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S.1. Proof of Lemma 6

Take a limit point x = (x0�x1) with v0(x0) > 0 and v1(x1) < 0. In the limit, agents want

their action to go against the state of the world. Now the simple strategy σ̃T is

σ̃T (̃ξ� s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ξ̃ = 1 and l(s) ≤ kT ≡ v0
(
EσT [X0]

)
−v1

(
EσT [X1]

) PσT (̃ξ = 1 | θ = 0)
PσT (̃ξ = 1 | θ = 1)

1 if ξ̃ = 0 and l(s) ≤ k
T ≡ v0

(
EσT [X0]

)
−v1

(
EσT [X1]

) PσT (̃ξ = 0 | θ = 0)
PσT (̃ξ = 0 | θ = 1)

0 otherwise.

Given this simple strategy, the approximate improvement is given by

�T = 1
2

∑
θ∈{0�1}

[
Pσ̃T (ai = 1 | θ)−EσT [Xθ]

] · vθ
(
EσT [Xθ]

)
= 1

2

∑
θ∈{0�1}

[
ε+ (1 − 2ε)

[
πT
θ Gθ

(
kT )+ (

1 −πT
θ

)
Gθ

(
k
T )]−EσT [Xθ]

] · vθ
(
EσT [Xθ]

)
= 1

2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
ε+ (1 − 2ε)

[
πT
θ

[
Gθ

(
kT )− 1

]+ (
1 −πT

θ

)
Gθ

(
k
T )]]

+ vθ
(
EσT [Xθ]

)[
(1 − 2ε)πθ −EσT [Xθ]

]
= 1

2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[(
1 − 2πT

θ

)
ε+ (1 − 2ε)

[
πT
θ

[
Gθ

(
kT )− 1

]+ (
1 −πT

θ

)
Gθ

(
k
T )]]

+ 1
2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πθ −EσT [Xθ]

]
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Thus,

�T = 1
2
[(

1 − 2πT
0
)
ε+ (1 − 2ε)

[−πT
0
[
1 −G0

(
kT )]+ (

1 −πT
0
)
G0

(
k
T )]] · v0

(
EσT [X0]

)
+ 1

2
[(

1 − 2πT
1
)
ε+ (1 − 2ε)

[−πT
1
[
1 −G1

(
kT )]+ (

1 −πT
1
)
G1

(
k
T )]] · v1

(
EσT [X1]

)
+ 1

2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πθ −EσT [Xθ]

]

= 1
2

[
(1 − 2ε)

(
1 −πT

0
)[
G0

(
k
T )− −v1

(
EσT [X1]

)
v0
(
EσT [X0]

) (
1 −πT

1
)(

1 −πT
0
)G1

(
k
T )]] · v0

(
EσT [X0]

)
+ 1

2

[
(1 − 2ε)πT

1

[
v0
(
EσT [X0]

)
−v1

(
EσT [X1]

) πT
0

πT
1

[
1 −G0

(
kT )]− [

1 −G1
(
kT )]]] · v1

(
EσT [X1]

)
+ 1

2
(
1 − 2πT

0
)
ε · v0

(
EσT [X0]

)+ 1
2
(
1 − 2πT

1
)
ε · v1

(
EσT [X1]

)
+ 1

2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πθ −EσT [Xθ]

]
= 1

2
[(

1 − 2πT
0
)
ε+ (1 − 2ε)

(
1 −πT

0
)[
G0

(
k
T )− (

k
T )−1

G1
(
k
T )]] · v0

(
EσT [X0]

)
+ 1

2
[(

2πT
1 − 1

)
ε+ (1 − 2ε)πT

1
[[

1 −G1
(
kT )]− kT [1 −G0

(
kT )]]] · (−v1

(
EσT [X1]

))
+ 1

2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πθ −EσT [Xθ]

]
	

Thus,

lim
T→∞

�T = 1
2
[
(1 − 2x0)ε+ (1 − 2ε)(1 − x0)

[
G0(k)− (k)−1G1(k)

]] · v0(x0)

+ 1
2
[
(2x1 − 1)ε+ (1 − 2ε)x1

[[
1 −G1(k)

]− k
[
1 −G0(k)

]]] · (−v1(x1)
)
	

Again, Corollary 2 leads directly to[
(1 − 2ε)(1 − x0)

[
G0(k)− (k)−1G1(k)

]− ε(2x0 − 1)
] · v0(x0)

+ [
(1 − 2ε)x1

[[
1 −G1(k)

]− k
[
1 −G0(k)

]]− ε(1 − 2x1)
] · (−v1(x1)

)≤ 0	

S.2. Proof of Lemma 7

Let ÑEδ = {x ∈ [0�1]2 : d(x�NE(l�l)) ≤ δ} be the set of all points that are δ-close to ele-
ments of NE(l�l) and let Lε denote the set of limit points in a game with mistake prob-
ability ε > 0. I show first the following lemma, which is analogous to Lemma 11 in the
main paper.

Lemma 11′ (Limit set approaches NE(l�l)). For any δ > 0, ∃ε̃ > 0, Lε ⊆ ÑEδ ∀ε < ε̃.
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Proof. The proof is by contradiction. Assume that there exists (i) a sequence of mistake
probabilities {εn}∞n=1 with limn→∞ εn = 0 and (ii) an associated sequence {xn}∞n=1 with
xn ∈Lεn for all n, but (iii) xn /∈ ÑEδ for all n. Since xn ∈ [0�1]2 for all n, this sequence has a
convergent subsequence {xnm}∞m=1 with limm→∞ xnm = x̄ = (x̄0� x̄1). If v0(x̄0) = v1(x̄1) =
0, then x̄ ∈ NE, so for m large enough, xnm ∈ ÑEδ. Then it must be the case that vθ(x̄θ) �= 0
for some θ.

