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We analyze boundedly rational learning in social networks within binary action
environments. We establish how learning outcomes depend on the environment
(i.e., informational structure, utility function), the axioms imposed on the updat-
ing behavior, and the network structure. In particular, we provide a normative
foundation for quasi-Bayesian updating, where a quasi-Bayesian agent treats oth-
ers’ actions as if they were based only on their private signal. Quasi-Bayesian up-
dating induces learning (i.e., convergence to the optimal action for every agent in
every connected network) only in highly asymmetric environments. In all other
environments, learning fails in networks with a diameter larger than 4. Finally,
we consider a richer class of updating behavior that allows for nonstationarity
and differential treatment of neighbors’ actions depending on their position in the
network. We show that within this class there exist updating systems that induce
learning for most networks.
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1. Introduction

In situations of uncertainty, when agents have partial and private information, observa-
tional learning is a crucial component of human interaction. Among the many possible
mechanisms by which individuals learn from others, observational learning describes
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the process by which an individual draws inferences on the information held by other
people based on the observation of their behavior. Understanding how individuals up-
date their behavior after observing the behavior of others and which long-run aggregate
outcomes such learning generates has important implications for policy. For example,
observational learning within a rural community may explain the effectiveness of an in-
formation campaign aimed at increasing the adoption of microfinance loans (Banerjee
et al. 2013) or of a targeting program aimed at selecting aid beneficiaries (Alatas et al.
2016).

In the literature, two predominant approaches to the study of observational learning
have emerged: Bayesian and boundedly rational. In the Bayesian approach, agents are
assumed to learn rationally, i.e., they make inferences about the private information of
all agents based on the interaction structure and the observed decisions.1 This is the
standard approach in the sequential social learning literature (Bikhchandani et al. 1992,
Banerjee 1992, Smith and Sørensen 2000, Acemoglu et al. 2011, Arieli and Mueller-Frank
2019, Lobel and Sadler 2015) and in parts of the literature on repeated interaction in
social networks (Gale and Kariv 2003, Rosenberg et al. 2009, Mueller-Frank 2013, Mos-
sel et al. 2015). Despite being a useful benchmark, the Bayesian approach has a severe
weakness: the rationality assumption appears unrealistic due to the computational so-
phistication necessary to make inferences. This is especially true in an incomplete net-
work where agents interact repeatedly. Here every agent has to draw indirect inferences
regarding the private information of all agents, based only on the actions that he ob-
serves. Hazla et al. (2018) show the conceptual and computational complexity required
by Bayesian updating to be extremely high. Such complexity represents a weakness,
since experimental evidence suggests that humans are unlikely to engage in such com-
plex cognitive tasks.2 To reduce the cognitive complexity inherent in Bayesian updat-
ing, the boundedly rational approach assumes instead that agents use simple rules of
thumb. For this reason, the boundedly rational approach is especially suitable—and, in
fact commonly employed—in complex settings, such as settings of repeated interaction
in social networks. DeGroot (1974) provides the standard model within the boundedly
rational approach. Its original formulation describes agents who repeatedly communi-
cate beliefs about an underlying state of the world and revise their beliefs to a weighted
average of their own and their neighbors’ previous beliefs. A more recent formulation,
the so-called DeGroot action model, is applied to the study of observational learning in
environments with binary states and binary actions where agents, instead of commu-
nicating beliefs, observe actions (Chandrasekhar et al. 2020). As a boundedly rational
model, the DeGroot model reduces the cognitive complexity of the updating process
and its main strength derives from its tractability. However, this comes at the cost of
a lack of generality, since the use of a weighted average updating function in the cru-
cial step of belief formation is somewhat arbitrary. Therefore, both the Bayesian ap-
proach and the DeGroot model, as the standard formulation of the boundedly rational

1Throughout the paper, we use the terms “action,” “choice,” and “decision” as synonyms.
2See Kübler and Weizsäcker (2004), Eyster et al. (2015), and March and Ziegelmeyer (2018) for evidence

of redundancy neglect, and see Enke and Zimmerman (2019) for evidence of correlation neglect.
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approach, have weaknesses that limit their scope. This paper is motivated by such un-
resolved weaknesses.

This paper focuses on the information aggregation properties of boundedly rational
learning in a setting where agents interact repeatedly in a finite network. We assume
that all agents share a common prior over the space of possible states of the world and
each agent initially receives a private signal drawn from a common set of signals ac-
cording to a state-dependent distribution. Thereafter, in each of countable periods, all
agents simultaneously select an action while observing the previous actions chosen by
their neighbors in the network. As is common in the literature, we focus on informa-
tional externalities. That is, we assume that all agents share the same continuous utility
function, where an agent’s utility depends only on his own action and the realized state
of the world. In the first period, each agent selects the utility maximizing action condi-
tional on his signal. In the second and all subsequent periods, he updates his action by
taking into account the only additional information he receives: the actions he observes.
The bounded rationality assumption concerns the way actions are updated. Rather than
imposing a particular rule of thumb (or updating function) as in the DeGroot model, we
consider a general class of updating behavior defined by three axioms: Markov property,
stationarity, and locality. The Markov property requires that the updated action of an
agent at time t depends only on the actions he observed in period t − 1 and is, thus,
invariant to the history prior to t − 1. Stationarity requires that the updated behavior
is invariant in the time periods. These axioms jointly imply that the updating behavior
of an agent can be described by an updating function that in every period he applies
to the previous-period action vector. The Markov property and stationarity axioms are
standard in the literature on boundedly rational learning on networks.3 Finally, local-
ity requires that the updated action is invariant to the actions of nonneighbors and the
structure of the network beyond the neighborhood. Thus, we define the updating be-
havior of each agent not only for one given network, but rather for all possible networks.

Our analysis focuses on a binary action environment.4 A good example for environ-
ments that are accurately modeled with binary actions are repeated adoption decisions,
such as adhering to a certain diet. We are interested in identifying the environments
and the particular updating behavior within our general class that optimize information
aggregation. Thus, we approach the question of selecting a particular type of updat-
ing behavior from a normative perspective, based on desirable aggregate properties in
terms of information aggregation.

Our analysis considers a general state and signal space, and any utility function that
is continuous in the state space for either action. We first aim to identify the subclass of
stationary local Markov updating systems that optimizes information aggregation, inde-
pendent of the structure of the network.5 Assume that the private signals of agents are

3See, for example, DeGroot (1974), Golub and Jackson (2010, 2012), Jadbabaie et al. (2012), and Chan-
drasekhar et al. (2020).

4Binary actions are a standard assumption in the literature on Bayesian updating; see, for example,
Bikhchandani et al. (1992), Smith and Sørensen (2000), Acemoglu et al. (2011), Mossel et al. (2015), and
Mossel et al. (2020).

5An updating system denotes the tuple of updating functions of all agents.
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independent and identically distributed (i.i.d.) conditional on the realized state of the
world. Fix an environment described by the set of agents, the state, and signal space, the
utility function and the joint probability distribution over the product space of states,
and signals across agents. A stationary local Markov updating system satisfies learning,
if, for every first-period action vector, within finite time, the actions of all agents con-
verge to the action that is optimal, conditional on the realized first-period action vector,
in any connected undirected6 network.

Our first main result characterizes the environments in which learning may occur.
We say that an environment satisfies Bayesian contagion if there exists a contagion ac-
tion that is expected to be utility maximizing conditional on every first-period action
vector except the action vector that satisfies consensus in the noncontagion action. In-
tuitively, a Bayesian observer of the first-period action vector would select the contagion
action whenever it occurs at least once throughout the network and he would thus be
“infected.” Theorem 1 establishes that if a stationary local Markov updating system f sat-
isfies learning, then the environment satisfies Bayesian contagion. Theorem 2 considers
Bayesian contagion environments and identifies a particular type of updating behavior
that is necessary for learning under stationary local Markov updating systems: quasi-
Bayesian updating.7 The concept of quasi-Bayesian updating is very simple: When ob-
serving a set of actions being chosen by other agents, the observer assumes that each
action is optimal given (only) the private information of the agent who chose it. In other
words, a quasi-Bayesian updater treats others’ actions as if they are based only on their
signal. We emphasize that we are not the first to use such a behavioral assumption. The
concept originated in Eyster and Rabin (2010), and is also present in Bohren (2016) and,
to some extent, in Bala and Goyal (1998). However, the environment we analyze differs
from those considered in such previous works.8

Quasi-Bayesian updating addresses successfully the weaknesses of Bayesian updat-
ing and DeGroot updating. First, it reduces the complex cognitive tasks required by
Bayesian updating, since considerations as to how each observed action might have
been affected by other actions—both observed and not observed—are not necessary.
Second, it is applicable to action spaces of arbitrary cardinality and allows the quasi-
Bayesian updating function to vary with the environment considered.9 We next analyze
quasi-Bayesian updating in environments where Bayesian contagion is not satisfied.
Thus actions fail to converge to the optimal action in some network structures by Theo-
rem 1. We then ask how the structure of the network affects whether learning in a given
network succeeds or fails. We focus on monotone environments that have the property
that the quasi-Bayesian updating satisfies a threshold rule, i.e., action a is optimal if and

6In an undirected network, edges are symmetric. A network is connected if there exists a path connecting
every pair of agents.

7More precisely, Theorem 2 shows that within a subclass of stationary local Markov updating systems,
quasi-Bayesian updating is necessary. Proposition 1 then shows that if a stationary local Markov updating
system satisfies learning, then the updating functions of all agents coincide with quasi-Bayesian updating
for most observed action vectors.

8We provide more details on the relation in Section 2.
9While our analysis focuses on binary actions, the concept can be directly applied to any social learning

environment where agents have an underlying utility function, with an arbitrary action space.
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only if at least a certain proportion of observed actions coincide with a. For a fixed net-
work G, we say that a quasi-Bayesian updating system yields learning in network G if
the actions of all agents converge to the action that is optimal conditional on the initial
action vector. Theorem 3 establishes that if the diameter of a network G is larger than 4,
then learning in G fails for quasi-Bayesian updating. Proposition 2 shows that learning
also fails in networks containing small cohesive groups, i.e., groups of agents where each
agent has a relatively large share of neighbors within the group.

The negative result stated in Theorem 3 can be traced back to quasi-Bayesian up-
dating failing to satisfy jointly two intuitive properties in the given network structures:
information diffusion and information retention. To explain information diffusion, first
note that since Bayesian contagion is not satisfied, a single occurrence of either action
is not sufficient to make this action optimal given the first-period action vector. Thus
for the optimal action to eventually spread throughout the network, it is necessary that
if any agent is the only one in his neighborhood to select action a, then she updates to
action ¬a. Information retention requires that if action a is optimal conditional on the
first-period action vector, then a is optimal on the action vector of every later period.
If the diameter is larger than 4, then for some initial action vectors, the set of agents
who initially select the optimal action are distributed throughout the network in such a
way that information retention fails. The idea is that one agent, who is isolated from the
rest of the agents selecting the optimal action, switches from the optimal to the subop-
timal action without swaying the action of any of his neighbors. For some initial action
vectors, this is sufficient for the optimal action conditional on the second-period ac-
tion vector to differ from that of the first period, thus inducing a failure of information
retention.

Finally, we return to the general analysis of boundedly rational updating and we re-
lax the locality axiom to weak locality. Weak locality allows agents to take into account
the overall network structure, and, in particular, the network position of their neighbors,
when updating based on the actions of their neighbors. We first show that relaxing local-
ity alone does not improve learning outcomes in monotone environments. Theorem 4
shows that if a stationary weakly local Markov updating system achieves learning, then
the environment satisfies Bayesian contagion. Indeed learning fails under such updat-
ing systems even in networks such as a star that should be conductive to learning due to
the fact that the center agent observes all others. When jointly relaxing stationarity and
locality, however, learning can be achieved under a weak condition on the network. Let
n denote the size of the network. Theorem 5 shows that if there exists a complete sub-
group10 of size greater or equal to lnn

ln 2 + 1, then there exists a nonstationary weakly lo-
cal Markov updating system that achieves learning. Here, the complete subgroup over-
comes the barrier of information retention by coordinating and retaining all relevant
information in its joint action vector. Once the complete subgroup reaches the optimal
action, information diffusion can be easily achieved as the updating functions need not
be stationary. Thus, when the assumptions of stationarity and locality are relaxed, there
exists an updating system that dramatically improves learning outcomes compared to

10A complete subgroup is a group where each member is a neighbor of each other member of the group.
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quasi-Bayesian updating, where, instead, learning fails in any network with a diameter
larger than 4.

The paper is organized as follows. In Section 2, we discuss the related literature. In
Section 3, we introduce a general model of boundedly rational updating and a particular
type thereof: quasi-Bayesian updating. Section 4 provides a characterization of the en-
vironments in which learning can occur and a normative foundation for quasi-Bayesian
updating. In Section 5, we analyze quasi-Bayesian updating and establish conditions
on the network structure that prevent learning. In Section 6, we relax the stationarity
and locality assumptions, and provide both a negative and a positive learning result.
Section 7 concludes. Most proofs are presented in the Appendix.

