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1 Binding Participation Constraint

In the paper, we assumed that only the agent’s limited liability, but not the participation constraint was binding.

This appendix complements the paper by considering cases in which the participation constraint binds.

For simplicity, we assume that there are two efforts, two outputs, and two types (Θ = {A,B}). Suppose

without loss of generality that
∆cA

∆pA
≥ ∆cB

∆pB
.

A feasible mechanism is a four-dimensional vector (sA, bA, sB , bB) satisfying the constraints (ICθ1)-(ICθ3), (LLθ)

and (IRθ). The following proposition shows that with only two type, optimal mechanism may entail full

separation.

Proposition 1. In a model with two types, two levels of efforts and two outputs, there are economies where full

separation is the optimal mechanism.

Proof. Let (si, bi)i∈{A,B} be any feasible mechanism such that bA 6= bB . We will show whether we can or cannot

dominate this mechanism by a pooling one. Let us divide the analysis in several cases.

Case bB > bA. Notice that constraint (ICθ2) is equivalent to pA1 (bA − bB) ≥ −(sA − sB) ≥ pB1 (bA − bB).

Then, pB1 ≥ pA1 and sA > sB . Increase bA or decrease sA in order to keep the expected benefit of type A (i.e.,

sA + pA1 b
A) constant and bB ≥ bA. We can do this until we get the new contract (s̃A, b̃A) satisfying

sB + pB1 b
B = s̃A + pB1 b̃

A or s̃A = sB and b̃A = bB .

In both case, the mechanism formed by the only contract (s̃A, b̃A) satisfies all the constraints (here it is important

that b̃A ≥ bA) and generates the same expected cost to the principal.

Case bA > bB. Analogous to the previous case, pA1 ≥ pB1 and sB > sA. If sA + pB1 b
A ≥ cB1 , then keeping only

contract (sA, bA) satisfies all constraints and reduces the principal’s expected cost. Suppose that cB1 > sA+pB1 b
A.

Now decrease bA and increase sA keeping the expected benefit of type A (i.e., sA + pA1 b
A) constant. We can do

this until the new contract (s̃A, b̃A) satisfies:

Subcase cB1 = s̃A + pB1 b̃
A. The mechanism formed by the only contract (s̃A, b̃A) satisfies all constraints if

b̃A ≥ ∆cA

∆pA
and generates weaker expected cost to the principal.

Subcase b̃A = ∆cA

∆pA
. We have that

sA + pA1 b
A = s̃A + pA1

∆cA

∆pA
≥ sB + pA1 b

B ≥ sB + pB1 b
B ≥ cB1 > s̃A + pB1

∆cA

∆pA
.

Now increase bB and decrease sB keeping the expected benefit of type B (i.e., sB + pB1 b
B) constant. We can

do this until the new contract (s̃B , b̃B) satisfies:

Subcase s̃B = s̃A. We have that b̃B = b̃A and the mechanism formed by the only contract (s̃A, b̃A) satisfies

all constraints and generates weaker expected cost to the principal.

Subcase s̃A + pA1
∆cA

∆pA
= s̃B + pA1 b̃

B. We have that

sA + pA1 b
A = s̃A + pA1

∆cA

∆pA
= s̃B + pA1 b̃

B ≥ s̃B + pB1 b̃
B = sB + pB1 b

B ≥ cB1 > s̃A + pB1
∆cA

∆pA
.

Notice that the mechanism formed only by contract (s̃B , b̃B) satisfies all constraints if and only if constraint

(ICA1 ) is satisfied, i.e., b̃B ≥ ∆cA

∆pA
.
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Suppose that b̃B < ∆cA

∆pA
. The constraint that can be violated is (ICθ3), which can be written as

sA + pA1 b
A ≥ sB + pA1 b

B −∆pAbB + ∆cA

sB + pB1 b
B ≥ sA + pB1 b

A −∆pBbA + ∆cB
.

Since ∆cA

∆pA
> b̃B ≥ bB , (ICA3 ) is stronger than (ICA2 ) and, since bA ≥ ∆cA

∆pA
≥ ∆cB

∆pB
, (ICB3 ) is slack in the presence

of (ICB2 ). Repeating the same steps above but replacing (ICA2 ) by (ICA3 ), we have the constraints:

sA + pA1 b
A = s̃A + pA1

∆cA

∆pA
≥ sB + pA1 b

B −∆pAbB + ∆cA ≥ sB + pB1 b
B ≥ cB1 > s̃A + pB1

∆cA

∆pA
.

Therefore, in this case, the principal’s problem is to find (s̃A, sB , bB) to minimize the expected cost subject to

∆cB

∆pB
≤ bB ≤ ∆cA

∆pA

s̃A + pA1
∆cA

∆pA
≥ cA1

s̃A + pA1
∆cA

∆pA
≥ sB + pA0 b

B + ∆cA

sB + pB1 b
B ≥ cB1

sB + pB1 b
B ≥ s̃A + pB1

∆cA

∆pA
.

By reducing s̃A and sB the principal will benefit. We can reduce s̃A until s̃A + pA1
∆cA

∆pA
= cA1 or s̃A = 0. We can

reduce sB until (i) sB = 0 or (ii) sB + pB1 b
B = cB1 or (iii) sB + pB1 b

B = s̃A + pB1
∆cA

∆pA
.

If (i) holds, then by the first and last constraints of the minimization problem above we must have bB = ∆cA

∆pA

and s̃A = 0.

If (ii) holds, then increase bB and decrease sB to keep (ii) true. Thus, bB = ∆cA

∆pA
or sB = 0 (which again

implies bB = ∆cA

∆pA
) or (iii) holds. If pA0 ≤ pB1 , then (iii) cannot hold.

Suppose that pA0 > pB1 . As we see above, there are two possibilities: s̃A + pA1
∆cA

∆pA
= cA1 or s̃A = 0. Notice

that if s̃A + pA1
∆cA

∆pA
= cA1 , then sB + pB1 b

B = cB1 if and only if the third constraint of the minimization problem

above is binding. In this case, the solution of the problem is the solution of the system of equations:

sB + pA0 b
B = cA0

sB + pB1 b
B = cB1

which is

bB =
cA0 − cB1
pA0 − pB1

and sB = cA0 − pA0 bB = cB1 − pB1 bB .

From this analysis we get the following possible examples where the optimal mechanism entails full separation.

Counter-example 1. We need parameters such that

pA0 > pB1
∆cA

∆pA
>

cA0 −c
B
1

pA0 −pB1
≥ ∆cB

∆pB

cB1
pB1
≥ ∆cA

∆pA
=

cA1
pA1
.

