measurable
selection p of P (such a selection exists also due to Lemma 2(iii)). Define a mapping
(vo, @, o) from D to R" x M(X) x A(X) such that (a) «;(s, y) = 84,(s,y) and ag(s, y) =
Rier @i(s,y), (b) vo(s, y) = p(s,y,ai(s,y), ..., an(s,y)), and (c) uo(s,y) = p(s,y,-) o ap.
Let Do = D\ (U1 Dm) and @y (s, y) = {(vo(s, y), ao(s, ¥), so(s, y))} for (s, y) € Dy. Then
dq is B(S) ® B(Y)-measurable, nonempty and compact valued.

Let ®(s, y) =D, (s, y) if (s, y) € D, for some m > 0. Then ®(s, y) satisfies conditions
()—(iii) if (s, y) € Dy, for m > 1. That is, ® is B(D)-measurable, nonempty and compact
valued, and essentially sectionally upper hemicontinuous on Y, and satisfies conditions
(i)—(iii) for A-almost all s € S.

Then consider ®|g~, which is the restriction of ® on the first component R”. Let
®,,|r» be the restriction of ®,, on the first component R” with the domain D,, for each
m > 0. It is obvious that ®(|r is measurable, nonempty and compact valued. For
each m > 1, D,, is compact, and ®,, is upper hemicontinuous and compact-valued. By
Lemma 2(vi), Gr(®,,) is compact. Thus, Gr(®,,|r~) is also compact. By Lemma 2(iv),
®,,|g» is measurable. In addition, ®,,|r: is nonempty and compact valued, and up-
per hemicontinuous on D,,. Notice that ®|rn (s, y) = @y, |rn (s, y) if (s, y) € Dy, for some
m > 0. Thus, ®|r: is measurable, nonempty and compact valued, and essentially sec-
tionally upper hemicontinuous on Y.

The proofis complete. O

B.4 Proof of Theorem 3

B.4.1 Backward induction For any ¢ > 1, suppose that the correspondence Q,; from
H, to R” is bounded, measurable, nonempty and compact valued, and essentially sec-
tionally upper hemicontinuous on X"’. For any h,_1 € H,_y and x, € A,(h,_1), let

Pi(hi_1,x4) :./S Os1(hi—1, x¢, 50) fro(dse|hi—1)

= g Ori1(hy—1, xt, S)10(hy—1, s Ar(dsy).
t

It is obvious that the correspondence P; is measurable and nonempty-valued. Since
Q;11 is bounded, P; is bounded. For A’-almost all s* € S/, Q,,1(-,s") is bounded and
upper hemicontinuous on H,(s*), and ¢,(s’, -) is continuous on Gr(A4{)(s"). As ¢ is
integrably bounded, P;(s~!, -) is also upper hemicontinuous on Gr(A)(s*~!) for A*~1-
almost all s'~1 € §~1 (see Lemma 4); that is, the correspondence P; is essentially section-
ally upper hemicontinuous on X’. Again by Lemma 4, P, is convex and compact valued
since A; is an atomless probability measure. That is, P;: Gr(A4') — R" is a bounded,
measurable, nonempty, convex and compact valued correspondence that is essentially
sectionally upper hemicontinuous on X*.
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By Proposition B.2, there exists a bounded, measurable, nonempty and compact
valued correspondence @, from H, ;| to R” x M(X;) x A(X;) such that ®, is essen-
tially sectionally upper hemicontinuous on X =1 and for A'"!-almost all h,_; € H,_,
(v, a, u) € Dy(h,_7) if the following conditions hold:

(i) We have v= fAt(hzfl) pi(hy_1, x)a(dx) such that p,(h,_1,-) is a Borel measurable
selection of P;(h;_1, ).

(i) We have that « € &),.; M(A;i(h;—1)) is a Nash equilibrium in the subgame /4,
with payoff p;(h;_1, -) and action space [ [;c; A (h—1).

(iii) We have uw = p;(h;_1,-) o c.

Denote the restriction of ®, on the first component R” as ®(Q;, 1), which is a correspon-
dence from H,_; to R". By Proposition B.2, ®(Q,. 1) is bounded, measurable, nonempty
and compact valued, and essentially sectionally upper hemicontinuous on X/~1.

B.4.2 Forward induction The following proposition presents the result on the step of
forward induction.

ProrosiTiON B.3. For any t > 1 and any Borel measurable selection q; of ®(Q;11),
there exists a Borel measurable selection q;,1 of Q,+1 and a Borel measurable mapping
fi: Hi—1 — @ M(Xy;) such that for XN~ -almost all h,_; € H,_,, the following state-
ments hold:

(i) We have fi(h;1) € @;c; M(Asi(hi1)).
(ii) We have q;(hi—1) = [4 5, ) Js, a1 (i1, X0, 80 fro(dselhe—1) fe(dxelhy—y).

(iii) We have that fi(-|h,—1) is a Nash equilibrium in the subgame h,_, with action
spaces A;i(h,_1), i € I, and payoff functions

/S qi+1Chi—1, - 8¢) fro(dse|hi—1).

Proor. We divide the proof into three steps. In Step 1, we show that there exist
Borel measurable mappings f;: H,_1 = Q;c; M(Xy) and u,: H,_1 — A(X;) such that
(qt, ft, me) is a selection of ®,. In Step 2, we obtain a Borel measurable selection g; of P;
such that for A’~!-almost all #,_; € H,_1, the following statements hold:

e We have g,(h;_1) = fA[(hH)gz(hz—l, x)fi(dx|hi—1).

e We have that f;(/#,_1) is a Nash equilibrium in the subgame /,_; with payoff
g¢(h;_1,-) and action space A;(h;_1).

In Step 3, we show that there exists a Borel measurable selection g, ; of O, such that
forall h,_1 € H,_1 and x; € A;(h;_1),

gt(ht—laxt)Z/ Gr+1(h—1, x¢, 8¢) fro(dse | hi—1).

S

Combining Steps 1-3, the proof is complete.
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Step 1. Let ‘I’t: Gr(q)[(Qt_;,_l)) — M(Xt) X A(Xt) be

\Pt(ht—la v) = {(a7 /-L) (U9 a, I-L) € (I)t(ht—l)}'

Recall that the construction of ®; and the proof of Proposition B.2, H,_; can be divided
into countably many Borel subsets {H]" ;} ;>0 such that the following statements hold:

A (Uyps1 Projg—1 (H" 1))
/\tfl(PfojSt—l (H;-1))
and projg-1(H,_1) are projections of H" , and H,_ on si-1

() We have H; | =9 H}", and = 1, where projg.-1 (H]" |)

(i) Form>1H t”i | is compact, @, is upper hemicontinuous on H t"i " and P, is upper

hemicontinuous on

{(h,_l,x,): hi—1eH" |, x; € At(ht—l)}-

t—1°

(iii) There exists a Borel measurable mapping (vg, ag, po) from H&l to R" x M(X;) x
A(Xy) such that @ (hy_1) = {(vo(h—1), ao(h—1), mo(h—1))} forany b,y € H? .

Denote the restriction of ®, on H t”i jas ®7". For m > 1, Gr(®}") is compact, and hence the
correspondence ¥/ (h;_1,v) = {(a, n): (v, &, u) € P (h;_1)} has a compact graph. For
m > 1, ¥}* is measurable by Lemma 2(iv), and has a Borel measurable selection /" due
to Lemma 2(iii). Define ¢)(h,_1, vo(hi—1)) = (ag(hi—1), po(hs—1)) for h,_y € H |. For
(hi—1,v) € Gr(P(Qy41)), let e (hy_1,v) = " (hy—q,v) if h,_1 € H" . Then ¢, is a Borel
measurable selection of ;.

Given a Borel measurable selection g; of ®(Q;.1), let

Ge(hi—1) = (qi(hi—1), e (him1, qi(hi—1))).

Then ¢, is a Borel measurable selection of ®,. Denote H,_; = Ums=1 H[",. By the con-
struction of ®;, there exist Borel measurable mappings f;: H;_1 - &;; M(Xy) and
me: Hy_ 1 — A(X;) such that for all 4,1 € H,_1, the following relationships hold:

(a) We have g;(h;_1) = fAt(ht—l) pi(hi_1, x)fi(dx|h;_1) such that p;(h;_q,-) is a Borel
measurable selection of P,(h,_1, -).