2. Related literature

This paper contributes to the theoretical literature on repeated interaction in social net-
works and is related to previous work both on Bayesian updating and on boundedly ra-
tional updating. The behavioral concept of quasi-Bayesian updating originated in and
was developed by Eyster and Rabin (2010), who analyze the implication of this assump-
tion, which they call naïve inference, in the context of a sequential social learning model
with binary states and uncountable actions.11

 Gagnon-Bartsch and Rabin (2016) apply
the naïve inference concept to a social learning model with finite actions and states. In
each period a generation of agents makes an irreversible choice to observe only the ac-
tions of the previous generation. They provide results on social mislearning where some
states, despite being realized, are disbelieved over time. Even earlier, the seminal paper
by Bala and Goyal (1998) on learning in networks imposes a similar assumption, albeit
in a different setting where each agent receives private information in every period. We
see our analysis as complementary to the earlier work as we provide a normative foun-
dation for quasi-Bayesian updating in environments of repeated interaction in a social
network.

Within the literature on boundedly rational learning in networks, our paper relates
closely to Molavi et al. (2018), Dasaratha and He (2020), and Feldman et al. (2014).
Molavi et al. (2018) consider local Markov updating functions in a setting where agents
repeatedly communicate their beliefs and axiomatize a linear and a log-linear updating
function. Under such updating functions, they then provide long-run learning results in
a model where each agent receives a private signal in every period. Dasaratha and He
(2020) apply the idea of quasi-Bayesian updating to the sequential social learning model
with binary states, infinite actions, and Gaussian signals. They provide a necessary and
sufficient condition for agents to act optimally in the limit. Feldman et al. (2014) analyze
a setting where agents repeatedly update their action according to the observed major-
ity in a network. In their paper, only one agent at a time updates his action, rather than
all agents simultaneously doing so in every period, as in our paper. They analyze the
process of actions for large networks and are concerned with the structural conditions

11Bohren (2016) also considers a type of naïve inference in the standard sequential social learning model.
Here each agent with probability p either observes the actions of all predecessors or observes no history at
all. She analyzes the case where agents have misspecified beliefs about p.
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on the network such that agents eventually converge to the correct action with large
probability. Due to the different setting and the different notion of learning, our results
require different proof techniques and are not directly comparable with theirs.12 They
find that in sparse larger-diameter networks, agents eventually learn with high proba-
bility, a result that differs sharply from our result on the failure of learning in networks
with diameter larger than 4.13

Our analysis of quasi-Bayesian updating in a binary action environment mirrors
Mossel et al. (2015), who analyze Bayesian learning in a model with binary actions
and binary states. They show that despite the action space being coarse, learning oc-
curs as long as the network satisfies bounded out-degree (for infinite networks) and a
weak structural condition, which is satisfied in undirected networks. We show that un-
der quasi-Bayesian updating, information aggregation might occur for all networks and
agents, even in an environment with coarse actions. We characterize the environments
that allow for such information aggregation. While under Bayesian updating, conver-
gence to the optimal action is asymptotic (see Mossel et al. 2015), under quasi-Bayesian
updating, information either is aggregated along the shortest path or fails to aggregate.

Our paper is also related to the literature on best-response dynamics in local inter-
action games, in particular, Morris (2000). Our Proposition 2 borrows the concept of
group cohesiveness from Morris (2000) so as to provide a structural network condition
necessary for learning.

The concept of quasi-Bayesian updating can be linked to the concept of redundancy
neglect in environments where agents take a one-time decision sequentially while com-
monly observing the actions of their predecessors. In such environments, a fully rational
agent who engages in observational learning should realize that other agents, whose ac-
tions he observed, are also engaging in observational learning and that, therefore, there
is redundancy in their actions, which he should account for. Experimental evidence
shows that redundancy neglect is common (Kübler and Weizsäcker 2004), that even mild
redundancy neglect can be harmful (Eyster et al. 2015), and that many subjects believe
naïvely that each observable choice reveals a substantial amount of another person’s
private information (March and Ziegelmeyer 2018).

Finally, there are several empirical papers on boundedly rational social learning in
networks that are complementary to our work. Chandrasekhar et al. (2020) provide ex-
perimental evidence in support of a DeGroot action model where each agent selects the
action that in the previous period was chosen by the majority of agents in his neigh-
borhood. In their setting, such updating behavior coincides with quasi-Bayesian updat-
ing.14

12Nevertheless, for some environments, local majority functions are indeed quasi-Bayesian.
13The sharp difference in results, albeit in different settings, can be partially explained through our more

demanding learning notion, which requires convergence to the optimal action conditional on every first-
period action vector, as opposed to the probabilistic notion employed in Feldman et al. (2014).

14Alatas et al. (2016) find support for an extension of the DeGroot model where the weight assigned to a
neighbor depends on his distance from the information source. They assume that agents treat each piece
of information received from their neighbors as independent signals. Despite differences in setting, this
assumption resembles the idea behind quasi-Bayesian updating. Mobius et al. (2015) develop a “streams”
model where agents tag information by describing its origin. Quasi-Bayesian updating is loosely related to
the imperfect tagging of information originating from a long distance, which they report.
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We conclude by emphasizing the connection between our work and the literature
on level-k models (Nagel 1995, Camerer et al. 2004, Crawford et al. 2013). The concept
of quasi-Bayesian updating is grounded in the concept of limited depth of reasoning.
Quasi-Bayesian updating can be loosely interpreted as the behavior of a level-1 player,
who receives no private signal and best responds to level-0 players, who take the action
based only on their private signal.

3. A general model of boundedly rational updating

Consider a finite set of agents N , each of whom faces uncertainty regarding the state of
the world ω ∈ �. The cardinality of N is denoted by n. Agents share a common prior p
over the compact metrizable state space � endowed with Borel σ-algebra F�. The state
of the world is unknown to the agents, but each agent i observes a private signal si drawn
independently from a standard Borel space S according to a state-dependent distribu-
tion Fω ∈ �(S). We assume that for any two states ω and ω′, the probability measures Fω

and Fω′ are absolutely continuous with respect to each other but not identical. This im-
plies that signals have some information value but do not reveal any a priori noncertain
event to be realized with probability 1.

The agents are located in an undirected, connected network G = (N�E).15 A net-
work is a pair of sets (N�E) such that E ⊂ [N]2. The elements of N are nodes of the
graph, representing the agents, and the elements of E are the edges of the graph, repre-
senting the direct connections between agents. The neighborhood of agent i consists of
all agents j ∈N such that there exists an edge ij ∈ E. In an undirected network, edges are
symmetric, that is, if i is a neighbor of j, then j is a neighbor of i. A network is connected
if there exists a path connecting every pair of agents.

Interactions take place in discrete time. At time t = 0, the state of the world ω is
drawn according to the prior p, the signals of agents are drawn independently accord-
ing to Fω, and each agent i observes his private signal si. At each time t ≥ 1, all agents
i ∈ N simultaneously take a binary action ai ∈ A = {0�1}. We assume that all agents
share identical preferences represented by a continuous utility function u : A×� → R.
As is the norm in the observational learning literature, we restrict attention to set-
tings without payoff externalities. In the following discussion, we denote the tuple
(N���S�p�Fω�u) as the (binary action) environment.

One good example for environments that are accurately modeled with binary ac-
tions are repeated adoption decisions, such as adhering to a certain diet.16 Binary action
environments have been thoroughly analyzed within the literature on Bayesian updat-
ing, most commonly to study herding in sequential environments (Bikhchandani et al.
1992, Smith and Sørensen 2000, and Acemoglu et al. 2011), but also to study repeated in-
teraction (Mossel et al. 2015, 2020). Differently from existing models with binary actions,
we allow for a general state space �, and any continuous utility function on A × �. In

15In the following discussion, the terms “graph” and “network” are used interchangeably.
16Such adoption environments might be appropriately modeled via a binary state space, as is the case in

the sequential social learning literature, or a rich state space where a (two-dimensional) state might directly
represent the utility of selecting either action.
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line with the existing models, we assume that the signals of agents are i.i.d. conditional
on the realized state.

We first describe how agents select their action in the first period t = 1 when their
information consists only of their private signal. We assume that each agent selects a
first-period action that maximizes his expected utility conditional on his signal. For-
mally, a strategy σi of agent i is a measurable mapping that assigns an action to every
realized signal, such that the action maximizes expected utility conditional on the real-
ized signal:

σi(si) ∈ arg max
a∈A

∫
u(a�ω)Pr(dω|si)�

Here Pr(dω|si) denotes the posterior distribution over the state space based on the prior
p and conditional on the realized signal si. In summary, in period t = 1, all agents act as
a myopic, first-period expected utility maximizing Bayesian agent would.

We make three weak technical assumptions on the environment (N���S�p�Fω�u)

that have important implications for the strategies of agents: non-indifference, nontriv-
iality, and vector non-indifference. So as to define these properties, fix an environment
and one agent i, and consider any pair of strategies σ ′

i , σ
′′
i . Non-indifference requires that

almost surely σ ′
i = σ ′′

i , that is, for a probability 1 subset S′ ⊂ S, we have σ ′
i (S

′) = σ ′′
i (S

′).
As signals are identically distributed across agents, each agent i is indifferent conditional
on his signal with probability 0 and there exists an almost surely unique strategy, which
is applied by all agents. Denote this strategy by σ∗ and denote by σ ∗ the corresponding
profile of strategies 〈σi〉i∈N , where σi = σ∗ for each agent i ∈ N . We denote by aσ

∗
i the

random action generated by agent i’s first-period signal and the strategy σ∗. The corre-
sponding random action vector, which takes values in {0�1}n, is denoted by aσ∗

. Note
that since signals are conditionally i.i.d., for any two agents i, j their actions aσ

∗
i , aσ

∗
j are

conditionally i.i.d. as well.
The second assumption on the environment—nontriviality—requires that both ac-

tions are chosen with positive probability by each agent, i.e., for a = {0�1}, there exists a
positive probability subset Sa ⊂ S such that σ∗(Sa) = a. Without nontriviality all agents
would select the same action independent of their signal, preventing any inference on
signals based on observed actions. In such an environment, social learning considera-
tions would be meaningless.

Finally, to introduce the last assumption, consider the Bayesian belief over the state
space that is induced by observing a realization of the first-period action vector a1,
drawn from aσ∗

. Vector non-indifference requires that for each possible realization
a1 ∈ An, the corresponding Bayesian belief induces a unique expected utility maximiz-
ing action for the utility function u. Let β : An → A denote the function that assigns to
each first-period action vector the corresponding unique expected utility maximizing
action:

β(a) = arg max
a∈A

E
[
u(a�ω)|aσ∗ = a

]
�

We refer to β as the Bayesian complete observation function.
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3.1 Axioms on boundedly rational updating

Next we describe the procedure by which agents revise their actions in any period t ≥ 2.
We take a general, axiomatic approach to boundedly rational updating in the spirit of
Molavi et al. (2018). In particular, we impose three axioms on action updating: the
Markov property, stationarity, and locality. We say that the updating behavior of agent
i satisfies the Markov property if his updated action in period t depends only on the
action vector of period t − 1 and is thus invariant to the action vectors of all earlier pe-
riods. A straightforward implication of the Markov assumption is that signals play no
role for the process of actions beyond determining the action vector in t = 1. Station-
arity requires that the updating behavior is time-invariant, that is, the updated action is
only a function of the previous-period action vector and is invariant to the actual time
period. The Markov property and stationarity are standard axioms in the literature on
boundedly rational learning on networks. For example, they are explicitly or implicitly
imposed in rich action models by DeGroot (1974), Golub and Jackson (2010, 2012), and
Jadbabaie et al. (2012) among others, and in a binary action model by Chandrasekhar
et al. (2020). Jointly imposing the Markov property and stationarity allows for a more
tractable analysis because it implies that the updating behavior of each agent i can be
represented by a time invariant updating function fi :An ×G →A that assigns an action
ati to each pair of action vector at−1 and network structure G, ati = fi(at−1�G), for every
t ≥ 2.17 The resulting functional representation is appealing because it reduces com-
plexity vis-à-vis Bayesian updating. Complexity is reduced not only by using the same
updating function in all periods, but also by having such an updating function depend
only on the previous-period action vector, and not on the full history of actions as is
typically the case for Bayesian updating. Thus, the Markov property and stationarity ax-
ioms imply that boundedly rational updating boils down to the application of a simple
rule of thumb: in our case, the application of a function that assigns one action to the
previous-period action vector.

Consider a mapping f : An × G → An such that

f(a�G) = (
f1(a�G)� � � � � fn(a�G)

)
�

where the updating functions fi are the components of f. The mapping f is denoted an
updating system. For a given network G, the sequence of action vectors {at}t∈N can now
be recursively defined as follows: for all t = 2�3� � � �,

at = f
(
at−1�G

) = (
f1

(
at−1�G

)
� � � � � fn

(
at−1�G

))
�

Hence, for a given first-period action vector a1, the process {at}t∈N is a deterministic
stationary Markov process, determined by the updating system f.