Assume that v1(x̄1) > 0. Pick m̃ large enough so that v1(x
nm
1 ) > 0 for all m> m̃. For

all m with v0(x
nm
0 ) ≥ 0, Lemma 4 implies that xnm = (1 − εnm�1 − εnm). So if v0(x

nm
0 ) ≥ 0

infinitely often, then x̄= (1�1). As a result, x̄ ∈ NE, so for m large enough, xnm ∈ ÑEδ.
Take next all m with v0(x

nm
0 ) < 0. By Lemma 5, (3) must hold:

−v0
(
xnm0

)
2

[ →1︷ ︸︸ ︷(
1 − 2εnm

) ≥0︷ ︸︸ ︷
xnm0

[
G0

(
knm

)− (
knm

)−1
G1

(
knm

)]− →0︷ ︸︸ ︷
ε(1 − 2x0)

]
+ v1

(
xnm1

)
2

[(
1 − 2εnm

)︸ ︷︷ ︸
→1

(
1 − xnm1

)[[
1 −G1

(
k
nm)]− k

nm[1 −G0
(
k
nm)]]︸ ︷︷ ︸

≥0

− εnm
(
2xnm1 − 1

)︸ ︷︷ ︸
→0

]≤ 0	 (S.1)

Proposition 3 guarantees both that [[1 − G1(k
nm

)] − k
nm[1 − G0(k

nm
)]] ≥ 0 and that

[G0(k
nm) − (knm)−1G1(k

nm)] ≥ 0. Then, as (S.1) shows, when εnm → 0, only nonnega-
tive terms may remain. Assume that k= −[v0(x̄0)(1 − x̄0)]/[v1(x̄1)(1 − x̄1)]< l. Then, for
ε small enough, k

nm
< l. Proposition 3 implies that

lim
m→∞

[[
1 −G1

(
k
nm)]− k

nm[1 −G0
(
k
nm)]]

> 0	

To summarize, whenever k< l, (S.1) is not satisfied for small enough εnm . It must be the
case then that k≥ l. Similarly, if k> l, then

lim
m→∞

[
G0

(
knm

)− (
knm

)−1
G1

(
knm

)]
> 0

for small enough εnm . It must be the case then that k ≤ l.
Analogous arguments (using also Lemma 6) lead to the same result for the case with

v1(x̄1) < 0. As a result, x̄ ∈ NE(l�l), so for m large enough, xnm ∈ ÑEδ.
The rest of the proof is identical to the proof of Proposition 2 in the paper.

S.3. Example 4: Standard observational learning with mistakes

This corresponds to Example 4 in the paper. Utility is given by u(1�X�1) = u(0�X�0) = 1
and u(1�X�0) = u(0�X�1) = 0. Each agent observes his immediate predecessor: M = 1.
The signal structure is described by ν1[(0� s)] = s2 and ν0[(0� s)] = 2s − s2 with s ∈ (0�1).

Proof of Example 4. Let π ≡ Pr(ξ = 1 | θ = 1). An agent who observes ξ = 1 chooses
action 1 if and only if π

1−π
s

1−s ≥ 1 ⇔ s ≥ 1 − π. Similarly, an agent who observes ξ =
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0 chooses action 1 if and only if 1−π
π

s
1−s ≥ 1 ⇔ s ≥ π. As a result, the likelihood that

somebody who observes a sample (that is, not agent 1) will choose the right action is
given by

Pr
(
ai = 1 | θ = 1�Q(i) �= 1

)= 1
T − 1

T∑
t=2

Pr(at = 1 | θ = 1)

= ε+ (1 − 2ε)
[
π Pr(s ≥ 1 −π)+ (1 −π)Pr(s ≥ π)

]
= ε+ (1 − 2ε)

[
π
[
1 − (1 −π)2]+ (1 −π)

[
1 −π2]]

= ε+ (1 − 2ε)
[
π −π

(
1 +π2 − 2π

)+ 1 −π −π2 +π3]
= ε+ (1 − 2ε)

[
π −π −π3 + 2π2 + 1 −π −π2 +π3]

= ε+ (1 − 2ε)
(
1 −π +π2)	

Reordering yields

Pr(a1 = 1 | θ = 1)+
T∑
t=2

Pr(at = 1 | θ = 1) =
T−1∑
t=1

Pr(at = 1 | θ = 1)+ Pr(aT = 1 | θ = 1)	

Then

ε+ (1 − 2ε)
(
1 −π +π2)−π − Pr(aT = 1 | θ = 1)− Pr(a1 = 1 | θ = 1)

T − 1
= 0

ε+ (1 − 2ε)
(
1 −π +π2)−π −�= 0

(1 − 2ε)π2 − 2(1 − ε)π + 1 − ε−�= 0�

where I define � ≡ Pr(aT=1|θ=1)−Pr(a1=1|θ=1)
T−1 . Then

π = 2(1 − ε)±
√

4(1 − ε)2 − 4(1 − 2ε)(1 − ε−�)

2(1 − 2ε)

= 1 − ε−
√
(1 − ε)2 − (1 − 2ε)(1 − ε−�)

1 − 2ε
	

Note that limT→∞ �= 0. Then

π → 1 − ε−
√
(1 − ε)2 − (1 − 2ε)(1 − ε)

1 − 2ε

= 1 − ε

1 − 2ε

(
1 −

√
1 − 1 − 2ε

1 − ε

)
= 1 − ε

1 − 2ε

(
1 −

√
ε

1 − ε

)
	

Also, as T → ∞, π − Pr(ai = 1 | θ) → 0. Then x1 = limT→∞ Pr(ai = 1 | θ) = 1−ε
1−2ε(1 −√

ε
1−ε).
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S.4. Example 8: Multiple equilibria in a coordination game

Proof of Example 8. Consider a sequence of symmetric strategy profiles {σT (s�ξ)},
where σT (s�ξ) = σ(s�ξ) does not change with T and is given by

σ(s�ξ) =

⎧⎪⎪⎨⎪⎪⎩
1 if s = 1

0 if s = 0

ξ if s = 1/2	

Let π ≡ Pr(ξ = 1 | θ = 1). Under σ(s�ξ), the likelihood that somebody who observes
a sample (that is, not agent 1) chooses action 1 is given by

Pr
(
ai = 1 | θ = 1�Q(i) �= 1

)= 1
T − 1

T∑
t=2

Pr(at = 1 | θ = 1)

= ε+ (1 − 2ε)
[
Pr(s = 1)+ Pr(s = 1/2)π

]
= ε+ (1 − 2ε)

[
(1 − γ)/100 + 99/100π

]
	

Reordering yields

Pr(a1 = 1 | θ = 1)+
T∑
t=2

Pr(at = 1 | θ = 1)=
T−1∑
t=1

Pr(at = 1 | θ = 1)+ Pr(aT = 1 | θ = 1)	

Then

T∑
t=2

Pr(at = 1 | θ = 1)

T − 1
−

T−1∑
t=1

Pr(at = 1 | θ = 1)