(b) We have that f;(h,_1) € Q;c; M(A;i(h;—1)) is a Nash equilibrium in the subgame
h;—1 with payoff p,(h;_1, -) and action space [ [;.; A:i(h;—1).

(c) We have pu(-|h;—1) = pi(hi_1,-) o fi(-|hi—1).

Step 2. Since P; is upper hemicontinuous on {(h;_1, x/): hy_1 € H" |, x; € A¢(h;-1)},
due to Lemma 6, there exists a Borel measurable mapping g” such that (i) g”(h;_1, x;) €
Pi(h;_1, x;) forany h,_y € H" | and x; € A;(h,_1), and (ii) g" (h;—1, x¢) = ps(h;_1, x;) for
fi(-|h;_1)-almost all x;. Fix an arbitrary Borel measurable selection g’ of P;. Define a

Borel measurable mapping from Gr(A4;) to R" as

gm(ht_l,x,) ifht_l EH?il fOfle,

(h 1, X ):
St g (hi_1,x;) otherwise.

Then g is a Borel measurable selection of P;.
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In a subgame &, _; € H,_i,let
Bii(hi—1) = {)’i € Ay(hi—1):
/ &ithi—1, Yi> Xe—iy) fr—iy (dxy(—iy | hi—1)
Ar—iy(hi—1)

>/ pti(ht—laxt)ft(dxt|ht—1)}-
At(ht—l)
Since g(h;_1, x;) = pi(h;_1, x;) for fi(-|h;_1)-almost all x;,

/ g(hy—1, x0) fr(dx(|hi—1) =/ pe(hi—1, x¢) fr(dxelhi—1).
Ai(hi—1) A¢(hi—1)

Thus, B;; is a measurable correspondence from H,_; to A,(h,_1). Let Bf;(hi—1) =
Ari(hi—1) \ Bri(h,—1) for each h,_; € H,_;. Then Bj; is a measurable and closed-valued
correspondence, which has a Borel measurable graph by Lemma 1. As a result, By;
also has a Borel measurable graph. As f;(h;_1) is a Nash equilibrium in the subgame
hi_1 € H,_y with payoff p¢(h,_1,-), fi(Bii(hi—1)|h,—1) =0.

Denote B;(h;_1,x;) = minPy(h,_1,x;), where Py(h,_1,x;) is the projection of
Pi(h;_1, x;) on the ith dimension. Then the correspondence P;; is measurable and
compact-valued, and B; is Borel measurable. Let A;(h;_1, x;) = {Bi(hi—1, x¢)} x [0, YL
where y > 0 is the upper bound of P;. Denote A’ (h;_1, x;) = Ai(hi—1, %) N Pe(hi—1, X1).
Then A} is a measurable and compact-valued correspondence, and hence it has a Borel
measurable selection ;. Note that 8] is a Borel measurable selection of P;. Let

gl(ht—17xl)
| Bi(hi—1,x) ifh_y € Hi_y, x4 € Byi(hy—y) and x;j ¢ Byj(hi—1),Vj # 1,
g(h,_1,x;) otherwise.

Notice that

{(hi1,x1) € Gr(A;): hy—y € Hy_y, x4i € Byi(hy—y) and x;j ¢ Byj(hy—1),¥j # i3 }

=Gr(A4,) N U((Gr(B,i) x ]_[X,j) \ (U <Gr(B,j) <[] X,k>)>,

iel j#i J#i kj

which is a Borel set. As a result, g; is a Borel measurable selection of P;. Moreover,
gi(hi_1,x1) = pi(hi_1, x;) for all h;_y € H;_1 and f;(-|h;_1)-almost all x,.
Fix a subgame /,_; € H,_;. We show that f;(-|4,_;) is a Nash equilibrium given the
payoff g;(h,_1, -) in the subgame /,_1. Suppose that player i deviates to some action X;.
If X;; € B;i(h,_1), then player i’s expected payoff is

/ 8rtiChs—1, Xeis Xe(—i)) fr(—iy(dxs(—iplhi—1)
Ap—iy(hi—1)
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/ gn‘(hz—l,3~Cti’xt(—i))ft(—i)(dxt(—i)|ht—1)
l_[j;ﬁi B,Cj(ht—l)

f Bi(hi—1, X4i, Xe(—iy) fr—iy(dxr—iylhi—1)

l_[j#,'B,Cj(/’lt—l)

5/ DriChe—1, X1iy Xe—iy) fr—iy(dXs—iylhi—1)
[1j%B

=/ PriChe—1, X4y Xt—i)) fr—iy (dxr—iylhi—1)
Ap—iy(he—1)

5/ PriChi—1, x) fi(dx|hi—1)
A¢(hi—1)

=f gti(htflaxt)ft(dxtmtf])-
A¢(hi—q

The first and the third equalities hold since f;j(B;j(h;—1)|h;—1) = 0 for each j, and
hence, fi—i([ 1z Byj(hi-)|hi—1) = fi-i)(Ai-iy(hi—D)Ihi—1). The second equality and
the first inequality are due to the fact that g,;(h;_1, X4, x1(—i)) = Bi(hi—1, X4, X1(—i)) =
min Py (hi—1, X1i, X1(—i)) < PeiChi—1, Xtis Xe(—iy) for X(—i) € Hj?él- Btcj(ht—l)- The second in-
equality holds since f;(-|/,_1) is a Nash equilibrium given the payoff p;(#,_1, ) in the
subgame /,_;. The fourth equality follows from the fact that g,(h;_1, x;) = p;(hs—1, x;)
for f;(-|h;_1)-almost all x;.
If x4 ¢ Byi(hy—1), then player i’s expected payoff is

/ 8ti(hi—1, Xeis Xe(—iy) fr—iy(dxe—iylhi—1)
Ar—iy(hi—1)
=/ 8tiChs—1, Xtis Xe(—iy) fr(—iy(dxs(—iplhi—1)
njﬂij(hz—l)
=/ 8i(hi—1, Xsiy Xe(—iy) fr—iy(dxs—iplhi—1)
nj#ij(hz—l)
=[ 8i(hi—1, X4i, X1(—i)) fr—iy(dxs—iylhi—1)
Ay—iy(hi—1)
< f priChi_t, x0) fuldxlhi)
Ai(hi—1)
Z/ 8riChi—1, xe) fe(dx¢|hi—1).
At(ht—l)

The first and the third equalities hold since

Je—i) <l_[ ij(ht—l)lhz—1> = fr—iy (An—iy(he—Dhi—1).
j#i
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The second equality is due to the fact that g;(h;—1, Xsi, X (—i)) = gi(hi—1, Xsi, Xy () for
Xi—iy € [1 i Btcj(ht_l). The first inequality follows from the definition of B;;, and the
fourth equality holds since g;(h,_1, x;) = p:(h;—1, x;) for f;(:|h,—1)-almost all x,.

Thus, player i cannot improve his payoff in the subgame /4, by a unilateral change
in his strategy for any i € I, which implies that f;(-|#,_1) is a Nash equilibrium given the
payoft g;(h;_1, -) in the subgame 4,_;.

Step 3. For any (h;_1, x;) € Gr(A;),

Pi(hi—1,x¢) Z/S Qrv1(hi—1, x4, 80) fro(dse|hi—1).

By Lemma 5, there exists a Borel measurable mapping g from Gr(P;) x S; to R” such that
the following relationships hold:

(i) We have q(h,_1, x, e,5:) € Qry1(hy—1, X1, 5¢) forany (h,_1, x¢, e, 5¢) € Gr(Py) x S;.

(i) We have e = sz q(h_1, x¢, e, 8¢) fro(dss|hy—1) for any (h,_1, x4, e) € Gr(P;), where
(hi-1, x¢) € Gr(Ay).

Let

Qi1 (hi—1, Xe,50) = q(hi—1, x4, 8e(hy—1, X1), 5¢)

for any (h;_1, x4, s¢) € H;. Then g, is a Borel measurable selection of O, .
For (h;-1, x¢) € Gr(Ay),

gl(ht—l,xt):/ q(he—1, %6, 8e(he—1, x0), 8¢) fro(dse L hy—1)

Y

= /S qr+1Chs—1, x¢, 8¢) fro(dse | hi—1).
t

Therefore, we have a Borel measurable selection ¢;;; of Q,.; and a Borel-
measurable mapping f;: H;_1 — &),;.; M(X;;) such that for all #,_; € H;_1, properties
()—(iii) are satisfied. The proofis complete. O

If a dynamic game has only T stages for some positive integer 7 > 1, then let
Ori1(hr) ={u(hr)} forany hy € Hr and Q; = ®(Q;41) for 1 <t < T — 1. We can start
with the backward induction from the last period and stop at the initial period, and then
run the forward induction from the initial period to the last period. Thus, the following
result is immediate.

