Supplement to "Observational learning in large anonymous games": Omitted proofs

(Theoretical Economics, Vol. 14, No. 2, May 2019, 403-435)

Ignacio Monzón
Collegio Carlo Alberto, Università degli Studi di Torino

S.1. Proof of Lemma 6

Take a limit point $x=\left(x_{0}, x_{1}\right)$ with $v_{0}\left(x_{0}\right)>0$ and $v_{1}\left(x_{1}\right)<0$. In the limit, agents want their action to go against the state of the world. Now the simple strategy $\widetilde{\sigma}^{T}$ is

$$
\widetilde{\sigma}^{T}(\widetilde{\xi}, s)= \begin{cases}1 & \text { if } \widetilde{\xi}=1 \text { and } l(s) \leq \underline{k}^{T} \equiv \frac{v_{0}\left(E_{\sigma^{T}}\left[X_{0}\right]\right)}{-v_{1}\left(E_{\sigma^{T}}\left[X_{1}\right]\right)} \frac{\mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=1 \mid \theta=0)}{\mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=1 \mid \theta=1)} \\ 1 & \text { if } \widetilde{\xi}=0 \text { and } l(s) \leq \bar{k}^{T} \equiv \frac{v_{0}\left(E_{\sigma^{T}}\left[X_{0}\right]\right)}{-v_{1}\left(E_{\sigma^{T}}\left[X_{1}\right]\right)} \frac{\mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=0 \mid \theta=0)}{\mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=0 \mid \theta=1)} \\ 0 & \text { otherwise } .\end{cases}
$$

Given this simple strategy, the approximate improvement is given by

$$
\begin{aligned}
\Delta^{T}= & \frac{1}{2} \sum_{\theta \in\{0,1\}}\left[\mathbf{P}_{\widetilde{\sigma}^{T}}\left(a_{i}=1 \mid \theta\right)-E_{\sigma^{T}}\left[X_{\theta}\right]\right] \cdot v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right) \\
= & \frac{1}{2} \sum_{\theta \in\{0,1\}}\left[\varepsilon+(1-2 \varepsilon)\left[\pi_{\theta}^{T} G_{\theta}\left(\underline{k}^{T}\right)+\left(1-\pi_{\theta}^{T}\right) G_{\theta}\left(\bar{k}^{T}\right)\right]-E_{\sigma^{T}}\left[X_{\theta}\right]\right] \cdot v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right) \\
= & \frac{1}{2} \sum_{\theta \in\{0,1\}} v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[\varepsilon+(1-2 \varepsilon)\left[\pi_{\theta}^{T}\left[G_{\theta}\left(\underline{k}^{T}\right)-1\right]+\left(1-\pi_{\theta}^{T}\right) G_{\theta}\left(\bar{k}^{T}\right)\right]\right] \\
& +v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[(1-2 \varepsilon) \pi_{\theta}-E_{\sigma^{T}}\left[X_{\theta}\right]\right] \\
= & \frac{1}{2} \sum_{\theta \in\{0,1\}} v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[\left(1-2 \pi_{\theta}^{T}\right) \varepsilon+(1-2 \varepsilon)\left[\pi_{\theta}^{T}\left[G_{\theta}\left(\underline{k}^{T}\right)-1\right]+\left(1-\pi_{\theta}^{T}\right) G_{\theta}\left(\bar{k}^{T}\right)\right]\right] \\
& +\frac{1}{2} \sum_{\theta \in\{0,1\}} v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[\pi_{\theta}-E_{\sigma^{T}}\left[X_{\theta}\right]\right] .
\end{aligned}
$$

Ignacio Monzón: ignacio@carloalberto.org
© 2019 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http://econtheory.org. https://doi.org/10.3982/TE3014

Thus,

$$
\begin{aligned}
\Delta^{T}= & \frac{1}{2}\left[\left(1-2 \pi_{0}^{T}\right) \varepsilon+(1-2 \varepsilon)\left[-\pi_{0}^{T}\left[1-G_{0}\left(\underline{k}^{T}\right)\right]+\left(1-\pi_{0}^{T}\right) G_{0}\left(\bar{k}^{T}\right)\right]\right] \cdot v_{0}\left(E_{\sigma^{T}}\left[X_{0}\right]\right) \\
& +\frac{1}{2}\left[\left(1-2 \pi_{1}^{T}\right) \varepsilon+(1-2 \varepsilon)\left[-\pi_{1}^{T}\left[1-G_{1}\left(\underline{k}^{T}\right)\right]+\left(1-\pi_{1}^{T}\right) G_{1}\left(\bar{k}^{T}\right)\right]\right] \cdot v_{1}\left(E_{\sigma^{T}}\left[X_{1}\right]\right) \\
& +\frac{1}{2} \sum_{\theta \in\{0,1\}} v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[\pi_{\theta}-E_{\sigma^{T}}\left[X_{\theta}\right]\right] \\
= & \frac{1}{2}\left[(1-2 \varepsilon)\left(1-\pi_{0}^{T}\right)\left[G_{0}\left(\bar{k}^{T}\right)-\frac{-v_{1}\left(E_{\sigma^{T}}\left[X_{1}\right]\right)}{v_{0}\left(E_{\sigma^{T}}\left[X_{0}\right]\right)} \frac{\left(1-\pi_{1}^{T}\right)}{\left(1-\pi_{0}^{T}\right)} G_{1}\left(\bar{k}^{T}\right)\right]\right] \cdot v_{0}\left(E_{\sigma^{T}[}\left[X_{0}\right]\right) \\
& +\frac{1}{2}\left[(1 - 2 \varepsilon) \pi _ { 1 } ^ { T } \left[\frac{v_{0}\left(E_{\sigma^{T}}\left[X_{0}\right]\right)}{\left.-v_{1}\left(E_{\left.\sigma^{T}\left[X_{1}\right]\right)} \frac{\pi_{0}^{T}}{\pi_{1}^{T}}\left[1-G_{0}\left(\underline{k}^{T}\right)\right]-\left[1-G_{1}\left(\underline{k}^{T}\right)\right]\right]\right] \cdot v_{1}\left(E_{\sigma^{T}}\left[X_{1}\right]\right)}\right.\right. \\
& +\frac{1}{2}\left(1-2 \pi_{0}^{T}\right) \varepsilon \cdot v_{0}\left(E_{\sigma^{T}}\left[X_{0}\right]\right)+\frac{1}{2}\left(1-2 \pi_{1}^{T}\right) \varepsilon \cdot v_{1}\left(E_{\left.\sigma^{T}\left[X_{1}\right]\right)}^{=}\right. \\
& +\frac{1}{2} \sum_{\theta \in\{0,1\}} v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[\pi_{\theta}-E_{\sigma^{T}}\left[X_{\theta}\right]\right] \\
& +\frac{1}{2}\left[\left(2 \pi_{0}^{T}\right) \varepsilon+(1-2 \varepsilon)\left(1-\pi_{0}^{T}\right)\left[G_{0}\left(\bar{k}^{T}\right)-\left(\bar{k}^{T}\right)^{-1} G_{1}\left(\bar{k}^{T}\right)\right]\right] \cdot v_{0}\left(E_{\left.\sigma^{T}\left[X_{0}\right]\right)}\right. \\
& +\frac{1}{2} \sum_{\theta \in\{0,1\}} v_{\theta}\left(E_{\sigma^{T}}\left[X_{\theta}\right]\right)\left[\pi_{\theta}-2 \varepsilon\right) \pi_{1}^{T}\left[\left[1-E_{\sigma^{T}}\left[X_{\theta}\right]\right] .\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \Delta^{T}= & \frac{1}{2}\left[\left(1-2 x_{0}\right) \varepsilon+(1-2 \varepsilon)\left(1-x_{0}\right)\left[G_{0}(\bar{k})-(\bar{k})^{-1} G_{1}(\bar{k})\right]\right] \cdot v_{0}\left(x_{0}\right) \\
& +\frac{1}{2}\left[\left(2 x_{1}-1\right) \varepsilon+(1-2 \varepsilon) x_{1}\left[\left[1-G_{1}(\underline{k})\right]-\underline{k}\left[1-G_{0}(\underline{k})\right]\right]\right] \cdot\left(-v_{1}\left(x_{1}\right)\right) .
\end{aligned}
$$

Again, Corollary 2 leads directly to

$$
\begin{aligned}
& {\left[(1-2 \varepsilon)\left(1-x_{0}\right)\left[G_{0}(\bar{k})-(\bar{k})^{-1} G_{1}(\bar{k})\right]-\varepsilon\left(2 x_{0}-1\right)\right] \cdot v_{0}\left(x_{0}\right)} \\
& \quad+\left[(1-2 \varepsilon) x_{1}\left[\left[1-G_{1}(\underline{k})\right]-\underline{k}\left[1-G_{0}(\underline{k})\right]\right]-\varepsilon\left(1-2 x_{1}\right)\right] \cdot\left(-v_{1}\left(x_{1}\right)\right) \leq 0
\end{aligned}
$$

S.2. Proof of Lemma 7

Let $\widetilde{\mathrm{NE}}_{\delta}=\left\{x \in[0,1]^{2}: d\left(x, \mathrm{NE}_{(l, \bar{l})}\right) \leq \delta\right\}$ be the set of all points that are δ-close to elements of $\mathrm{NE}_{(l, \bar{l})}$ and let L^{ε} denote the set of limit points in a game with mistake probability $\varepsilon>0$. I show first the following lemma, which is analogous to Lemma 11 in the main paper.