T − 1

= Pr(aT = 1 | θ = 1)− Pr(a1 = 1 | θ = 1)
T − 1

�

so

Pr
(
ai = 1 | θ = 1�Q(i) �= 1

)−π = Pr(aT = 1 | θ = 1)− Pr(a1 = 1 | θ = 1)
T − 1

ε+ (1 − 2ε)
[
(1 − γ)/100 + 99/100π

]−π = �	

Then

ε− 2ε
[
(1 − γ)/100 + 99/100π

]+ (1 − γ)/100 − 1/100π = �

ε− 2ε(1 − γ)/100 − ε198/100π + (1 − γ)/100 − 1/100π = �

+(1 − γ)/100 + [
1 − (1 − γ)/50

]
ε− (1/100 + 198/100ε)π = �

+(1 − γ)+ [
100 − 2(1 − γ)

]
ε− (1 + 198ε)π = 100�	
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Then

π = (1 − γ)+ [
100 − 2(1 − γ)

]
ε− 100�

1 + 198ε
	

Proposition 1 guarantees that as the number of agents grows large, the average ac-
tion is close to its expectation. For low enough ε and large enough T , approximately

X0|σ p−→ γ and X1|σ p−→ 1 − γ. Then

Pr(θ = 1 | ξ = 1)
Pr(θ = 0 | ξ = 1)

≈ 1 − γ

γ
	

So the sample is informative about the state of the world. To sum up, there is ε small
and T large such that σ is indeed an equilibrium.

S.5. Proving Lemma 12

I illustrate first the effect of different values of γ > 1 on sampling probabilities. Figure S.1
presents an agent in position 21. The black line shows the probability of observing a
predecessor in position τ < 21 when γ = 8. With probability higher than 0	998, the agent
observes one of his three immediate predecessors. The distribution becomes flatter as
γ decreases. The red line shows the distribution when γ = 1	05. In this case, the agent
in position 21 observes his immediate predecessor twice as often as he observes the
first agent in the sequence. As γ → 1, sampling approaches uniform random sampling.
Instead, as γ → ∞, sampling approaches observing the immediate predecessor.

Next, I present the proof of Lemma 12.

Proof of Lemma 12. A strategy σi induces ρθ(ξ) = Pσi(ai | θ�ξ). For the rest of this
section, I fix the state of the world θ and drop its index. Then a strategy σi induces a
vector (ρ(∅)�ρ(0)�ρ(1)). Because of mistakes, ε < ρ(ξ) < 1 − ε for all ξ ∈ {0�1�∅}.

Figure S.1. Probabilities of different predecessors being observed: geometric sampling.
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Assume first that γ > 1. The first agent in the sequence chooses action 1 with prob-
ability ρ(∅). For t ≥ 2,

Pσ(at = 1)= Pr(ξt = 0)Pr(at = 1 | ξt = 0)+ Pr(ξt = 1)Pr(at = 1 | ξt = 1)

= Pr(ξt = 0)ρ(0)+ Pr(ξt = 1)ρ(1)

= [
1 − Pr(ξt = 1)

]
ρ(0)+ Pr(ξt = 1)ρ(1)

= ρ(0)+ [
ρ(1)− ρ(0)

]
Pr(ξt = 1)

= ρ(0)+ [
ρ(1)− ρ(0)

]∑
τ<t

Pr(Ot = τ)1{aτ = 1}

= ρ(0)+ [
ρ(1)− ρ(0)

] t−1∑
τ=1

γ − 1
γ

γτ

γt−1 − 1
aτ	

Define the weighted sum of the past history by pt ≡∑t−1
τ=1

γ−1
γ

γτ

γt−1−1
aτ for t ≥ 2. This

concept plays a key role in the model:

Pσ(at = 1) = ρ(0)+ [
ρ(1)− ρ(0)

]
pt	

This weighted sum has a recursive nature:

pt+1 =
t∑

τ=1

γ − 1
γ

γτ

γt − 1
aτ = γt−1 − 1

γt − 1

[
t−1∑
τ=1

γ − 1
γ

γτ

γt−1 − 1
aτ

]
+ γ − 1

γ

γt

γt − 1
at

= γt−1 − 1
γt − 1

pt + γt − γt−1

γt − 1
at	

In expectation,

E[pt+1 | It] = γt−1 − 1
γt − 1

E[pt | I] + γt − γt−1

γt − 1
E[at | I]

= γt−1 − 1
γt − 1

E[pt | I] + γt − γt−1

γt − 1

[
ρ(0)+ [

ρ(1)− ρ(0)
]
E[pt | I]]

= γt − 1 + γt−1 − γt

γt − 1
E[pt | I] + γt − γt−1

γt − 1

[
ρ(0)+ [

ρ(1)− ρ(0)
]
E[pt | I]]

= E[pt | I] + γt−1 − γt

γt − 1
E[pt | I] + γt − γt−1

γt − 1

[
ρ(0)+ [

ρ(1)− ρ(0)
]
E[pt | I]]

= E[pt | I] + γt − γt−1

γt − 1

[
ρ(0)− [

1 + ρ(0)− ρ(1)
]
E[pt | I]]

= E[pt | I] + γt − γt−1

γt − 1

[
1 + ρ(0)− ρ(1)

][
ρ∗ −E[pt | I]]	
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Let ρ∗ ≡ ρ(0)
1+ρ(0)−ρ(1) .1 Then

E[pt+1 | I] − ρ∗ =E[pt | I] − ρ∗ − γt − γt−1

γt − 1

[
1 + ρ(0)− ρ(1)

][
E[pt | I] − ρ∗]

=
[

1 − γt − γt−1

γt − 1

[
1 + ρ(0)− ρ(1)

]][
E[pt | I] − ρ∗]

=
[

1 − γ − 1
γ

γt

γt − 1︸ ︷︷ ︸
(∗)

[
1 + ρ(0)− ρ(1)

]︸ ︷︷ ︸
(∗∗)

][
E[pt | I] − ρ∗]	 (S.2)

I next provide bounds for the terms (∗) and (∗∗) in (S.2):

2ε ≤ 1 + ρ(0)− ρ(1) ≤ 2 − 2ε

γ − 1
γ

≤ γ − 1
γ

γt

γt − 1
≤ 1	

With these bounds, I can also bound the whole term in brackets in (S.2):

γ − 1
γ

2ε ≤ γ − 1
γ

γt

γt − 1

[
1 + ρ(0)− ρ(1)