ProrosiTION B.4. Any finite-horizon dynamic game with the ARM condition has a
subgame-perfect equilibrium.

B.4.3 Infinite-horizon case Pick a sequence ¢ = (&1, &, ...) such that (a) &, is a tran-
sition probability from H,,_; to M(X,,) for any m > 1, and (b) &, (Am(hy_)hm_1) =1
foranym > 1and h,,_1 € H,,_1. Denote the set of all such £ as Y.
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Fix any ¢ > 1, and define correspondences E! and A} as follows: in the subgame 4,_1,
Ei(hi—1) = M(Ai(hi—1)) ® A
and
Af(hi—1) = M(Ai(hi-1)) ® fio(hi-1).

For any m; > t, suppose that the correspondences E:"l_l and A;"‘_l have been de-
fined. Then we can define correspondences ="' : H; | — M T<m<m, (Xm x Sm)) and
AV H, - M i<mem, (Xm x Sm)) as

By (hiy) = {8(hi—1) © (€my (hi—1, ) ® Ay ):

. . =myi—1
g is a Borel measurable selection of ;"7

&m, is a Borel measurable selection of M(A,,, )}

and

A (he—y) = {g(hi—1) © (€my (hi—1, ) ® fimgo(hi—1, )

. . -1
g is a Borel measurable selection of A7,

&m, is a Borel measurable selection of M (A,,,) },

where M(A,,,) is regarded as a correspondence from H,,,, _; to the space of Borel prob-

ability measures on X,,,. For any m; > ¢, let p?;l‘t_l ¢ € E/" be the probability measure
on [T, <<, (Xm x Sm) induced by {An}r<m=m, and {(&m}i<m=m,, and of;' . € A" be
the probability measure on Ht§m§m1 (Xm x Si) induced by {fn0}i<m<m; and {&m}r<m<m, -
Then ="' (h,_1) is the set of all such pzlltil ¢ While A} (h;_1) is the set of all such
91(1;:1,_1,5)' Note that Q?;llt—lsg) € A} (h,_1) if and only if p’(”;llt—l,{f) € 2/ (h;_1). Both Q?th_l,g)
and p;';llH’ ¢ can be regarded as probability measures on H,,, (h;—1).

Similarly, let p(4,_, ¢ be the probability measure on [],.,(Xn x Sm) induced by
{Am)m=c and {€m}m=1, and o(p,_, ¢) the probability measure on [],,.~. (X x Sin) induced
by {fino}m>: and {£,;}m>,. Denote the correspondence

E[: H,_|— M(H(Xm X Sm))
m=>t
as the set of all such p(j,, | ¢ and
Ay Hi1— M(H(Xm X Sm))
m>t

as the set of all such gz, | ¢).

The following lemma demonstrates the relationship between Q’Z;llz—l s and p?/lzlt Y
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LEMmmA B.7. Foranym, >tand h,_1 € H,_q,

m _ my 4
O ,6)= ( 1_[ ©mo(hi—1, )) °Ph,_1,6)"

t<m=<mq
Proor. Fix £ € Y, and Borel subsets C,, € X,, and D,,, C S,,, for m > ¢. First, we have

Qiht—1,§)(ct x Dy)
= &1(Celhy—1) - fio(Delhi—1)

:/X ¢ Le,xp, (X1, )10 (hi—1, 50 (€:(hi—1) @ A¢) (d(x1, 50)),

. . . t _ t 5
which implies thatna)(hl_]’g) =@n(hi—1,)0 P, 1.6) y
Suppose that Q(th’g) = (]_[tfmsm2 ©omo(hi—1,)) 0 p(hz,,l,g) for some m; > t. Then

mo+1
oo T Cuxm)

t<m<mp+1

=002 50 (Empr1 (1,9 ® fumunothi, )| [ (G x Dm))

t<m<mp+1

lnt5m5m2+1(cm><Dm)(xt’ s Xmg15 St 405 sm2+1)'

‘/1;[t<m<m2 (XmxSm) ‘/;(szrl XSm2+1

§m2+1 ® f(mz-‘,—l)O(d(me-‘rla Sm2+1)|ht—la Xty eoos Ximys Sty evns sz)

m
0o Aty ooy Ximys Sts ey Sy Bi)

- 1 (meDm)(xta > Xm N S )
oo 2415 9t5 ««+ 5 9mp+1
/Ht<m<m2 (XmxSm) /S'm2+1 ‘/Xm2+1 tsmsmy+l

X QD(mz-i-l)O(ht—l, Xtyonnes mea Styeees Sm2+1)
§m2+1(dxm2+l|ht—la Xpyonns mea Sty ey st)

A(}’7’!2-‘,—1)O(dsl’)’lz-‘rl) 1_[ ¢m0(ht—17x[’"'7xm—1asl"",sm)

t<m<my

m
p(hzt—l,f)(d(xt’ coes Xy, Sts s Smy) | He—1)

4For m > t > 1 and h,_; € H,_1, the function ¢,,0(h;_1,-) is defined on H,,_(h;,—1) x S, which is
measurable and sectionally continuous on [],;,,_ Xx. By Lemma 3, ¢,,,0(%,-1,-) can be extended to

be a measurable function ¢,,0(4;_1,-) on the product space (]_[tgkgnfl Xk> X (stksm Sk>, which is

also sectionally continuous on [], 4, Xi. Given any ¢ €, since p(j, | ., concentrates on Hy,(h;-1),
©mo(hi—1,+) 0 pf”hH o= Omo(hi—1,+) 0 p?}lH & For notational simplicity, we still use ¢,,,0(/4;—1, -), instead of
@mo(h—1, ), to denote the above extension. Similarly, we can work with a suitable extension of the payoff
function u as needed.

5For a set 4 in a space X, 1 4 is the indicator function of A4, whichis 1 on 4 andis0on X \ 4.
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= / ln1§m§mz+l(cm XDm)(xl‘a s Xpg415 St 0005 sz—l—l)'
nr5m5m2+1(XmXSm)
X l_[ ()Dmo(ht—laxta~'~’xm—1ast7“'7sm)
t<m<mp+1
my+1

Py, e) (At s Xy, Sty Smy) i),

which implies that
mo+1 my+1
Ohy1,6) = ( [T emthi, ‘)) © Pl 1.6
t<m<mp+1
The proof is thus complete. O

The next lemma shows that the correspondences A;"' and A, are nonempty and
compact valued, and sectionally continuous.

LeEmMA B.8. (i) Foranyt > 1, the correspondence A]" is nonempty and compact valued,
and sectionally continuous on X'~ for any m| > t.
(ii) Foranyt > 1, the correspondence A; is nonempty and compact valued, and section-

ally continuous on X'~

PROOF. (i) We first show that the correspondence =}"' is nonempty and compact val-
ued, and sectionally continuous on X*~! for any m; > .
Consider the case m; =t > 1, where

Ei(hi—1) = M(Ai(hi—1)) ® Ar.

Since A,; is nonempty and compact valued, and sectionally continuous on X'~!, Z! is
nonempty and compact valued, and sectionally continuous on X*~1.

Now suppose that =" is nonempty and compact valued, and sectionally continuous
on X'~ for some m;, > ¢ > 1. Notice that

E;ﬂz“‘l(ht—l) = {g(hl—l) iod (§m2+1(ht—1, ) ® )\(m2+1)):
g is a Borel measurable selection of =",

&m,+11s a Borel measurable selection of M(Am2+1)}.

First, we claim that H,(sy, s1, ..., 5;) is compact for any (sy, s1, ..., s;) € S'. We prove
this claim by induction.

(a) Notice that Hy(sg) = X, for any sy € Sy, which is compact.

