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S.1. Proof of Lemma B6

Pick an arbitrary belief μ. If (
1 − δ2|�|)

2g

δ2|�|
π4|�| ≥ g�

then the result obviously holds because we have |λ · vω(δ� sω) − λ · vμ(δ� s̃μ)| ≤ g. So in
what follows, we assume that (

1 − δ2|�|)
2g

δ2|�|
π4|�| < g�

Suppose that the initial prior is μ and players play the strategy profile s̃μ. Let
Pr(ht |μ� s̃μ) be the probability of ht given the initial prior μ and the strategy profile s̃μ,
and let μt+1(ht |μ� s̃μ) denote the posterior belief in period t + 1 given this history ht . Let
H∗t be the set of histories ht such that t + 1 is the first period at which the support of the
posterior belief μt+1 is in the set �∗. Intuitively, H∗t is the set of histories ht such that
players will switch their play to sμ

t+1
from period t + 1 on, according to s̃μ.

Note that the payoff vμ(δ� s̃μ) by the strategy profile s̃μ can be represented as the sum
of the two terms: The expected payoffs before the switch to sμ

t
occurs and the payoffs

after the switch. That is, we have

λ · vμ(
δ� s̃μ

) =
∞∑
t=1

(
1 −

t−1∑
t̃=0

∑
ht̃∈H∗t̃

Pr
(
ht̃ |μ� s̃μ))

(1 − δ)δt−1E
[
λ · gωt (

at
)|μ� s̃μ]

+
∞∑
t=0

∑
ht∈H∗t

Pr
(
ht |μ� s̃μ)

δtλ · vμt+1(ht |μ�s̃μ)(δ� sμt+1(ht |μ�s̃μ))�
where the expectation operator is taken conditional on that the switch has not hap-
pened yet. Note that the term 1 − ∑t−1

t̃=0

∑
ht̃∈H∗t̃ Pr(ht̃ |μ� s̃μ) is the probability that play-

ers still randomize all actions in period t because the switch has not happened by then.
To simplify the notation, let ρt denote this probability. From Lemma B5, we know
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that

λ · vμt+1(ht |μ�s̃μ)(δ� sμt+1(ht |μ�s̃μ)) ≥ v∗

for each ht ∈H∗t , where

v∗ = λ · vω(
δ� sω

) −
(
1 − δ2|�|)

2g

δ2|�|
π4|�| �

Applying this and λ · gωt
(at) ≥ −2g to the above equation, we obtain

λ · vμ(
δ� s̃μ

) ≥
∞∑
t=1

ρt(1 − δ)δt−1(−2g)

+
∞∑
t=0

∑
ht∈H∗t

Pr
(
ht |μ� s̃μ)

δtv∗�

Using
∑∞

t=0
∑

ht∈H∗t Pr(ht |μ� s̃μ)δt = ∑∞
t=1(1 − δ)δt−1 ∑t−1

t̃=0

∑
ht̃∈H∗t̃ Pr(ht̃ |μ� s̃μ) =∑∞

t=1(1 − δ)δt−1(1 − ρt), we obtain

λ · vμ(
δ� s̃μ

) ≥ (1 − δ)

∞∑
t=1

δt−1{ρt(−2g)+ (
1 − ρt

)
v∗}� (S1)

According to Lemma B4, the probability that the support reaches �∗ within 4|�| peri-
ods is at least π∗. This implies that the probability that players still randomize all actions
in period 4|�| + 1 is at most 1 −π∗. Similarly, for each natural number n, the probability
that players still randomize all actions in period n4|�| + 1 is at most (1 − π∗)n, that is,
ρn4|�|+1 ≤ (1 −π∗)n. Then since ρt is weakly decreasing in t, we obtain

ρn4|�|+k ≤ (
1 −π∗)n

for each n = 0�1� � � � and k ∈ {1� � � � �4|�|}. This inequality, together with −2g ≤ v∗, implies
that

ρn4|�|+k(−2g)+ (
1 − ρn4|�|+k

)
v∗ ≥ (

1 −π∗)n(−2g)+ {
1 − (

1 −π∗)n}v∗

for each n= 0�1� � � � and k ∈ {1� � � � �4|�|}. Plugging this inequality into (S1), we obtain

λ · vμ(
δ� s̃μ

) ≥ (1 − δ)

∞∑
n=1

4|�|∑
k=1

δ(n−1)4|�|+k−1

[
−(

1 −π∗)n−12g
+ {

1 − (
1 −π∗)n−1}

v∗

]
�

Since

4|�|∑
k=1

δ(n−1)4|�|+k−1 = δ(n−1)4|�|(
1 − δ4|�|)