In this case the optimal contract should be(
0,

∆cA

∆pA

)
and

(
cB1 − pB1

cA0 − cB1
pA0 − pB1

,
cA0 − cB1
pA0 − pB1

)
.
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Counter-example 2. We need parameters such that

pA0 > pB1
∆cA

∆pA
>

cA0 −c
B
1

pA0 −pB1
≥ ∆cB

∆pB

min
{
cA1
pA1
,
cB1
pB1

}
≥ ∆cA

∆pA

cB1 ≥ cA1 − (pA1 − pB1 ) ∆cA

∆pA
,

which is equivalent to
∆cA

∆pA
≥ cA1 − cB1
pA1 − pB1

.

In this case the optimal contract should be(
cA1 − pA1

∆cA

∆pA
,

∆cA

∆pA

)
and

(
cB1 − pB1

cA0 − cB1
pA0 − pB1

,
cA0 − cB1
pA0 − pB1

)
.

Counter-example 3. We need parameters such that

pA0 > pB1
∆cA

∆pA
> bB ≥ ∆cB

∆pB

cB1
pB1
≥ ∆cA

∆pA
≥ cA1

pA1
,

where

bB =
pA1

∆cA

∆pA
−∆cA − cB1

pA0 − pB1
=
pA0

∆cA

∆pA
− cB1

pA0 − pB1
.

In this case the optimal contract should be(
0,

∆cA

∆pA

)
and

(
cB1 − pB1 bB , bB

)
.

2 Random Mechanisms

Following Kadan et al. (2017), a contract is a function that specifies a distribution of transfer to the agent

conditional on each possible output, effort and type. According to Kadan et al. (2017), a random mechanism is

any (ω, E) such that ω : X×E×Θ→ ∆(R)and E : Θ→ ∆(E) are transition probability,1 where ∆(R) and ∆(E)

represent the space of lotteries on R and E. Given a mechanism (ω, E) a type-θ agent gets expected payoff

U (θ) :=

∫
E

[
N∑
i=1

∫
R
rdω(r|xi, e, θ)pθe (xi)− cθe

]
dE(e|θ). (1)

The feasible mechanism has to satisfy the following IC, IR, and LL constraints:

U (θ) ≥
∫
E

sup
e∈E

[
N∑
i=1

∫
R
rdω(r|xi, ê, θ̂)pθe (xi)− cθe

]
dE(ê|θ̂), ∀θ, θ̂, (IC)

1A transition probability is a mapping, γ say, from A into ∆(B) such that, for every measurable M ⊂ B, γ(M |a) is a measurable
function of a ∈ A
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U (θ) ≥ 0, ∀θ, (IR)

supp {ω(·|xi, e, θ)} ⊂ R+, ∀θ, e, i, (LL)

where supp {λ} means the support of the measure λ. An optimal mechanism maximizes the principal’s expected

profit

∫
Θ

∫
E

N∑
i=1

pθe(xi)

[
xi −

∫
R
rdω(r|xi, e, θ)

]
dE(e|θ)dµ(θ) (2)

among mechanisms that satisfy IC, IR and LL.

For each random mechanism (ω, E), let us define the following expected payments (with some abuse of

notation):

wθ,ei =

∫
rdω(r|xi, e, θ) and wθi =

∫ ∫
rdω(r|xi, ê, θ)dE(ê|θ) =

∫
wθ,êi dE(ê|θ)

for each θ, e, i. We will use this notation throughout in what follows.

Remark 1. A deterministic contract is a function that specifies a transfer to the agent conditional on each possible

output. A deterministic mechanism specifies a contract and an effort recommendation for each type. That is,

a mechanism is a pair of measurable functions w : Θ × X → R and e : Θ → E, so that a type-θ agent is

recommended effort e (θ) and gets paid wθ (x) in case of output x.

The next theorem extends Theorem 1 for random mechanisms.

Theorem 1. Suppose MS holds and E is finite.2 There exists an essentially unique optimal stochastic

mechanism that offers a single deterministic contract to all types.

Proof of Theorem 1

Let us start with a basic and important lemma that shows that, in every IC random mechanism, the agent is

indifferent among all efforts in the support of the effort recommendation distribution.

Lemma 1. Suppose that (ω, E) is a (random) mechanism satisfying IC. Then, for every θ ∈ Θ and e in the

support of E(·|θ),
U(θ) =

∑
i

pθe,iw
θ
i − cθe,

where U(θ) is defined by (1).

Proof. From (IC), taking θ̂ = θ, it is straightforward to see that U(θ) ≥
∑
i p
θ
e,iw

θ
i − cθe, for all e ∈ E. Suppose,

by absurd, that there exists e in the support of E(·|θ) for which this last inequality is strict. Then, we could

reallocate the weight from e to some ê in the support of E(·|θ) that satisfies

∑
i

∫
rdω(r|xi, ê, θ)pθê,i − cθê >

∑
i

pθe,iw
θ
i − cθe.

This would generate a new effort distribution with a higher payoff to the agent, i.e., a profit deviation for the

agent from the original effort recommendation of the principal. This is a contradiction.

The following result will be important in order to establish existence of an optimal random mechanism, by

allowing us to restrict the set of possible contracts to a compact set.

2We can extend the proof for the general case of compact metric space with burden of extra technical assumptions on the space
of feasible mechanisms.
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Lemma 2. Let (ω, E) be a mechanism satisfying IC and LL. Suppose that wθi >
∆x
p2 for some i and positive

measure set of θ. Then (ω, E) is not optimal.

Proof. The proof has two steps. First, it shows that if an incentive-compatible mechanism offers a high enough

expected payment in one state, then every other contract must also have a high enough expected payment in

some state (otherwise, everyone would prefer the former contract). Second, it shows that any contract that makes

a high enough expected payment in some state is dominated by than the null contract.

Step 1. Suppose the mechanism offers an expected contract w̃ = (w̃1, ..., w̃N ) with w̃i >
∆x
p2 for some output i.

Let θ be a type that picks a contract with expected contract wθ. By Lemma 1, this type’s incentive-compatibility

constraint gives:
N∑
i=1

pθe,iw
θ
i − cθe ≥

N∑
i=1

pθe,iw̃i − cθe

for all e in the support of E(·|θ). Since max
{
wθ1, ..., w

θ
N

}
≥
∑N
i=1 w

θ
i p
θ
e,i and w̃i ≥ 0 for all i, this inequality

implies the following:

max
i∈{1,...,N}

{
wθi
}
≥ pw̃i >

∆x

p
,

where the last inequality uses w̃i >
∆x
p2 .