(b) Suppose that H,,(sg, s1,...,Sn) is compact for some 0 < m’ <t — 1 and any
(805815 -+ Spy) € s,
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(c) Since A,y41(-, S0, 51, - - -, Spy) is continuous and compact-valued, it has a compact
graph by Lemma 2(vi), which is H,,; 11 (s0, $1, .. ., Sqsr+1) for any (sg, s1, ..., Spwa1) €
smHl

Thus, we prove the claim.

Define a correspondence A! from H, 1 x S; to X; as A (h;_1, s;) = A;(h;_1). Then A}
is nonempty and compact valued, sectionally continuous on X’~!, and has a B(X" x S')-
measurable graph. Since the graph of AL(-, s, s1,...,s;) is H/(so, 51, ...,s) and since
H(so, s1, - -.,s) iscompact, A'(-, so, 51, ..., ;) has a compact graph. Forany 4,1 € H, 1
and 7 € E{(h;_1), the marginal of 7 on S; is A; and 7(Gr(AL(h,—1,-))) = 1.

For any m; > ¢, suppose that the correspondence

ANV H ) [ Sm—> [ Xm

t<m<mjp—1 t<m<mjp—1
has been defined such that the following statements hold:

e It is nonempty and compact valued, sectionally upper hemicontinuous on X'~1,
and has a B(X"™~! x §”1~1)_measurable graph.

my—1
e Forany (so, S1,...,8m,—1), A, ' (-, 50,51, ..., Sm,—1) has a compact graph.

e Forany h; 1 € H,_yand 7 € E;"‘fl(h,q), the marginal of 7 on [, <, 1 Sm is
®s<mem—1 Am and 7(Gr(A)" " (he_1, ) = 1.

my
We define a correspondence A, ' : Hi—1 X [[,<p<m, Sm = [li<mem, Xm as

m
A[ l(hlflaslﬁ ""Sml) = {(xla "'7~xml):
xm1 € Aml(htfla Xtyerns xmlfl7 Styeees smlfl)a
mi—1

(xt""’xml—l)eAtl (ht—last""rsml—l)}'
It is obvious that A'tnl is nonempty-valued. For any (sy, 51, ..., Sm, ), since A;"l_l(~, 505 51,
...»Sm;—1) has a compact graph, and since A,,, (-, so, 51, ..., S,,—1) is continuous and
compact-valued, A;"l(-, 50,51, ..., Sm,) has a compact graph by Lemma 2(vi), which

implies that 47" is compact-valued and sectionally upper hemicontinuous on X/~!,
In addition, Gr(A;") = Gr(Am,) x Sm,, which is B(X™ x §™)-measurable. For any
h,1 € H,_1 and 7 € E/"'(h,_1), it is obvious that the marginal of 7 on ]_[tsmfm1 S, is
&i<m<m, Am and 7(Gr(A;" (h;_1,-))) = 1.

By Lemma B.5, E;"ZH is nonempty and compact valued, and sectionally continuous
on XL,

Now we show that the correspondence A]"' is nonempty and compact valued, and
sectionally continuous on X'~! for any m; > t.

Given s'~! and a sequence {x’o‘, x’f, e xf_l} e H,_1(s" 1) for 1 <k < oo. Let hf_l =
(1, (xf, x%, ..., xF ). Itis obvious that A}"! is nonempty-valued. We first show that

A" is sectionally upper hemicontinuous on X‘~!. Suppose that er;llk L) € A;”l(hf_l)
Y1
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for1 <k < oo and (xlg, x’l‘, .. .,xf_l) — (xg%, x7°, ..., x7°;). We need to show that there

exists some £%° such that a subsequence of QZ’;,( £ weakly converges to Q?}llw £ and
-1 =1

my my p 00
Onze, ) € A HZ)-
Since ="' is sectionally upper hemicontinuous on X*~!, there exists some ¢ such

ny . mq nq
that a subsequence of p(hf_] ek SV itself, weakly converges to P2, £ and P

E"(h%°)). Then Q?;llﬁfﬁ”) e AT (R).

For any bounded continuous function ¢ on ]_[tﬁmﬁm] (Xm x Sm), let

oy €
15E%)

Xk(xt>"'9xmlast7""sml)

k
:l//(Xt,...,Xml,St,...,Sml)' l_[ ()Dmo(hl_laxl""~9xm717sl‘""7sm)'

t<m<mjy
Then {x/} is a sequence of functions satisfying the following three properties.

(i) Foreach k, x is jointly measurable and sectionally continuous on [ [, ,,,, Xm-

. k k .

(i) For any (st,...,s,],z]) an(Z any sequence (Xx;,...,Xx, ) — (x?o,...,xfnol) in
]—[tsmflem, Xk (X sy Xy s Stoves Sy) —> )(oo(x}x’,...,xﬁl,s,,...,sml) as k —
Q.

(iii) The sequence {x}1<k<co is integrably bounded in the sense that there exists a
function x': [,<p<m, Sm — R4 such that x is @<, Am-integrable, and for
any k and (X7, ..., Xpys Sto e v v Smy )y Xk (Xts ooy Xy Sto s Smy) < X (St5 e vy Smy)-

By Lemma B.6, as k£ — oo,

m
f Xk(xla"'7xml7sla"'7sml)p(h1k fk)(d(xb"')xml)sh"’>Sml))
[Tr<mam (XmxSm) =

my
g XOO(xta e lepsta LR} Sml)p(hoo ’goo)(d(xta LR 7xm1)st’ LR ’s}’l’I]))'
1_[[5’”5”’1 (X xSm) -1

Then by Lemma B.7,

m
‘l’(xt,---,xmlyst, ""sml)Q(hlk gk)(d(xtr"'axmlysh""Sml))
t—1’

‘/I;Itgmgml (Xm XSm)

m
- WOty ooy Xy Sts s Sm) O ooy (A(Xey ooy Xy, Sts ey Smy)),
ntgmgml (mesm) t—1

which implies that ™, |

(k| %)
upper hemicontinuous on X*~!. If one chooses hL] = hi] =---=h?°,, then we indeed
show that A}"! is compact-valued.

In the argument above, we indeed proved that if P?Zlk £
t—1°

weakly converges to 0(jx . Therefore, A} is sectionally
-1

weakly converges to
mp

my
Pz e MM QG gt

weakly converges to 0y o)
t—1°
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All that is left is to show that A}"! is sectionally lower hemicontinuous on X*~!. Sup-
pose that (xf, x%, ..., xF ) — (xF,x%,...,x>*,) and Q?;zlfiléx) € A/ (h$° ), we need to

show that there exists a subsequence {(x,", x /1‘”’, s xl;j"l)} of {(xf§,x¥,...,x* )} and

le e A" (hffl) for each &, such that Q(hkm

m,Ekm)
t 1

my mp 00 mi my -
Since Q(h?il,gm) e A1 (h2°)), we have Plre ) = (h22 ). Because Z;"! is section

m
gk ) weakly converges to Q( 1 ,£%)"

ally lower hemicontinuous on X'~ there exists a subsequence of {(xo, x’f, el x,_])},

say itself, and p = 1(h _,) for each k such that p" weakly converges to

<hk &
weakly converges to 0 ( s ¢ Which implies that AT s
t—1°

hy 1,§k)

p(hoo 00y Asaresult Q e ng

sectionally lower hemlcontlnuous on X1,

Therefore, A]" is nonempty and compact valued, and sectionally continuous on
X'~ for any m; > t.

(ii) We show that A, is nonempty and compact valued, and sectionally continuous
on X',

It is obvious that A, is nonempty-valued, so we first prove that it is compact-valued.

Given h,_; and a sequence {r¥} € A,(h,_1), there exists a sequence of {fk}kzl such
that & = (&5, &5, ) eYand % = O(n,_,.¢k for each k.