The third axiom, locality, relates the updating behavior to the network structure G

by imposing conditions on the updating system f. For agent i and network G, let Ni(G)

denote the set of neighbors of i including agent i:

Ni(G) = {j ∈ N : ij ∈ E} ∪ {i}.

17As is common in the literature, we make the implicit assumption that updating is deterministic. For an
analysis of random updating functions, fi : An × G → �(A), please see Arieli and Mueller-Frank (2017).
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Further, for a set of agents M ⊂ N and a vector a ∈ An, let aM ∈ Am be the subvector of
actions of agents in M , i.e., where [aM ]i = ai for all i ∈M .

Definition 1. A Markov updating function fi : An × G → A is local if (i) for all pairs
(a�G) and (a′�G′) such that Ni(G) = Ni(G

′) and aNi(G) = a′
Ni(G′), we have fi(a�G) =

fi(a′�G′), and (ii) for all G and j ∈Ni(G), there exists a−j ∈An−1 and a �= a′ such that

fi
(
(a�a−j)�G

) �= fi
((
a′�a−j

)
�G

)
�

The first condition for locality requires that the updated action of agent i depends
only on the actions of his neighbors (which include his own action), and is invariant to
actions of nonneighbors and to the structure of the network as a whole.18 The second
condition states that agent i’s updated action is not invariant in the actions of any of
his neighbors. More precisely, a local function requires that for each observed agent
j ∈ Ni(G), there exists a vector of observed actions such that agent j’s action is pivotal
for agent i’s updated action. That is, for each neighbor j of i, there exists an action vector
a−j such that changing j’s action changes the updated action of agent i. In other words,
we require that agent i does not completely ignore any of the agents he observes.

Note that locality relates the updating function of an agent to his neighborhood
structure. Beyond the set of neighbors, however, a given agent’s updating function takes
no other information regarding the structure of the network into account. This aspect
of locality can be motivated in two different ways. First, agents might simply have lim-
ited or no knowledge of the structure of the network beyond their neighbors. Intuitively,
this is a reasonable assumption for large, real-world social networks where agents have a
large number of neighbors. Empirical evidence indeed supports this assumption. Breza
et al. (2018) find that even at a village level, network knowledge is low and highly lo-
calized. Krackhardt (1990) and Casciaro (1998) find similar patterns in networks of 36
(the former) and 25 members (the latter). These empirical results can be seen as sup-
porting our locality assumption. Second, when agents have to make indirect inferences
regarding the private information of non-observed agents, the computational complex-
ity of Bayesian updating (discussed above) comes into play. Boundedly rational agents
might simply be unable to incorporate the additional structural information into their
updating procedure and instead focus only on their neighborhood. Finally, it is worth
highlighting that a myopic Bayesian agent also satisfies locality when updating his ac-
tion in the second period since the first-period action of each agent is based only on his
signal.19

We see our axioms as one natural way to model boundedly rational updating in a dy-
namic network environment, but certainly not as the only natural way. In Section 6, we
discuss how relaxing the locality axiom, first by itself and then jointly with the station-
arity axiom, impacts the long-run information aggregation properties of the induced
action process.

18This condition is naturally satisfied under the assumption that agents have no information about the
network beyond their neighbors.

19A myopic Bayesian agent forms a fully rational belief based on the observed history and selects an
action that maximizes his expected utility.
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3.2 Definition of learning

Information aggregation lies at the core of our analysis. In particular, we analyze differ-
ent updating processes in terms of the information aggregation properties of the long-
run actions. To understand the type of information aggregation we have in mind, first
note that for an updating system f, the initial action vector a1 determines the subse-
quent process of action vectors {at}t∈N. This implies that, from an information aggre-
gation perspective, the best possible outcome is that eventually all agents act optimally
conditional on a1, rather than, let us say, the realized vector of signals s.20 For a fixed en-
vironment, we define two notions of learning: one independent of the network structure
and the other for a given network structure. We first state the stronger learning notion.

Definition 2. A stationary local Markov updating system f yields learning if there ex-
ists a period t∗ such that for every (a1�G) ∈ An × G, every agent i ∈ N , and every t > t∗,
we have ati = β(a1).

Thus, learning requires that, in all undirected connected networks and for every ini-
tial action vector a1, eventually the action ati of each agent i coincides with the Bayesian
complete observation action β(a1). Thus, the local information contained in the agents’
first-period actions is aggregated over time until all agents eventually select the Bayes
optimal action given the first-period action vector a1. Note that by the vector, non-
indifference assumption β is unique. Therefore, learning implies consensus among all
agents.

While a strong requirement, notions of learning that require information aggre-
gation for all undirected, connected networks are standard in the Bayesian learning
literature. For results establishing information aggregation for any finite, connected,
and undirected network, see Mueller-Frank (2013, 2014), and Arieli and Mueller-Frank
(2017). We complement the network-independent learning notion with a weaker one
that requires information aggregation only for a given network G. We call this property
learning in network G.

Definition 3. Fix a network G ∈ G. An updating system f yields learning in network G

if there exists a period t∗ such that ati = β(a1) for every a1 ∈ An, every agent i ∈ N , and
every t > t∗.

3.3 Quasi-Bayesian updating

The existing literature on boundedly rational learning either imposes a particular func-
tional form (the most prominent example being the DeGroot model) or provides an ax-
iomatization of particular functional forms; see Molavi et al. (2018). Instead, the axioms

20For some environments it is the case that two signal vectors s and s′ induce the same first-period action
vector a1 but different expected utility maximizing actions

arg max
a∈A

E
[
u(a�ω)|s|] �= arg max

a∈A
E

[
u(a�ω)

∣∣s′∣∣]�
However, the action process resulting from s and s′ is identical, making information aggregation relative to
signals impossible.
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we introduced so far do not impose a specific functional form; neither do they relate the
updating procedure to the underlying information structure or utility function.

We now introduce a particular form of updating behavior, satisfying the three ax-
ioms, that varies with the information structure and the utility function. Some adapta-
tion of updating behavior to the environment is required, as the focus of our analysis is
on information aggregation. Clearly, if the actual updating procedure does not change
with the environment, learning is doomed to fail since the optimal action given the first-
period action vector does vary with the environment.

The particular adaptive approach we propose in a sense reconciles Bayesian updat-
ing with the limitations imposed by our axioms. For an agent i with neighborhood Ni,
denote by aσ∗

Ni
the vector of random actions of agents in Ni given their realized signals

and strategy profile σ∗. A Bayesian observation function βNi assigns an expected util-
ity maximizing action to each realized first-period vector a1

Ni
∈ A|Ni| drawn according to

aσ∗
Ni

in two steps. First, it assigns the Bayesian belief over the state space conditional on

a1
Ni

. Second, it selects the expected utility maximizing action given the belief. Formally,

βNi : A|Ni| → A.21 Thus, one natural way to define a local updating function fi with a
Bayesian foundation is by simply setting fi(·�G) equal to βNi .

Definition 4. A stationary local Markov updating function fi : An × G → A is quasi-
Bayesian if for all (a�G) ∈An × G, we have

fi(a�G) ∈ arg max
a∈A

E
[
u(a�ω)|aσ∗

Ni(G) = aNi(G)

]
�

As we show subsequently, quasi-Bayesian updating is crucial for information aggre-
gation within the general class of boundedly rational updating as defined by the three
axioms. Before delving into the analysis, however, let us discuss quasi-Bayesian updat-
ing in detail and how it compares to Bayesian and DeGroot updating. To start, it is worth
highlighting several key features of a quasi-Bayesian updating function. First, a quasi-
Bayesian updating function treats each observed action as if the agent taking it were
rational and best-responding only to his own private signal. Second, a quasi-Bayesian
updating function changes with the environment but not with the network structure
beyond the agent’s neighborhood. Thus, quasi-Bayesian updating abstracts away from
the complexities that arise in Bayesian updating, where it is, instead, necessary to make
inferences on the private information of unobserved agents based on the actions of ob-
served agents. Third, the nontriviality and conditional independence assumption im-
plies that every possible action vector is consistent with the strategy profile σ ∗. Thus, all
possible action vectors are on the ‘equilibrium path” and this unambiguously pins down
the quasi-Bayesian action, but in the case of indifference. Since all agents share the same
utility function, for any pair of agents i, j and a network G such that Ni(G) =Nj(G), the
corresponding Bayesian updating functions fi(·�G) and fj(·�G) coincide, unless possi-
bly where, conditional on the observed vector aNi(G), both actions are optimal.

21Note that by vector non-indifference, the complete Bayesian observation function β = βNi=N is
unique. However, for Ni �= N , the Bayesian observation function βNi need not be unique.
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Having clarified the nature of a quasi-Bayesian updating function, it is now instruc-
tive to clarify which assumptions a boundedly rational agent applying a quasi-Bayesian
updating function needs to satisfy. To start, each agent needs to know the state space �,
the prior p, the signal generating distributions Fω, and the utility function u. Moreover,
agents must have several computational abilities. First, agents must be able to compute
a Bayesian belief over the state space based on (i) their signal si and (ii) the first-period
action vector of their neighbors, which is drawn according to aσ∗

Ni
. Second, agents must

be able to compute the expected utility maximizing action given their belief. We assume
that agents are sufficiently rational to do both types of computations.

We next discuss how quasi-Bayesian updating relates to the two predominant ap-
proaches in the literature: Bayesian and DeGroot updating. We start by comparing the
updating by a quasi-Bayesian agent with that of a Bayesian agent placed in an identical
network position. At t = 1 and for a given signal, the action chosen by a quasi-Bayesian
agent coincides with the action chosen by a myopic Bayesian agent who selects the ex-
pected utility maximizing action given his signal. In period t = 2 and for a given first-
period action vector, the quasi-Bayesian action a2

i coincides with the optimal action of a
Bayesian agent in environments where the first-period action reveals the agent’s signal.
In general, however, and already starting in period t = 2, the action of a Bayesian agent
can deviate from that of a quasi-Bayesian agent, because a Bayesian agent selects his
action as a function of his signal and the observed first-period action vector as opposed
to the latter only. At any later period t ≥ 3, quasi-Bayesian updating typically differs also
from Bayesian updating, as it drastically reduces complexity by neglecting indirect infer-
ences on the information of unobserved agents and by effectively treating every period t

as if it were t = 2. To more precisely distinguish quasi-Bayesian updating from Bayesian
updating, it is instructive to view quasi-Bayesian updating as a two-step procedure. In
the first step, an agent forms a subjective probability distribution over the state space
conditional on the realized action vector. In the second step, he selects an action that
is expected to be utility maximizing under his subjective probability distribution. The
deviation from Bayesian updating lies in the first step and the simplistic way the poste-
rior distribution is formed. In the second step and for a given probability distribution,
however, a quasi-Bayesian agent selects the same optimal action as a myopic Bayesian
agent.

We now turn to comparing quasi-Bayesian updating to DeGroot updating. In the
DeGroot model, the action space A⊂R is uncountable, typically either R or an interval.
A DeGroot updating function takes the form of a weighted average, i.e.,

fi(a�G) =
∑
j∈N

wijaj�

such that wj = 0 for all j /∈ Ni(G), wj > 0 for all j ∈ Ni(G), and the sum of weights equals
1. Thus the DeGroot model imposes a particular functional form. While our analysis re-
stricts attention to binary actions, the concept behind quasi-Bayesian updating directly
extends to such general action spaces: a quasi-Bayesian updating function simply treats
each observed action as if it were optimal among the given set of actions and based
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only on the private signal of each respective agent. Clearly, the quasi-Bayesian func-
tion does vary with the environment. However, a DeGroot function coincides with a
(quasi-)Bayesian function for a particular environment, a fact well known in the litera-
ture. Let � = R, and assume that each agent observes a private signal si = ω+ εi, where
εi is i.i.d. across agents and independent of the state. Further assume that εi is normally
distributed with mean zero, and let the prior be improper. If the utility function induces
the first-period action of an agent to equal his signal, then the quasi-Bayesian function
is indeed a weighted average of the observed first-period actions. For more details, see
De Marzo et al. (2003) and Glaeser and Sunstein (2009).

In this section we first introduced a general class of boundedly rational updating as
defined by the three axioms of Markov property, stationarity, and locality, and then in-
troduced quasi-Bayesian updating as a specific type thereof. In the following sections,
we proceed in a similar fashion. First we analyze the learning properties within the gen-
eral class of boundedly rational updating. The general results we establish motivate a
more detailed study of the learning properties induced by quasi-Bayesian updating.