Step 2. We now show that this mechanism gives the principal a lower payoff than offering the contract that

always pays zero to all types. Since the probability is bounded below by p and payments are non-negative, the

principal’s payoff from offering wθ,ei to type θ is

∫
E

[
N∑
i=1

pθe,i

(
xi − wθ,ei

)]
dE(e|θ) ≤ xN − pwθi , ∀i.

Let e0 ∈ arg max cθe. The principal’s payoff from offering type θ a zero payment in all states is
∑N
i=1 p

θ
e0,ixi ≥ x1.

Combining these two inequalities, we obtain the following necessary condition for wθ to give a weakly higher

payoff to the principal than the null contract:

wθi ≤
∆x

p
, ∀i.

Thus, if

wθi >
∆x

p

for some i and positive measure set of θ, then the principal is strictly better offering the null contract.

Let (ω, E) be a feasible mechanism. Let M :=
{
wθ : θ ∈ Θ

}
denote the set of all expected contracts in this

mechanism. By Lemma 2, there is no loss of generality in assuming that M is bounded. Its closure, M̄, is

compact. There are three cases to consider:

Case 1)
∑N
i=1 hi(xi−wθi ) ≥ 0, for all θ ∈ Θ. Let w+ ∈ arg max

w∈M̄

∑N
i=1 hiwi, which exists because M̄ is compact

(from the previous lemma and E is compact) and the objective function is a continuous linear functional. Let

e+(θ) be an effort that maximizes the agent’s payoff under contract w+ (see the online appendix for existence).

Then, using Lemma 1, the agent’s payoff with the effort e chosen in the support of E cannot exceed the agent’s
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payoff with effort e+(θ), which by MS, can be written as

[
I (e, θ)− I

(
e+(θ), θ

)] N∑
i=1

hiw
+
i ≥ c

θ
e+(θ) − c

θ
e, (3)

with strict inequality in case e is a suboptimal effort choice for type θ under contract w+. Similarly, because e

is in the support of the agent’s effort choice with contract wθ,

[
I (e, θ)− I

(
e+(θ), θ

)] N∑
i=1

hiw
θ
i ≤ cθe+(θ) − c

θ
e. (4)

Combining (3) and (4), we obtain

[I (e, θ)− I (e+(θ), θ)]
∑N
i=1 hiw

θ
i ≤ cθe+(θ) − c

θ
e

≤ [I (e, θ)− I (e+(θ), θ)]
∑N
i=1 hiw

+
i ,

(5)

where the last inequality is strict for e in the support of E(·|θ) which is a suboptimal effort choice for type θ

under contract w+. By the definition of w+,

N∑
i=1

hiw
+
i ≥

N∑
i=1

hiw
θ
i

for all θ. Therefore, if
∑N
i=1 hiw

+
i >

∑N
i=1 hiw

θ,e
i , it follows from MS and (5) that I (e, θ) ≥ I (e+(θ), θ). If∑N

i=1 hiw
+
i =

∑N
i=1 hiw

θ
i , then e cannot be a suboptimal effort choice in its support for type θ under contract

w+ since in this case the second inequality being strict would lead to contradiction. Therefore, we can take

cθe+(θ) ≥ c
θ
e, which, again, gives I (e, θ) ≥ I (e+(θ), θ).

We now establish that replacing contract ω(·|xi, e, θ) by w+ increases the principal’s payoff from type θ. We

first show that, holding effort fixed, the principal is better off with the substitution of contracts. Since w+ is the

limit of sequence in M, the agent’s utility is continuous, and the original mechanism is incentive compatible, it

follows that ∫
E

∫
R
vθe(r)dω(r|·, e, θ)dE(e|θ) ≥

∫
E

vθe(w+)dE(e|θ). (6)

Substitute the expression for the agent’s payoff, multiply both sides by −1, and add
∫
E

∑N
i=1 p

θ
e,ixidE(e|θ) to

both sides to write: ∫
E

N∑
i=1

pθe,i(xi − w+
i )dE(e|θ) ≥

∫
E

N∑
i=1

pθe,i(xi −
∫
R
rdω(r|xi, e, θ))dE(e|θ), (7)

which states that, holding effort E(·|θ) fixed, the principal gets a higher profit with contract w+ than with

ω(·|xi, e, θ).
To show that the change in effort also benefits the principal, notice that since

∫
E
I (e, θ) dE(e|θ) ≥ I (e+(θ), θ)

and w+ ∈ M̄ (so that
∑N
i=1 hi(xi − w

+
i ) ≥ 0), the following inequality holds:

[∫
E

I (e, θ) dE(e|θ)− I
(
e+(θ), θ

)] N∑
i=1

hi
(
xi − w+

i

)
≥ 0.
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Use MS to rewrite this inequality as

N∑
i=1

pθe+(θ),i

(
xi − w+

i

)
≥
∫
E

N∑
i=1

pθe,i
(
xi − w+

i

)
dE(e|θ), (8)

which states that the principal gains from the change in effort.

Combining (7) and (8) establishes that the principal’s profit from θ with the new contract exceeds her profit

with the original contract:

uθe+(θ)(w
+) ≥

∫
E

N∑
i=1

pθe,i(xi −
∫
R
rdω(r|xi, e, θ))dE(e|θ).

By construction, the mechanism (w+, e+) is incentive compatible and satisfies LL. Moreover, from the previous

argument, it raises the principal’s payoff pointwise (i.e. it raises the principal’s payoff conditional on each type).

Case 2)
∑N
i=1(xi − wθi )hi ≤ 0, for all θ ∈ Θ. The proof of case 2 is similar to the one of case 1, except that,

instead of substituting all contracts by the one that maximizes
∑N
i=1 hiwi, we substitute them by the one that

minimizes this expression. Formally, let w− ∈ arg min
w∈M̄

∑N
i=1 hiwi and let e−(θ) be an effort that maximizes the

agent’s payoff under contract w−.

As in case 1, incentive compatibility gives

[I (e, θ) dE(e|θ)− I (e− (θ) , θ)]
∑N
i=1 hiw

θ
i dE(e|θ) ≤ cθe−(θ) − c

θ
e

≤ [I (e, θ)− I (e− (θ) , θ)]
∑N
i=1 hiw

−
i .