By (i), E! is compact. Then there exists a measurable mapping g; such that (a) g’ =

(5%, ce, 5}_1,gt, §}+1, ...) €Y and (b) a subsequence of {pih gk)}, say {pt Vi1,

1,€40)
that weakly converges to pé hyyig . Note that {f "1} is a Borel measurable selectlon of
M(As+1). By Lemma B.5, there 1s a Borel measurable selection g;,1 of M (A1) such

t+1 t+1
, Sa
1 §kll)}l>1 y {p (hy_y,E%20)
t+

p(ht t+1)’Whereg _(517"' gt ]7gt7gt+1> §1+27' )EY'
By repeating this procedure, one can construct a Borel measurable mapping g such
that Ph, 1 11y Pn,_y g522)0 P,y £533)7 - weakly converges to p(;, ,,q)- Thatis, p, | ¢
is a convergent point of {p;, , ¢}, which implies that o(;,_, ) is a convergent point of

that there is a subsequence of {p }i1>1, that weakly converges

o, _,e0k
The sectional upper hemicontinuity of A, follows a similar argument as above. In

particular, given s'~! and a sequence {xé,x’l‘,... Xy 1}CHt 1(s™= 1 for k > 0. Let h[ =
(s'1, (xé,x’f,...,xfﬁl)). Suppose that (xg,xl,..., t—l) — (xo,x(l), e til). If (7K} <

A(h* ) for k > 1 and 7% — 77, then one can show that 70 € A;(h"_,) by repeating a
similar argument as in the proof above.
Finally, we consider the sectional lower hemicontinuity of A,. Suppose that 7 €

A,(h _1)- Then there exists some ¢ € Y such that 0= =06 Denote 7" = Q(ho o€
=1’

Am(h ») for m > t. As A" is sectionally continuous, for each m, there exists some " €'Y

such that d (Q gy’ My < % for k,, sufficiently large, where d is the Prokhorov metric.
-1

Let ' = O pfm emy- Then 7 weakly converges to 7, which implies that A, is sectionally
t—1°

lower hemicontinuous. O
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Define a correspondence Q7 : H,_1 — R’ | as

Q7 (hi—1)

{/ uChi—1,%,8)0(n,_1.6)(d(x,9): 0, _1.6) EAt(ht—l)}7 1>,
Hmzt(XmXSm)
D(Q7, 1) (1), t<r.

The lemma below presents several properties of the correspondence Q7.

LEMMA B.9. Foranyt, > 1, Of is bounded, measurable, nonempty and compact valued,
and essentially sectionally upper hemicontinuous on X'~1.

ProoF. We prove the lemma in three steps.

Step 1. Fix t > 7. We show that Q7 is bounded, nonempty and compact valued, and
sectionally upper hemicontinuous on X*~1.

The boundedness and nonemptiness of Q] are obvious. We prove that Q7 is sec-

tionally upper hemicontinuous on X~!. Given s'~! and a sequence {x&, x¥, ..., x* |} c
H,_1(s") for k >0, let h* | = (s'=1, (xk, xX, ..., xk ). Suppose that a* € Q7 (h* )
for k > 1, (xg,xll‘,...,xf_l) — (xg,x(l),...,x?_l), and ¢ — 4°, we need to show that

a® e Q7 (hY_)).
By the definition, there exists a sequence {£¥} k>1 such that

ak=

u(h® ., x, 80,5 a(d(x,s)),

o s 0 0 5:9)

where &K = (&%, 512‘, ...) € Y for each k. As A, is compact-valued and sectionally contin-

uous on X', there exist some O . ¢0) € At(h?_1) and a subsequence of o ,« ghy» SAY
t—1° t—1°

itself, that weakly converges to On)_,£0) for ¢V = (&Y, gg, ey,
b 10

We show that

a0=

0
/1_[m>t(Xm><Sm) u(ht_l’ *s S)Q(/’l?il,fﬂ)(d(x, S)).

Toward this aim, we need to show only that for any 6 > 0,

Clo—

u hO_ ,X,S d(x,s 5. (B2)
‘/Hm>t(Xm><Sm) ( -1 )Q(h(t)—lvfo)( ( )) <

Since the game is continuous at infinity, there exists a positive integer M > ¢ such
that w™ < %6 forany m > M.

For each j > M, by Lemma 3, there exists a measurable selection &; of M(A;) such
that 5}. is sectionally continuous on X/~1. Let u: Hy; — [[ . _ (X x Sp) be the tran-

sition probability that is induced by (§;\2+1’ §;\2+2, ...) and {f(M+1)o’f(M+2)0’ ...}. By

Lemma 9, u is measurable and sectionally continuous on X . Let

VM(htfl,Xt,..-,XM,S[,...,SM)
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u(h[_l,Xt,...,x]\’/‘[,S[,...,SM,X,S)

/l_lm>M(Xm XSm)
d/"L(xa slht—l’ Xiyenns xMa Sty e SM)
Then V; is bounded and measurable. In addition, V; is sectionally continuous on X M

by Lemma B.6.
For any k > 0, we have

k
'/ mt(XmXSm) u(htfl’ X S)Q(hfil,gk)(d(x, S))

k
_/ VM(h[_laxl7"~7xM,St,-..,SA"/[)
HlsmgM(X’77 XSm)

M

Q(hf_l,gk)(d(xt, ey x]\'}[, Sty enny SM))
< wM+1

1
< 0.

5

M

(hk &%)
M

(hk_|,€k)

Since Q ke, weakly converges to 0,0 £0) and o is the marginal of
-1’ t—1°

O(nk_, ¢k ODL [1i<m<pt(Xm x Sm) for any k > 0, the sequence o also weakly con-

verges to Q?zo 20’ By Lemma B.6, we have
t—1’
k M
‘/ V~(/’l[_1,xt,...,x]\;[,st,...,SM)Q(hk §k)(d(x,,...,xM,st,...,s]\;i,))
n,smSM(mesm) -1’
0
- Vig (W Xes oo Xy 8t 857)
ntsmsM(XmXSm)

M

Q(h?il’go)(d(x,,...,xM,st,...,sM))

1
<=0

5

for k > K, where K is a sufficiently large positive integer. In addition, there exists a
positive integer K such that |a¥ — a°| < 15 for k > K.
Fix k > max{K1, K;}. Combining the inequalities above, we have

0 0
‘/ mzf(XmXSm) u(hti] " S)Q(h?_pg()) (d(x’ S)) e

<

u(h?_l, X, S)Q(h(tJ_l’é()) (d(x,s))

'/l;[m>z(XmXSm)
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0
—/ Vig(h_1sXt, oo X s Sty o5 S57)
l_[tgmg}\;l(XmXSm)
M
Q(h?,léo)(d(x” s X Sty Syp))

0
+’/ Vig(hy_ s Xty oo Xps Sty o5 S57)
nt§n1§M(Xm><Sm)

M
Q(h9_1,§°)(d(xt’ e Xy St Syp))
—/ V~(hf_l,xt,...,xM,s,,...,sM)
H,SWSM(XmXSm)
M
Q(hf_l,gk)(d(x” s Xy Sty sM))|

k
+’/ Vig(he_ s Xty oy Xps Sty o5 S57)
n;smsM(XmXSm)
M
Q(hf_l,gk)(d(x” e Xy St Syp))

- k
/l;[m>t(Xm XSm) u(htil’ © S)Q(hfipfk) (d(x’ S))’

+ u(h* . x,s d(x,s)) — a°
’/I:Im>t(XmXSm) ( t=1 )Q(hicfpfk)( )
< 0.

Thus, we proved inequality (B2), which implies that Q7 is sectionally upper hemicontin-
uous on X'~ ! for¢ > 7.

Furthermore, to prove that Q7 is compact-valued, we need to consider only the case
that {x{j, x’l‘, e, xi‘_l} = {xg, x(l), s x?_l} for any k > 0 and repeat the above proof.

Step 2. Fix ¢t > 7. We show that Q7 is measurable.