4. Necessary and sufficient conditions for learning

In this section, we consider the class of updating behavior as defined by our three axioms
(Markov property, stationarity, and locality) and analyze it from the point of view of the
induced information aggregation properties. We focus on learning, that is, the notion of
information aggregation that requires all agents to eventually best-respond to the first-
period action vector in every connected network (see Definition 2 above). In particular,
we address two questions in this section. First, we aim to understand the properties of
the environment (N���S�p�Fω�u) that are necessary to enable learning. Second, we
focus on these environments and characterize the specific subclass of updating systems
that guarantees learning. The motivation behind the second approach is to provide a
normative foundation for a particular type of updating behavior, i.e., one that achieves
learning.

We now turn to identifying the properties the environment needs to satisfy so as
to enable learning. Before stating our first result, let us define one property of the en-
vironment (and the Bayesian complete observation function), which we call Bayesian
contagion. We say that a Bayesian complete observation function β : An → A satisfies
Bayesian contagion if there exists a contagion action a∗ that is uniquely expected utility
maximizing conditional on all vectors a1 ∈ An, except for the vector that has consen-
sus on the other action ¬a∗. Formally, a∗ = β(a1) for all a1∈An such that a1

i = a∗ for at
least one i = 1� � � � � n.22 An environment (N���S�p�Fω�u) satisfies Bayesian contagion
if the corresponding Bayesian complete observation function does. We apply the term
“Bayesian contagion” interchangeably to the environment and the Bayesian complete
observation function β. The intuitive idea behind the term is that a Bayesian agent is
“infected” by the contagion action whenever at least one agent he observes is infected
as well. Theorem 1 identifies a necessary condition on the environment for learning to
occur under stationary local Markov updating systems.

22Environments satisfying Bayesian contagion are highly asymmetric; see the example in Appendix B.1.
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Theorem 1. Consider any stationary local Markov updating system f on environment
(N���S�p�Fω�u). If f satisfies learning, then the environment satisfies Bayesian conta-
gion.

To provide some intuition for the result, let us first discuss a crucial impediment to
learning that an updating system f needs to overcome. By definition, learning requires
that eventually all agents best-respond to the first-period action vector in any connected
network. However, in most networks no agent observes all others. This implies that the
relevant information regarding the first-period action vector is decentralized; each agent
observes some, yet not all, actions. For learning to occur, the updating functions need to
transmit some information about the first-period action vector that the agents observe.
However, since actions are binary, they are too coarse for any agent to encode the action
vector he observed or even, say, the number of agents in his neighborhood that selected
action a = 1. Moreover, since we focus on Markovian updating behavior, information
about the first-period action vector cannot be encoded in a sequence of binary actions
over some time periods.

Learning requires actions to transmit sufficient information about the locally ob-
served first-period action vector so that eventually consensus on the optimal action
given a1 emerges. The defining feature of a Bayesian contagion environment is that to
identify the optimal action, it is enough for the updating system to establish whether at
least one agent selected the contagion action in the first period. Thus, the necessary in-
formation for learning can be encoded in binary actions, as in “Yes, the contagion action
was observed” and “No, the contagion action was not (yet) observed.” Theorem 1 states
that Bayesian contagion environments are the only ones where learning may occur.

The proof of Theorem 1 builds upon an auxiliary step. For the auxiliary step, we
assume that an updating system f satisfies learning and show that this has direct im-
plications on the functional form of the individual updating functions fi. The proof of
Theorem 1 then derives a connection between the functional properties of the individ-
ual updating functions fi and the environment as represented by the Bayesian complete
observation function β. Indeed the environment needs to satisfy Bayesian contagion for
learning to hold.

Let us first provide some details on the auxiliary step that establishes the functional
properties.23 The first property of the updating functions that follows from learning is
unanimity, i.e., if agreement on one action is observed, then that action continues to be
selected. To see why, note that, by vector non-indifference, learning requires that even-
tually all agents agree on the same action. Consider an action a∗ that is uniquely optimal
conditional on some first-period action vector. Then learning immediately implies that
the agreement vector a∗ is a fixed point of f(·�G). From this it follows that if agreement
on a∗ holds in agent i’s neighborhood, then his updated action is a∗. This applies to
every fi and every possible neighborhood Ni(G).

The remaining properties of the updating functions that directly derive from learn-
ing concern only neighborhoods of size 2. We show that learning implies that the updat-
ing functions fi of all agents i satisfy anonymity and a common order property whenever

23The functional properties are stated as lemmas and are proved in the Appendix.
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|Ni(G)| = 2. We call fi anonymous if, for every (a�G), permutations of aNi(G) induce the
same updated action,24 i.e., for a�a′ such that aj = a′

j for all j /∈Ni(G) and

∑
j∈Ni(G)

aj =
∑

j∈Ni(G)

a′
j�

we have fi(a�G) = fi(a′�G). Anonymity implies that an agent’s updated action depends
only on the distribution of observed actions, and not also on the identity of agents tak-
ing the observed actions. The second property, common order, holds if there exists an
action a∗ such that for every fi and for all neighborhoods of size 2, |Ni(G)| = 2, observed
disagreement induces agent i to update to a∗.

We can now present the core argument of the proof of Theorem 1. Consider a star
network and assume that learning holds. The argument above states that the updating
function of each branch agent satisfies unanimity, anonymity, and the common order
property. This implies that there exists an action a∗ such that every branch agent updates
to action a∗ if and only if he observes action a∗ at least once. Now consider a first-period
action vector a′ ∈ An, where exactly k ∈ {1� � � � � n − 1} branch agents select action a∗.
Thus, each branch agent who selected a∗ in the first period continues to select a∗ in every
later period. Hence, learning requires that, for every such first-period action vector a′,
action a∗ is optimal. By definition such an environment satisfies Bayesian contagion.

Theorem 1 establishes Bayesian contagion as a necessary condition on the environ-
ment for learning to hold. We now focus on Bayesian contagion environments and turn
to the analysis of the updating systems. First note that there exist updating systems that
achieve learning in Bayesian contagion environments. For a simple example, consider
a setting with three agents, i = α�β�γ. Suppose that action 1 is the contagion action.
Assume that each fi updates to action 1 if and only if action 1 is observed at least once.
It is easy to see that learning holds for this updating system.

Our next goal is to identify the properties of the updating system that are necessary
for learning. To do so, we first restrict attention to a subclass of local Markov updating
systems: those that satisfy anonymity for each fi. As defined above, anonymous up-
dating functions treat all observed actions equally, independently of the identity of the
agent selecting them. While clearly restricting the class of updating systems, anonymity
is somewhat natural in a setting where (i) agents have no information of the network
beyond their neighbors (inherent in the local property), (ii) agents do not keep track of
their private signals over time, and (iii) private signals are conditionally i.i.d. We next
present our main result, which identifies a crucial property of updating systems that is
necessary for learning.

Theorem 2. If an anonymous stationary local Markov updating system f satisfies learn-
ing, then f is quasi-Bayesian.

24Recall that for a set of agents M ⊂ N and a vector a ∈ An, aM ∈ Am denotes the subvector of actions of
agents in M , i.e., [aM ]i = ai for all i ∈M .
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Theorem 2 states that quasi-Bayesian updating is necessary for learning within the
subclass of updating behavior considered.25 As such, Theorem 2 provides a normative
foundation for the analysis of quasi-Bayesian updating systems.

We now provide a brief outline of the proof and some intuition for its core argu-
ment. Consider an anonymous stationary local Markov updating system f that satisfies
learning. By Theorem 1, the underlying environment satisfies Bayesian contagion. Fur-
ther, as we pointed out in the proof outline of Theorem 1, each updating function fi
satisfies unanimity and common order for neighborhoods of size of 2. The proof uses
these properties to show that if one agent’s updating function is not quasi-Bayesian for
some disagreement action vector a′ and some neighborhood, then one can construct
a neighborhood-corresponding network where a′ is a fixed point of f. Since learning
requires all agents eventually to reach agreement, this contradicts learning.

We describe the argument for the case where an agent deviates from the quasi-
Bayesian updating function when observing all other agents. Note that for an agent i
who observes all other agents, Ni(G) = N , a quasi-Bayesian updating function fi selects
the contagion action a∗ if and only if it occurs at least once in Ni(G). Consider a star net-
work G′ with agent i in the center and a disagreement action vector a′ ∈An, where agent
i selects the noncontagion action a′

i = ¬a∗. Since the environment satisfies Bayesian
contagion, learning requires that all agents eventually select the contagion action a∗.
Assume that fi(a′�G′) deviates from the quasi-Bayesian function, i.e., fi(a′�G′) = ¬a′.
To see that for such an fi the vector a′ is a fixed point of f, consider a branch agent j who
observes agent i and himself. If the branch agent initially selected a′

j = ¬a∗, he remains
at ¬a∗ in the second period, as his updating function satisfies unanimity. Instead, if the
branch agent initially selected a∗, then by the common order property and given that a∗
is the contagion action, he remains at a∗ in the second period. Hence, a′ is a fixed point
of f(·�G′) and learning fails.

To conclude the proof, we need to show that fi is quasi-Bayesian for all neighbor-
hoods Ni, not only the complete observation case Ni = N . This is done in two steps.
First we show that in a Bayesian contagion environment, the quasi-Bayesian function
satisfies contagion for all neighborhoods.26 We say that an updating function fi satisfies
contagion if it selects a∗ whenever at least one agent in the neighborhood Ni selects a∗,
for any neighborhood Ni. The second step then shows that fi being quasi-Bayesian for
any neighborhood Ni is necessary for learning. This is done similarly as in the argument
for the complete observation case, Ni(G) =N . For each neighborhood, one simply con-
structs a corresponding network and first-period action vector such that fi failing to
satisfy contagion would induce a disagreement fixed point and failure of learning as a
result.

Theorem 2 left unanswered the question as to whether non-anonymous and, hence,
non-quasi-Bayesian, updating systems may achieve learning in Bayesian contagion en-
vironments. For a simple example of such an updating system that indeed achieves

25Note that conditional i.i.d. signals and the non-indifference assumption imply that quasi-Bayesian
updating functions satisfy anonymity.

26See Lemma 5 in the Appendix.
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learning, consider a setting with three agents, i = α�β�γ. Let fα and fγ be quasi-
Bayesian. Suppose that action 1 is the contagion action. Let agent β have an updating
function fβ that is not quasi-Bayesian. In particular, assume that fβ coincides with the
quasi-Bayesian function everywhere on the domain except for the case Nβ = {α�β�γ},
aβ = 1 and aβ = aγ = 0. It is easy to see that learning holds. While fβ is not strictly
quasi-Bayesian, it does coincide with quasi-Bayesian updating on parts of the domain.
As the following result shows, this is a necessary property of any stationary local Markov
updating system that achieves learning.

Proposition 1. Let the environment satisfy Bayesian contagion and let a∗ be the con-
tagion action. If a stationary local Markov updating system f satisfies learning, then for
every agent i, fi(a�G) is quasi-Bayesian for all (a�G) with ai �= a∗.

Proposition 1 states that any stationary local Markov updating system has to coin-
cide with the quasi-Bayesian updating system on a subset of the domain. More precisely,
deviations of fi from the quasi-Bayesian function can only occur if ai equals the conta-
gion action. The proof of Proposition 1 follows the same line of reasoning as the proof
of Theorem 2 and is therefore omitted.

Theorem 1 established a necessary condition on the environment for learning to
hold. Theorem 2 and Proposition 1 have shown that the quasi-Bayesian property plays
a crucial role in achieving learning in Bayesian contagion environments. The following
corollary, which follows from Theorem 1 and the proof of Theorem 2, integrates these
results and provides a necessary and sufficient condition for learning.

Corollary 1. Consider a quasi-Bayesian updating system f. Learning holds if and only
if the environment satisfies Bayesian contagion.

Let us provide some insight into Corollary 1. Since a quasi-Bayesian updating sys-
tem satisfies the Markov, stationarity, and locality axioms, Theorem 1 immediately im-
plies that the environment needs to satisfy Bayesian contagion for learning to hold. Now
consider an environment that satisfies Bayesian contagion. As we argued in the outline
of the proof of Theorem 2, the quasi-Bayesian updating functions thus satisfy conta-
gion.27 That is, for any neighborhood, every agent updates to the contagion action if
and only if the contagion action is observed at least once. It then follows that whenever
at least one agent selected the contagion action in the first period, this action spreads
through the network along the shortest path. Thus, the period duration to agreement
on the optimal action is bounded by the diameter of the network plus 1.

5. Structural conditions for learning under quasi-Bayesian updating

Corollary 1 above showed that a Bayesian contagion environment is necessary and suf-
ficient for quasi-Bayesian updating to achieve learning, i.e., optimal information aggre-
gation in all connected networks. But Bayesian contagion is a strong requirement and

27See Lemma 5 in the Appendix.
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typically will not be satisfied. Hence, it is important to understand the information ag-
gregation properties of quasi-Bayesian updating when the Bayesian contagion property
does not hold. Does optimal information aggregation hold in most networks or only in
some? How does the structure of a network interplay with the environment in determin-
ing the success or failure of learning in that network?