(9)

Since w− ∈ M̄, it satisfies
N∑
i=1

hiw
−
i ≤

N∑
i=1

hiw
θ,e
i ,

so that, by inequality (9), it follows from same argument as in case 1 that I (e− (θ) , θ) ≥
∫
E
I (e, θ) dE(e|θ). As

in case 1, incentive compatibility implies that, holding effort in the support of E(·|θ) fixed, the principal’s profit

is higher with contract w− than with ω(·|xi, e, θ):

∫
E

N∑
i=1

pθe,i(xi − w−i )dE(e|θ) ≥
∫
E

N∑
i=1

pθe,i(xi −
∫
R
rdω(r|xi, e, θ))dE(e|θ). (10)

Next, we show that the change in effort also benefits the principal. Because I (e−(θ), θ) ≥
∫
E
I (e, θ) dE(e|θ),

and because w− ∈ M̄, the following inequality holds:

[∫
E

I (e, θ) dE(e|θ)− I
(
e− (θ) , θ

)] N∑
i=1

hi(xi − w−i ) ≥ 0.

Use MS to rewrite this inequality as

N∑
i=1

pθe−(θ),i(xi − w
−
i ) ≥

∫
E

N∑
i=1

pθe,i(xi − w−i )dE(e|θ), (11)

which shows that the principal gains from the change in effort. Combining (10) and (11) establishes that the
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principal’s profit from θ with the new contract exceeds her profit with the original contract:

uθe−(θ)(w
−) ≥

∫
E

N∑
i=1

pθe,i(xi −
∫
R
rdω(r|xi, e, θ))dE(e|θ).

Therefore, the mechanism (w−, e−) is incentive compatible, satisfies LL, and increases the principal’s payoff

pointwise relative to the original mechanism.

Case 3) There exist θ+, θ− ∈ Θ for which
∑N
i=1 hi(xi −w

θ+
i ) ≥ 0 ≥

∑N
i=1 hi(xi −w

θ−
i ). First, we establish

that, because of the risk neutrality and limited liability, introducing “scaled down versions” of the contracts from

the original mechanism preserves incentive compatibility, meaning that no type would benefit from deviating to

such a contract. More precisely, let

N = {αwθ; θ ∈ Θ and α ∈ [0, 1]}

denote the menu of contracts obtained by introducing scaled down versions of all contracts in M. Then, for all

θ, θ̂ ∈ Θ and α ∈ [0, 1],

∫
E
vθe(wθ,e)dE(e|θ) ≥

∫
E

sup
e∈E

[∑N
i=1

∫
R rdω(r|xi, ê, θ̂)pθe (xi)− cθe

]
dE(ê|θ̂)

≥
∫
E

sup
e∈E

[∑N
i=1

∫
R αrdω(r|xi, ê, θ̂)pθe (xi)− cθe

]
dE(ê|θ̂),

where the first inequality follows from incentive compatibility of the original mechanism and the second inequality

follows from dω(r|xi, ê, θ̂) ≥ αdω(r|xi, ê, θ̂) (by LL and the fact that α ≤ 1). Therefore, there is no loss of

generality in assuming that the principal offers the menu of contracts N rather than M.

Let w0 ∈ N be a contract that satisfies

N∑
i=1

hi(xi − w0
i ) = 0. (12)

We claim that w0 exists. Indeed, suppose first that
∑N
i=1 hixi ≥ 0. Then, because

∑N
i=1 hixi ≤

∑N
i=1 hiw

θ−
i ,

there exists α0 ∈ [0, 1] such that
N∑
i=1

hixi = α0
N∑
i=1

hiw
θ−
i .

Similarly, suppose that
∑N
i=1 hixi ≤ 0. Then, because

∑N
i=1 hixi ≥

∑N
i=1 hiw

θ+,e+
i , there exists α0 ∈ [0, 1] such

that
N∑
i=1

hixi = α0
N∑
i=1

hiw
θ+,e+
i .

As in cases 1 and 2, incentive compatibility implies that, holding effort fixed, the principal’s profit is higher

with contract w0 than with ω(·|xi, e, θ):

∫
E

N∑
i=1

pθe,i(xi − w0
i )dE(e|θ) ≥

∫
E

N∑
i=1

pθe,i(xi −
∫
R
rdω(r|xi, e, θ))dE(e|θ). (13)

Let e0(θ) be an effort that maximizes the type θ’s payoff under contract w0. We claim that changing efforts

from E(·|θ) to e0(θ) does not affect the principal’s profit. To see this, multiply both sides of equation (12) by
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∫
E
I (e, θ) dE(e|θ)− I

(
e0 (θ) , θ

)
to write:

[∫
E

I (e, θ) dE(e|θ)− I
(
e0 (θ) , θ

)] N∑
i=1

hi
(
xi − w0

i

)
= 0.

Using MS, we can rewrite this equality as

N∑
i=1

pθe0(θ),i(xi − w
0
i ) =

∫
E

N∑
i=1

pθe,i(xi − w0
i )dE(e|θ), (14)

which shows that the principal gets the same payoff with both effort profiles.

Combining (13) and (14) establishes that the mechanism (w0, e0) is incentive compatible, satisfies LL, and

raises the principal’s payoff point-wise relative to the original mechanism. The essential uniqueness claim is

analogous to the proof of Theorem 1.

Now extend the robustness of the result on the optimality of a single contract to the assumptions of

multiplicative separability in the space of random mechanisms.

Proposition 2. Let E and Θ be finite. For generic economies satisfying MS, there is a neighborhood around it

for which the optimal mechanism is unique and offers a single contract to all types. Moreover, this contract pays

zero in all but one state.

Proof of Proposition 2

We first introduce some notation. Let P denote the space of distributions satisfying pθe (xi) > p for some

p > 0 (defined in Assumption 2), let #Θ denote the number of elements in Θ and, for notation simplicity, let

∆cθe,ê := cθe− cθê. For the (finite-dimensional) distribution
(
pθe,i
)

and cost function (cθe), take any of the equivalent

Euclidean norms.

Let Ψ : P ×∆
(
E#Θ

)
7→ R#Θ×N×#E denote the feasibility correspondence:

Ψ(p, E) :=

{
w̃ ∈ R#Θ×N×#E

+ ; ∀ê ∈ E,∀θ, θ̂ ∈ Θ∑N
i=1

[∫
pθe,iw̃

θ,e
i dE(e|θ)−

∫
pθê,iw̃

θ̂,e
i dE(e|θ̂)

]
≥
∫
cθedE(e|θ)− cθê

}
,

that is, the set of incentive compatible mechanisms under p, where ∆
(
E#Θ

)
is the set of family of distributions

{dE(·|θ); θ ∈ Θ}. When the effort profile is deterministic, we will denote it simply as e(θ). Let Γ : P×∆
(
E#Θ

)
7→

×R#Θ×N×#E denote the policy correspondence of the principal’s program:

Γ(p, E) = arg max
w̃∈Ψ(p,E)

∑
θ µ

θ
∑N
i=1

∫
pθe,i(xi − w̃

θ,e
i )dE(e|θ) ,

and V : P ×∆
(
E#Θ

)
→ R denote its optimal value:

V (p, E) = max
w̃∈Ψ(p,E)

∑
θ

µθ
N∑
i=1

∫
pθe,i(xi − w̃

θ,e
i )dE(e|θ).