Fix a sequence (&, £}, ...), where f} is a selection of M (A;) measurable in s/~land

continuous in x/~! for each j. For any M > t, let

M
WM (htfl,xl‘,...,XM,St,...,SM)
= {/ u(ht—la Xty eoos XM5 St oo SM> X, s)Q(ht,l,x,,...,xM,St,...,SM,f/) (d(x7 S))}
Hm>M(XmXS’")

By Lemma 9, 0, ,.x,,....xa,50,....50,&) 1S Measurable from Hy to M([ ], 2/ (Xm X Sim))
and is sectionally continuous on X™. Thus, W} is bounded, measurable, nonempty,
convex and compact valued. By Lemma B.6, Wf,‘f is sectionally continuous on X,
Suppose that for some t < j < M, WA{, is defined such that it is bounded, measurable,
nonempty, convex and compact valued, and sectionally continuous on X/. Let

j—1
WM (htfl>xl‘>"'>xj717st>"'7sj71)
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_ J . N e -
_{/X.X va(htfl’xf’""xl’sf""’SJ)Q(ht,l,x,,...,xj,l,s,,...,sj,l,f)(d(xl’SJ))'
7 ]

j j , ‘
O Xpsnx 151081, 6) € Aty Xty s Xjts 15 -5 8j-1),

w}, is a Borel measurable selection of W}, }

Let S; = S;.% Since
J ) N e
/;] s WM(hf—l’xl""’x]’Sf""’SJ)Q(ht,l,xt,...,xl-,l,s,,...,sj,l,g)(d(xl’S]))
JX9j

— J ) Nl g
_/; /)‘( . WM(h’t—l’xt’“"x]’st""’s])p(ht_l,x[,...,xj_l,st,...,sj_l,§)(d(x]’SJ))
j XX

X @jO(ht—17xta s 7xj—1ast7 tees S]))\](dsj)a
we have

j—1
WM (ht—laxh"',xj—l’sla"'7sj—l)
— J . Ap) %
- {/ / . wM(htflaxla-'wxj’ sf""’Sl)p(h,,l,xt,...,x,«,l,st,...,s]»,l,f)(d(xl’SJ))
S]' XjXS]'
Xon(](h[_l,xr,...,x]'_l,S[,...,Sj))\j(dsj):

J =l . .
'D(hz—lyxt:maxj—l’St,m,sj—lyf) € :J'(htfl’ Ko eoer Xjmls St Sj-1)

w), is a Borel measurable selection of W}, }

Let
74
WM(h[_l,Xt,...,xj'_l,S[,...,Sj)
— J . A C3)
= {/ijvj Wy (M1, Xiy ooy Xjy Sty ey ) p(hH,xt,...,xH,Sz,...,SH,S)(d(xl’s/))'
=
e*:]‘(ht—laxh~'~7xj—l9sla~"7sj—1)’

pj
(P15 Xt5mees X158t 500581, 6)

w}, is a Borel measurable selection of W}, } )

Since WA’,[(h,_l, X¢y...,Xj,8,...,8)) is continuous in x; and does not depend on §j, it is
continuous in (x;, §;). In addition, W](,[ is bounded, measurable, nonempty, convex and

compact valued. By Lemma B.2, Wz\]4 is bounded, measurable, nonempty and compact
valued, and sectionally continuous on X -1,

6We need to use Lemma B.2 below, which requires the continuity of the correspondences in terms of the
integrated variables. Since W}, is only measurable, but not continuous, in s;, we add a dummy variable 5;
so that W1(4 is trivially continuous in such a variable.
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It is easy to see that
i—1
W[\J4 (ht—la Xiseoes xj—lasta LR Sj—l)

Z/SY W]\]l(h'l—laxl’ -.-,xj_l,St, "'7Sj)¢j0(hl—laxla"'7xj—1asl7 ,Sj))\](dsj)
J

By Lemma 4, it is bounded, measurable, nonempty and compact valued, and sectionally
continuous on X/~1, By induction, one can show that W](,I_l is bounded, measurable,
nonempty and compact valued, and sectionally continuous on X' -1,

Let W'~ =y, W,y ' Thatis, W=! is the closure of J,,., W), ', which is measur-
able due to Lemma 2.

First, w!—1 c Q7 because WAt/[_l C Q7 foreach M > ¢t and Q7 is compact-valued. Sec-
ond, fix 4,1 and g € Q7 (h;—1). Then there exists a mapping & € Y such that

=/ u(hi—1,%,9)0m, 1,6 (d(x,5)).
nmzt(XmXSm)
For M > ¢, let
VM(ht_l,Xt,...,XM,SZ,...,SM)
= / WA Xty s XM Sty ooy SM> X5 8) Oy 1 Xty XrgsStsernssyp s ) (X5 )
Hm>M(Xm><Sm)
and
QMZ VM(hl‘71>x> S)Q(Mhlil’é‘)(d(x7 S))

ntgmgM(Xm xSm)

Hence, g € ij,l_l. Because the dynamic game is continuous at infinity, gyr — ¢, which
implies that g e W'~!(h,_;) and QT € W'~1.

Therefore, W'~! = Q7, and hence Q7 is measurable for ¢ > .

Step 3. For ¢ < 7, we can start with Q7 ;. Repeating the backward induction in Ap-
pendix B.4.1, we have that Q] is also bounded, measurable, nonempty and compact
valued, and essentially sectionally upper hemicontinuous on X*~1. O

Denote
it or =2,
o _ T>1
& ﬂ Q7, otherwise.
T>1
The following three lemmas show that O (h;_1) = OO ) (hi—1) = E¢(hy—1) for AT~ 1-
almostall 4,_; € H,_.”

"The proofs for Lemmas B.10 and B.12 follow the standard ideas with various modifications; see, for
example, Harris (1990), Harris et al. (1995), and Mariotti (2000).
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LEMMA B.10. (i) The correspondence Q%° is bounded, measurable, nonempty and com-
pact valued, and essentially sectionally upper hemicontinuous on X'~1.

(i) Foranyt>1, Q¥ (h;—1) = (I)(Q‘t’il)(ht_l)for ML almostall h,_ € H,_;.

Proor. (i) It is obvious that Q¢ is bounded. By the definition of Q7, for A~lalmost
all h,_y € H,_1, Q7' (h;_1) € Q;*(h,_1) for 7y > 7,. Since Q7 is nonempty and compact
valued, Q% = (.., O7 is nonempty and compact valued for A’~!-almostall #, | € H,_;.
If M,-, Q] =@, then O = =1, Thus, Q®°(h,_;) is nonempty and compact valued
for all_ht_l € H,_;. By Lemma 2(ii), (,. Q] is measurable, which implies that Q?° is
measurable. -

Fix any s'~! € 7! such that Q7 (-, s"~!) is upper hemicontinuous on H,_{(s'~!) for
any 7. By Lemma 2(vii), Q7 (., s'~1) has a closed graph for each 7, which implies that
or, s=1) has a closed graph. Referring to Lemma 2(vii) again, oX(, s'=1) is upper
hemicontinuous on H,_;(s'~1). Since Q7 is essentially upper hemicontinuous on X -1
for each 7, Q% is essentially upper upper hemicontinuous on X*~1.

(ii) For any 7 > 1 and A'~!-almost all /;_; € H,_1, @(Qﬁl)(ht,1) - CI>(QZ+1)(ht,1) -
Q7 (h¢-1), and hence, (077 ) (hi—1) € O (h—1).

The space {1,2,...,00} is a countable compact set endowed with the metric
dk,m) = |% - %l for any 1 < k,m < co. The sequence {QtTJrl}lSTSOO can be re-
garded as a correspondence Q,; from H; x {1,2,..., 00} to R"”, which is measurable,
nonempty and compact valued, and essentially sectionally upper hemicontinuous on
X' x {1,2,...,00}. The backward induction in Appendix B.4.1 shows that ®(Q,,) is
measurable, nonempty and compact valued, and essentially sectionally upper hemi-
continuouson X’ x {1,2,..., 00}.

Since ®(Q,1) is essentially sectionally upper hemicontinuous on X’ x {1, 2, ..., 0o},
there exists a measurable subset S'~! € §~! such that A’~1($'~!) = 1, and ®(Q41)(:, -,
5=1) is upper hemicontinuous for any §~! e S=1. Fix 3! e §™1. For h_q =
(x'~1,5"1) € H,_y and a € Q{°(h;_y), by its definition, a € Q] (h—1) = ®(QF, ) (h;_1)
for 7 >t. Thus, a € @(inl)(ht_1).

In summary, Q7°(h;—1) = ®(Q7% ) (hi-1) for A‘"!-almost all h,_; € H,_;. O

Though the definition of Q] involves correlated strategies for = < ¢, the following
lemma shows that one can work with mixed strategies in terms of equilibrium payoffs
via the combination of backward and forward inductions in multiple steps.

LEmMMA B.11. Ifc; isameasurable selection of ®(Q7% ), then c;(h,—1) is a subgame-perfect
equilibrium payoff vector for \'~'-almostall h; 1 € H,_;.

Proor. Without loss of generality, we only prove the case t = 1.