Lemma 11^{\prime} (Limit set approaches $\left.\mathrm{NE}_{(\underline{l}, \bar{l})}\right)$. For any $\delta>0, \exists \tilde{\varepsilon}>0, L^{\varepsilon} \subseteq \widetilde{\mathrm{NE}}_{\delta} \forall \varepsilon<\tilde{\varepsilon}$.

Proof. The proof is by contradiction. Assume that there exists (i) a sequence of mistake probabilities $\left\{\varepsilon^{n}\right\}_{n=1}^{\infty}$ with $\lim _{n \rightarrow \infty} \varepsilon^{n}=0$ and (ii) an associated sequence $\left\{x^{n}\right\}_{n=1}^{\infty}$ with $x^{n} \in L^{\varepsilon^{n}}$ for all n, but (iii) $x^{n} \notin \widetilde{\mathrm{NE}}_{\delta}$ for all n. Since $x^{n} \in[0,1]^{2}$ for all n, this sequence has a convergent subsequence $\left\{x^{n_{m}}\right\}_{m=1}^{\infty}$ with $\lim _{m \rightarrow \infty} x^{n_{m}}=\bar{x}=\left(\bar{x}_{0}, \bar{x}_{1}\right)$. If $v_{0}\left(\bar{x}_{0}\right)=v_{1}\left(\bar{x}_{1}\right)=$ 0 , then $\bar{x} \in \mathrm{NE}$, so for m large enough, $x^{n_{m}} \in \widetilde{\mathrm{NE}}_{\delta}$. Then it must be the case that $v_{\theta}\left(\bar{x}_{\theta}\right) \neq 0$ for some θ.

Assume that $v_{1}\left(\bar{x}_{1}\right)>0$. Pick \tilde{m} large enough so that $v_{1}\left(x_{1}^{n_{m}}\right)>0$ for all $m>\tilde{m}$. For all m with $v_{0}\left(x_{0}^{n_{m}}\right) \geq 0$, Lemma 4 implies that $x^{n_{m}}=\left(1-\varepsilon^{n_{m}}, 1-\varepsilon^{n_{m}}\right)$. So if $v_{0}\left(x_{0}^{n_{m}}\right) \geq 0$ infinitely often, then $\bar{x}=(1,1)$. As a result, $\bar{x} \in \mathrm{NE}$, so for m large enough, $x^{n_{m}} \in \widetilde{\mathrm{NE}_{\delta}}$.

Take next all m with $v_{0}\left(x_{0}^{n_{m}}\right)<0$. By Lemma 5, (3) must hold:

$$
\begin{align*}
& \frac{-v_{0}\left(x_{0}^{n_{m}}\right)}{2}[\overbrace{\left(1-2 \varepsilon^{n_{m}}\right)}^{\rightarrow 1} \overbrace{x_{0}^{n_{m}}\left[G_{0}\left(\underline{k}^{n_{m}}\right)-\left(\underline{k}^{n_{m}}\right)^{-1} G_{1}\left(\underline{k}^{n_{m}}\right)\right]}^{\geq 0}-\overbrace{\varepsilon\left(1-2 x_{0}\right)}^{\rightarrow 0}] \\
& \quad+\frac{v_{1}\left(x_{1}^{n_{m}}\right)}{2}[\underbrace{\left(1-2 \varepsilon^{n_{m}}\right)}_{\rightarrow 1} \underbrace{\left(1-x_{1}^{n_{m}}\right)\left[\left[1-G_{1}\left(\bar{k}^{n_{m}}\right)\right]-\bar{k}^{n_{m}}\left[1-G_{0}\left(\bar{k}^{n_{m}}\right)\right]\right]}_{\geq 0} \\
& \quad-\underbrace{\varepsilon^{n_{m}}\left(2 x_{1}^{n_{m}}-1\right)}_{\rightarrow 0}] \leq 0 . \tag{S.1}
\end{align*}
$$

Proposition 3 guarantees both that $\left[\left[1-G_{1}\left(\bar{k}^{n_{m}}\right)\right]-\bar{k}^{n_{m}}\left[1-G_{0}\left(\bar{k}^{n_{m}}\right)\right]\right] \geq 0$ and that $\left[G_{0}\left(\underline{k}^{n_{m}}\right)-\left(\underline{k}^{n_{m}}\right)^{-1} G_{1}\left(\underline{k}^{n_{m}}\right)\right] \geq 0$. Then, as (S.1) shows, when $\varepsilon^{n_{m}} \rightarrow 0$, only nonnegative terms may remain. Assume that $\bar{k}=-\left[v_{0}\left(\bar{x}_{0}\right)\left(1-\bar{x}_{0}\right)\right] /\left[v_{1}\left(\bar{x}_{1}\right)\left(1-\bar{x}_{1}\right)\right]<\bar{l}$. Then, for ε small enough, $\bar{k}^{n_{m}}<\bar{l}$. Proposition 3 implies that

$$
\lim _{m \rightarrow \infty}\left[\left[1-G_{1}\left(\bar{k}^{n_{m}}\right)\right]-\bar{k}^{n_{m}}\left[1-G_{0}\left(\bar{k}^{n_{m}}\right)\right]\right]>0 .
$$

To summarize, whenever $\bar{k}<\bar{l}$, (S.1) is not satisfied for small enough $\varepsilon^{n_{m}}$. It must be the case then that $\bar{k} \geq \bar{l}$. Similarly, if $\underline{k}>\underline{l}$, then

$$
\lim _{m \rightarrow \infty}\left[G_{0}\left(\underline{k}^{n_{m}}\right)-\left(\underline{k}^{n_{m}}\right)^{-1} G_{1}\left(\underline{k}^{n_{m}}\right)\right]>0
$$

for small enough $\varepsilon^{n_{m}}$. It must be the case then that $\underline{k} \leq \underline{l}$.
Analogous arguments (using also Lemma 6) lead to the same result for the case with $v_{1}\left(\bar{x}_{1}\right)<0$. As a result, $\bar{x} \in \mathrm{NE}_{(l, \bar{l})}$, so for m large enough, $x^{n_{m}} \in \widetilde{\mathrm{NE}}_{\delta}$.

The rest of the proof is identical to the proof of Proposition 2 in the paper.

S.3. Example 4: Standard observational learning With mistakes

This corresponds to Example 4 in the paper. Utility is given by $u(1, X, 1)=u(0, X, 0)=1$ and $u(1, X, 0)=u(0, X, 1)=0$. Each agent observes his immediate predecessor: $M=1$. The signal structure is described by $\nu_{1}[(0, s)]=s^{2}$ and $\nu_{0}[(0, s)]=2 s-s^{2}$ with $s \in(0,1)$.

Proof of Example 4. Let $\pi \equiv \operatorname{Pr}(\xi=1 \mid \theta=1)$. An agent who observes $\xi=1$ chooses action 1 if and only if $\frac{\pi}{1-\pi} \frac{s}{1-s} \geq 1 \Leftrightarrow s \geq 1-\pi$. Similarly, an agent who observes $\xi=$

0 chooses action 1 if and only if $\frac{1-\pi}{\pi} \frac{s}{1-s} \geq 1 \Leftrightarrow s \geq \pi$. As a result, the likelihood that somebody who observes a sample (that is, not agent 1) will choose the right action is given by

$$
\begin{aligned}
\operatorname{Pr}\left(a_{i}=1 \mid \theta=1, Q(i) \neq 1\right) & =\frac{1}{T-1} \sum_{t=2}^{T} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right) \\
& =\varepsilon+(1-2 \varepsilon)[\pi \operatorname{Pr}(s \geq 1-\pi)+(1-\pi) \operatorname{Pr}(s \geq \pi)] \\
& =\varepsilon+(1-2 \varepsilon)\left[\pi\left[1-(1-\pi)^{2}\right]+(1-\pi)\left[1-\pi^{2}\right]\right] \\
& =\varepsilon+(1-2 \varepsilon)\left[\pi-\pi\left(1+\pi^{2}-2 \pi\right)+1-\pi-\pi^{2}+\pi^{3}\right] \\
& =\varepsilon+(1-2 \varepsilon)\left[\pi-\pi-\pi^{3}+2 \pi^{2}+1-\pi-\pi^{2}+\pi^{3}\right] \\
& =\varepsilon+(1-2 \varepsilon)\left(1-\pi+\pi^{2}\right)
\end{aligned}
$$

Reordering yields

$$
\operatorname{Pr}\left(a_{1}=1 \mid \theta=1\right)+\sum_{t=2}^{T} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right)=\sum_{t=1}^{T-1} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right)+\operatorname{Pr}\left(a_{T}=1 \mid \theta=1\right)
$$

Then

$$
\begin{aligned}
\varepsilon+(1-2 \varepsilon)\left(1-\pi+\pi^{2}\right)-\pi-\frac{\operatorname{Pr}\left(a_{T}=1 \mid \theta=1\right)-\operatorname{Pr}\left(a_{1}=1 \mid \theta=1\right)}{T-1} & =0 \\
\varepsilon+(1-2 \varepsilon)\left(1-\pi+\pi^{2}\right)-\pi-\Delta & =0 \\
(1-2 \varepsilon) \pi^{2}-2(1-\varepsilon) \pi+1-\varepsilon-\Delta & =0
\end{aligned}
$$

where I define $\Delta \equiv \frac{\operatorname{Pr}\left(a_{T}=1 \mid \theta=1\right)-\operatorname{Pr}\left(a_{1}=1 \mid \theta=1\right)}{T-1}$. Then

$$
\begin{aligned}
\pi & =\frac{2(1-\varepsilon) \pm \sqrt{4(1-\varepsilon)^{2}-4(1-2 \varepsilon)(1-\varepsilon-\Delta)}}{2(1-2 \varepsilon)} \\
& =\frac{1-\varepsilon-\sqrt{(1-\varepsilon)^{2}-(1-2 \varepsilon)(1-\varepsilon-\Delta)}}{1-2 \varepsilon}
\end{aligned}
$$

Note that $\lim _{T \rightarrow \infty} \Delta=0$. Then

$$
\begin{aligned}
\pi & \rightarrow \frac{1-\varepsilon-\sqrt{(1-\varepsilon)^{2}-(1-2 \varepsilon)(1-\varepsilon)}}{1-2 \varepsilon} \\
& =\frac{1-\varepsilon}{1-2 \varepsilon}\left(1-\sqrt{1-\frac{1-2 \varepsilon}{1-\varepsilon}}\right)=\frac{1-\varepsilon}{1-2 \varepsilon}\left(1-\sqrt{\frac{\varepsilon}{1-\varepsilon}}\right)
\end{aligned}
$$

Also, as $T \rightarrow \infty, \pi-\operatorname{Pr}\left(a_{i}=1 \mid \theta\right) \rightarrow 0$. Then $x_{1}=\lim _{T \rightarrow \infty} \operatorname{Pr}\left(a_{i}=1 \mid \theta\right)=\frac{1-\varepsilon}{1-2 \varepsilon}(1-$ $\sqrt{\frac{\varepsilon}{1-\varepsilon}}$.