Throughout the proof, we take any of the equivalent Euclidean norms for contracts w ∈ R#Θ×N×#E .

Lemma 3. For each E ∈ ∆
(
E#Θ

)
, V (·, E) is a continuous function and Γ(·, E) is a upper semi-continuous

correspondence at any p for which the interior of Ψ(p, E) is non-empty.
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Proof. As shown in the existence part of the proof of Theorem 1, we can assume, without loss of generality,

that all feasible contracts belong to [0, L]#Θ×N×#E for some L > 0. Notice that Ψ(·, E) is a compact-valued

correspondence. The proof proceeds by verifying the conditions for the Maximum Theorem (Berge, 1963). For

this, we show that Ψ(·, E) is a continuous correspondence.

(a) Ψ is upper semi-continuous (“u.s.c.”): Let (pn) be a sequence of distributions in P converging to p. For any

w̃n ∈ Ψ(pn, E), the finiteness of E and Θ, the compactness of [0, L]N (and passing to a convergent subsequence if

necessary), we can suppose that w̃n converges to w̃ ∈ [0, L]#Θ×N×#E . By the continuity of the objective function

and the constraints of the maximization problem that defines Γ, we have that w̃ ∈ Ψ(p, E). Therefore, Ψ is u.s.c.

(b) Ψ is lower semi-continuous (“l.s.c.”): Let (pn) be a sequence of distributions in P that converges to p.

Let w̃ be an interior point of Ψ(p, E), i.e.,

N∑
i=1

[∫
pθe,iw̃

θ,e
i dE(e|θ)−

∫
pθê,iw̃

θ̂,e
i dE(e|θ̂)

]
>

∫
cθedE(e|θ)− cθê,

for all (θ̂, ê) /∈ {(θ, e); θ ∈ Θ and e in the support of E(·|θ)}.
Then, for n sufficiently large we have that the previous inequality is also true for pn instead of p. This implies

that the constant sequence w̃ ∈ Ψ(pn, E) converges to w̃ ∈ Ψ(p, E), which shows that Ψ is l.s.c. Let w be a

frontier point of Ψ(p, E). Since Ψ(p, E) is a convex set with a non-empty interior, we can find a sequence (wk)

in the interior of Ψ(p, E) converging to w. Now, for every n we can then find kn such that wkn belongs to the

interior of Ψ(pn, E). Since (wkn) is a subsequence of (wk), it also converges to w, establishing that Ψ is l.s.c.

Because the objective function of the maximization program in V (p, E) is continuous and Ψ(·, E) is a continuous

correspondence, it follows from the Maximum Theorem that V (·, E) is a continuous function and Γ(·, E) is

u.s.c.

In what follows we use the convention that V (p, E) = −∞ when Ψ(p, E) = ∅.

Corollary 1. Let Ei ∈ ∆
(
E#Θ

)
, i = 1, 2. If V (p, E1) > V (p, E2) and Ψ(p, E1) has non-empty interior for some

distribution p ∈ P, then there exists a neighborhood N of p such that V (p̃, E1) > V (p̃, E2), for all p̃ ∈ N .

Proof. To obtain a contradiction, let (pn) be a sequence converging to p such that

V (pn, E2) ≥ V (pn, E1)

for all n ∈ N. Let wn ∈ Ψ(pn, E2) be a sequence that attains value V (pn, E2). Passing to a convergent subsequence

if necessary, let w = lim
n
wn. Since Ψ compact-valued correspondence, w ∈ Ψ(p, E2). Hence, V (p, E2) is at

least as high as the value attained at w. By Lemma 3 (and passing convergent subsequence if necessary),

limn→∞ V (pn, E1) = V (p, E1), and, therefore,

V (p, E2) ≥ V (p, E1),

which contradicts the hypothesis that V (p, E1) > V (p, E2).

Lemma 4. Let PMS be the set of distributions in P that satisfy MS. Then, the subset of PMS for which the

optimal contract is non-null and pays a positive amount in one state only is generic (i.e., open and dense in

PMS).

Proof. The proof is as in Lemma 3 of the paper.
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Lemma 5. For a generic set of distributions in PMS and a generic set of cost functions, there is a neighborhood

in P for which the optimal mechanism is implemented by only one contract that pays a positive amount in only

one state.

Proof. The proof is as in Lemma 4 of the paper.

3 Lower Bound on Profits

In this section we obtain a general lower bound on the principal’s loss by restricting herself to offering a single

contract (i.e., offering pooling mechanisms only).

Suppose there are finitely many effort levels and types. Let p = {pθe,i; e ∈ E, θ ∈ Θ, xi ∈ X} denote the vector

of probabilities of the economy, and let (e(θ))θ∈Θ denote a profile of efforts recommended to each type.

Define the maximum profit when the principal is restricted to offering pooling mechanisms as

πpol(p) = max
w,e(θ)

∑
θ µ

θ
∑
i p
θ
e(θ),i(xi − wi)

s. t.
∑
i ∆pθe(θ),ẽ,iwi ≥ ∆cθe(θ),ẽ, ∀θ, ẽ

wi ≥ 0, ∀i,

(15)

where

∆pθe,ẽ = pθe − pθẽ and ∆cθe,ẽ = cθe − cθẽ.

For each contract w ∈ RN+ , let Θe(w) be the set of types that are recommended effort e, i.e.,3

Θe(w) ⊂ {θ ∈ Θ; ∆pθe,ẽ · w ≥ ∆cθe,ẽ,∀ẽ},

∂Θe,ẽ(w) be the set of types that are indifferent between e 6= ẽ, i.e.,

∂Θe,ẽ(w) = {θ ∈ Θe(w); ∆pθe,ẽ · w = ∆cθe,ẽ},

where, for convenience, we are using dot to represent the inner product. Let us also denote

∂Θ+
e,ẽ(w) = {θ ∈ ∂Θe(w); ∆cθe,ẽ > 0} and ∂Θ−e,ẽ(w) = ∂Θe,ẽ(w)\∂Θ+

e,ẽ(w).