Suppose that c; is a measurable selection of ®(Q5°). Apply Proposition B.3 recur-
sively to obtain Borel measurable mappings {fx;}ics for k£ > 1. Thatis, for any k > 1, there
exists a Borel measurable selection ¢, of O7° such that for A=1_almost all hyx_; € Hi_1,
the following statements hold:
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(i) We have that fj (h_1) is a Nash equilibrium in the subgame #/;_1, where the ac-
tion space is Ax;(hi_1) for player i € I and the payoff function is given by

/ Cki1(hi—1, -5 si) fro(dsk|hg—1).

Sk

(ii) We have
Ck(hk—l)zf / Co1 (Mi—15 X1, Si) freo(dsic | hie—1) fr (dx [ hy—1).
Ap(hg_1) ISk

We need to show that c; (/) is a subgame-perfect equilibrium payoff vector for Ag-
almost all iy € Hy.

Step 1. We show that for any £ > 1 and A=1_almost all hi_1€Hi_q,
cx(hi-1) =/ u(hg—1,%,8)0(n,_,,p(d(x,5)).
nmzk(Xm XSm)

Since the game is continuous at infinity, there exists some positive integer M > k
such that wM is sufficiently small. By Lemma B.10, c;(h;_) € Or(hg—1) =
Ny=1 Qf (hi—1) for A¥~1-almost all hy_y € Hy_1. Since Qf = ®7*+1(Q7 ) for k <
7, (1) € Npog @F(QT, (1) € PMHFHLQM ) (hi—1) for A*~!-almost all
hy_1 € Hy_1. Thus, there exists a Borel measurable selection w of Q% 41 andsome é €Y
such that for AM~!-almost all hy;_; € Hy;_1, the following statements hold:

(i) We have that fy;(hy—1) is a Nash equilibrium in the subgame /,,_1, where the
action space is Aysi(hyr—1) for player i € I and the payoff function is given by

/ w(hpr—1, - Sm) fmo(dsylhapr—1).
Sm
(ii) We have

cem(hp—1) :/

/w(hM—l,xM,SM)fMo(dSMIhM—1)fM(dxM|hM—1)-
Ap(hpy—1) Y Sm

(iii) We have w(hyy) = fnm>M+l(XmXSm) u(hy, X, 8)Q(ny,,6)(d(x,5)).

Then for Ak~!-almost all &;_; € Hy_,
ck(hg—1) = / u(hi—1,%,8)0, . vy (d(x,9)),
I—[mzk(XmXSm) ( k*l!f )
where f,ﬁ” is fi if k <M and is & if Kk > M + 1. Since the game is continuous at infinity,

u(hg_1,x,s) s (d(x, 5)
/Hmzuxmxsm) ! Oy ( )

converges to

/ u(hi—1,%,9)0n, ,,f(d(x,s)
l_[mzk(Xm xXSm)
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when M goes to infinity. Thus, for A*—L.almost all hy_q € Hy_1,
ck(hi—1) = / u(hi—1,%,)0(n_,,)(d(x,9)). (B3)
mzk(XmXSm)

Step 2. We show that {fx;}ics is a subgame-perfect equilibrium.

Fix a player i and a strategy g; = {gi}x>1. For each k > 1, define a new strategy f:.k as
fl.k = (&1is---» 8ki> flk+1)i> f(k+2)i» - - -)- That is, we simply replace the initial k stages of f;
by gi. Denote f* = (f¥, f_)).

Fix k > 1 and a measurable subset D*¥ Sk such that (i) and (ii) of Step 1 and
(B3) hold for all s; € D¥ and x* € Hy(s¥), and A¥(D¥) = 1. For each M > k, by the
Fubini property, there exists a measurable subset E}{” C S* such that )\"(E,i‘z )=1and

®k+15j51\71 /\j(DM(sk)) =1forall s € EM, where

DM(sk) ={(Skt1> -5 857)" (sk,skH,...,sM) EDM}.

Let D¥ = (M7 EM) N D*. Then AK(D%) = 1.
For any Ay = (x*, s%) such that s € DF and x* € Hj (s¥), we have

/ u(hie, X, )0, p)(d(x, )
HmZkH(Xm XSm)

=f f Ck42)i Pics Xt Sk 10 dSpi 11 i) frer (dx g1 hy)
A1 (hi) I Sp41

2/ / Ck+2)i Pics Xk Sk1) e+ 1)0(dSpt11hy)
Apy1(h) I Sppa

(fek+1)(—i) ® &k+1yi) (dxjy1lhy)

=/ / / / Ck+3)i (P> Xkcq15 Sk 15 Xk425> Sk+42)
Apy1(h) I Sgqr S Ao (hi, Xkg155k41) ISk

Faer20(dsialhic, Xii1, Sk fik+2)(—i) @ fe2)i(dX g2l i, Xi1s Sk41)

Fike+00( @Skt 1hi) fie 1) =iy @ &k+1)i(dXy11hk)

2/ / / / Ck+3)i (P> Xk 15 Sk 15> Xk425 Sk+2)
Apg1(hi) I Sg1 J Ao (e Xgeg15Sk11) J Sk2

Foe+20(dsi 2l i, Xk 15 Sk 1) fk+2)(—i) @ 8k+2)i(AX k2l Pkes Xk15 Sk41)

Foe+v0(dsi 1) fie+1)(—i) © 8k+1)i(AXpq11hi)

u(hi, x,8)0, 2 (d(x,s)).

'/1_[m>k+1(XmXSm) (hk’karZ)( )

The first and the last equalities follow from (B3) in the end of Step 1. The second equality
is due to (ii) in Step 1. The first inequality is based on (i) in Step 1. The second inequality
holds by the following arguments:
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(i) By the choice of 4, and (i) in Step 1, for A;1-almost all s, 1 € Sy, and all xg ;1 €
Xyy1 such that (g, xg41, Sgy1) € Hiy1, we have

/ / Ck+3)i (s Xki15 Sk15 Xk425 Sk+2)
A2 (hie s Xy 158k+1) Y Ske42

Joke+2)0(dSk 2l i, Xicq15 Sk 1) fke2) =iy @ fikr2)i (X pq2l iy Xk 15 Sk41)

Zf / Ck+3)i (s Xks15 Sk15 Xk425 Sk+2)
A2 (M, Xy 1,5k41) Y Sk42

Joe+20(dSial i, X1, Ske1) fik42) (—i) ® &k+2)i(AXpq2| iy X115 Sk41)-

(ii) Since f(x+1)0 is absolutely continuous with respect to Ay, the above inequal-
ity also holds for f(x1y0(hx)-almost all sx 41 € Sk and all x;4; € X4 such that
(i, Xk415 Sk+1) € Hiq1.

Repeating the above argument, one can show that

/ u(hic, x, )0, 1) (d(x,5))
[Tz k41 (XmxSm)

= uChy,x,s)o . d(x, s)
/l_[m2k+1(Xm><Sm) (hk’fM+1)( )
for any M > k. Since
u(hk,x,s) - d(x,s)
/ll[m>k+1(Xm><Sm) Q(hk,fMH)( )
converges to
Ll(hka X, S)Q(h ,(gi, _i))(d(x’ S))
/HW!Zk+1(Xm><Sm) k(&8s -

as M goes to infinity, we have

/ uChy, x,5)0ny 1) (d(x, )
[Tz k1 (XmxSm)

>

u(hk)x’ S)Q(/’l ,(gis _,‘))(d(xas))'
‘/ll[m2k+1(xnlxsm) k8 f

Therefore, {f;}icr is a subgame-perfect equilibrium. O

By Lemma B.10 and Proposition B.2, the correspondence CI)(Q‘;il) is measurable,
nonempty and compact valued; by Lemma 2(iii), it has a measurable selection. Then
Theorem 3 follows from the above lemma.

For ¢t > 1and h, 1 € H,_1, recall that E;(h,_1) is the set of payoff vectors of subgame-
perfect equilibria in the subgame /,_;. The following lemma shows that E;(h,_1) is es-
sentially the same as Q%°(h;_1).
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LEmMMA B.12. Foranyt>1, E;(h;—1) = O (hs_1) for N almostall h,_y € H,_;.

Prookr. (a) We first prove the following claim: for any ¢ and 7, if E,, (%) C o7, (hy) for
M -almost all &, € Hy, then E;(h;_1) € Q7 (h,_1) for A*"!-almost all 4;_; € H,_;. We need
to consider only the case that ¢ < 7.