We now turn to answering these questions. The goal is to provide necessary condi-
tions on a network G for quasi-Bayesian updating to achieve learning in network G; see
Definition 3. We consider environments (N���S�p�Fω�u) that do not satisfy Bayesian
contagion, as we have shown that instead, under Bayesian contagion, learning in every
networks occurs. For tractability, we assume that the environment satisfies a mono-
tonicity condition. Let aσ∗

k denote the random action vector where each component
ai is drawn according to aσ

∗
. To define monotonicity, consider the Bayesian observa-

tion mapping β̂k that assigns to every first-period an action vector a1 ∈ Ak, which is
drawn according to aσ∗

k , the corresponding expected utility maximizing action.28 For-

mally, β̂k : Ak ⇒A such that

β̂k(a) = arg max
a∈A

E
[
u(a�ω)|aσ∗

k = a1]�

An environment satisfies monotonicity if, for any two vectors b ∈ Ak and c ∈ Al such
that β̂k(b)∩ β̂l(c) �= ∅, we have β̂k+l(d) = β̂k(b)∩ β̂l(c) and where d =(b�c) ∈ Ak+l. To
provide some intuition, note that the action vectors b and c can be interpreted as condi-
tional i.i.d. signals. Thus, monotonicity requires that if action a∗ is optimal conditional
on observing either signal (action vector) b or c by itself, then a∗ is optimal when ob-
serving both signals b and c together. One particular example of an environment that
satisfies monotonicity is the standard social learning model with binary states and bi-
nary actions, where agents achieve a utility of 1 if the action matches the state and 0
otherwise.

We now turn to the analysis of the structural properties of the network that are neces-
sary for learning. It is easy to see that learning in network G holds for complete networks
where every agent observes all others. In the complete network, the quasi-Bayesian up-
dating function of each agent coincides with the Bayesian complete observation func-
tion β. Thus, in the second period all agents select the optimal action and this consensus
vector is a fixed point by monotonicity. Typically, however, learning fails in most net-
works G. The following theorem bounds the diameter of the network that is necessary
for learning in a network to occur.29

Theorem 3. Consider a monotone environment where Bayesian contagion fails. If G
has a diameter larger than 4, then any quasi-Bayesian updating system f fails learning in
network G.

28For a group of k agents and the vector of their first-period actions a1 ∈ Ak, the Bayesian observation

mapping β̂k assigns the expected utility maximizing action conditional on a1.
29Note that a network of diameter k has the property that the length of the shortest path connecting any

pair of agents is smaller than or equal to k, and is equal to k for at least one pair of agents.
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Theorem 3 states that if learning in network G holds, then its diameter is smaller
than or equal to 4. Thus, for quasi-Bayesian updating to induce learning in a given net-
work, the network needs to be sufficiently dense so as to assure a diameter not larger
than 4. Since Bayesian contagion is a strong property on the environment and a diam-
eter smaller than or equal to 4 is a strong condition for large networks, quasi-Bayesian
updating typically fails to achieve learning. This stands in contrast to the naïve learning
result of Golub and Jackson (2010) for DeGroot updating in a rich action environment.
They show that as the network size grows to infinity, the asymptotic consensus action ac-
curately aggregates all private information under a weak condition on the sequence of
networks (more precisely weight matrices), i.e., that the influence of the most influential
agent vanishes to zero.30

Before delving into details on the proof of Theorem 3, it is useful to explain infor-
mally the role of the monotonicity assumption. An implication of the monotonicity
assumption is that the quasi-Bayesian updating function follows a threshold rule. To
clarify, consider an action vector a ∈An and an agent i. There exists a threshold propor-
tion qa such that if the proportion of agents in Ni(G) who select action a in vector a is
greater than or equal to qa, then fi updates to action a.31

To prove Theorem 3, we rely on two properties of the quasi-Bayesian updating sys-
tem that we show to be necessary for learning. The first property, which we call informa-
tion retention, requires that if action a is optimal conditional on the first-period action
vector a1, then action a is also optimal conditional on all subsequent action vectors at .
Formally, information retention requires that for all initial action vectors a ∈An, we have
that β(a) = b implies β(f (a�G)) = b. The second property, information diffusion, is nec-
essary for learning in environments that fail Bayesian contagion. Information diffusion
requires that no agent, for any neighborhood, ever updates to an action that occurs only
once in his neighborhood. Otherwise, one can construct a network and a first-period
action vector where all agents but agent i select action a′, but agent i remains at action
â in all periods. This contradicts learning in the given network, as by assumption the
environment does not satisfy Bayesian contagion.

Having established the necessity of these two properties for learning in network G,
the proof of Theorem 3 shows that for any network G of diameter larger than 4, there
exists a first-period action vector such that information retention fails. This can be seen
when combining the concept of information retention with that of information diffu-
sion. The key insight of the proof is that for any agent i who selects the optimal action a∗
in the first period, there needs to be another agent, at a distance of at most 2, who also
selects action a∗ in the first period. If not, then by information diffusion, all agents in i’s
neighborhood, including agent i, select the suboptimal action ¬a∗ in the second period.
For a first-period action vector that features the minimal number of a∗ actions that in-
deed make a∗ optimal, this leads to failure of information retention and, hence, failure
of learning in network G. Based on this argument, the proof of Theorem 3 shows that
the diameter of a network G cannot exceed 4 for learning in network G to be satisfied.

30They measure influence by an agent’s weight in the stationary distribution of the weight matrix.
31For the formal argument, please see Lemma 6 and Lemma 7 and their proof in the Appendix.
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We conjecture that a strictly smaller diameter than 4 is necessary for learning, but
we leave a strengthening of Theorem 3 for future work. While the exact condition on the
diameter is unclear, it is worth noting that some networks with diameter 2 can achieve
learning. In the Appendix, we construct a network G of diameter 2 where learning in G

holds despite the fact that Bayesian contagion fails.32

We next turn to another structural property of the network that is necessary for
learning. So as to present our next result, we borrow a network property introduced
by Morris (2000). Let G be a network on a set of agents N . For a group of agents M ⊂ N ,
consider for each agent i ∈ M the proportion of his neighbors that belong to M . Pick-
ing the smallest of such proportions among the members of M gives the so-called group
cohesion of group M :

πG(M)= min
i∈M

∣∣Ni(G)∩M
∣∣∣∣Ni(G)

∣∣ �

According to this definition, a group where each member has a large proportion of his
neighbors inside the group is highly cohesive.

Proposition 2. Consider a monotone environment and a quasi-Bayesian updating sys-
tem f. If in network G there exists a group of agents M ⊂ N and an action a ∈A such that
the group cohesion (i) πG(M)≥ qa and (ii) |M|< qan, then learning in network G fails.

Proposition 2 states that learning fails in networks that contain a small highly cohe-
sive group. The underlying reason for failure of learning is that such a network cannot
satisfy information diffusion. To see this, note that if all group members initially select
the same action, then they continue to select this action in all subsequent periods, in-
dependently of the actions of agents outside of the group. If the group consensus action
is not optimal conditional on the realized first-period action vector, then learning fails.

This section focused on providing conditions on the network structure that are nec-
essary for quasi-Bayesian updating to lead to learning in a given network. As we have
seen, these necessary conditions are fairly strong. These results give rise to the question
of how the process of action vectors evolves when the necessary conditions are not sat-
isfied. As explained above, monotonicity implies that quasi-Bayesian updating comes
down to the application of a threshold function. This property of quasi-Bayesian up-
dating implies that we can apply a result of Goles and Olivos (1980) on the iterated ap-
plication of threshold functions with binary range to understand the long-run behavior
of the process of actions. Their result applied to our setting implies that the process of
action vectors terminates either in a fixed point or a cycle of length 2. This fixed point
might be agreement on the optimal action, as it is the case in a complete network for
general environments. However, as shown in Example B.3 in the Appendix, in some en-
vironments and networks this terminal fixed point can also be the suboptimal action.
That is, quasi-Bayesian updating can in certain circumstances lead all agents to agree
on the suboptimal action.

32See Example B.2 in the Appendix.
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6. Extension: Weakly local and nonstationary updating systems

The key take-away from the analysis so far is that learning is very hard to achieve. Our
analysis was done under the assumption that the updating behavior of all agents sat-
isfies the Markov property, stationarity, and locality. We now analyze whether learning
outcomes can be improved when the locality and stationarity axioms are relaxed. Let us
turn to our definition of locality first. Recall that locality, as defined in Section 3, does
not allow updating to take into account any information regarding the network structure
other than the identities of neighbors. Thus, the updating function cannot condition on
the relative network position of neighbors. Instead, let us introduce the following weak
form of locality.

Definition 5. A Markov updating function fi : An × G → A is weakly local if, for all
pairs (a�G), (a′�G) such that aNi(G) = a′

Ni(G), we have fi(a�G) = fi(a′�G).

Weak locality simply requires that the updated action is invariant in the actions of
nonneighbors. A weakly local function allows for observed agents to be treated dif-
ferentially depending on their position in the network, and additionally allows for the
updated action to be invariant in the actions of some or even all neighbors, effectively
allowing agents to ignore some or all neighbors.

Consider a binary action environment (N���S�p�Fω�u) that is monotone as de-
fined in Section 5. As Theorem 1 showed, for a stationary local Markov updating system
to satisfy learning (in all networks), the environment needs to satisfy Bayesian conta-
gion. What if we assume weak locality instead of locality? Does the ability to capture the
network position of neighbors allow for better learning outcomes? More precisely, are
there monotone non-Bayesian contagion environments where stationary weakly local
Markov updating systems achieve learning? The following result provides the answer.

Theorem 4. Consider a monotone environment. If a stationary weakly local Markov
updating system f satisfies learning, then the environment satisfies Bayesian contagion.

Thus, in monotone environments, knowledge of the whole network generally does
not improve learning outcomes. In fact, even in very simple network structures, such
network knowledge does not allow agents to achieve learning. The proof of Theorem 4
considers one such network: the star. The advantage of the star network is that one
agent—the center agent—observes all other agents and can identify the optimal action
at the end of period t = 1. Intuition might suggest that learning outcomes should im-
prove when each branch agent observes the center agent, knowing that he is the center
agent. We establish that this is not the case and that this is due essentially to the station-
arity of f.

Let us briefly summarize the core argument of the proof of Theorem 4. Consider a
star network and an environment that fails Bayesian contagion. A crucial step in the
proof is to show that learning implies that every branch agent updates to the previous-
period action of the center agent. Consider a first-period disagreement vector and as-
sume that the center agent selected the suboptimal action ¬a∗. In the second period,
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thus all branch agents select ¬a∗. In contrast, the center agent must select the optimal
action a∗ in the second period. To see this, note that if the center agent were to select
¬a∗ as well, then a fixed point on the suboptimal action would be reached, contradicting
learning. Since information retention needs to hold, the action a∗ is optimal conditional
on the second-period action vector. Since the environment is monotone, the complete
Bayesian observation function satisfies a threshold rule, which in this case corresponds
to action a∗ being optimal if at least one agent selects action a∗. By definition, such an
environment satisfies Bayesian contagion, establishing a contradiction.

Thus, relaxing locality alone generally does not improve learning outcomes, not even
in a simple network such as the star. Nevertheless, when relaxing both stationarity and
locality, there exists an updating system that induces learning in the star network, even
when Bayesian contagion fails. Let the updating function f tj of the center agent be quasi-

Bayesian in all periods t. For the branch agents i, let f 2
i (a) = ai for all agents i �= j, and

let f ti (a) =a1 for all t > 2 and i �= 1. In this updating system, the center agent selects the
optimal action in period t = 2. Since the branch agents are simply copying the center
agent’s action from period t = 2, all agents select the optimal action in period t = 3.

We now turn to relaxing the stationarity assumption. As we show, nonstationary
weakly local Markov updating systems achieve learning in much more general network
structures than the star network. Let us now consider a nonstationary Markov updat-
ing system that is described by a sequence of mappings 〈ft〉t∈N, where each mapping
ft : An → An is weakly local. We say that M ⊂ N forms a complete subgroup if M is a
complete subgraph, i.e., if each agent in M is a neighbor of all other agents in M . The
following theorem presents a sufficient condition for learning in network G to hold.

Theorem 5. If G contains a complete subgroup M∗ of size greater than or equal to lnn
ln 2 +1,

then there exists a nonstationary weakly local Markov updating system 〈ft〉t∈N such that
learning in network G holds.

By Theorem 5, the existence of a possibly extremely small complete subgroup of
agents is sufficient for learning in a given network. For example, in a network of one
billion agents, a complete subgroup of 31 agents is sufficient to assure learning for a
carefully constructed nonstationary weakly local Markov updating system. This result
differs strikingly from Theorem 3, which showed that under quasi-Bayesian updating,
learning fails in any network with a diameter larger than 4. However, there are several
caveats in regard to the practicality of such an updating system.