]≤ 2 − 2ε

γ − 1
γ

2ε− 1 ≤ γ − 1
γ

γt

γt − 1

[
1 + ρ(0)− ρ(1)

]− 1 ≤ 1 − 2ε∣∣∣∣1 − γ − 1
γ

γt

γt − 1

[
1 + ρ(0)− ρ(1)

]∣∣∣∣≤ 1 − γ − 1
γ

2ε	

This leads to a simple bound over time:

∣∣E[pt+n | It] − ρ∗∣∣= t+n−1∏
τ=t

∣∣∣∣1 − γ − 1
γ

γt

γt − 1

[
1 + ρ(0)− ρ(1)

]∣∣∣∣∣∣E[pt | It] − ρ∗∣∣
≤
(

1 − γ − 1
γ

2ε
)n−1

	

In particular,

∣∣E[pt+n | at = 1] − ρ∗∣∣≤ (
1 − γ − 1

γ
2ε
)n−1

∣∣E[pt+n] − ρ∗∣∣≤ (
1 − γ − 1

γ
2ε
)t+n−1

	

1Note that ρ(0) > ε and ρ(1) < 1 − ε, so 1 + ρ(0)− ρ(1) ≥ 1 + ε− (1 − ε) = 2ε and so 1 + ρ(0)− ρ(1) �= 0.
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So finally,

∣∣E[pt+n | It] −E[pt+n]
∣∣≤ ∣∣E[pt+n | at = 1] − ρ∗∣∣+ ∣∣E[pt+n] − ρ∗∣∣
≤
(

1 − γ − 1
γ

2ε
)n−1

+
(

1 − γ − 1
γ

2ε
)t+n−1

≤ 2
(

1 − γ − 1
γ

2ε
)n−1

�

and turning this into probabilities yields

∣∣Pσ(at+n = 1 | at = 1)− Pσ(at+n = 1)
∣∣= ∣∣ρ(0)+ [

ρ(1)− ρ(0)
]
E[pt+n | at = 1]

− [
ρ(0)+ [

ρ(1)− ρ(0)
]
E[pt+n]

]∣∣
= ∣∣[ρ(1)− ρ(0)

][
E[pt+n | at = 1] −E[pt+n]

]∣∣
≤ 2

∣∣[E[pt+n | at = 1] −E[pt+n]
]∣∣

≤ 4
(

1 − γ − 1
γ

2ε
)n−1

≤ 4

1 − γ − 1
γ

2ε

(
1 − γ − 1

γ
2ε
)n

	

Next assume that γ = 1. Then

Pσ(at = 1)= ρ(0)+ [
ρ(1)− ρ(0)

] 1
t − 1

t−1∑
τ=1

aτ	

Define now pt ≡ 1
t−1

∑t−1
τ=1 aτ for t ≥ 2, which leads to

pt+1 = 1
t

t∑
τ=1

aτ = t − 1
t

t−1∑
τ=1

aτ + 1
t
at = t − 1

t
pt + 1

t
at 	

In expectation,

E[pt+1 | It] = t − 1
t

E[pt | I] + 1
t
E[at | I]

= t − 1
t

E[pt | I] + 1
t
E
[
ρ(0)+ [

ρ(1)− ρ(0)
]
pt | I]

= 1
t

[
t − 1 + ρ(1)− ρ(0)

]
E[pt | I] + 1

t
ρ(0)�
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so in this case,

E[pt+1 | It] − ρ∗ = 1
t

[
t − 1 + ρ(1)− ρ(0)

]
E[pt | I] + 1

t
ρ(0)− ρ∗

= 1
t

[
ρ(0)− [

1 + ρ(0)− ρ(1)
]
E[pt | I]]+E[pt | I] − ρ∗

= 1
t

[
1 + ρ(0)− ρ(1)

][
ρ∗ −E[pt | I]]+E[pt | I] − ρ∗

=
[

1 − 1
t

[
1 + ρ(0)− ρ(1)

]][
E[pt | I] − ρ∗]	

Then

E[pt+n | It] − ρ∗ = [
E[pt | I] − ρ∗] n∏

τ=0

[
1 − 1

t + τ

[
1 + ρ(0)− ρ(1)

]]
	

I present without proof the following remark.

Remark 1. Let 0 < an < 1 for all n. Then
∏∞

τ=0 an > 0 ⇔∑∞
τ=0(1 − an) <∞.

Then it suffices to show that

n∑
τ=0

1
t + τ

[
1 + ρ(0)− ρ(1)

]= [
1 + ρ(0)− ρ(1)

] n∑
τ=0

1
t + τ

= ∞

and follow the same steps as in the case with γ > 1.

S.6. Proof of Lemma 13

I show Proposition 1 by proving that X|σT −E[X|σT ] converges to zero in L2 norm. The
variance V (στ) as defined by (5) is bounded above by

V
(
στ

)≤ 1
T

(
1 + 4

(
1 − 2εM

)−1
(
1 − 2εM

) 1
M

1 − (
1 − 2εM

) 1
M

)
	

Note that limT→∞ 4(1 − 2εM(T))−1 = 4 and limT→∞(1 − 2εM(T))
1

M(T) = 1. Then the

bound converges to zero whenever limT→∞ T [1 − (1 − 2εM(T))
1

M(T) ] = ∞. I need to show

that for any K < ∞, there exists a T̃ < ∞ such that T [1 − (1 − 2εM(T))
1

M(T) ] ≥ K for all
T ≥ T̃ . This simplifies to (

1 − K

T

)M(T)

≥ 1 − 2εM(T) ∀T ≥ T̃ 	

Since (1 − K
T )

M(T) ≥ 1 − KM
T , it suffices to show that

1 − KM

T
≥ 1 − 2εM(T) ⇔ εM(T)

M
≥ K

2
1
T
�
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where M(T) is o(log(T)). Then, for any constant c ≥ 0, there is T large enough such that

M(T) ≤ c log(T). Pick c = (−2 log(ε))−1. Note next that the function εx/x is decreasing.

