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Renegotiation-proof mechanism design with imperfect type
verification

Francisco Silva
Department of Economics, Pontificia Universidad Catolica de Chile

I consider the interaction between an agent and a principal who is unable to com-
mit not to renegotiate. The agent’s type affects only the principal’s utility. The
principal has access to a public signal, correlated with the agent’s type, that can
be used to (imperfectly) verify the agent’s report. I define renegotiation-proof
mechanisms and characterize the optimal one. The main finding of this paper is
that the optimal renegotiation-proof mechanism induces pooling at the top, i.e.,
types above a certain threshold report to be the largest type, while types below the
threshold report truthfully.
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1. Introduction

Normally, in mechanism design, the principal (she) uses the fact that the utility func-
tion of the agent (he) depends on his private type so as to be able to separate between
them; in general, when the principal proposes a menu of contracts, some of those con-
tracts are chosen by some types of the agent, while other contracts are chosen by other
types. However, in many environments, the agent’s utility function is independent of
his private type (I give several examples below). In these scenarios, proposing a menu of
contracts is essentially the same as imposing a single contract, seeing as the agent would
always pick the same contract, independently of his type. Thus, there would be no gain
in interacting with the agent.

The principal might be able resolve this issue if she has access to some exogenous
source of information about the agent’s type, because, in that way, she might use that
information to “validate” the agent’s report.1 As an example, consider a defendant, who
is privately informed about whether he is innocent or guilty, and who interacts with
some representative agent of the criminal justice system (a prosecutor or a judge, for
example). Imagine that it is known that the prosecutor/judge has no other source of
information apart from the agent. In that case, the agent will inevitably receive the same
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treatment regardless of his guilt; if asked about his guilt, the agent would surely claim to
be innocent even when he is not. But now suppose that the prosecutor/judge has access
to forensic evidence, which, by its nature, is more likely to be incriminating when the
agent is guilty than when he is innocent. In addition, imagine that the agent receives
the following offer: if the agent confesses to being guilty, he receives some punishment
xc ; if he refuses, his punishment will be x > xc if the evidence is incriminatory and x <

xc otherwise. Confronted with this, the agent might react differently depending on his
type. In particular, if he knows he is guilty, he is more afraid that the evidence will be
incriminating than when he is innocent. Thus, he will be more willing to confess when
he is guilty; while the ex post utility of the agent is type independent, his expected utility
is not, which is what enables the principal to gain something from interacting with the
agent.

In this paper, I study the optimal mechanisms for a risk averse principal in a setting
that has three main properties. First, the agent’s private type θ ∈ R does not affect his
utility. In particular, the agent simply wants to maximize his reward x: the agent’s utility
function is u(x), where u is strictly increasing. While the agent’s type does not affect the
agent’s utility, it affects the principal’s utility, which is given by v(x�θ). A good example
for a payoff function v that fits the properties of the model is v(x�θ) = −(x− θ)2 so that
the principal wants to match the reward x of the agent with his type θ. The second prop-
erty of the model is that the principal has (costless) access to a binary signal s ∈ {0�1},
correlated with the agent’s type, which she can use to (imperfectly) verify the agent’s
claims. Finally, the third property is that the types of the agent that the principal wants
to reward the most (which, without loss of generality, are the larger ones) are also those
that are more likely to generate s = 1, i.e., Pr{s = 1|θ} is increasing with θ.

The interaction between the players is as follows: (i) the principal proposes a mech-
anism, i.e., a menu of contracts, where each contract specifies a reward x ∈R contingent
on signal s; (ii) the agent privately observes his type and decides on one of the offered
contracts; (iii) signal s is realized; (iv) the agent receives the corresponding reward. In
what follows, I describe a few examples for context (in addition to the above example of
the defendant).

Example 1. The agent is a local government and his type θ ∈ R represents the quality
of the public health services of the region, so that the larger θ is, the poorer the quality
is. The principal is the central government, which must decide how much funding x ∈R

for health services to provide to the local government. The local government wants to
maximize the funding it gets, while the central government wants to match that funding
with the region’s needs. Even though only the local government knows θ, the central gov-
ernment is able to obtain some exogenous signal s about θ by ordering an independent
study about the quality of the region’s public health services. In the independent study,
the public health services are given one of two ratings, namely, good (s = 0) and bad
(s = 1). The probability that there is a good rating is increasing with the actual quality of
the public health services of the region. A contract is a pair (x0�x1) ∈ R

2 that specifies
the funding provided to the local government in the event that the rating is good (x0) or
bad (x1). ♦
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Example 2. The agent is a project manager who is looking for investment in his project.
The project takes two years to be completed and only pays off at the end of the two years.
The principal is an investor who must decide how much money x ∈ R to invest in the
project. The goal of the project manager is to maximize the amount of investment he
receives, while the principal’s willingness to invest is increasing with the quality of the
project θ ∈ R. While the agent is the only one who knows the quality of the project θ, at
the end of the first year, the investor will be able to inspect the progress of the project
and, as a result, obtain a signal correlated with θ, which can be either good (s = 1) or
bad (s = 0). The probability that it is good is increasing with the quality of the project
θ. A contract is a pair (x0�x1) ∈ R