Let us provide the core intuition behind Theorem 5 and clarify our statement re-
garding the practicality. For learning to hold in a given network, agents need to trans-
mit some information about the first-period action vector. At the level of an individual
agent, however, this fails, as binary actions are too coarse. Now the nonstationarity of
the updating system allows the updating functions to change over time. This in turn
allows a core group of agents to jointly encode the relevant information about the first-
period action vector in their group-action vector over time. Essentially, a weakly local
updating system that induces learning assigns to each agent the role of either an infor-
mation transmitter or an information retainer. Roughly, the members of the complete
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subgraph, which subsequently we denote as the core, retain information while all other
agents transmit information regarding the first-period action vector toward the core.
Due to the size of the core, their joint action vector can retain all relevant information
regarding the distribution of first-period actions. Thus, the process of actions is divided
into two phases. In the first phase, information is passed on to and retained by the core.
If the core has the minimal critical size, in each period the information regarding the
first-period action of only one additional agent is retained. As a result, the first phase
is possibly very long. In the second phase, once all information is aggregated, all core
agents switch to the optimal action and thereafter the optimal action spreads to all other
agents along the shortest path.

We acknowledge that the use of a nonstationary weakly local Markov updating sys-
tem has two main drawbacks in terms of practicality. First, as highlighted in the outline
of the proof, learning requires all agents to forego their utility maximization objective
for a potentially very large number of periods. Second, a successful updating system
requires maximal coordination among all agents in the network, as each agent needs to
know in which period he is required to pass on the first-period action of which neighbor.

7. Conclusion

The rise of the internet and online social networks has increased the number of social
connections as well as the ease with which behavior, opinions, beliefs, etc. can be ob-
served and shared. A good starting point to understand the resulting aggregate social
dynamics is to consider the microlevel, i.e., the individual updating behavior. Comple-
mentary to the large literature that considers Bayesian updating, we provide a general
analysis of information aggregation in networks with boundedly rational agents. We
focus on binary action environments and updating behavior that satisfies the Markov
property, stationarity, and locality. We show that learning in all network structures oc-
curs only in rare environments. Within such rare environments, we establish that quasi-
Bayesian updating is necessary to achieve learning and, thus, provide a normative foun-
dation for quasi-Bayesian updating. Outside of these rare environments, learning fails
in some networks. Focusing on quasi-Bayesian updating, we establish structural prop-
erties of the network that are necessary to achieve learning in a given network.

We then consider a richer class of updating heuristics, relaxing the locality axiom
and, thus, allowing agents to fine-tune their updating behavior toward their own net-
work position, the network position of their neighbors, and the structure of the network
as a whole. We show that, nevertheless, learning fails in very simple networks such as
the star, and that learning in all network structures holds in exactly the same rare envi-
ronments as under locality. Finally, we show that when relaxing both stationarity and
locality, there exist boundedly rational updating systems that induce learning for a large
set of connected networks. However, the degree of coordination required is extremely
high and the time required to reach consensus on the optimal action is potentially very
long.

To conclude, we highlight two natural ways to extend our formal analysis. First, one
can move away from binary action environments and consider instead rich (i.e., un-
countable) action environments, which are indeed the focus of the existing literature on
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boundedly rational updating.33 In Section 3, we highlighted that the concept of quasi-
Bayesian updating can directly be extended to a general action space. For Bayesian up-
dating, it is well established that a richer action space enables better inferences on the
underlying information held by agents and, hence, leads to better learning outcomes.34

A similar positive result holds for quasi-Bayesian updating if signals are finite and the ac-
tion space is compact metrizable and perfect. More precisely, for generic35 pairs of con-
tinuous utility functions and joint probability measures,36 there exists a quasi-Bayesian
updating function that satisfies learning. Moreover, learning occurs along the shortest
path in any strongly connected network. More details and a formal proof of this state-
ment can be found in an earlier working paper version, Mueller-Frank and Neri (2015).
Extending our analysis in a second direction, one may consider random as opposed to
deterministic updating functions. A followup paper, Arieli et al. (2020) considers ran-
dom updating functions and establishes strong positive learning results.

Finally, this paper provides a theoretical foundation for the analysis of quasi-
Bayesian updating. While experimental evidence for quasi-Bayesian updating in sim-
ple environments (see, for example, Chandrasekhar et al. 2020) has been documented,
an interesting direction for future research would be to investigate the extent to which
quasi-Bayesian updating describes the behavior of participants in more complex exper-
imental settings.

Appendix A: Proofs

Note that locality of the updating function fi : Av ×G →A implies that fi is identified by
a reduced function f̂i : An × 2N → A, where fi(a�G) = f̂i(a�Ni(G)).37 The proofs mostly
work directly with the reduced function f̂i rather than fi. We say that f̂i satisfies una-
nimity if, for every M ⊂ N such that i ∈ M and a ∈ An such that aj = a for all j ∈ M , we

have f̂ (a�M) = a.

A.1 Auxiliary results for Theorem 1

Prior to introducing the auxiliary results, we define one additional property of the
Bayesian complete observation function β : An → A. We call β dominant if there exists
a dominant action a∗ such that β(a) = a∗ for all a ∈An.

Lemma 1. Consider an environment where the Bayesian complete observation function
β : An → A satisfies dominance. Then for every M ⊂ N , |M| = m, the quasi-Bayesian
function βM : Am →A satisfies dominance.

33For examples, see De Marzo et al. (2003), Banerjee et al. (2019), Golub and Jackson (2010), and Molavi
et al. (2018).

34See, for example, Lee (1993) and Arieli and Mueller-Frank (2017).
35We use the standard notion of topological genericity, i.e., a residual set : a set that can be represented

by a countable intersection of open dense sets.
36By joint probability measure, we refer to the probability measure over the product of state and signal

spaces, p∗ ∈ �(�× Sn).
37The range of 2N is limited to sets that contain i.
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Proof. Since signals are conditional i.i.d., note that if βM satisfies dominance for M for
some M ⊂N , then it also satisfies dominance for all other groups M ′′ that have the same
cardinality as M . Without loss of generality (WLOG), let 1 be dominant for observation
set N and suppose that M ⊂ N is the largest group such that 1 fails dominance, i.e., there
exists a ∈ Am such that βM(a) �= 1. For example, let the observed vector a′ ∈ Am induce
0 as the optimal action:

E
[
u(1�ω)|a′] ≤E

[
u(0�ω)|a′]�

As m+ 1 has dominance in 1, we have

E
[
u(1�ω)|(a′� a

)]
>E

[
u(0�ω)|(a′� a

)]

for all a ∈ {0�1}, establishing a contradiction via the law of total expectation.

For the remaining lemmas, we assume that the environment satisfies nontriviality,
non-indifference, and vector non-indifference. Note that the nontriviality assumption
on the environment implies that for n = 1, the Bayesian complete observation function
β :A→ A is not dominant. This argument is employed in the following lemma.

Lemma 2. Learning of f implies that f̂i : An × 2N →A satisfies unanimity for all i ∈N .

Proof. Consider the Bayesian complete observation function β. As the environment
satisfies vector non-indifference, learning implies that for every initial vector a1 ∈ An,
consensus on β(a1) emerges within finitely many rounds. The proof is established in
two steps.

Step 1. We first show that for each action a ∈ A, there exists at least one corre-
sponding vector a′ ∈ An such that a = β(a′). Suppose not, i.e., assume that β satisfies
dominance. By Lemma 1, it follows that βM satisfies dominance as well for all M ⊂ N .
However, nontriviality implies nondominance for |M| = 1, establishing a contradiction.
Therefore, for each action a ∈ A, there exists at least one corresponding vector a′ ∈ An

such that a= β(a′).
Step 2. Learning implies the emergence of consensus on β(a1). As either action

might be optimal, this requires that, for any network G ∈ G, the respective consensus
vectors are fixed points of f, which implies unanimity of f̂i(a�M) for all M ⊂ N and for
all i ∈ N .

Lemma 3. Let f be a local Markov updating system that induces learning. Then fi(a�G)

is anonymous whenever |Ni(G)| = 2 for all i ∈N .

Proof. Let Ni(G) = 2. By Lemma 2, learning of f implies unanimity of f̂i. Abusing
notation slightly, assume that f̂i(0�1) �= f̂i(1�0). Without loss of generality, let f̂i(0�1) =
f̂i(0�0) = 0 and f̂i(1�0) = f̂i(1�1) = 1. If so, then the updated action depends only on
the first component and, thus, one agent in the observation set is never pivotal for the
updated action. This contradicts our definition of locality.
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As defined in the main text, we say that the updating system f satisfies common order
if there exists an action a∗ such that for every i and every network G with |Ni(G)| = 2, we
have f̂i(a�Ni(G)) = a∗ if and only if aj = a∗ for at least one j ∈Ni.

Lemma 4. Let f be a local Markov updating system that induces learning. Then f satisfies
common order.

Proof. By Lemma 3, learning implies that for each i ∈ N , fi is anonymous for any
|Ni| = 2. Assume to the contrary that the statement of Lemma 4 is incorrect. Then there
exist two agents j �= l, and matching neighbors j1 and l1 such that fj assigns a′ under dis-
agreement among j and j1, while fl assigns a′′ �= a′ in case of disagreement among l and
l1. Consider a nonconsensus vector a′ such that a′ is uniquely optimal conditional on a′,
β(a′)= a′. Let Gl be a network with Nl = {l� l1} and let a′

l = a′′. Since fl assigns a′′ in case
of disagreement, agent l remains at a′′ in all periods t ≥ 1, contradicting learning.

A.2 Proof of Theorem 1

Let a∗ denote the action that is preferred under the common order for neighborhoods
of size 2 when observing disagreement (see Lemma 4). Consider a star network G′ with
agent i in the center and consider any first-period disagreement vector a1 ∈ An. There
exists at least one branch agent j �= i with Nj(G) = {i� j} who observes a∗. By unanimity
(Lemma 2) and the common order property (Lemma 4), any such agent j continues
to select a∗ in all periods t ≥ 2. This implies that in the star network, the agents fail
to reach agreement in the action ¬a∗ for every first-period disagreement action vector
a1. However, learning under vector non-indifference implies convergence to agreement.
Thus, we need to have that β(a1) = a∗. Since a1 was chosen as an arbitrary disagreement
vector, learning implies that β satisfies Bayesian contagion.

A.3 Auxiliary result for Theorem 2

For a subgroup of agents M ⊂ N , |M| = m, a Bayesian observation function βM assigns
to every first-period action vector a1 ∈ Am a corresponding expected utility maximizing
action. Let aσ∗

M denote the random vector with realizations in Am, where the action of
each agent i is drawn according to aσ

∗
i . Formally, a Bayesian observation function βM :

Am →A satisfies

βM(a) ∈ arg max
a∈A

E
[
u(a�ω)|aσ∗

M = a
]

for all a ∈Am. To establish that fi is quasi-Bayesian for all neighborhoods, we rely on the
following auxiliary result.

Lemma 5. If the Bayesian observation function β : An → A satisfies Bayesian contagion,
then for every M ⊂ N , |M| = m, every Bayesian observation function βM : Am → A satis-
fies Bayesian contagion.
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Proof. By assumption, βN(a) = β(a) satisfies Bayesian contagion, and WLOG, let 1
be the contagion action. Suppose that for some M ⊂ N , the Bayesian function fails to
satisfy contagion. Failure of contagion of βM implies that one or both of the following
two properties have to be satisfied by βM : Either there exists a vector a′ ∈ Am that does
not satisfy consensus on 0 such that

E
[
u(1�ω)|a′] ≤E

[
u(0�ω)|a′]

or the vector 0 ∈Am that features consensus on 0 satisfies

E
[
u(1�ω)|0] ≥E

[
u(0�ω)|0]

�

Let us consider the former case first. Since a′ is not an agreement vector, contagion at
size m+ 1 implies

E
[
u(0�ω)|(a′� a

)]
<E

[
u(1�ω)|(a′� a

)]
for all a ∈ A, contradicting the law of total expectation. Suppose the latter case holds.
Following the result for the former case, the latter would imply dominance of action 1,
i.e., βM(a) = 1 for all a ∈Am. By Lemma 1, it follows that βM ′ satisfies dominance as well
for all M ′ ⊂ M . However, nontriviality implies nondominance for |M| = 1, establishing a
contradiction.

A.4 Proof of Theorem 2

By Theorem 1, learning requires Bayesian contagion. By Lemma 5, in a Bayesian con-
tagion environment, the Bayesian observation function βM : Am → A satisfies Bayesian
contagion for all M ⊂ N . Let a∗ denote the contagion action. By Lemma 4, we have that
fi updates to a∗ for any neighborhood of size 2 whenever a∗ is observed at least once.
Thus, each fi coincides with the Bayesian observation function for neighborhoods of
size 2. The theorem is established in three steps. The first step considers the neighbor-
hood that equals the set of all agents, and shows that learning implies that for each agent
i, f̂i(·�N) is quasi-Bayesian, i.e., coincides with the Bayesian complete observation func-
tion β. The second step considers neighborhoods of sizes at least 3 and establishes that
learning implies that f̂i assigns the contagion action a∗ whenever in i’s neighborhood (i)
agreement on ¬a∗ fails and (ii) there are at least two occurrences of ¬a∗. The third step
then establishes that for every Ni ⊂ N , we have f̂i(a�Ni) = a∗ if aj = a∗ for some j ∈ Ni.