Then, for T large, εM(T)

M(T) ≥ ε(−2 log(ε))−1 log(T)

(−2 log(ε))−1 log(T)
. As a result, it suffices to show that for T large

enough,

ε[(−2 log(ε))−1 log(T)](−2 log(ε)
)−1 log(T)

≥ K

2
1
T

ε(−2 log(ε))−1 log(T) ≥ K

2
1
T

(−2 log(ε)
)−1 log(T)

T (−2 log(ε))−1 log(ε) ≥ 1
−4 log(ε)

K
log(T)

T

T− 1
2 ≥ 1

−4 log(ε)
K

log(T)
T

T
1
2

log(T)
≥ 1

−4 log(ε)
K	

The left hand side goes to infinity and the right hand side is constant. Then there always

exists a T such that this holds. This shows the first part of Proposition 1.

Next, I focus on the second part of Proposition 1. Equation (6) in the paper now

becomes

Pr
(∣∣X|σT −X|σ̃T

∣∣≥ n

T

)
≤ [(

1 − 2εM(T)
) 1
M(T)

]n
�

which holds for all n.

Let n = �(−2 log(ε))−1 log(T)T
3
4 �. As (1 − 2εM)

1
M ≤ 1, then

Pr
(∣∣X|σT −X|σ̃T

∣∣≥ n

T

)
≤ [(

1 − 2εM(T)
) 1
M(T)

]n
≤ [(

1 − 2εM(T)
) 1
M(T)

](−2 log(ε))−1 log(T)T
3
4

≤ (
1 − 2ε(−2 log(ε))−1 log(T)) (−2 log(ε))−1 log(T)T

3
4

(−2 log(ε))−1 log(T)

= (
1 − 2T− 1

2
)T 3

4
�

where I have used the fact that M(T) is o(log(T)), so M(T) ≤ (−2 log(ε))−1 log(T) for T

large enough. Moreover, I also used the fact that (1 − 2εM)
1
M is increasing in M .

I need to show that for all b > 0, there exists T̃ , such that Pr(|X|σT − X|σ̃T | ≥
b) < b for all T > T̃ . Then it suffices to show that limT→∞ n

T = 0 and limT→∞(1 −
2T− 1

2 )T
3
4 = 0.
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So first, note that

n

T
≤

(−2 log(ε)
)−1 log(T)T

3
4 + 1

T
= 1(−2 log(ε)

) log(T)

T
1
4

+ 1
T

→ 0�

so limT→∞ n
T = 0.

Second, note that limT→∞(1 − 2T− 1
2 )T

3
4 = 0 ⇔ limT→∞ T

3
4 log(1 − 2T− 1

2 ) = −∞. So
using l’Hôpital’s rule,

lim
T→∞

log
(
1 − 2T− 1

2
)

T− 3
4

= lim
T→∞

1

1 − 2T− 1
2

(−2)
(

−1
2

)
T− 3

2

−3
4
T− 7

4

= lim
T→∞

−4
3

T
1
4

1 − 2T− 1
2

= −∞	

This finishes the proof of the second part of Proposition 1.
Lemma 10 also needs some adjustment to allow for M to grow with T . Equation (8)

from the paper becomes

πT
θ −EσT [Xθ] = 1

T

[
M(T)−1∑

τ=1

≤1︷ ︸︸ ︷
PσT (aτ = 1)

(
τ+M(T)−1∑

t=τ

≤1︷ ︸︸ ︷
t−1 − 1

)

−
T∑

τ=T−M(T)+1

PσT (aτ = 1)︸ ︷︷ ︸
≤1

(
1 − T − τ

M(T)

)
︸ ︷︷ ︸

≤1

]

≤ 2M(T)

T
	

Since M(T) is o(log(T)), then, πT
θ −EσT → 0. This adapts Lemma 10 to the case with

growing M . The rest of Proposition 2 does not change.

S.7. Many states of the world and many actions

S.7.1 The model

States and Actions There are Nθ equally likely states of the world θ ∈�= {1�2� 	 	 	 �Nθ}.
Agents must choose between Na possible actions a ∈ A = {1�2� 	 	 	 �Na}. Let Xa ≡
1
T

∑
j∈I 1{aj = a} denote the proportion of agents who choose action a, with realiza-

tions xa ∈ [0�1]. The vector X = (X1�X2� 	 	 	 �XNa) denotes the proportion of agents
who choose each action. Agent i obtains utility u(ai�X�θ) : A × [0�1] × � → R, where
u(ai�X�θ) is a continuous function in X .

Private Signals Conditional on the true state of the world, signals are i.i.d. across indi-
viduals and distributed according to Fθ. I assume that Fθ and Fθ̃ are mutually absolutely
continuous for any two θ� θ̃ ∈ �. Then no perfectly revealing signals occur with positive

probability, and the likelihood ratio (Radon–Nikodym derivative) lθ̃�θ(s) ≡ dFθ̃
dFθ

(s) exists.



Supplementary Material Observational learning in anonymous games 13

I also define a likelihood ratio that indicates how likely one state is, relative to all other
states:

lθ(s) =
(∑
θ̃ �=θ

lθ̃�θ(s)

)−1
	

Let Gθ(l) ≡ Pr(lθ(S) ≤ l | θ). I modify the assumption of signals being of unbounded
strength as follows.

Definition (Signal strength). Signal strength is unbounded if 0 <Gθ(l) < 1 for all like-
lihood ratios l ∈ (0�∞) and for all states θ ∈�.

Sampling Strategies and Mistakes The sampling rule does not change. A strategy is now
a function σi : S ×� → [ε�1 − (Na − 1)ε]Na that specifies a probability vector σi(s� ξ) for
choosing each action given the information available. For example, σa

i (s� ξ) indicates
the probability of choosing action a ∈ A, after receiving signal s and sample ξ.

Definition of Social Learning I modify the definition of NE to allow for many states and
actions. I say that xθ corresponds to a Nash equilibrium of the stage game (and denote
it by xθ ∈ NEθ) whenever u(a�xθ�θ) > u(a∗�xθ�θ) for some a�a∗ ∈ A ⇒ xa

∗
θ = 0. Then

x ∈ NE whenever xθ ∈ NEθ for all θ ∈�.

S.7.2 Results

Existence and Convergence of Average Action The proofs of Lemma 1 and Proposition 1
extend directly to a context with many actions and many states. I need to adapt the nota-
tion. The random variable X|σ is now a matrix. Each element Xa

θ |σ is a random variable
that denotes the proportion of agents choosing action a in state θ. So the random vari-
able X|σ = (X1|σ�X2|σ� 	 	 	 �XNθ |σ) has realizations x = (x1�x2� 	 	 	 � xNθ), where each xθ
is itself a vector: xθ = (x1

θ�x
2
θ� 	 	 	 � x

Na
θ ).