2, which can be interpreted as representing an upfront
investment of x0 plus an extra (x1 − x0) in the event that the signal after the first year is
good (x1). ♦

Example 3. The agent is one of the victims of a hurricane and is looking to maximize
the financial compensation x ∈ R he receives from the government to perform repairs.
The government wants to pay the victim proportionally to his damages, denoted by θ,
which are privately known by the victim. After the agent has made a claim of damages,
with some probability he may be audited to check the real extent of the damages (s = 1
if the damages are considered severe and s = 0 if they are considered light). A contract is
a pair (x0�x1) ∈R

2, where x1 can be interpreted as representing the upfront payment to
the victim, while x1 − x0 can be interpreted as the fine the victim will have to pay if he is
audited by the government and is found to have suffered only light damages. ♦

While I start by characterizing the optimal incentive compatible (IC) mechanism,
the main contribution of the paper is to define renegotiation-proof (RP) mechanisms
and to characterize the optimal renegotiation-proof incentive compatible (RPIC) mech-
anism.

The optimal IC mechanism is such that the principal offers a menu of contracts that
have different gaps between the reward that the agent receives if the signal is good and
if the signal is bad. This is because the type dependence of the agent’s expected util-
ity comes only from the fact that larger types are more confident than lower types that
the signal will be good. Therefore, in the optimal IC mechanism, larger types will pick
contracts with larger gaps.2 If there are two types, as in the example of the defendant
who might be innocent or guilty, the optimal IC mechanism looks similar to the mecha-
nism I describe above, provided xc , x, and x are chosen properly; in one contract, there
is no gap, so that the reward that is offered is independent of the public signal (in the
example, this reward is −xc), while in the other contract, the reward is larger than the
constant reward if the signal is “good” (−x) but smaller if the signal is bad (−x). Thus, in
the context of this example, the optimal IC mechanism looks similar to plea bargaining:

2Throughout the paper, I assume that the principal has no other instrument to “incentivize” the agent,
because the allocation is only made of a single good—the reward of the agent. However, in mechanism
design, it is often the case that the allocation is made of two goods, with one of them entering the agent’s
utility function linearly (the transfers). In that case, this second good could be used by the principal to
provide incentives to the agent without having to distort the first best allocation of the first good.
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by choosing the constant contract, it is as if the agent pleads guilty, while taking the risky
contract means taking the risk of going to trial, which can end up with the agent being
acquitted or receiving an even larger punishment than when pleading guilty.

The commitment problem that emerges comes from the use of the revelation princi-
ple. In the optimal IC mechanism, the agent reports truthfully, i.e., he chooses a different
contract for each type. This means that the choice of the contract immediately reveals
the type of the agent. In particular, when the agent reveals his type to be the one the
principal wants to reward the most, the principal, aware that the agent’s type is the one
she wants to reward the most, would prefer to choose a larger reward than what had
been contractualized. This is especially troubling, because the agent would certainly
not oppose such a change, so that the contract would get renegotiated. But, of course,
the fact that the agent anticipates this renegotiation destroys any incentives to report
truthfully to begin with.

These concerns raise the issue of the extent to which the principal requires commit-
ment power to be able to benefit from the interaction with the agent. If the principal is
not able to commit not to renegotiate with the agent, is she still able to do better than by
simply imposing a contract? What does the optimal RPIC mechanism look like? Does it
still have the same structure as the optimal IC mechanism?

A renegotiation-proof mechanism is defined to be such that, for any contract, the
principal does not strictly prefer to increase the agreed upon reward once the signal is
realized. Using the timing from above, this means that, after signal s has been realized
in stage (iii), the principal does not strictly prefer to increase reward xs of the contract
the agent has chosen in stage (ii). The argument is that, if the principal did want to
increase that reward, the agent would not object, so that the original contract would not
be implemented.

Characterizing the optimal RPIC mechanism is not as straightforward as character-
izing the optimal IC mechanism, because of the principal’s limited commitment power.
In particular, the revelation principle does not hold. Nevertheless, I find that it is indeed
optimal for the principal to offer a menu of different contracts to the agent even when
she is unable to commit not to renegotiate, and that the structure of the optimal RPIC
mechanism is similar to the optimal IC mechanism: the different contracts that are pro-
posed have different gaps between the reward if the signal is good and if the signal is
bad, which induces better types to choose contracts with larger gaps.