Hence, we have f̂i(·�Ni) = β|Ni| for all i and, thus, each f̂i is quasi-Bayesian. We now
formally establish the steps outlined above.

Step 1. Suppose that there exists an agent i whose updating function fi does not
coincide with the Bayesian function βN when i’s observation set Ni(G) = N , i.e., there
exists a disagreement action vector a′ ∈ An such that f̂i(a′�N) = ¬a∗ �= β(a′) = a∗. As
a′ is a disagreement vector, without loss of generality we can assume that a′

i = ¬a∗ (by

anonymity of fi). Consider a star network Gi with i in the center. We have f̂i(a′�N) =
¬a∗. Note that a′ is a fixed point of f(·�G). To see this, note that by Lemma 2, all branch
agents j with a′

j = ¬a∗ remain at ¬a∗. All agents j such that a′
j = a∗ observe disagreement
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and remain at a∗ by Lemma 4. As a′ is a fixed point of f(·�Gi), learning fails, establishing
a contradiction. Hence, f̂i(a�N) = β(a) for all agents i ∈ N and for all action vectors
a ∈An.

Step 2. Consider an agent i and a neighborhood N̂i �= N , |N̂i| ≥ 3, and an action
vector a1, such that at least two but not all agents j in the neighborhood N̂i select aj =
¬a∗. Assume that f̂i(a1� N̂i) = ¬a∗. As f̂i is anonymous, we have a1

i �= a∗ without loss of
generality. Let Na∗

i denote the set of agents in N̂i with a1
j = a∗. Construct a connected

undirected network G′ such that Ni(G
′) = N̂i and Nj(G

′) = {j� i} for all agents j ∈ Na∗
i .

Next consider an action vector â1 that agrees with a1 on N̂i, i.e., â1
j = a1

j for all j ∈ N̂i

and where â1
j = ¬a∗ for all j /∈ Na∗

i . Note that due to unanimity (Lemma 2) of the agents

not in Na∗
i and by Lemma 4, it follows that â1 is a fixed point of f(·�G′), contradicting

learning of f.
Step 3. Consider an agent i, a neighborhood N̂i �= N , |N̂i| ≥ 3, and an action vector

a1, such that in N̂i, exactly one agent j ∈ N̂i selects the noncontagion action, aj = ¬a∗.

Assume that f̂i(a1� N̂i) = ¬a∗. Again, as f̂i is anonymous, we have a1
i = ¬a∗ without loss

of generality. Construct a network G′ such that (i) Ni(G
′) = N̂i and (ii) for every j ∈ N̂i,

j �= i, we have Nj(G
′) = N . Next consider an action vector â1 that (a) agrees with a1 on

N̂i, i.e., â1
j = a1

j for all j ∈ N̂i, and (b) â1
l = a∗ for all l /∈ N̂i. By Step 1, all agents j ∈ N̂i, j �= i

satisfy fj(â1�G′) = a∗. By unanimity (Lemma 2), all agents l /∈ N̂i satisfy fj(â1�G′) = a∗.
If fi(â1�Ni(G

′)) = ¬a∗, then â is a disagreement fixed point of f, contradicting learning.

A.5 Auxiliary results for Theorem 3

We first introduce some further concepts and notation necessary for the subsequent
exposition of the results. Let #n

a : An → N assign to each action vector a ∈An the number
of agents selecting action a= {0�1}:

#n
1(a) =

∑
i∈N

aj

#n
0(a) = n− #n

1(a)�

Similarly, for a given network G and agent i, let #i
a : An → N count the number of

agents in the neighborhood Ni(G) of agent i who select action a. Thus, we have
#i

0(a) = |Ni(G)| − #i
1(a).

We say that β satisfies a threshold rule if there exists a #∗ such that #n
1(a) ≥ #∗ im-

plies β(a) = 1 and #n
1(a) < #∗ implies β(a) = 0.

Lemma 6. For any n ∈ N, monotonicity implies that the Bayesian complete observation
function β satisfies a threshold rule.

Proof. As signals are conditional i.i.d., the Bayesian function β is anonymous. Con-
sider a disagreement vector a′ ∈ An such that action 1 is optimal, β(a′) = 1. As a′ sat-
isfies disagreement there exists an agent j with a′

j = 0. By monotonicity, it follows that
1 is optimal conditional on a′

−j . Further, monotonicity implies that (a′
−j�1) induces 1
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as a uniquely optimal action. Therefore, if 1 is optimal for an action vector a′, then it is
uniquely optimal conditional on any action vector a′′ ∈An with #n

1(a′′) > #n
1(a′).

The following analysis relies on the minimal proportion of agents in N inducing ei-
ther action as optimal. Let qa denote the minimal proportion of agents in N necessary
to induce action a as optimal, i.e., q1 = #∗

n and q0 = n−#∗+1
n . Further, let qs denote the

smaller of the two, qs = min{q0� q1}.38 If qs = q1, we call action 1 the stronger action and
call action 0 the weaker action. Let as denote the stronger action and let aw denote the
weaker action. The following lemma shows that the same threshold proportion that in-
duces a as uniquely optimal given the population vector of actions with cardinality n

also applies to action vectors of any smaller cardinality m< n.

Lemma 7. Consider a monotone environment and a quasi-Bayesian function fi. Then
#i
a(a)

|Ni(G)| ≥ qa implies that fi(a�G) = a.

Proof. Let β̂k : Ak ⇒ A denote the Bayesian observation mapping for a network of

size k ≤ n. We first establish by induction that #i
a(a)

|Ni(G)| ≥ qa implies that β̂k(a) =a. By
nontriviality, the claim is true for m = 1. Suppose the claim is true for all k ≤ m. That is,

for all k ≤ m, a ∈ Ak, and #k
a(a)
k ≥ qa, we have β̂k(a) = a. Consider β̂m+1 and b ∈Am+1

such that
#m+1

1 (b)
m+1 > q1. For the given vector b ∈Am+1, consider a vector a′ = (b�c) ∈ An.

Let l = n−(m+1). Suppose that for all c ∈Al, we have
#n

1(a′)
n ≥ q1, which by Lemma 6 and

monotonicity implies that β̂m+1(b) = 1. Otherwise consider a c ∈Al such that
#n

1(a′)
n =

q1, which implies
#l

1(c)
l < q1. Assume that m+ 1 > n

2 . There are two cases to consider.

Case 1. Suppose that
#l

1(c)
l ≤ #∗−1

n , which implies β̂l(c) = 0 by the induction hy-

pothesis. Then β̂m+1(b) = 1, as otherwise monotonicity yields β̂(a′) = 0, leading to a

contradiction with
#n

1(a′)
n = q1.

Case 2. Suppose instead that
#l

1(c)
l ∈ (#∗−1

n � #∗
n ) and, by contradiction, that β̂m+1(b)=

0. If 0 ∈ β̂(c), then, by monotonicity, β̂(a′) = 0, contradicting
#n

1(a′)
n > q1. Hence, as-

sume β̂l(c) = 1. Since m + 1 > n
2 , the dimensionality of c is strictly smaller than that

of b. As #1(b)
m+1 > q1, there exists a vector d ∈Ak, where k = 2(m + 1) − n, and b′ = (c�d)

such that
#k

1 (d)
k > q1,

#m+1
1 (b′)
m+1 > q1, and

#m+1
1 (b′)
m+1 ≤ #m+1

1 (b)
m+1 . By the induction hypothesis,

β̂k(d)= 1 and, thus, by monotonicity β̂m+1(b′) = 1. But then, by Lemma 6, we also have
β̂m+1(b)= 1, establishing a contradiction.

Note that the case
#m+1

1 (b)
m+1 = q1 and the case m+ 1 < n

2 follows along the same lines.

For the latter, we use the largest k ∈ N such that k(m + 1) < n and a vector d ∈Ak(m+1)

that consists of k copies of b. To conclude the proof, note that whenever β̂k is single-
valued, any quasi-Bayesian function fi coincides with β̂k for any |Ni(G)| = kfor all k =
1� � � � � n.

38Note that in environments with an odd number of agents, q0 equals q1 whenever β selects the action
with majority.
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Let δ+(G) denote the cardinality of the largest neighborhood in G, δ+(G) = maxi∈N
|Ni(G)|, and let δ−(G) denote the cardinality of the smallest neighborhood in G,
δ−(G) = mini∈N |Ni(G)|. The following lemma formalizes the information diffusion ar-
gument made in the text by relating the degree distribution to the environment.

Lemma 8. Consider a monotone environment where Bayesian contagion fails. If qs ≤
1

δ−(G)
, then learning in network G fails.

Proof. Consider any agent i with Ni(G) = δ−(G), and consider a first-period action
vector a′ ∈ An such that a′

i = as and a′
j = aw for all j �= i. Since Bayesian contagion fails,

we have β(a′) = aw. Assume that qs ≤ 1
δ−(G)

. By Lemma 7, agent i updates to as and
remains at as in all subsequent periods, contradicting learning in network G.

A.6 Proof of Theorem 3

Suppose that monotonicity holds and Bayesian contagion fails. Consider a network G

with n agents. Suppose that learning holds in G. By Lemma 6, it follows that for ev-
ery initial vector a1 ∈ An such that #n

1(a1) ≥ #∗, consensus on action 1 emerges, and if
#n

1(a1) < #∗ then consensus on action 0 emerges. Let N1(a) denote the set of agents
selecting action 1 in a. The claim is established in three steps.

Step 1. The first step establishes the following necessary structural condition on G

for learning in G to hold: For every group N1(a1) ⊂ N with #n
1(a1) = #∗ and for every

i ∈ N1(a1), the shortest path in G from i to N1(a1)� i is smaller than or equal to 2. This
claim is established by contradiction in several steps.

(a) Recall that learning in G implies information retention, i.e., for every a1 ∈An with
#n

1(a1) < #∗, the resulting process of actions 〈at〉t∈N satisfies #n
1(at ) < #∗ for every

t ≥ 1.

(b) Suppose that #n
1(a1) = #∗ and there exists an agent i ∈ N1(a1) such that the short-

est path from i to every other agent in N1(a1) is larger than 2. We show that all
agents in Ni select action 0 in period t = 2. To see this, note that at the beginning
of period t = 2, all agents in Ni observe one action 1, while all other observed ac-
tions are 0. Therefore, by Lemma 8, in period t = 2, all agents in Ni select action
0.

(c) Denote the set of agents in N1(a1) without i by N1
−i, i.e., N1

−i =N1(a1)�i. Consider
the neighborhood of N1

−i, i.e., all agents in N1
−i plus the set of all agents who are

neighbors of at least one agent in N1
−i. Denote this set by (N1

−i)
1. Note that (N1

−i)
1∩

Ni = ∅. By Step 1(b) and unanimity, in period t = 2, all agents who do not belong
to (N1

−i)
1 select action 0. Learning in G implies by Step 1(a) that the cardinality of

agents in (N1
−i)

1 who select action 1 in period t = 2 is bounded above by #∗ − 1. If
not, there exists an initial action vector â1 ∈An with #n

1(â1) = #∗ −1 and N1(â1) =
N1

−i such that #n
1(â2) ≥ #∗, contradicting Step 1(a) and, therefore, contradicting

learning for G. Therefore, for every group N1(a1) ⊂ N with #n
1(a1) = #∗ and for

every i ∈ N1(a1), the shortest path in G from i to N1(a1) � i is smaller than or
equal to 2.
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Step 2. Let dG(i� j) denote the distance of agent j from agent i in G, i.e., the length of
the shortest path from i to j. Let ∂ be the diameter of G and select an agent i∗ ∈ N such
that dG(i∗� j) = ∂ for some j ∈ N . Assume without loss of generality that as = 1. Select
a vector â1 ∈ An that satisfies two properties: (i) #n

1(â) = #∗ − 1, and (ii) if â1
l = 1 and

dG(i
∗� l) = m, then â1

k = 1 for all k ∈ N with dG(i
∗�k) < m. Let d̂i∗ denote the maximal

distance of an agent in N1(â1) from i∗, i.e.,

d̂i∗ = max
j∈N1

(
â1

)
�j∗

dG
(
i∗� j

)
�

By Step 1, for every agent j ∈N , we have dG(i
∗� j)≤ d̂i∗ + 2, which implies that the diam-

eter satisfies ∂≤ d̂i∗ + 2.
Step 3. Next consider a subset Mj∗ ⊂ N that has size #∗ − 1 and that maximizes the

distance to agent i∗. As as = 1, there exists such a set Mj∗ with Mj∗ ∩ N1(â1) = ∅. As
Mj∗ ∩ (N1(â1)) = ∅, it follows that the minimal distance from i∗ to M is bounded below

by d̂i∗ , implying by Step 1 that d̂i∗ ≤ 2. By Step 2, it then follows that for every agent j ∈N ,
we have dG(i

∗� j)≤ 4. As i∗ was chosen such that the distance of at least one agent j ∈ N

from i∗ is equal to the diameter, it follows that if Bayesian contagion fails and learning
occurs in G, then the diameter of G is smaller than or equal to 4.