S.4. Example 8: Multiple equilibria in a coordination game

Proof of Example 8. Consider a sequence of symmetric strategy profiles $\left\{\sigma^{T}(s, \xi)\right\}$, where $\sigma^{T}(s, \xi)=\sigma(s, \xi)$ does not change with T and is given by

$$
\sigma(s, \xi)= \begin{cases}1 & \text { if } s=1 \\ 0 & \text { if } s=0 \\ \xi & \text { if } s=1 / 2\end{cases}
$$

Let $\pi \equiv \operatorname{Pr}(\xi=1 \mid \theta=1)$. Under $\sigma(s, \xi)$, the likelihood that somebody who observes a sample (that is, not agent 1) chooses action 1 is given by

$$
\begin{aligned}
\operatorname{Pr}\left(a_{i}=1 \mid \theta=1, Q(i) \neq 1\right) & =\frac{1}{T-1} \sum_{t=2}^{T} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right) \\
& =\varepsilon+(1-2 \varepsilon)[\operatorname{Pr}(s=1)+\operatorname{Pr}(s=1 / 2) \pi] \\
& =\varepsilon+(1-2 \varepsilon)[(1-\gamma) / 100+99 / 100 \pi]
\end{aligned}
$$

Reordering yields

$$
\operatorname{Pr}\left(a_{1}=1 \mid \theta=1\right)+\sum_{t=2}^{T} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right)=\sum_{t=1}^{T-1} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right)+\operatorname{Pr}\left(a_{T}=1 \mid \theta=1\right)
$$

Then

$$
\begin{gathered}
\frac{\sum_{t=2}^{T} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right)}{T-1}-\frac{\sum_{t=1}^{T-1} \operatorname{Pr}\left(a_{t}=1 \mid \theta=1\right)}{T-1} \\
\quad=\frac{\operatorname{Pr}\left(a_{T}=1 \mid \theta=1\right)-\operatorname{Pr}\left(a_{1}=1 \mid \theta=1\right)}{T-1}
\end{gathered}
$$

so

$$
\begin{aligned}
\operatorname{Pr}\left(a_{i}=1 \mid \theta=1, Q(i) \neq 1\right)-\pi & =\frac{\operatorname{Pr}\left(a_{T}=1 \mid \theta=1\right)-\operatorname{Pr}\left(a_{1}=1 \mid \theta=1\right)}{T-1} \\
\varepsilon+(1-2 \varepsilon)[(1-\gamma) / 100+99 / 100 \pi]-\pi & =\Delta .
\end{aligned}
$$

Then

$$
\begin{aligned}
\varepsilon-2 \varepsilon[(1-\gamma) / 100+99 / 100 \pi]+(1-\gamma) / 100-1 / 100 \pi & =\Delta \\
\varepsilon-2 \varepsilon(1-\gamma) / 100-\varepsilon 198 / 100 \pi+(1-\gamma) / 100-1 / 100 \pi & =\Delta \\
+(1-\gamma) / 100+[1-(1-\gamma) / 50] \varepsilon-(1 / 100+198 / 100 \varepsilon) \pi & =\Delta \\
+(1-\gamma)+[100-2(1-\gamma)] \varepsilon-(1+198 \varepsilon) \pi & =100 \Delta .
\end{aligned}
$$

Then

$$
\pi=\frac{(1-\gamma)+[100-2(1-\gamma)] \varepsilon-100 \Delta}{1+198 \varepsilon} .
$$

Proposition 1 guarantees that as the number of agents grows large, the average action is close to its expectation. For low enough ε and large enough T, approximately $X_{0} \mid \sigma \xrightarrow{p} \gamma$ and $X_{1} \mid \sigma \xrightarrow{p} 1-\gamma$. Then

$$
\frac{\operatorname{Pr}(\theta=1 \mid \xi=1)}{\operatorname{Pr}(\theta=0 \mid \xi=1)} \approx \frac{1-\gamma}{\gamma} .
$$

So the sample is informative about the state of the world. To sum up, there is ε small and T large such that σ is indeed an equilibrium.

S.5. Proving Lemma 12

I illustrate first the effect of different values of $\gamma>1$ on sampling probabilities. Figure S .1 presents an agent in position 21. The black line shows the probability of observing a predecessor in position $\tau<21$ when $\gamma=8$. With probability higher than 0.998 , the agent observes one of his three immediate predecessors. The distribution becomes flatter as γ decreases. The red line shows the distribution when $\gamma=1.05$. In this case, the agent in position 21 observes his immediate predecessor twice as often as he observes the first agent in the sequence. As $\gamma \rightarrow 1$, sampling approaches uniform random sampling. Instead, as $\gamma \rightarrow \infty$, sampling approaches observing the immediate predecessor.

Next, I present the proof of Lemma 12.

Proof of Lemma 12. A strategy σ_{i} induces $\rho_{\theta}(\xi)=\mathbf{P}_{\sigma_{i}}\left(a_{i} \mid \theta, \xi\right)$. For the rest of this section, I fix the state of the world θ and drop its index. Then a strategy σ_{i} induces a vector $(\rho(\varnothing), \rho(0), \rho(1))$. Because of mistakes, $\varepsilon<\rho(\xi)<1-\varepsilon$ for all $\xi \in\{0,1, \varnothing\}$.

Figure S.1. Probabilities of different predecessors being observed: geometric sampling.

Assume first that $\gamma>1$. The first agent in the sequence chooses action 1 with probability $\rho(\varnothing)$. For $t \geq 2$,

$$
\begin{aligned}
\mathbf{P}_{\sigma}\left(a_{t}=1\right) & =\operatorname{Pr}\left(\xi_{t}=0\right) \operatorname{Pr}\left(a_{t}=1 \mid \xi_{t}=0\right)+\operatorname{Pr}\left(\xi_{t}=1\right) \operatorname{Pr}\left(a_{t}=1 \mid \xi_{t}=1\right) \\
& =\operatorname{Pr}\left(\xi_{t}=0\right) \rho(0)+\operatorname{Pr}\left(\xi_{t}=1\right) \rho(1) \\
& =\left[1-\operatorname{Pr}\left(\xi_{t}=1\right)\right] \rho(0)+\operatorname{Pr}\left(\xi_{t}=1\right) \rho(1) \\
& =\rho(0)+[\rho(1)-\rho(0)] \operatorname{Pr}\left(\xi_{t}=1\right) \\
& =\rho(0)+[\rho(1)-\rho(0)] \sum_{\tau<t} \operatorname{Pr}\left(O_{t}=\tau\right) \mathbb{1}\left\{a_{\tau}=1\right\} \\
& =\rho(0)+[\rho(1)-\rho(0)] \sum_{\tau=1}^{t-1} \frac{\gamma-1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t-1}-1} a_{\tau}
\end{aligned}
$$

Define the weighted sum of the past history by $p_{t} \equiv \sum_{\tau=1}^{t-1} \frac{\gamma-1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t-1}-1} a_{\tau}$ for $t \geq 2$. This concept plays a key role in the model:

$$
\mathbf{P}_{\sigma}\left(a_{t}=1\right)=\rho(0)+[\rho(1)-\rho(0)] p_{t}
$$

This weighted sum has a recursive nature:

$$
\begin{aligned}
p_{t+1} & =\sum_{\tau=1}^{t} \frac{\gamma-1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t}-1} a_{\tau}=\frac{\gamma^{t-1}-1}{\gamma^{t}-1}\left[\sum_{\tau=1}^{t-1} \frac{\gamma-1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t-1}-1} a_{\tau}\right]+\frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1} a_{t} \\
& =\frac{\gamma^{t-1}-1}{\gamma^{t}-1} p_{t}+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1} a_{t} .
\end{aligned}
$$

