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S.1. Proor or LEMMA B6

Pick an arbitrary belief w. If
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then the result obviously holds because we have |A - v®(8, s*) — A - v*(8,5*)| <g. So in
what follows, we assume that
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Suppose that the initial prior is u and players play the strategy profile §#. Let
Pr(h'|u, $*) be the probability of 4’ given the initial prior u and the strategy profile s*,
and let w'T1(h!|u, 5*) denote the posterior belief in period ¢ + 1 given this history 4. Let
H*!' be the set of histories 4’ such that ¢ + 1 is the first period at which the support of the
posterior belief u/*! is in the set Q*. Intuitively, H* is the set of histories 4’ such that
players will switch their play to s from period ¢ + 1 on, according to 5.
Note that the payoff v* (8, 5*) by the strategy profile s$* can be represented as the sum
of the two terms: The expected payoffs before the switch to s#" occurs and the payoffs
after the switch. That is, we have
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where the expectation operator is taken conditional on that the switch has not hap-
pened yet. Note that the term 1 — Zi;é D o hichr Pr(h!|u, $*) is the probability that play-
ers still randomize all actions in period ¢ because the switch has not happened by then.
To simplify the notation, let p’ denote this probability. From Lemma B5, we know
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that

A- thH(h'IM,g”)(S, swl(h’m,s“)) >y
for each h! € H*', where
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Applying this and A - g’ (a') > —23 to the above equation, we obtain
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Using Y720 prepe Pr(Af|p, 548" = Y 02,1 — §)8'! Z;;(l)zh;GH*;Pr(hfm,gu) —
321 —8)8"1(1 - p'), we obtain
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According to Lemma B4, the probability that the support reaches Q* within 4/ peri-
ods is at least 7*. This implies that the probability that players still randomize all actions
in period 4% + 1 is at most 1 — 7*. Similarly, for each natural number 7, the probability
that players still randomize all actions in period 74/} + 1 is at most (1 — #*)", that is,
p"™¥+1 < (1 — 7*)". Then since p' is weakly decreasing in ¢, we obtain

pn4‘“‘+k < (1 . 77*>”

foreachn=0,1,...and k € {1, ..., 4!}, This inequality, together with —2g < v*, implies
that
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foreachn=0,1,...and k € {1, ..., 4}, Plugging this inequality into (S1), we obtain
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we have
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Plugging in >°°° {(1 — 7*)8*" )=l = 1/{1 — (1 — 764"} and 22, (84" )~1 = 1/(1 —

)
84") gives
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Subtracting both sides from A - v* (8, s*), we have
v”(8,5”) — - v (8, 5*)
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Since A - v® (8, s*) > —g, then
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Hence, the result follows.

S.1.1 Proofof Lemma Bl11

Pick a belief u whose support is robustly accessible. Suppose that the initial prior is u**,
the opponents play 5%, and player i plays a best reply. Let p’ denote the probability that
players —i still randomlze actions in period ¢. Then as in the proof of Lemma B6, we
have
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n

because the stage-game payoff before the switch to s”. is bounded from above by
g and the continuation payoff after the switch is bounded from above by K} =

maxgcan v'?(sﬁi).
As in the proof of Lemma B6, we have

pn4‘9‘+k < (1 _ 7T*)n

foreachn=0,1,... and k € {1, ..., 49}, This inequality, together with g > K%, implies
that

p Mg (1= p ) < (1= 7%)"g + {1 — (1 — )"} K"

foreachn=0,1,...and k € {1, ..., 4}, Plugging this inequality into the first inequality,
we obtain
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Then as in the proof of Lemma B6, the standard algebra shows
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Since 1 — (1 — 77*)84‘0‘ >1—-(1—-7*)=x"and Kl’f > —g, the result follows.
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