Utility Convergence In what follows, I provide modified expressions for the expected
utility, the utility of the expected average action, and the approximate utility of a devia-
tion. These expressions apply to contexts with many actions and many states.

Agents’ expected utility under symmetric profile σT is simply

u
(
σT

)≡ EσT

[
u(ai�X�θ)

]= 1
Nθ

∑
θ∈�

EσT

[∑
a∈A

Xa
θ · u(a�Xθ�θ)

]
	

Define the utility of the expected average action ūT by

ūT ≡ 1
Nθ

∑
θ∈�

∑
a∈A

EσT

[
Xa

θ

] · u(a�EσT [Xθ]� θ
)
	

Define the approximate utility of the deviation ũT by

ũT ≡ 1
Nθ

∑
θ∈�

∑
a∈A

Pσ̃T (ai = a | θ) · u(a�EσT [Xθ]� θ
)
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The proofs of Lemmas 2 and 3, as well as Corollary 1, extend directly to a context
with many actions and many states.

Corollary 2′ (The approximate improvement). Let the approximate improvement �T

be given now by

�T ≡ ũT − ūT = 1
Nθ

∑
θ∈�

∑
a∈A

[
Pσ̃T (ai = a | θ)−EσT

[
Xa

θ

]] · u(a�EσT [Xθ]� θ
)
	

The proof of Corollary 2′ extends directly to a context with many actions and many
states.

S.7.3 Alternative Strategy 1: Always follow a given action

I present next a version of Lemma 4 that applies to many actions and many states. Let
action a∗ ∈ A be weakly dominant if

u
(
a∗�xθ�θ

)≥ u(a�xθ�θ) for all a ∈ A and for all θ ∈�	

Let action a∗ ∈ A be strictly dominant if

u
(
a∗�xθ�θ

)
> u(a�xθ�θ) for all a ∈ A and for all θ ∈�	

Lemma 4′ (Dominance). If action a∗ ∈ A is strictly dominant, then xa
∗

θ = 1 − (Na − 1)ε
for all θ ∈ �. Assume instead that action a∗ ∈ A is weakly dominant. If there exists state
θ ∈� with u(a∗�xθ�θ) > u(ã�xθ�θ), then xãθ = ε.

Proof. Consider the alternative strategy of always choosing action a∗. Because of mis-
takes, this means a∗ is chosen with probability 1 − (Na − 1)ε. Then the improvement
is

�T = 1
Nθ

∑
θ∈�

[[
1 − (Na − 1)ε− xa

∗
θ

]
u
(
a∗�xθ�θ

)+
∑
a�=a∗

(
ε− xaθ

) · u(a�xθ�θ)
]

= 1
Nθ

∑
θ∈�

[[
1 − (Na − 1)ε− xa

∗
θ

]
u
(
a∗�xθ�θ

)−
∑
a�=a∗

(
xaθ − ε

) · u(a�xθ�θ)
]
	

Note that xaθ − ε ≥ 0 for all a, θ. Then[
1 − (Na − 1)ε− xa

∗
θ

]
u
(
a∗�xθ�θ

)−
∑
a�=a∗

(
xaθ − ε

) · u(a�xθ�θ)

≥ [
1 − (Na − 1)ε− xa

∗
θ

]
u
(
a∗�xθ�θ

)−
∑
a�=a∗

(
xaθ − ε

) · u(a∗�xθ�θ
)

=
[[

1 − (Na − 1)ε− xa
∗

θ

]−
∑
a�=a∗

(
xaθ − ε

)] · u(a∗�xθ�θ
)
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=
[

1 − (Na − 1)ε−
∑
a∈A

xaθ + (Na − 1)ε
]

︸ ︷︷ ︸
=0

· u(a∗�xθ�θ
)

= 0	

Recall that �T ≤ 0 by Corollary 2. Moreover, �T ≥ 0. Then �T = 0. Also, as each term in
�T is weakly positive, then all terms in �T must be zero:[

1 − (Na − 1)ε− xa
∗

θ

]
u
(
a∗�xθ�θ

)−
∑
a �=a∗

(
xaθ − ε

) · u(a�xθ�θ)= 0	

Assume next that for some action ã ∈ A in some state θ ∈ �, u(a∗�xθ�θ) > u(ã�xθ�θ).
Then

0 = [
1 − (Na − 1)ε− xa

∗
θ

]
u
(
a∗�xθ�θ

)−
∑
a �=a∗

(
xaθ − ε

) · u(a�xθ�θ)

≥
[

1 − (Na − 1)ε− xa
∗

θ −
∑

a �=a∗�a �=ã

(
xaθ − ε

)]
u
(
a∗�xθ�θ

)− (
xãθ − ε

)
u(ã�xθ�θ)

= [
1 − ε− (

1 − xãθ
)]
u
(
a∗�xθ�θ

)− (
xãθ − ε

)
u(ã�xθ�θ)

= (
xãθ − ε

)
u
(
a∗�xθ�θ

)− (
xãθ − ε

)
u(ã�xθ�θ)

= (
xãθ − ε

)[
u
(
a∗�xθ�θ

)− u(ã�xθ�θ)
]
	

To sum up,

(
xãθ − ε

) >0︷ ︸︸ ︷[
u
(
a∗�xθ�θ

)− u(ã�xθ�θ)
]≤ 0	

So xãθ = ε. Similarly, if u(a∗�xθ�θ) > u(a�xθ�θ) for all a ∈ A and for all θ ∈ �, then xa
∗

θ =
1 − (Na − 1)ε.

S.7.4 Alternative Strategy 2: Improve upon a sampled agent

Consider a possible limit point x= (x1�x2� 	 	 	 � xNθ). Assume that action ã is not optimal
in state θ∗: u(a∗�xθ∗� θ∗) > u(ã�xθ∗� θ∗), but it is still played in the limit: xãθ∗ > ε. As in the
case with two states, let ξ̃ denote the action of one individual selected at random from
the sample. Consider an alternative simple strategy σ̃ , which makes the agent choose
the action

ai(̃ξ� s)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a∗ if ξ̃ = ã and

lθ∗(s) ≥ kT ≡ −ū

u
(
a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗) 1

PσT

(̃
ξ = ã|θ = θ∗)

ξ̃ otherwise.
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I provide next a version of Lemma 5 in the paper that applies to many actions and
many states.