In expectation,

$$
\begin{aligned}
E\left[p_{t+1} \mid I_{t}\right] & =\frac{\gamma^{t-1}-1}{\gamma^{t}-1} E\left[p_{t} \mid I\right]+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1} E\left[a_{t} \mid I\right] \\
& =\frac{\gamma^{t-1}-1}{\gamma^{t}-1} E\left[p_{t} \mid I\right]+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}\left[\rho(0)+[\rho(1)-\rho(0)] E\left[p_{t} \mid I\right]\right] \\
& =\frac{\gamma^{t}-1+\gamma^{t-1}-\gamma^{t}}{\gamma^{t}-1} E\left[p_{t} \mid I\right]+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}\left[\rho(0)+[\rho(1)-\rho(0)] E\left[p_{t} \mid I\right]\right] \\
& =E\left[p_{t} \mid I\right]+\frac{\gamma^{t-1}-\gamma^{t}}{\gamma^{t}-1} E\left[p_{t} \mid I\right]+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}\left[\rho(0)+[\rho(1)-\rho(0)] E\left[p_{t} \mid I\right]\right] \\
& =E\left[p_{t} \mid I\right]+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}\left[\rho(0)-[1+\rho(0)-\rho(1)] E\left[p_{t} \mid I\right]\right] \\
& =E\left[p_{t} \mid I\right]+\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)]\left[\rho^{*}-E\left[p_{t} \mid I\right]\right]
\end{aligned}
$$

Let $\rho^{*} \equiv \frac{\rho(0)}{1+\rho(0)-\rho(1)} .{ }^{1}$ Then

$$
\begin{align*}
E\left[p_{t+1} \mid I\right]-\rho^{*} & =E\left[p_{t} \mid I\right]-\rho^{*}-\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)]\left[E\left[p_{t} \mid I\right]-\rho^{*}\right] \\
& =\left[1-\frac{\gamma^{t}-\gamma^{t-1}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)]\right]\left[E\left[p_{t} \mid I\right]-\rho^{*}\right] \\
& =[1-\underbrace{\frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1}}_{(*)} \underbrace{[1+\rho(0)-\rho(1)]}_{(* *)}]\left[E\left[p_{t} \mid I\right]-\rho^{*}\right] \tag{S.2}
\end{align*}
$$

I next provide bounds for the terms $(*)$ and $(* *)$ in (S.2):

$$
\begin{aligned}
2 \varepsilon & \leq 1+\rho(0)-\rho(1) \leq 2-2 \varepsilon \\
\frac{\gamma-1}{\gamma} & \leq \frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1} \leq 1
\end{aligned}
$$

With these bounds, I can also bound the whole term in brackets in (S.2):

$$
\begin{aligned}
\frac{\gamma-1}{\gamma} 2 \varepsilon & \leq \frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)] \leq 2-2 \varepsilon \\
\frac{\gamma-1}{\gamma} 2 \varepsilon-1 & \leq \frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)]-1 \leq 1-2 \varepsilon \\
\left|1-\frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)]\right| & \leq 1-\frac{\gamma-1}{\gamma} 2 \varepsilon .
\end{aligned}
$$

This leads to a simple bound over time:

$$
\begin{aligned}
\left|E\left[p_{t+n} \mid I_{t}\right]-\rho^{*}\right| & =\prod_{\tau=t}^{t+n-1}\left|1-\frac{\gamma-1}{\gamma} \frac{\gamma^{t}}{\gamma^{t}-1}[1+\rho(0)-\rho(1)]\right|\left|E\left[p_{t} \mid I_{t}\right]-\rho^{*}\right| \\
& \leq\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{n-1}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
\left|E\left[p_{t+n} \mid a_{t}=1\right]-\rho^{*}\right| & \leq\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{n-1} \\
\left|E\left[p_{t+n}\right]-\rho^{*}\right| & \leq\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{t+n-1}
\end{aligned}
$$

[^0]So finally,

$$
\begin{aligned}
\left|E\left[p_{t+n} \mid I_{t}\right]-E\left[p_{t+n}\right]\right| & \leq\left|E\left[p_{t+n} \mid a_{t}=1\right]-\rho^{*}\right|+\left|E\left[p_{t+n}\right]-\rho^{*}\right| \\
& \leq\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{n-1}+\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{t+n-1} \\
& \leq 2\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{n-1}
\end{aligned}
$$

and turning this into probabilities yields

$$
\begin{aligned}
\left|\mathbf{P}_{\sigma}\left(a_{t+n}=1 \mid a_{t}=1\right)-\mathbf{P}_{\sigma}\left(a_{t+n}=1\right)\right|= & \mid \rho(0)+[\rho(1)-\rho(0)] E\left[p_{t+n} \mid a_{t}=1\right] \\
& -\left[\rho(0)+[\rho(1)-\rho(0)] E\left[p_{t+n}\right]\right] \mid \\
= & \left|[\rho(1)-\rho(0)]\left[E\left[p_{t+n} \mid a_{t}=1\right]-E\left[p_{t+n}\right]\right]\right| \\
\leq & 2\left|\left[E\left[p_{t+n} \mid a_{t}=1\right]-E\left[p_{t+n}\right]\right]\right| \\
\leq & 4\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{n-1} \\
\leq & \frac{4}{1-\frac{\gamma-1}{\gamma} 2 \varepsilon}\left(1-\frac{\gamma-1}{\gamma} 2 \varepsilon\right)^{n} .
\end{aligned}
$$

Next assume that $\gamma=1$. Then

$$
\mathbf{P}_{\sigma}\left(a_{t}=1\right)=\rho(0)+[\rho(1)-\rho(0)] \frac{1}{t-1} \sum_{\tau=1}^{t-1} a_{\tau}
$$

Define now $p_{t} \equiv \frac{1}{t-1} \sum_{\tau=1}^{t-1} a_{\tau}$ for $t \geq 2$, which leads to

$$
p_{t+1}=\frac{1}{t} \sum_{\tau=1}^{t} a_{\tau}=\frac{t-1}{t} \sum_{\tau=1}^{t-1} a_{\tau}+\frac{1}{t} a_{t}=\frac{t-1}{t} p_{t}+\frac{1}{t} a_{t}
$$

In expectation,

$$
\begin{aligned}
E\left[p_{t+1} \mid I_{t}\right] & =\frac{t-1}{t} E\left[p_{t} \mid I\right]+\frac{1}{t} E\left[a_{t} \mid I\right] \\
& =\frac{t-1}{t} E\left[p_{t} \mid I\right]+\frac{1}{t} E\left[\rho(0)+[\rho(1)-\rho(0)] p_{t} \mid I\right] \\
& =\frac{1}{t}[t-1+\rho(1)-\rho(0)] E\left[p_{t} \mid I\right]+\frac{1}{t} \rho(0)
\end{aligned}
$$

so in this case,

$$
\begin{aligned}
E\left[p_{t+1} \mid I_{t}\right]-\rho^{*} & =\frac{1}{t}[t-1+\rho(1)-\rho(0)] E\left[p_{t} \mid I\right]+\frac{1}{t} \rho(0)-\rho^{*} \\
& =\frac{1}{t}\left[\rho(0)-[1+\rho(0)-\rho(1)] E\left[p_{t} \mid I\right]\right]+E\left[p_{t} \mid I\right]-\rho^{*} \\
& =\frac{1}{t}[1+\rho(0)-\rho(1)]\left[\rho^{*}-E\left[p_{t} \mid I\right]\right]+E\left[p_{t} \mid I\right]-\rho^{*} \\
& =\left[1-\frac{1}{t}[1+\rho(0)-\rho(1)]\right]\left[E\left[p_{t} \mid I\right]-\rho^{*}\right]
\end{aligned}
$$

Then

$$
E\left[p_{t+n} \mid I_{t}\right]-\rho^{*}=\left[E\left[p_{t} \mid I\right]-\rho^{*}\right] \prod_{\tau=0}^{n}\left[1-\frac{1}{t+\tau}[1+\rho(0)-\rho(1)]\right] .
$$

I present without proof the following remark.
Remark 1. Let $0<a_{n}<1$ for all n. Then $\prod_{\tau=0}^{\infty} a_{n}>0 \Leftrightarrow \sum_{\tau=0}^{\infty}\left(1-a_{n}\right)<\infty$.
Then it suffices to show that

$$
\sum_{\tau=0}^{n} \frac{1}{t+\tau}[1+\rho(0)-\rho(1)]=[1+\rho(0)-\rho(1)] \sum_{\tau=0}^{n} \frac{1}{t+\tau}=\infty
$$

and follow the same steps as in the case with $\gamma>1$.

S.6. Proof of Lemma 13

I show Proposition 1 by proving that $X \mid \sigma^{T}-E\left[X \mid \sigma^{T}\right]$ converges to zero in L^{2} norm. The variance $V\left(\sigma^{\tau}\right)$ as defined by (5) is bounded above by

$$
V\left(\sigma^{\tau}\right) \leq \frac{1}{T}\left(1+4\left(1-2 \varepsilon^{M}\right)^{-1} \frac{\left(1-2 \varepsilon^{M}\right)^{\frac{1}{M}}}{1-\left(1-2 \varepsilon^{M}\right)^{\frac{1}{M}}}\right) .
$$

Note that $\lim _{T \rightarrow \infty} 4\left(1-2 \varepsilon^{M(T)}\right)^{-1}=4$ and $\lim _{T \rightarrow \infty}\left(1-2 \varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}=1$. Then the bound converges to zero whenever $\lim _{T \rightarrow \infty} T\left[1-\left(1-2 \varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]=\infty$. I need to show that for any $K<\infty$, there exists a $\widetilde{T}<\infty$ such that $T\left[1-\left(1-2 \varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right] \geq K$ for all $T \geq \widetilde{T}$. This simplifies to

$$
\left(1-\frac{K}{T}\right)^{M(T)} \geq 1-2 \varepsilon^{M(T)} \quad \forall T \geq \widetilde{T}
$$