A.7 Proof of Proposition 2

Suppose there exists an action a and a group M ⊂ N in G such that the group cohesion
πG(M) is greater than or equal to qa. Without loss of generality, let a = 1. Consider a
vector â ∈ An such that N1(â) = M , i.e., an action vector where all agents in M select
action a = 1 and all others select action a = 0. Consider any agent i ∈ M . As πG(M) ≥ q1

and N1(â) = M , the proportion of agents in Ni who select action a = 1 is greater than or
equal to q1. By Lemma 7, agent i therefore remains at action a = 1 in the second period
and so do all other agents in M . The same reasoning applied inductively implies that all
agents in M remain at a = 1 in every period t ∈ N. Action a = 1 is optimal conditional
on â if the cardinality of M is greater than or equal to #∗

1(n). But by assumption, the
cardinality of M is smaller than nq1 = #∗

1(n). Therefore, learning in G fails.

A.8 Auxiliary results for Theorem 4

First recall that learning implies that learning in network G holds for every connected
undirected network. To show that Bayesian contagion is a necessary property of the
environment for learning to hold, we show that for a star network G′, learning in network
G′ fails unless the environment satisfies Bayesian contagion.

First we state a version of Lemma 2 for weakly local updating systems.

Lemma 9. Consider a stationary weakly local Markov updating system f. Learning of f
implies that fi satisfies unanimity for all i ∈N .
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The proof of this lemma is omitted, as it follows from the exact same argument as
the proof of Lemma 2.

Consider a network G′ and an agent i such that Ni(G
′) = {i� j}. We say that fi(·�G′)

is self-following if fi(a�G′) = ai for all a∈An. We say that fi(·�G′) is other-following if
fi(a�G′) = aj for all a∈An. Recall that fi(·�G′) is anonymous if there exists an action
â ∈ {0�1} such that for every vector a′∈An with a′

i �= a′
j , we have fi(a′�G′) = â.

Lemma 10. Consider a stationary weakly local Markov updating function fi and a net-
work G′ such that |Ni(G

′)| = 2. Assume that fi(·�G′) satisfies unanimity. Then fi(·�G′) is
either self-following, other-following, or anonymous.

Proof. Let j ∈ Ni(G
′). Since fi is weakly local, it is invariant in the actions of all agents

but i and j. Assume a′
i = a′

j . Then by unanimity, we have fi(a′�G′) = a′
i = aj , which

is consistent with self-following, other-following, and anonymity. Thus, we need to fo-
cus on the two possible cases where a′

i �= a′
j . The possible updates are summarized by

Table 1. The first two possible updating functions are anonymous, while the third is
self-following and the fourth is other-following.

Lemma 11. Consider a stationary weakly local Markov updating system f and a star net-
work G′. Assume that the environment fails Bayesian contagion. If f satisfies learning in
network G′, then every branch agent is not self-following and not anonymous.

Proof. As the environment does not satisfy Bayesian contagion, there exist two dis-
agreement vectors a′�a′′ ∈An such that β(a′)= 0 and β(a′′) = 1. Recall that since signals
are conditional i.i.d. and the environment satisfies non-indifference and vector non-
indifference, any permutation of b′ of a′ satisfies β(b′) = 0, and similarly for any permu-
tation b′′ of a′′, we have β(b′′) = 1. Consider the star network G′. Let i be a branch agent
and let j be the center agent in G′. We prove the claim in two steps.

Step 1. Assume that i is self-following. Since a′ is a disagreement vector, there exists
a permutation b′ with b′

i = 1,and b′
j = 0 and β(b′) = 0. Thus, agent i continues to select

action 1 in all periods and learning fails.
Step 2. Assume that i is anonymous. Assume that he updates to action 1 when he

observes disagreement. Consider a permutation b′ of a′ with b′
i = 1, and b′

j = 0 and
β(b′) = 0. Again agent i continues to select action 1 in all periods and learning fails.
Assuming he updates to action 0 when observing disagreement, the same arguments
can be applied to a permutation b′′ of a′′, again leading to a contradiction.

fi(a′�G′) fi(a′�G′) fi(a′�G′) fi(a′�G′)

a′
i = 1, a′

j = 0 1 0 1 0
a′
i = 0, a′

j = 1 1 0 0 1

Table 1. Possible updating functions fi(a′�G′)
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A.9 Proof of Theorem 4

Consider a stationary weakly local Markov updating system f that achieves learning. To
prove the statement of the theorem, we prove its negation. That is, assume that the
environment does not satisfy Bayesian contagion and consider one particular network
G′, a star network. We show that learning in network G′ fails and, hence, by definition,
learning fails.

Consider the star network G′ and any branch agent i. By Lemma 10, fi is either
anonymous, self-following, or other-following. Since the environment fails Bayesian
contagion and, by assumption, learning holds by Lemma 11, each branch agent is other-
following, i.e., each branch agent i copies the last period action of the center agent j∗.
Consider a first-period disagreement vector b such that β(b) = 0 and bj∗ = 1. Let b2 de-

note the second-period action vector, f(b)= b2. By the argument above, we have b2
i = 1

for all agents i �= j∗. Since f is stationary and since learning holds, we have β(b2) = 0.
Furthermore, b2

j∗ = 0, as otherwise unanimity induces a contradiction with learning.
Since the environment is monotone, the complete Bayesian observation function β sat-
isfies a threshold rule by Lemma 6. In particular, by the argument above, if at least
one agent in N selects action 0, then 0 is optimal, contradicting the assumption that
Bayesian contagion fails.

A.10 Proof of Theorem 5

Consider a complete group M∗ of size m. We first show that if m ≥ lnn
ln 2 + 1, then for each

k = m�m + 1� � � � � n − 1, there exists an injective mapping gk : {0�1�2� � � � �k} → Am−1,
where the number corresponds to the number of 1 actions in a group of size k. For a
group of size m − 1, the number of distinct action vectors a ∈ Am−1 equals 2m−1. Thus,
we require

2m−1 ≥ n

m ≥ lnn
ln 2

+ 1�

Before we use these injective mappings to construct an updating system 〈ft〉t∈N in sev-
eral steps, let us first lay out the principal idea. Note that the members of the core M∗
jointly observe their action vector aM∗ ∈ Am. In the first phase of the updating process,
in every period t, one core agent introduces new information into the core while the
remaining core members retain the current amount of information. Partition the set of
noncore agent as follows: select a noncore agent j1 with maximal distance to the core
and consider one shortest path to the core including the respective core agent. Assign
all agents on the path including j1 but excluding the core agent to one partition cell.
We denote the cell corresponding to the core agent i as Pi. Any noncore agents whose
unique shortest path overlaps with this cell is assigned to the same cell and, hence, to
the same core agent. Proceed in the same manner until all noncore agents are assigned
to one core agent, and order the core agents from 1 to m. Let ft denote the updating
mapping applied in period t + 1.
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Step 1. Let f1 be as follows: For the agents in M∗
1 =M∗ \ 1, let

f1
M∗

1
(a) = gm

( ∑
i∈M∗

ai

)
�

For agent 1, consider one path π ∈ P1 originating at agent 1, and order the agents be-
longing to π from lowest to largest distance to 1 and denote them by π1�π2� � � � �πk. Let
f 1

1 (a) = aπ1 and f 1
πj
(a) = aπj+1 for all j = 1� � � � �k− 1, and let f 1

l (a) = al for l = πk and all

l ∈N \M∗ \ P1. Then set f2 as follows: For the agents in M∗
1 ,

f2
M∗

1
(a) = gm+1

(
g−1
m (aM)+ a1

)
�

Again let f 1
1 (a) = aπ1 and f 1

πj
(a) = aπj+1 for all j = 1� � � � �k − 2, and let f 1

l (a) = al for l =
πk�πk−1 and all l ∈ N \ M∗ \ P1. Construct ft in a similar way to pass down the infor-
mation from the agents in the path π, all other paths in P1, as well as all other cells Pi

corresponding to the core agents i ∈M∗.
Step 2. Let β̂ : {0�1� � � � � n} → A assign the Bayesian optimal action as a function of

the number of 1 actions in the network. Note that since signals are conditional i.i.d., the
distribution of actions is sufficient to determine the optimal action, i.e.,

β(a) =β̂
(∑
i∈N

ai

)

for all a ∈ An. Let t∗ be the last period where a core agent i∗ passes information to M∗
i∗ ,

the remainder of the core. The action vector of all agents in M∗ now reveals the first-
period distribution of actions and is sufficient for each agent in M∗ to select the optimal
action in period t∗ + 1. We have

ft
∗+1
M∗ (a) = β̂

(
g−1
n−1

(
at∗
M

) + ai∗
)
�

For all agents in M∗, we have f ti (a) = ai for all t ≥ t∗ + 2. Thus, from t∗ + 1 and onward,
information only needs to diffuse from the core to the noncore agents. For all first de-
gree neighbors j of core a agent i simply set f t

∗+2
j (a) = ai and equal to their own last

period action in all later periods. Similarly, construct the updating system for kth de-
gree neighbors. Thus, from t∗ + 2, the optimal action spreads along the shortest path in
the network.

Appendix B: Examples

B.1 Environments satisfying Bayesian contagion are highly asymmetric

Consider an environment with binary states, binary actions, and binary signals, � = A=
S = {0�1}. Both states are a priori equally likely. Each agent achieves a utility of 1 if his
action matches the realized state and achieves 0 otherwise. Thus, action a = 0 (a = 1)
is uniquely optimal if and only if the conditional probability of state ω = 0 (ω = 1) is
greater than 0�5. Assume that the environment is highly asymmetric in that the dis-
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tribution of signals conditional on states is highly uneven: Pr(s = 0|ω = 0) = 99
100 and

Pr(s = 1|ω= 1) = 1
10 . Assuming a prior probability Pr(ω = 1) = μ, the posterior probabil-

ities conditional on s are Pr(ω = 1|s = 1) = 10μ
10μ+(1−μ) and Pr(ω = 1|s = 0) = 90μ

90μ+(1−μ)99 .
Such values of the posterior probability have two implications. First, for a uniform
prior μ= 0�5, the action a= s is, conditional on s, uniquely expected-utility maximizing.
Thus, the chosen action reveals the underlying signal. Second, the posterior probabil-
ity of state ω = 1 is strictly larger than the prior probability if s = 1 and strictly smaller
than the prior probability if s=0. As a consequence, unanimity is satisfied, i.e., if there
is consensus on an action, then that action is optimal conditional on the consensus
action vector. Next consider a vector ân ∈ An+1 such that exactly one agent selects
action a = 1, i.e.,

∑n+1
i=1 âni = 1. Under the uniform prior, the posterior probability of

state ω = 1 is Pr(ω = 1|ân) = 1/[1 + 1
10(

99
90)

n]. For n = 0� � � � �30, therefore, action a = 1 is
uniquely expected-utility maximizing conditional on ân. In other words, in this example,
Bayesian contagion holds for network sizes up to 31.

B.2 Learning in a network with diameter 2 despite failure of Bayesian contagion

Consider a network G with five agents, N = {1�2�3�4�5}. Suppose that the environment
is symmetric, i.e., q1 = q0 = 3

5 . The network has the following properties. Agents i =
1�2�3 observe all members of the network, i.e., Ni = N for i = 1�2�3. We denote the set
of the first three agents as the core of the network. The remaining agents j = 4�5 do
not observe each other, i.e., Nj = {1�2�3� j}, and are called periphery agents. Note that
in period t = 2, each core agent selects the action that is optimal conditional on a1. As
q1 = q0 = 3

5 , the core agents remain at the optimal action in all periods t ≥ 2. This implies
that each periphery agent sees a proportion of at least 3

4 of the agents in his observation
set selecting the optimal action from period t = 2 onward. As q1 = q0 = 3

5 , they select the
optimal action from period t = 3 onward. Therefore, consensus on the optimal action
occurs by period t = 3 for any first-period action vector. Note that analogous examples
can be constructed for any arbitrary large network as long as there exists a core group
of agents making up a majority and such that each of them observes all agents in the
network.

B.3 Quasi-Bayesian updating leading to consensus on the suboptimal action

Consider a monotone environment where Bayesian contagion fails. Consider a network
G such that the maximal neighborhood size δ+(G) satisfies qs ≤ 1

δ+(G)
. This implies

that every agent in the network selects the stronger action whenever he observes at least
one occurrence of the stronger action in his observation set. Thus, the stronger action,
whenever it is selected at least once in the first period, spreads throughout the network
along the shortest path, resembling the process of actions in a Bayesian contagion envi-
ronment. For all initial action vectors but consensus on the weaker action, consensus on
the stronger action emerges. However, since the environment does not satisfy Bayesian
contagion, this outcome is not optimal for all first-period action vectors.
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