Lemma 5′ (Improvement principle). Take any limit point x ∈ L with u(a∗�xθ∗� θ∗) >
u(ã�xθ∗� θ∗). Then

�̃(ε)+ 1 − (Na − 1)ε
Nθ

[
xãθ∗ · [u(a∗�xθ∗� θ∗)− u

(
ã� xθ∗� θ∗)]]

× [[
1 −Gθ∗(k̄)

]− k̄
[
1 − G̃θ∗(k̄)

]]≤ 0 (S.3)

with

k̄ = −ū
[(
u
(
a∗�xθ∗� θ∗)− u

(
ã� xθ∗� θ∗))xãθ∗

]−1

�̃(ε)= ε

Nθ

[∑
θ∈�

∑
a∈A

[
1 − (Na − 1)xaθ

]
u(a�xθ�θ)

]
	

See Section S.7.5 for the proof.
The term [[1 − Gθ∗(k̄)] − k̄[1 − G̃θ∗(k̄)]] ≥ 0 in (S.3) decreases in k̄ (as shown later

in Proposition 3). Moreover, with signals of unbounded strength, this term is strictly
positive. Then, whenever xãθ > 0, there is potential for improvement. The existence of
mistakes may present such an improvement. Note, however, that limε→0 �̃(ε) = 0. Then
when mistakes are unlikely, the potential for improvement dominates in (S.3).

S.7.5 Proof of Lemma 5′

Let ρTθ (a|ã) ≡ PσT (ai = a|θ� ξ̃ = ã). In general, the improvement is given by

�T = 1
Nθ

∑
θ∈�

∑
a∈A

[
ε+ [

1 − (Na − 1)ε
] ∑
a′∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)

−EσT

[
Xa

θ

]]
u
(
a�EσT [Xθ]� θ

)
=
[

ε

Nθ

∑
θ∈�

∑
a∈A

u
(
a�EσT [Xθ]� θ

)]

+ 1 − (Na − 1)ε
Nθ

[∑
θ∈�

∑
a∈A

∑
a′∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)u(a�EσT [Xθ]� θ

)]

− 1 − (Na − 1)ε
Nθ

[∑
θ∈�

∑
a∈A

EσT

[
Xa

θ

]
u
(
a�EσT [Xθ]� θ

)]

− (Na − 1)ε
Nθ

[∑
θ∈�

∑
a∈A

EσT

[
Xa

θ

]
u
(
a�EσT [Xθ]� θ

)]
	



Supplementary Material Observational learning in anonymous games 17

Let

�̃T (ε) ≡ ε

Nθ

[∑
θ∈�

∑
a∈A

u
(
a�EσT [Xθ]� θ

)− (Na − 1)
[∑
θ∈�

∑
a∈A

EσT

[
Xa

θ

]
u
(
a�EσT [Xθ]� θ

)]]

= ε

Nθ

[∑
θ∈�

∑
a∈A

[
1 − (Na − 1)EσT

[
Xa

θ

]]
u
(
a�EσT [Xθ]� θ

)]

and

J(ε) ≡ 1 − (Na − 1)ε
Nθ

	

Then

�T = �̃T (ε)+ J(ε)
∑
θ∈�

∑
a∈A

[∑
a′∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)−EσT

[
Xa

θ

]]
× u

(
a�EσT [Xθ]� θ

)
	 (S.4)

However,

= 1
Nθ

∑
θ∈�

∑
a∈A

[∑
a′∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)−EσT

[
Xa

θ

]]
u
(
a�EσT [Xθ]� θ

)
= 1

Nθ

[∑
θ∈�

∑
a∈A

∑
a′∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)u(a�EσT [Xθ]� θ

)]

− 1
Nθ

[∑
θ∈�

∑
a∈A

EσT

[
Xa

θ

]
u
(
a�EσT [Xθ]� θ

)]

= 1
Nθ

[∑
θ∈�

∑
a∈A

∑
a′∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)u(a�EσT [Xθ]� θ

)]

− 1
Nθ

[∑
θ∈�

∑
a′∈A

EσT

[
Xa′

θ

]
u
(
a′�EσT [Xθ]� θ

)]

= 1
Nθ

∑
θ∈�

∑
a′∈A

[∑
a∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)u(a�EσT [Xθ]� θ

)
−EσT

[
Xa′

θ

]
u
(
a′�EσT [Xθ]� θ

)]
	

As a result, the improvement in (S.4) can be expressed as

�T = �̃T (ε)+ J(ε)
∑
θ∈�

∑
a′∈A

[∑
a∈A

ρθ
(
a|a′)PσT

(̃
ξ = a′|θ)u(a�EσT [Xθ]� θ

)
−EσT

[
Xa′

θ

]
u
(
a′�EσT [Xθ]� θ

)]
	



18 Ignacio Monzón Supplementary Material

In particular, for the simple strategy σ̃ ,

�T = �̃T (ε)+ J(ε)
∑
θ∈�

[
ρθ
(
a∗|ã)PσT (̃ξ = ã|θ)u(a∗�EσT [Xθ]� θ

)
+ [

1 − ρθ
(
a∗|ã)]PσT (̃ξ = ã|θ)u(ã�EσT [Xθ]� θ

)−EσT

[
Xã

θ

]
u
(
ã�EσT [Xθ]� θ

)]
= �̃T (ε)+ J(ε)

∑
θ∈�

[
ρθ
(
a∗|ã)PσT (̃ξ = ã|θ)[u(a∗�EσT [Xθ]� θ

)− u
(
ã�EσT [Xθ]� θ

)]
+ [

PσT (̃ξ = ã|θ)−EσT

[
Xã

θ

]]
u
(
ã�EσT [Xθ]� θ

)]
	

Let

˜̃�T ≡ J(ε)
∑
θ∈�

[
PσT (̃ξ = ã|θ)−EσT

[
Xã

θ

]]
u
(
ã�EσT [Xθ]� θ

)]	
Then

�T = �̃T (ε)+ ˜̃�T

+ J(ε)
∑
θ∈�

[
ρθ
(
a∗|ã)PσT (̃ξ = ã|θ)[u(a∗�EσT [Xθ]� θ

)− u
(
ã�EσT [Xθ]� θ

)]]
= �̃T (ε)+ ˜̃�T

+ J(ε)