Since $\left(1-\frac{K}{T}\right)^{M(T)} \geq 1-\frac{K M}{T}$, it suffices to show that

$$
1-\frac{K M}{T} \geq 1-2 \varepsilon^{M(T)} \quad \Leftrightarrow \quad \frac{\varepsilon^{M(T)}}{M} \geq \frac{K}{2} \frac{1}{T}
$$

where $M(T)$ is $o(\log (T))$. Then, for any constant $c \geq 0$, there is T large enough such that $M(T) \leq c \log (T)$. Pick $c=(-2 \log (\varepsilon))^{-1}$. Note next that the function ε^{x} / x is decreasing. Then, for T large, $\frac{\varepsilon^{M(T)}}{M(T)} \geq \frac{\varepsilon^{(-2 \log (\varepsilon))^{-1} \log (T)}}{(-2 \log (\varepsilon))^{-1} \log (T)}$. As a result, it suffices to show that for T large enough,

$$
\begin{aligned}
\frac{\varepsilon^{\left[(-2 \log (\varepsilon))^{-1} \log (T)\right]}}{(-2 \log (\varepsilon))^{-1} \log (T)} & \geq \frac{K}{2} \frac{1}{T} \\
\varepsilon^{(-2 \log (\varepsilon))^{-1} \log (T)} & \geq \frac{K}{2} \frac{1}{T}(-2 \log (\varepsilon))^{-1} \log (T) \\
T^{(-2 \log (\varepsilon))^{-1} \log (\varepsilon)} & \geq \frac{1}{-4 \log (\varepsilon)} K \frac{\log (T)}{T} \\
T^{-\frac{1}{2}} & \geq \frac{1}{-4 \log (\varepsilon)} K \frac{\log (T)}{T} \\
\frac{T^{\frac{1}{2}}}{\log (T)} & \geq \frac{1}{-4 \log (\varepsilon)} K .
\end{aligned}
$$

The left hand side goes to infinity and the right hand side is constant. Then there always exists a T such that this holds. This shows the first part of Proposition 1.

Next, I focus on the second part of Proposition 1. Equation (6) in the paper now becomes

$$
\operatorname{Pr}\left(|X| \sigma^{T}-X\left|\widetilde{\sigma}^{T}\right| \geq \frac{n}{T}\right) \leq\left[\left(1-2 \varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]^{n}
$$

which holds for all n.
Let $n=\left\lceil(-2 \log (\varepsilon))^{-1} \log (T) T^{\frac{3}{4}}\right\rceil$. As $\left(1-2 \varepsilon^{M}\right)^{\frac{1}{M}} \leq 1$, then

$$
\begin{aligned}
\operatorname{Pr}\left(|X| \sigma^{T}-X\left|\widetilde{\sigma}^{T}\right| \geq \frac{n}{T}\right) & \leq\left[\left(1-2 \varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]^{n} \\
& \leq\left[\left(1-2 \varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]^{(-2 \log (\varepsilon))^{-1} \log (T) T^{\frac{3}{4}}} \\
& \leq\left(1-2 \varepsilon^{(-2 \log (\varepsilon))^{-1} \log (T)}\right)^{\frac{(-2 \log (\varepsilon))^{-1} \log (T) T^{\frac{3}{4}}}{(-2 \log (\varepsilon))^{-1} \log (T)}} \\
& =\left(1-2 T^{-\frac{1}{2}}\right)^{T^{\frac{3}{4}}},
\end{aligned}
$$

where I have used the fact that $M(T)$ is $o(\log (T))$, so $M(T) \leq(-2 \log (\varepsilon))^{-1} \log (T)$ for T large enough. Moreover, I also used the fact that $\left(1-2 \varepsilon^{M}\right)^{\frac{1}{M}}$ is increasing in M.

I need to show that for all $b>0$, there exists \widetilde{T}, such that $\operatorname{Pr}\left(|X| \sigma^{T}-X\left|\widetilde{\sigma}^{T}\right| \geq\right.$ $b)<b$ for all $T>\widetilde{T}$. Then it suffices to show that $\lim _{T \rightarrow \infty} \frac{n}{T}=0$ and $\lim _{T \rightarrow \infty}(1-$ $\left.2 T^{-\frac{1}{2}}\right)^{T^{\frac{3}{4}}}=0$.

So first, note that

$$
\frac{n}{T} \leq \frac{(-2 \log (\varepsilon))^{-1} \log (T) T^{\frac{3}{4}}+1}{T}=\frac{1}{(-2 \log (\varepsilon))} \frac{\log (T)}{T^{\frac{1}{4}}}+\frac{1}{T} \rightarrow 0
$$

so $\lim _{T \rightarrow \infty} \frac{n}{T}=0$.
Second, note that $\lim _{T \rightarrow \infty}\left(1-2 T^{-\frac{1}{2}}\right)^{T^{\frac{3}{4}}}=0 \Leftrightarrow \lim _{T \rightarrow \infty} T^{\frac{3}{4}} \log \left(1-2 T^{-\frac{1}{2}}\right)=-\infty$. So using l'Hôpital's rule,

$$
\lim _{T \rightarrow \infty} \frac{\log \left(1-2 T^{-\frac{1}{2}}\right)}{T^{-\frac{3}{4}}}=\lim _{T \rightarrow \infty} \frac{\frac{1}{1-2 T^{-\frac{1}{2}}}(-2)\left(-\frac{1}{2}\right) T^{-\frac{3}{2}}}{-\frac{3}{4} T^{-\frac{7}{4}}}=\lim _{T \rightarrow \infty}-\frac{4}{3} \frac{T^{\frac{1}{4}}}{1-2 T^{-\frac{1}{2}}}=-\infty
$$

This finishes the proof of the second part of Proposition 1.
Lemma 10 also needs some adjustment to allow for M to grow with T. Equation (8) from the paper becomes

$$
\begin{aligned}
\pi_{\theta}^{T}-E_{\sigma^{T}}\left[X_{\theta}\right]= & \frac{1}{T}[\sum_{\tau=1}^{M(T)-1} \overbrace{\mathbf{P}_{\sigma^{T}}\left(a_{\tau}=1\right)}^{\leq 1}(\sum_{t=\tau}^{\tau+M(T)-1} \overbrace{t^{-1}-1}^{\leq 1}) \\
& -\sum_{\tau=T-M(T)+1}^{T} \underbrace{\mathbf{P}_{\sigma^{T}}\left(a_{\tau}=1\right)}_{\leq 1} \underbrace{\left(1-\frac{T-\tau}{M(T)}\right)}_{\leq 1}] \\
\leq & \frac{2 M(T)}{T} .
\end{aligned}
$$

Since $M(T)$ is $o(\log (T))$, then, $\pi_{\theta}^{T}-E_{\sigma^{T}} \rightarrow 0$. This adapts Lemma 10 to the case with growing M. The rest of Proposition 2 does not change.

S.7. Many states of the world and many actions

S.7.1 The model

States and Actions There are N_{θ} equally likely states of the world $\theta \in \Theta=\left\{1,2, \ldots, N_{\theta}\right\}$. Agents must choose between N_{a} possible actions $a \in \mathcal{A}=\left\{1,2, \ldots, N_{a}\right\}$. Let $X^{a} \equiv$ $\frac{1}{T} \sum_{j \in \mathcal{I}} \mathbb{1}\left\{a_{j}=a\right\}$ denote the proportion of agents who choose action a, with realizations $x^{a} \in[0,1]$. The vector $X=\left(X^{1}, X^{2}, \ldots, X^{N_{a}}\right)$ denotes the proportion of agents who choose each action. Agent i obtains utility $u\left(a_{i}, X, \theta\right): \mathcal{A} \times[0,1] \times \Theta \rightarrow \mathbb{R}$, where $u\left(a_{i}, X, \theta\right)$ is a continuous function in X.

Private Signals Conditional on the true state of the world, signals are i.i.d. across individuals and distributed according to F_{θ}. I assume that F_{θ} and $F_{\tilde{\theta}}$ are mutually absolutely continuous for any two $\theta, \tilde{\theta} \in \Theta$. Then no perfectly revealing signals occur with positive probability, and the likelihood ratio (Radon-Nikodym derivative) $l_{\tilde{\theta}, \theta}(s) \equiv \frac{d F_{\tilde{\theta}}}{d F_{\theta}}(s)$ exists.

I also define a likelihood ratio that indicates how likely one state is, relative to all other states:

$$
l_{\theta}(s)=\left(\sum_{\tilde{\theta} \neq \theta} l_{\tilde{\theta}, \theta}(s)\right)^{-1}
$$

Let $G_{\theta}(l) \equiv \operatorname{Pr}\left(l_{\theta}(S) \leq l \mid \theta\right)$. I modify the assumption of signals being of unbounded strength as follows.

Definition (Signal strength). Signal strength is unbounded if $0<G_{\theta}(l)<1$ for all likelihood ratios $l \in(0, \infty)$ and for all states $\theta \in \Theta$.

Sampling Strategies and Mistakes The sampling rule does not change. A strategy is now a function $\sigma_{i}: \mathcal{S} \times \exists \rightarrow\left[\varepsilon, 1-\left(N_{a}-1\right) \varepsilon\right]^{N_{a}}$ that specifies a probability vector $\sigma_{i}(s, \xi)$ for choosing each action given the information available. For example, $\sigma_{i}^{a}(s, \xi)$ indicates the probability of choosing action $a \in \mathcal{A}$, after receiving signal s and sample ξ.

Definition of Social Learning I modify the definition of NE to allow for many states and actions. I say that x_{θ} corresponds to a Nash equilibrium of the stage game (and denote it by $x_{\theta} \in \mathrm{NE}^{\theta}$) whenever $u\left(a, x_{\theta}, \theta\right)>u\left(a^{*}, x_{\theta}, \theta\right)$ for some $a, a^{*} \in \mathcal{A} \Rightarrow x_{\theta}^{a^{*}}=0$. Then $x \in \mathrm{NE}$ whenever $x_{\theta} \in \mathrm{NE}^{\theta}$ for all $\theta \in \Theta$.