However, there is a fundamental difference between the two mechanisms. While
the optimal IC mechanism induces the agent to effectively reveal his type by choosing
a contract per type, the optimal RPIC mechanism induces pooling at the top: there is a
threshold type such that the agent only picks a contract per type if his type is below the
threshold, while if it is above the threshold, the agent picks the contract with the largest
gap. This implies that after observing that the agent has chosen the contract with the
largest gap, the principal will be uncertain of the agent’s type. This pooling at the top
result contrasts with some of the literature on renegotiation-proof mechanism design,
in particular with Strulovici (2017), who finds that when the principal is unable to com-
mit not to renegotiate, the optimal mechanism induces complete type revelation (in his
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framework with only two types, the high type picks one contract while the low type picks
another contract). I discuss this literature in more detail in the related literature section.

The remainder of this paper is structured as follows. In Section 2, I present the
model. In Section 3, I characterize the optimal IC mechanism. In Section 4, I formally
define RP mechanisms, characterize the optimal RPIC mechanism, and discuss its main
properties. In Section 5, I discuss the related literature in more detail. In Appendix A, I
extend the model to the case where the agent’s type is a continuous random variable. All
proofs that are not in the text are provided in Appendix B.

2. Model

2.1 Assumptions

There is one principal and one agent. The agent’s private type is given by θ ∈
{θ1� � � � � θN} ≡ �, where θn ∈ R is strictly increasing with n. The prior probability that
θ = θn is denoted by p(θn) > 0. The agent’s type affects the distribution of a public ran-
dom variable s ∈ {0�1}. In particular, let π(θ) ∈ (0�1) denote the conditional probability
that s = 1, given θ. I assume that π is strictly increasing, so that larger values of θ are
more likely to generate s = 1.

There is a single good labeled x ∈ R. The agent’s utility function is denoted by u(x)

and, in addition to being independent of θ, it is continuous, strictly increasing (so that
x can be interpreted as the reward of the agent), and concave. The principal’s util-
ity function is denoted by v(x�θ). I assume that, for all θ ∈ �, v(·� θ) is strictly con-
cave and has a maximum denoted by x∗(θ). Furthermore, v is assumed to be contin-
uous and to have nondecreasing differences, i.e., for any (x′�x) ∈ R

2 such that x′ ≥ x,
{v(x′� ·) − v(x� ·)} is nondecreasing, which implies that x∗ is nondecreasing. Finally, I
assume that x∗(θ1) < x∗(θN) so that x∗(·) is not constant. As mentioned in the Intro-
duction, an example is v(x�θ)= −(x− θ)2.

2.2 Definitions

A mechanism is a message set M and a function d : M × {0�1} → R, which maps the
message m ∈ M (also referred to as contract) sent/chosen by the agent and the signal s
to a reward ds(m) ∈R.3 Given a mechanism, the agent chooses what message m to send
before the realization of the random variable s. A strategy for the agent is a function
σ : � → �M , where σ(θ)(m) represents the probability that the agent sends message m

when his type is θ.
A system ((M�d)�σ) is the pair composed of the mechanism (M�d) and the strategy

σ . System ((M�d)�σ) is incentive compatible (IC) if and only, for all θ ∈� and m ∈ M ,

σ(θ)(m) > 0 ⇒ E
(
u
(
ds(m)

)|θ) ≥E
(
u
(
ds

(
m′))|θ)

for all m′ ∈ M�

Notice that the expectation is taken over s. Thus, it is assumed that when the agent
chooses a message, he still has not observed the realization of s. Seeing as s is correlated

3While I do not consider random mechanisms, it can be shown that the optimal renegotiation-proof
mechanism is not random due to u(·) being concave and v(·� θ) being concave for any θ ∈ �.
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with the agent’s type θ, the agent’s decision will also depend on it. As a result, while the
agent’s utility is independent of his type, his expected utility is not.

Finally, the expected utility of the principal under some system ((M�d)�σ) is given
by

V M(d�σ)≡
∑
θ∈�

∑
m∈M

p(θ)σ(θ)(m)
(
π(θ)v

(
d1(m)�θ

) + (
1 −π(θ)

)
v
(
d0(m)�θ

))
�

2.3 Preliminary result

Before proceeding to analyze optimal mechanisms, I start by deriving a property of all
IC systems: that the agent’s strategy is “monotone.”

Lemma 1. For any mechanism (M�d), and for any m ∈M and m′ ∈M such that d1(m) ≥
d1(m

′), if there is θ̂ ∈R+ such that

E
(
u
(
ds(m)

)|θ̂) =E
(
u
(
ds

(
m′))|θ̂)

�

then {
E

(
u
(
ds(m)

)|θ) ≥E
(
u
(
ds

(
m′))|θ)

for all θ > θ̂

E
(
u
(
ds(m)

)|θ) ≤E
(
u
(
ds

(
m′))|θ)

for all θ < θ̂�

where both inequalities are strict if d1(m) > d1(m
′).