[ ∑
θ∈��θ �=θ∗

[
ρθ
(
a∗|ã)PσT (̃ξ = ã|θ)[u(a∗�EσT [Xθ]� θ

)− u
(
ã�EσT [Xθ]� θ

)]]
+ ρθ∗

(
a∗|ã)PσT

(̃
ξ = ã|θ∗)[u(a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)]]	

Now let

−ū ≡ min
a∈A�a′∈A�θ∈��xθ∈[0�1]Na

[
u(a�xθ�θ)− u

(
a′�xθ�θ

)]
	

This minimum exists since there is a finite number of states and actions, and the utility

functions are continuous in X . Then

[
u
(
a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)]≥ −ū	

Then

�T ≥ �̃T (ε)+ ˜̃�T + J(ε)PσT

(̃
ξ = ã|θ∗)[u(a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)]

×
[
−

ū
∑

θ∈��θ �=θ∗

[
ρθ
(
a∗|ã)PσT (̃ξ = ã|θ)]

PσT

(̃
ξ = ã|θ∗)[u(a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)] + ρθ∗

(
a∗|ã)]
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= �̃T (ε)+ ˜̃�T + J(ε)PσT

(̃
ξ = ã|θ∗)[u(a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)]

×
[
ρθ∗

(
a∗|ã)− kT

∑
θ∈��θ �=θ∗

[
ρθ
(
a∗|ã)PσT (̃ξ = ã|θ)]]

≥ �̃T (ε)+ ˜̃�T + J(ε)PσT

(̃
ξ = ã|θ∗)[u(a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)]

×
[
ρθ∗

(
a∗|ã)− kT

∑
θ∈��θ �=θ∗

ρθ
(
a∗|ã)]

= �T∗ ≡ �̃T (ε)+ ˜̃�T + J(ε)PσT

(̃
ξ = ã|θ∗)[u(a∗�EσT [Xθ∗ ]� θ∗)− u

(
ã�EσT [Xθ∗ ]� θ∗)]

× [[
1 −Gθ∗

(
kT

)]− kT
[
1 − G̃θ∗

(
kT

)]]
	

Note that limT→∞ ˜̃�T = 0. Let �̃(ε)≡ limT→∞ �̃T (ε). Finally, note that, as in the proof
in the paper, limT→∞ kT = k̄. Then

lim
T→∞

�T∗ = �̃(ε)+ 1 − (Na − 1)ε
Nθ

[
xãθ∗

[
u
(
a∗�xθ∗� θ∗)− u

(
ã� xθ∗� θ∗)]]

× [[
1 −Gθ∗(k̄)

]− k̄
[
1 − G̃θ∗(k̄)

]]
	

S.7.6 Strategic learning

Lemmas 4′ and 5′ are the main building blocks to show how Proposition 2 also applies
to a context with many states and many actions. I present this formally.

Proposition 2′ (Strategic learning). Assume signals are of unbounded strength. Then
there is strategic learning.

The proof of Proposition 3′ requires modifying Proposition 3 and Lemma 11 in the
paper. With these results in hand, the proof of Proposition 2′ is analogous to the proof of
Proposition 2 in the main text. Lemma 11 extends directly to a context with many actions
and many states. I present next a version of Proposition 3 in the paper that applies to
many states of the world.

Proposition 3′ . For all l ∈ (l� l), Gθ(l) satisfies

l >
Gθ(l)

G̃θ(l)
and l <

1 −G1(l)

1 −G0(l)
	 (S.5)

Moreover, if k′ ≥ k, then[
1 −G1(k)

]− k
[
1 −G0(k)

]≥ [
1 −G1

(
k′)]− k′[1 −G0

(
k′)]	 (S.6)
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Proof. The proof follows that from Proposition 11 in Monzón and Rapp (2014), but
here the likelihood ratio Gθ indicates how likely state θ is relative to all other states.
Note first that

lθ(s)
−1 =

∑
θ̃ �=θ

lθ̃�θ(s) =
∑
θ̃ �=θ

dFθ̃

dFθ
(s)

dFθ(s)lθ(s)
−1 =

∑
θ̃ �=θ

dFθ̃(s)

dFθ(s) = lθ(s)
∑
θ̃ �=θ

dFθ̃(s)	

Recall that G̃θ(L) ≡∑
θ̃ �=θ Pr(lθ(s) ≤L | θ̃):

Gθ(L) =
∫

{S∈S:lθ(s)≤L}
dFθ =

∫
{S∈S:lθ(s)≤L}

lθ(s)
∑
θ̃ �=θ

dFθ̃(s)

<

∫
{S∈S:lθ(s)≤L}

L
∑
θ̃ �=θ

dFθ̃(s) = L
∑
θ̃ �=θ

∫
{S∈S:lθ(s)≤L}

dFθ̃(s)

=LG̃θ(L)	

Similarly,

1 −Gθ(L)=
∫

{S∈S:lθ(s)>L}
dFθ =

∫
{S∈S:lθ(s)>L}

lθ(s)
∑
θ̃ �=θ

dFθ̃(s)

>

∫
{S∈S:lθ(s)>L}

L
∑
θ̃ �=θ

dFθ̃(s) =L
∑
θ̃ �=θ

∫
{S∈S:lθ(s)>L}

dFθ̃(s)

= L
[
1 − G̃θ(L)

]
	

This shows that (S.5) holds. I move next to the second part. Take k′ > k:

[
1 −Gθ(k)

]− [
1 −Gθ

(
k′)]=Gθ

(
k′)−Gθ(k) =

∫
S∈S:k≤lθ(S)≤k′

dFθ

=
∫
S∈S:k≤lθ(S)≤k′

lθ(S)
∑
θ̃ �=θ

dFθ̃

≥ k

∫
S∈S:k≤lθ(S)≤k′

∑
θ̃ �=θ

dFθ̃ = k
[
G̃θ

(
k′)− G̃θ(k)

]
= k

[
1 − G̃θ(k)

]− k
[
1 − G̃θ

(
k′)]

≥ k
[
1 − G̃θ(k)

]− k′[1 − G̃θ
(
k′)]	
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Then [
1 −Gθ(k)

]− [
1 −Gθ

(
k′)]≥ k

[
1 − G̃θ(k)

]− k′[1 − G̃θ
(
k′)][

1 −Gθ(k)
]− k

[
1 − G̃θ(k)

]≥ [
1 −Gθ

(
k′)]− k′[1 − G̃θ

(
k′)]	

This shows that (S.6) holds.
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