S.7.2 Results

Existence and Convergence of Average Action The proofs of Lemma 1 and Proposition 1 extend directly to a context with many actions and many states. I need to adapt the notation. The random variable $X \mid \sigma$ is now a matrix. Each element $X_{\theta}^{a} \mid \sigma$ is a random variable that denotes the proportion of agents choosing action a in state θ. So the random variable $X \mid \sigma=\left(X_{1}\left|\sigma, X_{2}\right| \sigma, \ldots, X_{N_{\theta}} \mid \sigma\right)$ has realizations $x=\left(x_{1}, x_{2}, \ldots, x_{N_{\theta}}\right)$, where each x_{θ} is itself a vector: $x_{\theta}=\left(x_{\theta}^{1}, x_{\theta}^{2}, \ldots, x_{\theta}^{N_{a}}\right)$.

Utility Convergence In what follows, I provide modified expressions for the expected utility, the utility of the expected average action, and the approximate utility of a deviation. These expressions apply to contexts with many actions and many states.

Agents' expected utility under symmetric profile σ^{T} is simply

$$
u\left(\sigma^{T}\right) \equiv E_{\sigma^{T}}\left[u\left(a_{i}, X, \theta\right)\right]=\frac{1}{N_{\theta}} \sum_{\theta \in \Theta} E_{\sigma^{T}}\left[\sum_{a \in \mathcal{A}} X_{\theta}^{a} \cdot u\left(a, X_{\theta}, \theta\right)\right] .
$$

Define the utility of the expected average action \bar{u}^{T} by

$$
\bar{u}^{T} \equiv \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}}\left[X_{\theta}^{a}\right] \cdot u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right) .
$$

Define the approximate utility of the deviation \widetilde{u}^{T} by

$$
\widetilde{u}^{T} \equiv \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \mathbf{P}_{\widetilde{\sigma}^{T}}\left(a_{i}=a \mid \theta\right) \cdot u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right) .
$$

The proofs of Lemmas 2 and 3, as well as Corollary 1, extend directly to a context with many actions and many states.

Corollary 2^{\prime} (The approximate improvement). Let the approximate improvement Δ^{T} be given now by

$$
\Delta^{T} \equiv \tilde{u}^{T}-\bar{u}^{T}=\frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}}\left[\mathbf{P}_{\widetilde{\sigma}^{T}}\left(a_{i}=a \mid \theta\right)-E_{\sigma^{T}}\left[X_{\theta}^{a}\right]\right] \cdot u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)
$$

The proof of Corollary 2^{\prime} extends directly to a context with many actions and many states.

S.7.3 Alternative Strategy 1: Always follow a given action

I present next a version of Lemma 4 that applies to many actions and many states. Let action $a^{*} \in \mathcal{A}$ be weakly dominant if

$$
u\left(a^{*}, x_{\theta}, \theta\right) \geq u\left(a, x_{\theta}, \theta\right) \quad \text { for all } a \in \mathcal{A} \text { and for all } \theta \in \Theta .
$$

Let action $a^{*} \in \mathcal{A}$ be strictly dominant if

$$
u\left(a^{*}, x_{\theta}, \theta\right)>u\left(a, x_{\theta}, \theta\right) \quad \text { for all } a \in \mathcal{A} \text { and for all } \theta \in \Theta .
$$

Lemma 4^{\prime} (Dominance). If action $a^{*} \in \mathcal{A}$ is strictly dominant, then $x_{\theta}^{a^{*}}=1-\left(N_{a}-1\right) \varepsilon$ for all $\theta \in \Theta$. Assume instead that action $a^{*} \in \mathcal{A}$ is weakly dominant. If there exists state $\theta \in \Theta$ with $u\left(a^{*}, x_{\theta}, \theta\right)>u\left(\tilde{a}, x_{\theta}, \theta\right)$, then $x_{\theta}^{\tilde{a}}=\varepsilon$.

Proof. Consider the alternative strategy of always choosing action a^{*}. Because of mistakes, this means a^{*} is chosen with probability $1-\left(N_{a}-1\right) \varepsilon$. Then the improvement is

$$
\begin{aligned}
\Delta^{T} & =\frac{1}{N_{\theta}} \sum_{\theta \in \Theta}\left[\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right] u\left(a^{*}, x_{\theta}, \theta\right)+\sum_{a \neq a^{*}}\left(\varepsilon-x_{\theta}^{a}\right) \cdot u\left(a, x_{\theta}, \theta\right)\right] \\
& =\frac{1}{N_{\theta}} \sum_{\theta \in \Theta}\left[\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right] u\left(a^{*}, x_{\theta}, \theta\right)-\sum_{a \neq a^{*}}\left(x_{\theta}^{a}-\varepsilon\right) \cdot u\left(a, x_{\theta}, \theta\right)\right] .
\end{aligned}
$$

Note that $x_{\theta}^{a}-\varepsilon \geq 0$ for all a, θ. Then

$$
\begin{aligned}
& {\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right] u\left(a^{*}, x_{\theta}, \theta\right)-\sum_{a \neq a^{*}}\left(x_{\theta}^{a}-\varepsilon\right) \cdot u\left(a, x_{\theta}, \theta\right)} \\
& \quad \geq\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right] u\left(a^{*}, x_{\theta}, \theta\right)-\sum_{a \neq a^{*}}\left(x_{\theta}^{a}-\varepsilon\right) \cdot u\left(a^{*}, x_{\theta}, \theta\right) \\
& \quad=\left[\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right]-\sum_{a \neq a^{*}}\left(x_{\theta}^{a}-\varepsilon\right)\right] \cdot u\left(a^{*}, x_{\theta}, \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left[1-\left(N_{a}-1\right) \varepsilon-\sum_{a \in \mathcal{A}} x_{\theta}^{a}+\left(N_{a}-1\right) \varepsilon\right]}_{=0} \cdot u\left(a^{*}, x_{\theta}, \theta\right) \\
& =0
\end{aligned}
$$

Recall that $\Delta^{T} \leq 0$ by Corollary 2. Moreover, $\Delta^{T} \geq 0$. Then $\Delta^{T}=0$. Also, as each term in Δ^{T} is weakly positive, then all terms in Δ^{T} must be zero:

$$
\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right] u\left(a^{*}, x_{\theta}, \theta\right)-\sum_{a \neq a^{*}}\left(x_{\theta}^{a}-\varepsilon\right) \cdot u\left(a, x_{\theta}, \theta\right)=0
$$

Assume next that for some action $\tilde{a} \in \mathcal{A}$ in some state $\theta \in \Theta, u\left(a^{*}, x_{\theta}, \theta\right)>u\left(\tilde{a}, x_{\theta}, \theta\right)$. Then

$$
\begin{aligned}
0 & =\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}\right] u\left(a^{*}, x_{\theta}, \theta\right)-\sum_{a \neq a^{*}}\left(x_{\theta}^{a}-\varepsilon\right) \cdot u\left(a, x_{\theta}, \theta\right) \\
& \geq\left[1-\left(N_{a}-1\right) \varepsilon-x_{\theta}^{a^{*}}-\sum_{a \neq a^{*}, a \neq \tilde{a}}\left(x_{\theta}^{a}-\varepsilon\right)\right] u\left(a^{*}, x_{\theta}, \theta\right)-\left(x_{\theta}^{\tilde{a}}-\varepsilon\right) u\left(\tilde{a}, x_{\theta}, \theta\right) \\
& =\left[1-\varepsilon-\left(1-x_{\theta}^{\tilde{a}}\right)\right] u\left(a^{*}, x_{\theta}, \theta\right)-\left(x_{\theta}^{\tilde{a}}-\varepsilon\right) u\left(\tilde{a}, x_{\theta}, \theta\right) \\
& =\left(x_{\theta}^{\tilde{a}}-\varepsilon\right) u\left(a^{*}, x_{\theta}, \theta\right)-\left(x_{\theta}^{\tilde{a}}-\varepsilon\right) u\left(\tilde{a}, x_{\theta}, \theta\right) \\
& =\left(x_{\theta}^{\tilde{a}}-\varepsilon\right)\left[u\left(a^{*}, x_{\theta}, \theta\right)-u\left(\tilde{a}, x_{\theta}, \theta\right)\right]
\end{aligned}
$$

To sum up,

$$
\left(x_{\theta}^{\tilde{a}}-\varepsilon\right) \overbrace{\left[u\left(a^{*}, x_{\theta}, \theta\right)-u\left(\tilde{a}, x_{\theta}, \theta\right)\right]}^{>0} \leq 0 .
$$

So $x_{\theta}^{\tilde{a}}=\varepsilon$. Similarly, if $u\left(a^{*}, x_{\theta}, \theta\right)>u\left(a, x_{\theta}, \theta\right)$ for all $a \in \mathcal{A}$ and for all $\theta \in \Theta$, then $x_{\theta}^{a^{*}}=$ $1-\left(N_{a}-1\right) \varepsilon$.

S.7.4 Alternative Strategy 2: Improve upon a sampled agent

Consider a possible limit point $x=\left(x_{1}, x_{2}, \ldots, x_{N_{\theta}}\right)$. Assume that action \tilde{a} is not optimal in state $\theta^{*}: u\left(a^{*}, x_{\theta^{*}}, \theta^{*}\right)>u\left(\tilde{a}, x_{\theta^{*}}, \theta^{*}\right)$, but it is still played in the limit: $x_{\theta^{*}}^{\tilde{a}}>\varepsilon$. As in the case with two states, let $\tilde{\xi}$ denote the action of one individual selected at random from the sample. Consider an alternative simple strategy $\tilde{\sigma}$, which makes the agent choose the action

$$
\begin{aligned}
& a_{i}(\widetilde{\xi}, s) \\
& \quad= \begin{cases}a^{*} & \text { if } \widetilde{\xi}=\tilde{a} \text { and } \\
& l_{\theta^{*}}(s) \geq k^{T} \equiv \frac{-\bar{u}}{u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)} \frac{1}{\mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=\tilde{a} \mid \theta=\theta^{*}\right)} \\
\widetilde{\xi} & \text { otherwise. }\end{cases}
\end{aligned}
$$

I provide next a version of Lemma 5 in the paper that applies to many actions and many states.