We can write the Lagrangian

L(w, p, λ) =
∑
e∈E

∑
θ∈Θe(w)

µθpθe · (x− w) +
∑
e∈E

∑
θ∈Θe(w)

∑
ẽ∈E

λθe,ẽ∆p
θ
e,ẽ · w +

∑
θ

ξθ · w,

where λθe,ẽ, ξ
θ ≥ 0 are the Lagrangian multipliers.

Suppose that the distribution p satisfies MS and, without loss of generality, the optimal pooling contract w∗

pays out all in state N , i.e., w∗ = (0, ..., w∗N ). We have to consider two cases:

(i) w∗N > 0. Notice that the IC constraint is equivalent to

∆c
θ+
e,ẽ

∆p
θ+
e,ẽ,N

= w∗N =
∆c

θ−

f,f̃

∆p
θ−

f,f̃ ,N

3Notice that {Θe(w); e ∈ E} forms a partition of Θ.
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for all θ+ ∈ ∂Θ+
e,ẽ(w

∗) and θ− ∈ ∂Θ−
f,f̃

(w∗) such that ∆p
θ−

f,f̃ ,N
< 0 (notice that if θ− ∈ ∂Θ−

f,f̃
(w∗) and ∆p

θ−

f,f̃ ,N
=

0, then ∆c
θ−

f,f̃
= 0 and the IC constraint trivially holds). Hence, without loss of generality we can assume that

∂Θe,ẽ(w
∗) = ∂Θ+

e,ẽ(w
∗). In particular, the regularity (Slater) condition for the existence of Lagrangian multipliers

is trivially satisfied.

Denoting Θ∗e = Θe(w
∗) and ∂Θ∗e,ẽ = ∂Θ+

e,ẽ(w
∗), the first-order condition and the complementary slackness

condition imply

−
∑
e∈E

∑
θ∈Θ∗

e

µθpθe,N +
∑
e,ẽ∈E

∑
θ∈∂Θ∗

e,ẽ

λθe,ẽ∆p
θ
e,ẽ,N = 0,

which implies that

k
∑
e,ẽ∈E

∑
θ∈∂Θ∗

e,ẽ

λθe,ẽ ≤
∑
e,ẽ∈E

∑
θ∈∂Θ∗

e,ẽ

λθe,ẽ∆p
θ
e,ẽ,N =

∑
e∈E

∑
θ∈Θ∗

e

µθpθe,N ,

where

k = min

{
∆pθe,ẽ,N =

∆cθe,ẽ
w∗N

; θ ∈ ∂Θ∗e,ẽ, e, ẽ ∈ E

}
≥ 1

w∗N
min{∆cθe,ẽ > 0; θ ∈ Θ, e 6= ẽ}.

If min{∆cθe,ẽ > 0; θ ∈ Θ, e 6= ẽ} = ∆c > 0, then

w∗N
∑
e,ẽ∈E

∑
θ∈∂Θ∗

e,ẽ

λθe,ẽ ≤
w∗N
k

=
(w∗N )

2

∆c
.

(ii) w∗N = 0. Notice that the IC constraint is equivalent to ∆cθe,ẽ = 0, for all θ ∈ ∂Θe,ẽ(w
∗). In this case

we can ignore the IC constraint and consider only the positiveness constraint. Hence, the first-order and the

complementary slackness conditions imply

−
∑
e∈E

∑
θ∈Θ∗

e

µθpθe,N + ξN = 0.

Notice that the Lagrangian is a linear function of p for each w. Hence, taking the maximum of these functions

indexed by w, we get a convex functional of p. By the envelope theorem, the Gateaux derivative of πpol(p) is

given by

δhπ
pol(p) =

∑
e∈E

∑
θ∈Θ∗

e

µθhθe · (x− w∗) +
∑
e,ẽ∈E

∑
θ∈∂Θ∗

e,ẽ

λθe,ẽ∆h
θ
e,ẽ,Nw

∗
N ,

when w∗ 6= 0 and

δhπ
pol(p) =

∑
e∈E

∑
θ∈Θ∗

e

µθhθe · x,

when w∗ = 0, where h is the incremental probability vector, i.e. h = p̂ − p , where p̂ is alternative probability

vector. Therefore, ∣∣δhπpol(p)∣∣ ≤ (||x− w∗||+ 2
(w∗N )

2

∆c

)
.||h||,

where || · || is the maximum norm and the constant between parentheses on the right hand side is the slope of a

convex function πpol(p), which is the lower bound of the principal’s payoff.
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4 Optimal Screening under Distributions Close to MS

This appendix presents a family of distributions for which the optimal mechanism offers a single contract to

all types if and only if the distribution satisfies MS. This example shows that the genericity requirement in

Proposition ?? is needed since, in this (non-generic) case, offering a menu of contracts is optimal for distributions

arbitrarily close to MS.

There are two effort levels (e ∈ {0, 1}), two evenly-distributed types (θ ∈ {A,B}), and three outputs (xi = i,

i = 1, 2, 3). For both types, outputs are uniformly distributed under low effort:

pA0 = pB0 = p0 = (1/3, 1/3, 1/3).

With high effort, type A delivers the intermediate output, whereas type B obtains a distribution supported on

the extreme points:

pA1 = (0, 1, 0)

pB1 = (1− λ, 0, λ),

where λ ∈ [1/2, 1].4 Note that MS is satisfied if and only if λ = 1/2.

Let E = (eA, eB) ∈ {0, 1}2 be an arbitrary vector of recommended efforts. We will now compute the principal’s

expected profit πE for each effort vector E .

• E = (0, 0). The relevant constraints are the low effort recommendation for both types:

p0 · w0 ≥ c0 and
(
p0 − pθ1

)
· w0 ≥ c0 − cθ1

for all θ ∈ {A,B}, where · represents the canonical inner product. If c0 ≤ cθ1, then w0 = (c0, c0, c0) is the

optimal (pooling) contract, and the expected profit is π∗(0,0) = p0 ·
[
(1, 2, 3)− w0

]
= 2− c0.

• E = (1, 0). The relevant constraints are the high effort recommendation for type A:

pA1 · wA ≥ cA1 and
(
pA1 − p0

)
· wA ≥ cA1 − c0

and the low effort recommendation for type B:

p0 · wA ≥ c0 and
(
p0 − pB1

)
· wA ≥ c0 − cB1 .

If c0 ≤ cA1
3 , then the optimal (pooling) contract is wA = (0,

3(cA1 −c0)
2 , 0), and the profit equals:

π∗(1,0) =
1

2

(
pA1 + p0

)
·
[
(1, 2, 3)− wA

]
= 2− 5

4

(
cA1 − c0

)
.