By the construction of ®(Q7 ) in Appendix B.4.1, there exists a measurable subset
§=1 < =1 with A’~1(§'~1) = 1 such that for any ¢; and h,_; = (x'"!,§"') € H,_; with
§=1 e §=1 if the following relationships hold, then ¢; € ®(Q], ;) (h;-1).

e We have ¢; = fAz(hH) fS, qr+1(hi—1, Xt, 80) fro(dselhy—1)a(dx;), where g, 1(hy_1,-) is
measurable and q;y1(h—1, X1, 5¢) € Q,l](htfl, X, ;) for A;-almost all s, € S; and
xi € Ai(hi—y).

e We have that a € &),;.; M(A;i(h;—1)) is a Nash equilibrium in the subgame A;_;
with payoff fs, Gr+1(he—1, -, 8¢0) fro(dsi|h;—1) and action space [[;.; Asi(hi—1).

Fix a subgame h,_; = (x'~1, §*~1) such that §~! € $'=1. Pick a point ¢; € E;(h,_1).
There exists a strategy profile f such that f is a subgame-perfect equilibrium in the
subgame /,_; and the payoffis ¢;. Let ¢;y1(h;_1, x4, 5;) be the payoff vector induced by
{fti}icr in the subgame (/;, x;, 5;) € Gr(A¢) x S;. Then the following relationships hold:

e We have ¢, = '[At(ht—l) fst Crp1(he—1, Xt, 80) fro(dselhy—1) fr(dxilhy—q).

e We have that f;(-|h,_1) is a Nash equilibrium in the subgame /4, ; with action
space A;(h,—1) and payoff [g cr1(hi-1, -, s0) fro(dselhe—1).

Since f is a subgame-perfect equilibrium in the subgame A, 1, c/y1(hi—1, X1, 8) €
Erp1(hi1, xe,50) © QF (A1, X1, 5¢) for A;-almost all s; € S; and x; € A;(h;_1), which
implies that ¢; € Q7 ) (h—1) = Q7 (hy—1).

Therefore, E;(h,_1) € Q7 (h;_1) for A*"!-almost all h,_ € H,_;.

(b) For any ¢t > 7, E; € Q7. If t < 7, we can start with E.4; € Q7 , and repeat the
argument in (a). Then we can show that E;(h;_1) < Q7 (h;—1) for A~Lalmost all #,_; €
H, 1. Thus, E;(h,_1) € Q®(h,_1) for \'"!-almostall i, 1 € H, ;.

(c) Suppose that ¢; is a measurable selection from ®(Q;7,). Apply Proposition B.3
recursively to obtain Borel measurable mappings {f;}ic; for k£ > t. By Lemma B.11,
ci(h,1) is a subgame-perfect equilibrium payoff vector for A*~!-almost all #,_; € H,_;.
Consequently, (I)(Q‘t’il)(h,_l) C E;(h;_y) for A*1-almost all h,_; € H,_;.

By Lemma B.10, E/(h;—1) = Q°(h;—1) = (O )(h;_1) for A'~!-almost all &,_; €
H, . 0

B.5 Proof of Proposition B.1

We highlight the needed changes in comparison with the proofs presented in Appen-
dices B.4.1-B.4.3.

Step 1: Backward induction. We first consider stage ¢ with N; = 1.

If Ny =1, then S; = {s}}. Thus, P;(h,_1, x;) = Q;11(hs_1, X, S¢), which is nonempty
and compact valued, and essentially sectionally upper hemicontinuous on X’ x §i-1,
Notice that P; may not be convex-valued.
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We first assume that P; is upper hemicontinuous. Suppose that j is the player who
is active in this period. Consider the correspondence ®;: H; | — R"” x M(X;) x A(X})
defined as (v, a, n) € ®;(h,_1) if the following relationships hold:

(i) Wehave v = p;(h;_1, Ay—j(hi—1), x;“].) such that p;(h,_1, -) is ameasurable selec-
tion of P;(h;_q,-).8

(ii) We have that x;"j € A;j(h,—1) is a maximization point of player j given the payoff
function pyj(h;—1, Ay—j)(hs—1),-) and the action space A;j(h;—1), a; = 8 4,.h, ;)
fori;éjandajzéx;.

(iii) We have u = p;(hi—1, Ar—j(hi-1), X};) o .

This is a single agent problem. We need to show that ®, is nonempty and compact val-
ued, and upper hemicontinuous.

If P; is nonempty, convex and compact valued, and upper hemicontinuous, then we
can use Lemma 10, the main result of Simon and Zame (1990), to prove the nonempti-
ness, compactness, and upper hemicontinuity of ®;. In Simon and Zame (1990), the
only step they need the convexity of P, for the proof of their main theorem is Lemma 2
therein. However, the one-player pure-strategy version of their Lemma 2, stated in the
following, directly follows from the upper hemicontinuity of P; without requiring the
convexity.

Let Z be a compact metric space, and {z,},>0 € Z. Let P: Z — R, be a bounded, upper
hemicontinuous correspondence with nonempty and compact values. For each n > 1, let
qn be a Borel measurable selection of P such that g, (z,) = d,. If z, converges to zy and d,,
converges to some d, then dy € P(z).

Repeating the argument in the proof of the main theorem of Simon and Zame (1990),
one can show that ®; is nonempty and compact valued, and upper hemicontinuous.

Then we go back to the case that P, is nonempty and compact valued, and essentially
sectionally upper hemicontinuous on X’ x 811, Recall that we proved Proposition B.2
based on Lemma 10. If P; is essentially sectionally upper hemicontinuous on X* x §i-1,
we can show the following result based on a similar argument as in Appendix B.3: there
exists a bounded, measurable, nonempty and compact valued correspondence ®; from
H, 1 toR" x M(X;) x A(X;) such that ®; is essentially sectionally upper hemicontinu-
ous on X'~! x §*~! and for A’ !-almost all h,_; € H,_1, (v, &, p) € D;(h,_1) if the follow-
ing relationships hold:

(i) Wehave v= p;(h;_1, Ay—j(hi—1), xj‘j) such that p;(h,_1, -) is ameasurable selec-
tion of P;(h,_1, ).

(ii) We that x;; € A;j(h;—1) is a maximization point of player j given the payoff func-
tion ps(hi_1, Ar—j(hi—1),-) and the action space A;j(h;—1), @i = 84,,n, ;) for
i;éjandajzﬁx;sj.

(iii) We have u = p((h;—1, Ar—j)(hi—1), XZ-) oa.

8Note that 4,— j) is point-valued since all players other than j are inactive.
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Next we consider the case that N; = 0. Suppose that the correspondence O, from
H,; to R" is bounded, measurable, nonempty and compact valued, and essentially sec-
tionally upper hemicontinuous on X’ x S’. For any (h;_1, x;, §;) € Gr(A,), let

Rt(htfbxty&t):/g Qt+1(ht717xta§17§t)]gt0(d§t|htflaxt>§t)
t

= | Qrr1(hi—1, %6, 56,50 @10 (i1, X1, St Se) A (dSy).
St
Then following the same argument as in Appendix B.4.1, one can show that R, is a
nonempty, convex and compact valued, and essentially sectionally upper hemicontinu-
ous correspondence on X' x S’.
Forany i, 1 € H;_y and x; € A;(h;_1), let

Pr(hi—1,x0) = / Ri(hy—y, x4, 50) fro(d3e by, x1).
A (hi—1,%1)

By Lemma 7, P; is nonempty, convex and compact valued, and essentially sectionally
upper hemicontinuous on X’ x §~1. The rest of the step remains the same as in Ap-
pendix B.4.1.

Step 2: Forward induction. This step is unchanged.

Step 3: Infinite horizon. We need to slightly modify the definition of ="' for any
my >t > 1. Fixany ¢ > 1. Define a correspondence E! as follows: in the subgame £,_1,

El(h 1) = (M(Ai(hi1)) © fro(hi_1,-)) ® A

For any m; > t, suppose that the correspondence =/ ~! has been defined. Then we can
define a correspondence ="' : H; 1 — ./\/l(]_[tSmSm1 (Xm x Sin)) as

B (h—1) = {g(he—1) o ((Emy Tre—1, ) © fng0ti—1, ) ® Amy) -

. . —_mq—1
g is a Borel measurable selection of ;"7

&m, is a Borel measurable selection of M(A,,)}.

Then the result in Appendix B.4.3 is true with the above =}"'.
Consequently, a subgame-perfect equilibrium exists.
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