Lemma 5^{\prime} (Improvement principle). Take any limit point $x \in L$ with $u\left(a^{*}, x_{\theta^{*}}, \theta^{*}\right)>$ $u\left(\tilde{a}, x_{\theta^{*}}, \theta^{*}\right)$. Then

$$
\begin{align*}
& \widetilde{\Delta}(\varepsilon)+\frac{1-\left(N_{a}-1\right) \varepsilon}{N_{\theta}}\left[x_{\theta^{*}}^{\tilde{a}} \cdot\left[u\left(a^{*}, x_{\theta^{*}}, \theta^{*}\right)-u\left(\tilde{a}, x_{\theta^{*}}, \theta^{*}\right)\right]\right] \\
& \quad \times\left[\left[1-G_{\theta^{*}}(\bar{k})\right]-\bar{k}\left[1-\widetilde{G}_{\theta^{*}}(\bar{k})\right]\right] \leq 0 \tag{S.3}
\end{align*}
$$

with

$$
\begin{aligned}
\bar{k} & =-\bar{u}\left[\left(u\left(a^{*}, x_{\theta^{*}}, \theta^{*}\right)-u\left(\tilde{a}, x_{\theta^{*}}, \theta^{*}\right)\right) x_{\theta^{*}}^{\tilde{a}}\right]^{-1} \\
\widetilde{\Delta}(\varepsilon) & =\frac{\varepsilon}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}}\left[1-\left(N_{a}-1\right) x_{\theta}^{a}\right] u\left(a, x_{\theta}, \theta\right)\right] .
\end{aligned}
$$

See Section S.7.5 for the proof.
The term $\left[\left[1-G_{\theta^{*}}(\bar{k})\right]-\bar{k}\left[1-\widetilde{G}_{\theta^{*}}(\bar{k})\right]\right] \geq 0$ in (S.3) decreases in \bar{k} (as shown later in Proposition 3). Moreover, with signals of unbounded strength, this term is strictly positive. Then, whenever $x_{\theta}^{\tilde{a}}>0$, there is potential for improvement. The existence of mistakes may present such an improvement. Note, however, that $\lim _{\varepsilon \rightarrow 0} \widetilde{\Delta}(\varepsilon)=0$. Then when mistakes are unlikely, the potential for improvement dominates in (S.3).

S.7.5 Proof of Lemma 5'

Let $\rho_{\theta}^{T}(a \mid \tilde{a}) \equiv \mathbf{P}_{\sigma^{T}}\left(a_{i}=a \mid \theta, \tilde{\xi}=\tilde{a}\right)$. In general, the improvement is given by

$$
\begin{aligned}
\Delta^{T}= & \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}}\left[\varepsilon+\left[1-\left(N_{a}-1\right) \varepsilon\right] \sum_{a^{\prime} \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right)\right. \\
& \left.-E_{\sigma^{T}}\left[X_{\theta}^{a}\right]\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right) \\
= & {\left[\frac{\varepsilon}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] } \\
& +\frac{1-\left(N_{a}-1\right) \varepsilon}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \sum_{a^{\prime} \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right) u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
& -\frac{1-\left(N_{a}-1\right) \varepsilon}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}}\left[X_{\theta}^{a}\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
& -\frac{\left(N_{a}-1\right) \varepsilon}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}}\left[X_{\theta}^{a}\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] .
\end{aligned}
$$

Let

$$
\begin{aligned}
\widetilde{\Delta}^{T}(\varepsilon) & \equiv \frac{\varepsilon}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)-\left(N_{a}-1\right)\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}}\left[X_{\theta}^{a}\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right]\right] \\
& =\frac{\varepsilon}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}}\left[1-\left(N_{a}-1\right) E_{\sigma^{T}}\left[X_{\theta}^{a}\right]\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right]
\end{aligned}
$$

and

$$
J(\varepsilon) \equiv \frac{1-\left(N_{a}-1\right) \varepsilon}{N_{\theta}}
$$

Then

$$
\begin{align*}
\Delta^{T}= & \widetilde{\Delta}^{T}(\varepsilon)+J(\varepsilon) \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}}\left[\sum_{a^{\prime} \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right)-E_{\sigma^{T}}\left[X_{\theta}^{a}\right]\right] \\
& \times u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right) . \tag{S.4}
\end{align*}
$$

However,

$$
\begin{aligned}
= & \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}}\left[\sum_{a^{\prime} \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right)-E_{\sigma^{T}}\left[X_{\theta}^{a}\right]\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right) \\
= & \frac{1}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \sum_{a^{\prime} \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right) u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
& -\frac{1}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}}\left[X_{\theta}^{a}\right] u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
= & \frac{1}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \sum_{a^{\prime} \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right) u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
& -\frac{1}{N_{\theta}}\left[\sum_{\theta \in \Theta} \sum_{a^{\prime} \in \mathcal{A}} E_{\sigma^{T}}\left[X_{\theta}^{a^{\prime}}\right] u\left(a^{\prime}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
= & \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a^{\prime} \in \mathcal{A}}\left[\sum_{a \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=a^{\prime} \mid \theta\right) u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right. \\
& \left.-E_{\sigma^{T}}\left[X_{\theta}^{a^{\prime}}\right] u\left(a^{\prime}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] .
\end{aligned}
$$

As a result, the improvement in (S.4) can be expressed as

$$
\begin{aligned}
\Delta^{T}= & \widetilde{\Delta}^{T}(\varepsilon)+J(\varepsilon) \sum_{\theta \in \Theta} \sum_{a^{\prime} \in \mathcal{A}}\left[\sum_{a \in \mathcal{A}} \rho_{\theta}\left(a \mid a^{\prime}\right) \mathbf{P}_{\sigma^{T}}\left(\tilde{\xi}=a^{\prime} \mid \theta\right) u\left(a, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right. \\
& \left.-E_{\sigma^{T}}\left[X_{\theta}^{a^{\prime}}\right] u\left(a^{\prime}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] .
\end{aligned}
$$

In particular, for the simple strategy $\widetilde{\sigma}$,

$$
\begin{aligned}
\Delta^{T}= & \widetilde{\Delta}^{T}(\varepsilon)+J(\varepsilon) \sum_{\theta \in \Theta}\left[\rho_{\theta}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}(\tilde{\xi}=\tilde{a} \mid \theta) u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right. \\
& \left.+\left[1-\rho_{\theta}\left(a^{*} \mid \tilde{a}\right)\right] \mathbf{P}_{\sigma^{T}}(\tilde{\xi}=\tilde{a} \mid \theta) u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)-E_{\sigma^{T}}\left[X_{\theta}^{\tilde{a}}\right] u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] \\
= & \widetilde{\Delta}^{T}(\varepsilon)+J(\varepsilon) \sum_{\theta \in \Theta}\left[\rho_{\theta}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}(\tilde{\xi}=\tilde{a} \mid \theta)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right]\right. \\
& \left.+\left[\mathbf{P}_{\sigma^{T}}(\tilde{\xi}=\tilde{a} \mid \theta)-E_{\sigma^{T}}\left[X_{\theta}^{\tilde{a}}\right]\right] u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right] .
\end{aligned}
$$

Let

$$
\left.\widetilde{\Delta}^{T} \equiv J(\varepsilon) \sum_{\theta \in \Theta}\left[\mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=\tilde{a} \mid \theta)-E_{\sigma^{T}}\left[X_{\theta}^{\tilde{a}}\right]\right] u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right]
$$

Then

$$
\begin{aligned}
\Delta^{T}= & \widetilde{\Delta}^{T}(\varepsilon)+\widetilde{\widetilde{\Delta}}^{T} \\
& +J(\varepsilon) \sum_{\theta \in \Theta}\left[\rho_{\theta}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=\tilde{a} \mid \theta)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right]\right] \\
= & \widetilde{\Delta}^{T}(\varepsilon)+\widetilde{\widetilde{\Delta}}^{T} \\
& +J(\varepsilon)\left[\sum_{\theta \in \Theta, \theta \neq \theta^{*}}\left[\rho_{\theta}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}(\tilde{\xi}=\tilde{a} \mid \theta)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta}\right], \theta\right)\right]\right]\right. \\
& \left.+\rho_{\theta^{*}}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=\tilde{a} \mid \theta^{*}\right)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right]\right]
\end{aligned}
$$

Now let

$$
-\bar{u} \equiv \min _{a \in \mathcal{A}, a^{\prime} \in \mathcal{A}, \theta \in \Theta, x_{\theta} \in[0,1]^{N a}}\left[u\left(a, x_{\theta}, \theta\right)-u\left(a^{\prime}, x_{\theta}, \theta\right)\right] .
$$