• E = (0, 1). The relevant constraints are the high effort recommendation for type B:

pB1 · wB ≥ cB1 and
(
pB1 − p0

)
· wB ≥ cB1 − c0

4These probabilities are not strictly positive and, therefore, do not satisfy the assumption we used to ensure existence of an
optimal mechanism. Nevertheless, as we show below, an optimal mechanism exists here. Moreover, it is straightforward to show by
continuity that small perturbations lead to strictly positive distributions under which the results below go through. We present this
case here to simplify calculations.
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and the low effort recommendation for type A:

p0 · wB ≥ c0 and
(
p0 − pA1

)
· wB ≥ c0 − cA1 .

If c0 ≤ cB1
3λ , then the optimal (pooling) contract is wB = (0, 0,

3(cB1 −c0)
3λ−1 ), and the expected profit is:

π∗(0,1) =
1

2

(
p0 + pB1

)
·
[
(1, 2, 3)− wB

]
=

3

2
+ λ−

3λ
(
cB1 − c0

)
2(3λ− 1)

.

If c0 >
cB1
3λ , the optimal pooling contract is wB = (0, 0, 3c0), and the expected profit equals:

πpool(0,1) =
1

2

(
p0 + pB1

)
·
[
(1, 2, 3)− wB

]
=

3

2
+ λ− 3λc0

2
.

We now show that for every λ > 1/2, the principal can do better by offering different contracts to each

type. Taking the contracts:

wAs = (0, 3c0, 0) and wBs = (0, 0,
3
(
cB1 − c0

)
3λ− 1

),

the principal’s expected profit is

π∗(0,1) = 1
2

[(
p0 + pB1

)
· (1, 2, 3)− p0 · wAs − pB1 · wBs

]
= 3

2 + λ− c0
2 −

3λ(cB1 −c0)
2(3λ−1) > πpool(0,1).

Notice that IC constraints are satisfied since

p0 · (wAs − wBs ) ≥ 0 ≥ p1
B · (wAs − wBs )

and type A chooses low effort if and only if

(
p0 − pA1

)
· wAs ≥ c0 − cA1

or

c0 ≤
cA1
3
.

• E = (1, 1). The relevant constraints are the high effort recommendation for both types:

pθ1 · wAB ≥ cθ1 and
(
pθ1 − p0

)
· wAB ≥ cθ1 − c0,

for θ ∈ {A,B}. If c0 ≤ cA1
3 and c0 >

cB1
3λ , then the optimal (pooling) contract is wAB = (0,

3(cA1 −c0)
2 , 3c0),

and the principal’s expected profits are:

π∗(1,1) =
1

2

(
pA1 + pB1

)
·
[
(1, 2, 3)− wAB

]
=

3

2
+ λ−

3
(
cA1 − c0

)
4

− 3λc0
2

.

Proposition 3. Let cB1 = 0. For every λ > 1/2, there exists (c0, c
A
1 ) satisfying 0 < c0 ≤ cA1

3 such that the

principal’s optimal mechanism offers a different contract to each type.
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Proof. From the computations above, we have

π∗(0,0) = 2− c0
π∗(1,0) = 2− 5

4

(
cA1 − c0

)
π∗(0,1) = 3

2 + λ− c0
2 + 3λc0

2(3λ−1)

π∗(1,1) = 3
2 + λ− 3(cA1 −c0)

4 − 3λc0
2 .

Then, for each λ > 1/2, if we take cA1 large enough, π∗(0,1) is largest value among the profits above. But, as seen

previously, the optimal mechanism offers a different contract to each type in this case.

Note that if λ = 1/2, then π∗(0,1) = π∗(0,0) and pooling is optimal (as must be the case since the distribution

satisfies MS in this case).

5 Regulation and Procurement

This section formally describes the regulation and procurement example described in the main text and provides

the versions of Theorem 1 and 2 for that example.

Recall that a contract is a function that specifies a transfer to the firm conditional on each possible cost C.

A mechanism is a pair of measurable functions w : {C1, ..., CN} × Θ → R and e : Θ → R specifying, for each

reported type, a recommended effort and a transfer for each cost realization. Given a mechanism (w, e), a type-θ

manager gets payoff

U(θ) :=

N∑
i=1

pθe(θ) (Ci)w
θ (Ci)− cθe(θ). (16)

As usual, the mechanism must satisfy the IC and IR constraints:

U (θ) ≥
N∑
i=1

pθê (Ci)w
θ̂ (Ci)− cθê, ∀θ, θ̂, ê, (IC)

U (θ) ≥ 0, ∀θ. (IR)

The manager is protected by limited liability, so that payments are non-negative:

wθ(C) ≥ 0, ∀C. (LL)

We impose the technical conditions from Assumption 2 (with C instead of x).

Since, by the accounting convention described in the text, the regulator fully reimburses the firm’s cost

realization, the regulator’s expected payment to type θ equals

N∑
i=1

pθe(θ) (Ci)
[
Ci + wθ (Ci)

]
.

Because the government uses distortionary taxation to raise public funds, the regulator faces a shadow cost of

public funds λ > 0. The net surplus of consumers/taxpayers is

S − (1 + λ)

N∑
i=1

pθe(θ) (Ci)
[
Ci + wθ (Ci)

]
. (17)
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A utilitarian regulator maximizes the sum of the expected utility of the firm’s manager (16) and the consumers’

net surplus (17):

S − (1 + λ)

N∑
i=1

pθe(θ) (Ci)Ci − cθe(θ) − λ
N∑
i=1

pθe(θ) (Ci)w
θ (Ci) . (18)

As the last term of this expression shows, because taxation is distortionary (λ > 0), leaving rents the regulated

firm is costly. Moreover, because each dollar reimbursed to the firm has an additional cost of λ, cutting the firm’s

cost increases social surplus by 1 + λ. The first-best effort minimizes (1 + λ)
∑N
i=1 p

θ
e (Ci)Ci + cθe.

If types were observable and the firm did not have limited liability, the first best would be implemented by

making the firm the residual claimant of the social gain from cutting costs and extracting the entire surplus:

wθ(Cj) = (1 + λ)

[
N∑
i=1

pθeFB(θ)(Ci)Ci − Cj

]
,

where eFB(θ) is the first-best effort. This contract is no longer feasible when types are unobservable since the

manager would always pretend to have a high effort cost. It also violates violates LL since w is non-degenerate

and has mean zero.

The main difference between this model and the principal-agent model considered previously is that, while the

principal only cares about her own payoff, a utilitarian regulator also cares about the manager’s payoffs. Because

the regulator internalizes the manager’s effort cost, their preferences are not perfectly misaligned. However, to

avoid distortionary taxation, the regulator would still like to leave as little rents as possible to the firm’s manager.