1 − δ
�
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we have

λ · vμ(
δ� s̃μ

) ≥ (
1 − δ4|�|) ∞∑

n=1

δ(n−1)4|�|
[

−(
1 −π∗)n−12g

+ {
1 − (

1 −π∗)n−1}
v∗

]

= −(
1 − δ4|�|) ∞∑

n=1

{(
1 −π∗)δ4|�|}n−12g

+ (
1 − δ4|�|) ∞∑

n=1

[(
δ4|�|)n−1 − {(

1 −π∗)δ4|�|}n−1]
v∗�

Plugging in
∑∞

n=1{(1 − π∗)δ4|�| }n−1 = 1/{1 − (1 − π∗)δ4|�| } and
∑∞

n=1(δ
4|�|

)n−1 = 1/(1 −
δ4|�|

) gives

λ · vμ(
δ� s̃μ

) ≥ −
(
1 − δ4|�|)

2g

1 − (
1 −π∗)δ4|�| + δ4|�|

π∗

1 − (
1 −π∗)δ4|�| v

∗�

Subtracting both sides from λ · vω(δ� sω), we have

λ · vω(
δ� sω

) − λ · vμ(
δ� s̃μ

)

≤
(
1 − δ4|�|)

2g

1 − (
1 −π∗)δ4|�| + δ4|�|

π∗(1 − δ2|�|)
2g{

1 − (
1 −π∗)δ4|�|}

δ2|�|
π4|�| −

(
1 − δ4|�|)

λ · vω(
δ� sω

)
1 − (

1 −π∗)δ4|�| �

Since λ · vω(δ� sω) ≥ −g, then

λ · vω(
δ� sω

) − λ · vμ(
δ� s̃μ

)

≤
(
1 − δ4|�|)

2g

1 − (
1 −π∗)δ4|�| + δ4|�|

π∗(1 − δ2|�|)
2g{

1 − (
1 −π∗)δ4|�|}

δ2|�|
π4|�| +

(
1 − δ4|�|)

g

1 − (
1 −π∗)δ4|�|

≤
(
1 − δ4|�|)

3g

1 − (
1 −π∗) + π∗(1 − δ2|�|)

2g{
1 − (

1 −π∗)}δ2|�|
π4|�|

=
(
1 − δ4|�|)

3g
π∗ +

(
1 − δ2|�|)

2g

δ2|�|
π4|�| �

Hence, the result follows.

S.1.1 Proof of Lemma B11

Pick a belief μ whose support is robustly accessible. Suppose that the initial prior is μ∗∗,
the opponents play s̃

μ
−i, and player i plays a best reply. Let ρt denote the probability that

players −i still randomize actions in period t. Then as in the proof of Lemma B6, we
have

v
μ∗∗
i

(
s̃
μ
−i

) ≤
∞∑
t=1

δt−1{ρtg + (
1 − ρt

)
K

μ
i

}
�
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because the stage-game payoff before the switch to s
μ
−i is bounded from above by

g and the continuation payoff after the switch is bounded from above by K
μ
i =

maxμ̃∈
μ v
μ̃
i (s

μ
−i).

As in the proof of Lemma B6, we have

ρn4|�|+k ≤ (
1 −π∗)n

for each n = 0�1� � � � and k ∈ {1� � � � �4|�|}. This inequality, together with g ≥ K
μ
i , implies

that

ρn4|�|+kg + (
1 − ρn4|�|+k

)
v∗
i ≤ (

1 −π∗)ng + {
1 − (

1 −π∗)n}Kμ
i

for each n = 0�1� � � � and k ∈ {1� � � � �4|�|}. Plugging this inequality into the first inequality,
we obtain

v
μ∗∗
i

(
s̃
μ
−i

) ≤ (1 − δ)

∞∑
n=1

4|�|∑
k=1

δ(n−1)4|�|+k−1

[(
1 −π∗)n−1

g

+ {
1 − (

1 −π∗)n−1}
K

μ
i

]
�

Then as in the proof of Lemma B6, the standard algebra shows

v
μ∗∗
i

(
s̃
μ
−i

) ≤
(
1 − δ4|�|)

g

1 − (
1 −π∗)δ4|�| + δ4|�|

π∗Kμ
i

1 − (
1 −π∗)δ4|�| �

Since

δ4|�|
π∗

1 − (
1 −π∗)δ4|�| = 1 − 1 − δ4|�|

1 − (
1 −π∗)δ4|�| �

we have

v
μ∗∗
i

(
s̃
μ
−i

) ≤ K
μ
i +

(
1 − δ4|�|)(

g −K
μ
i

)
1 − (

1 −π∗)δ4|�| �

Since 1 − (1 −π∗)δ4|�|
> 1 − (1 −π∗) = π∗ and K

μ
i ≥ −g, the result follows.
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