This minimum exists since there is a finite number of states and actions, and the utility functions are continuous in X. Then

$$
\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right] \geq-\bar{u}
$$

Then

$$
\begin{aligned}
\Delta^{T} \geq & \widetilde{\Delta}^{T}(\varepsilon)+\widetilde{\Delta}^{T}+J(\varepsilon) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=\tilde{a} \mid \theta^{*}\right)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right] \\
& \times\left[-\frac{\bar{u} \sum_{\theta \in \Theta, \theta \neq \theta^{*}}\left[\rho_{\theta}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=\tilde{a} \mid \theta)\right]}{\mathbf{P}_{\sigma^{T}}\left(\tilde{\xi}=\tilde{a} \mid \theta^{*}\right)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right]}+\rho_{\theta^{*}}\left(a^{*} \mid \tilde{a}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\widetilde{\Delta}^{T}(\varepsilon)+\widetilde{\widetilde{\Delta}}^{T}+J(\varepsilon) \mathbf{P}_{\sigma^{T}} \widetilde{\tilde{\xi}}=\tilde{a} \mid \theta^{*}\right)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right] \\
& \times\left[\rho_{\theta^{*}}\left(a^{*} \mid \tilde{a}\right)-k^{T} \sum_{\theta \in \Theta, \theta \neq \theta^{*}}\left[\rho_{\theta}\left(a^{*} \mid \tilde{a}\right) \mathbf{P}_{\sigma^{T}}(\widetilde{\xi}=\tilde{a} \mid \theta)\right]\right] \\
\geq & \widetilde{\Delta}^{T}(\varepsilon)+\widetilde{\Delta}^{T}+J(\varepsilon) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=\tilde{a} \mid \theta^{*}\right)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right] \\
& \times\left[\rho_{\theta^{*}}\left(a^{*} \mid \tilde{a}\right)-k^{T} \sum_{\theta \in \Theta, \theta \neq \theta^{*}} \rho_{\theta}\left(a^{*} \mid \tilde{a}\right)\right] \\
= & \Delta_{*}^{T} \equiv \widetilde{\Delta}^{T}(\varepsilon)+\widetilde{\Delta}^{T}+J(\varepsilon) \mathbf{P}_{\sigma^{T}}\left(\widetilde{\xi}=\tilde{a} \mid \theta^{*}\right)\left[u\left(a^{*}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)-u\left(\tilde{a}, E_{\sigma^{T}}\left[X_{\theta^{*}}\right], \theta^{*}\right)\right] \\
& \times\left[\left[1-G_{\theta^{*}}\left(k^{T}\right)\right]-k^{T}\left[1-\widetilde{G}_{\theta^{*}}\left(k^{T}\right)\right]\right] .
\end{aligned}
$$

Note that $\lim _{T \rightarrow \infty} \widetilde{\widetilde{\Delta}}^{T}=0$. Let $\widetilde{\Delta}(\varepsilon) \equiv \lim _{T \rightarrow \infty} \widetilde{\Delta}^{T}(\varepsilon)$. Finally, note that, as in the proof in the paper, $\lim _{T \rightarrow \infty} k^{T}=\bar{k}$. Then

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \Delta_{*}^{T}= & \widetilde{\Delta}(\varepsilon)+\frac{1-\left(N_{a}-1\right) \varepsilon}{N_{\theta}}\left[x_{\theta^{*}}^{\tilde{a}}\left[u\left(a^{*}, x_{\theta^{*}}, \theta^{*}\right)-u\left(\tilde{a}, x_{\theta^{*}}, \theta^{*}\right)\right]\right] \\
& \times\left[\left[1-G_{\theta^{*}}(\bar{k})\right]-\bar{k}\left[1-\widetilde{G}_{\theta^{*}}(\bar{k})\right]\right]
\end{aligned}
$$

S.7.6 Strategic learning

Lemmas 4^{\prime} and 5^{\prime} are the main building blocks to show how Proposition 2 also applies to a context with many states and many actions. I present this formally.

Proposition 2^{\prime} (Strategic learning). Assume signals are of unbounded strength. Then there is strategic learning.

The proof of Proposition 3^{\prime} requires modifying Proposition 3 and Lemma 11 in the paper. With these results in hand, the proof of Proposition 2^{\prime} is analogous to the proof of Proposition 2 in the main text. Lemma 11 extends directly to a context with many actions and many states. I present next a version of Proposition 3 in the paper that applies to many states of the world.

Proposition 3^{\prime}. For all $l \in(\underline{l}, \bar{l}), G_{\theta}(l)$ satisfies

$$
\begin{equation*}
l>\frac{G_{\theta}(l)}{\widetilde{G}_{\theta}(l)} \quad \text { and } \quad l<\frac{1-G_{1}(l)}{1-G_{0}(l)} \tag{S.5}
\end{equation*}
$$

Moreover, if $k^{\prime} \geq k$, then

$$
\begin{equation*}
\left[1-G_{1}(k)\right]-k\left[1-G_{0}(k)\right] \geq\left[1-G_{1}\left(k^{\prime}\right)\right]-k^{\prime}\left[1-G_{0}\left(k^{\prime}\right)\right] \tag{S.6}
\end{equation*}
$$

Proof. The proof follows that from Proposition 11 in Monzón and Rapp (2014), but here the likelihood ratio G_{θ} indicates how likely state θ is relative to all other states. Note first that

$$
\begin{aligned}
l_{\theta}(s)^{-1} & =\sum_{\tilde{\theta} \neq \theta} l_{\tilde{\theta}, \theta}(s)=\sum_{\tilde{\theta} \neq \theta} \frac{d F_{\tilde{\theta}}}{d F_{\theta}}(s) \\
d F_{\theta}(s) l_{\theta}(s)^{-1} & =\sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}(s) \\
d F_{\theta}(s) & =l_{\theta}(s) \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}(s) .
\end{aligned}
$$

Recall that $\widetilde{G}_{\theta}(L) \equiv \sum_{\tilde{\theta} \neq \theta} \operatorname{Pr}\left(l_{\theta}(s) \leq L \mid \tilde{\theta}\right)$:

$$
\begin{aligned}
G_{\theta}(L) & =\int_{\left\{S \in \mathcal{S}: l_{\theta}(s) \leq L\right\}} d F_{\theta}=\int_{\left\{S \in \mathcal{S}: l_{\theta}(s) \leq L\right\}} l_{\theta}(s) \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}(s) \\
& <\int_{\left\{S \in \mathcal{S}: l_{\theta}(s) \leq L\right\}} L \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}(s)=L \sum_{\tilde{\theta} \neq \theta} \int_{\left\{S \in \mathcal{S}: l_{\theta}(s) \leq L\right\}} d F_{\tilde{\theta}}(s) \\
& =L \widetilde{G}_{\theta}(L) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
1-G_{\theta}(L) & =\int_{\left\{S \in \mathcal{S}: l_{\theta}(s)>L\right\}} d F_{\theta}=\int_{\left\{S \in \mathcal{S}: l_{\theta}(s)>L\right\}} l_{\theta}(s) \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}(s) \\
& >\int_{\left\{S \in \mathcal{S}: l_{\theta}(s)>L\right\}} L \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}(s)=L \sum_{\tilde{\theta} \neq \theta} \int_{\left\{S \in \mathcal{S}: l_{\theta}(s)>L\right\}} d F_{\tilde{\theta}}(s) \\
& =L\left[1-\widetilde{G}_{\theta}(L)\right] .
\end{aligned}
$$

This shows that (S.5) holds. I move next to the second part. Take $k^{\prime}>k$:

$$
\begin{aligned}
{\left[1-G_{\theta}(k)\right]-\left[1-G_{\theta}\left(k^{\prime}\right)\right] } & =G_{\theta}\left(k^{\prime}\right)-G_{\theta}(k)=\int_{S \in \mathcal{S}: k \leq l_{\theta}(S) \leq k^{\prime}} d F_{\theta} \\
& =\int_{S \in \mathcal{S}: k \leq l_{\theta}(S) \leq k^{\prime}} l_{\theta}(S) \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}} \\
& \geq k \int_{S \in \mathcal{S}: k \leq l_{\theta}(S) \leq k^{\prime}} \sum_{\tilde{\theta} \neq \theta} d F_{\tilde{\theta}}=k\left[\widetilde{G}_{\theta}\left(k^{\prime}\right)-\widetilde{G}_{\theta}(k)\right] \\
& =k\left[1-\widetilde{G}_{\theta}(k)\right]-k\left[1-\widetilde{G}_{\theta}\left(k^{\prime}\right)\right] \\
& \geq k\left[1-\widetilde{G}_{\theta}(k)\right]-k^{\prime}\left[1-\widetilde{G}_{\theta}\left(k^{\prime}\right)\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[1-G_{\theta}(k)\right]-\left[1-G_{\theta}\left(k^{\prime}\right)\right] } & \geq k\left[1-\widetilde{G}_{\theta}(k)\right]-k^{\prime}\left[1-\widetilde{G}_{\theta}\left(k^{\prime}\right)\right] \\
{\left[1-G_{\theta}(k)\right]-k\left[1-\widetilde{G}_{\theta}(k)\right] } & \geq\left[1-G_{\theta}\left(k^{\prime}\right)\right]-k^{\prime}\left[1-\widetilde{G}_{\theta}\left(k^{\prime}\right)\right]
\end{aligned}
$$

This shows that (S.6) holds.

References

Monzón, Ignacio and Michael Rapp (2014), "Observational learning with position uncertainty." Journal of Economic Theory, 154, 375-402. [20]

Co-editor Thomas Mariotti handled this manuscript.
Manuscript received 29 September, 2017; final version accepted 29 November, 2018; available online 30 November, 2018.

[^0]: ${ }^{1}$ Note that $\rho(0)>\varepsilon$ and $\rho(1)<1-\varepsilon$, so $1+\rho(0)-\rho(1) \geq 1+\varepsilon-(1-\varepsilon)=2 \varepsilon$ and so $1+\rho(0)-\rho(1) \neq 0$.