It may also be desirable to include a free disposal constraint (FD), requiring the firm’s compensation for

cutting costs not to exceed the amount cut:

wθ (Cj)− wθ (Ci) ≤ Ci − Cj (FD)

for all j and i with i > j. FD requires the firm’s compensation for cutting costs not to exceed the amount cut.

It must be satisfied, for example, if the firm’s manager can secretly inflate firm costs.

Unlike output in the principal-agent model, a higher cost decreases the principal’s payoff in this model. We

therefore say that the cost distribution satisfies MLRP if, for any eL, eH , and θ with I(eH , θ) > I(eL, θ),
pθeH

(C)

pθeL
(C)

is decreasing in C.

In order to rewrite the procurement model using similar terminology as in the paper, perform the change of

variables:

xi := S − (1 + λ)Ci.

We will write contracts in terms of the taxpayer’s net surplus x, instead of the firm’s production cost C by letting

W θ(x) := wθ
(
S−x
1+λ

)
. The distribution of the taxpayer’s net surplus x is determined by qθe(xi) := pθe

(
S−xi
1+λ

)
.

Notice that if pθe satisfies MS, so does qθe . With some abuse of notation, we will write pθe for the probability

distribution function associated with the distribution function qθe .

The regulator’s payoff is
N∑
i=1

pθe(θ),i
(
xi − λW θ

i

)
− cθe(θ), (19)

whereas the type-θ manager’s payoff is
N∑
i=1

pθe(θ),iW
θ
i − cθe(θ),

where we write W θ
i for W θ(xi), for all i and θ.
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Proposition 4. Suppose MS holds.

a) There exists an essentially unique optimal mechanism that offers a single contract to all types.

b) If the cost distribution also satisfies MLRP, there exists an essentially unique optimal FD-mechanism that

offers all types the contract w (C) = max
{
C̄ − C; 0

}
, for some C̄.

Proof. a) Let (w, e) be a feasible mechanism. It is straightforward to adapt Lemma 1 to show that there

is no loss of generality in assuming that contracts are uniformly bounded. As in the proof of Theorem 1, let

M :=
{
W θ : θ ∈ Θ

}
denote the set of all contracts in this mechanism, and let M̄ denote its closure, which is

compact.

Let

W− ∈ arg min
W∈M̄

N∑
i=1

hiWi (20)

and, for each type, let

e−(θ) ∈ arg max
e

N∑
i=1

pθe,iW
−
i − c

θ
e. (21)

Existence of W− and e−(θ) follow from the arguments in Theorem 1.

Use IC to write

[I (e(θ), θ)− I (e− (θ) , θ)]
∑N
i=1 hiW

θ
i ≤ cθe−(θ) − c

θ
e(θ)

≤ [I (e(θ), θ)− I (e− (θ) , θ)]
∑N
i=1 hiW

−
i

. (22)

Since W− solves (20), it satisfies
N∑
i=1

hiW
−
i ≤

N∑
i=1

hiW
θ
i ,

so that, by (22), I (e− (θ) , θ) ≥ I (e(θ), θ).5 That is, offering W− yields a distribution of net surplus x that

first-order stochastically dominates any other contract in M̄.

We first show that, holding effort e(θ) fixed, the regulator’s payoff is higher with contract W− than with W θ.

Since W− is the limit of sequence inM, the agent’s utility is continuous, and the original mechanism is incentive

compatible, it follows that
N∑
i=1

pθe(θ),iW
θ
i − cθe(θ) ≥

N∑
i=1

pθe(θ),iW
−
i − c

θ
e(θ).

With some algebraic manipulations, we can rewrite this inequality as

N∑
i=1

(
xi − λW−i

)
pθe(θ),i − c

θ
e(θ) ≥

N∑
i=1

(
xi − λW θ

i

)
pθe(θ),i − c

θ
e(θ), (23)

which shows that, holding effort constant, the regulator obtains a higher payoff with W− than with W θ for e(θ)

fixed.

Next, we show that changing effort from e(θ) to e−(θ) also increases the regulator’s payoff. Let ∆W−i =

W−i −W
−
i−1, so that

N∑
i=1

hi

(
xi

1 + λ
−W−i

)
= −

N∑
i=1

H(xi)

(
∆xi

1 + λ
−∆W−i

)
≤ 0, (24)

where H(xi) =
∑
j≤i h(xj) and the equality uses summation by parts, x0 = 0 = W−0 , and the inequality uses

5The argument here is equivalent to one used in the proof of Theorem 1.
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H(x) ≥ 0 for all x and FD. Use (24) to obtain:

[I (e (θ) , θ)− I (e− (θ) , θ)]
∑N
i=1 hixi ≥ (1 + λ) [I (e (θ) , θ)− I (e− (θ) , θ)]

∑N
i=1 hiW

−
i

≥ cθe−(θ) − c
θ
e(θ) + λ [I (e (θ) , θ)− I (e− (θ) , θ)]

∑N
i=1 hiW

−
i

, (25)

where the first inequality follows from I (e− (θ) , θ) ≥ I (e(θ), θ) and some algebraic manipulations, whereas the

second inequality follows from the fact that e−(θ) maximizes type θ’s effort under contract W− (program 21).

Rearranging (25), we obtain:

−
[
I
(
e− (θ) , θ

)
− I (e (θ) , θ)

] N∑
i=1

hi
(
xi − λW−i

)
≥ cθe−(θ) − c

θ
e(θ).

Using MS, this inequality can be written as

N∑
i=1

pθe−(θ),i

(
xi − λW−i

)
− cθe−(θ) ≥

N∑
i=1

pθe(θ),i
(
xi − λW−i

)
− cθe(θ), (26)

which establishes that the change in effort from e(θ) to e−(θ) increases the regulator’s payoff. Combining

inequalities (23) and (26) concludes the proof.

b) If (W, e) is an optimal FD mechanism, it must solve the following program

min
W

N∑
i=1

Wi

∫
Θ

pθe(θ),idµ(θ)

subject to
N∑
i=1

hiWi = K, (IC’)

Wi ≥ 0, (LL)

xi − xi−1

1 + λ
≥Wi −Wi−1. (M)

Using the same arguments as in proof of Theorem 2 of the paper, it follows that there exists x̄ such that

w(x) =

{
0 if x ≤ x̄
x−x̄
1+λ if x > x̄

.

Rewriting in terms of costs, we obtain w(C) = max
{
C̄ − C; 0

}
, where C̄ ≡ S−x̄

1+λ .
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