Proof. If d1(m) = d1(m
′), for θ̂ to exist, it must be that d0(m) = d0(m

′), so that the state-
ment follows trivially. If d1(m) > d1(m

′), then for θ̂ to exist, it must be that

π(θ̂)

1 −π(θ̂)
= u

(
d0

(
m′)) − u

(
d0(m)

)
u
(
d1(m)

) − u
(
d1

(
m′)) �

Given that the function π(·)/(1 −π(·)) is strictly increasing, the statement follows.

Lemma 1 implies that there is a certain monotonicity in how the agent reports as a
function of his type in an IC system. As an example, imagine that in some IC system
((M�d)�σ), there are four messages (m1�m2�m3�m4), each of them sent with positive
probability by some type of the agent and with the property that

d1(m4) > d1(m3) > d1(m2) > d1(m1)�

If the system is IC, it has to be that

d0(m4) < d0(m3) < d0(m2) < d0(m1)�

because, otherwise, one of the messages would be “dominated” by another, which would
imply that it would not be sent by any type with positive probability. Imagine that
some type θ finds it optimal to send message m2. Lemma 1 implies that for the sys-
tem ((M�d)�σ) to be IC, it must be that all types larger than θ do not report m1, while all
types smaller than θ do not report m3 or m4. Put differently, Lemma 1 essentially implies
that the larger is the agent’s type, the larger is the d1(m) of the message(s) he sends in an
IC system and the lower is the d0(m).
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3. Optimal IC system

A system ((M�d)�σ) is an optimal IC system if it is IC and if there is no other IC system
for which the principal’s expected utility is larger than V M(d�σ). The problem of find-
ing an optimal IC system can be made simpler by appealing to the revelation principle,
which states that there is an optimal IC system such that the agent reports truthfully,
i.e., with probability 1, type θ reports m= θ for all θ ∈ �. This means that without loss of
generality, one can think of the optimal IC system as being such that M = � and σ = σ∗,
where

σ∗(θ)(m) =
{

1 if m= θ

0 otherwise
for all (m�θ) ∈�×��

Let d∗ be such that ((��d∗)�σ∗) is an optimal IC system. The following proposition
characterizes d∗.

Proposition 1. Mapping d∗ is such that (i) d∗
1(θ) is (weakly) increasing with θ and

d∗
0(θ) is (weakly) decreasing with θ, (ii) for all n = 1� � � � �N − 1, E(u(d∗

s (θn))|θn) =
E(u(d∗

s (θn+1))|θn), (iii) d∗
1(θ) ≥ d∗

0(θ) for all θ ∈ �, (iv) d∗
1(θN) > d∗

1(θ1) = d∗
0(θ1) >

d∗
0(θN), and (v) d∗

1(θN) ≤ x∗(θN) and d∗
0(θN) < x∗(θN).

Proof. Property (i) follows directly from Lemma 1 and from the fact that ((��d∗)�σ∗)
is IC. Properties (ii)–(v) are left for Appendix B.

Properties (i) and (iii) taken together imply that larger types pick contracts with
larger gaps, i.e., larger differences between the reward should the signal be good (s = 1)
and bad (s = 0). In particular, and using property (iv), the contract chosen by the lowest
type is flat, and then the difference between d1 and d0 increases with the agent’s type.
This is because what separates the different types of the agent is how confident each one
is that the signal will be good: larger types are more confident than lower types. Thus,
larger types are more willing to take the risk of selecting more variable contracts.

As to why the lowest type’s contract is flat, one first has to realize that the incentive
constraints only bind upward; i.e., each type does not want to mimic the next largest
type (the fact that these constraints bind leads to property (ii)). Therefore, reducing the
gap of the contract chosen by the lowest type not only increases the incentives for the
lowest type to choose it (because the agent is risk averse), but is also directly beneficial
for the principal (because she is also risk averse).

In the example of the defendant from the Introduction, where there are only two
types, the innocent and the guilty, this mechanism looks similar to plea bargaining. The
agent has a choice between a risky contract, where he may be either acquitted or receive
a large punishment in the event that incriminating evidence is found, and confessing
to being guilty and receiving a reduced punishment independent of evidence. In the
example of the hurricane victim, the optimal mechanism has a similar interpretation.
Suppose again that there are only two types: one who has suffered severe damages and
one who has suffered light damages. What is optimal for the principal is to allow the
agent to self-report his damages. If he admits that his damages were light, he receives
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Figure 1. Representation of the optimal IC mechanism d∗ when N = 2.

a small compensation package. If he claims that his damages were severe, he is initially
granted a larger compensation package but may be audited later, with some probability,
to check whether the damages were indeed severe. In the event that the damages are
found to be light, the compensation would be taken back. Figure 1 shows a graphical
representation of the optimal mechanism when N = 2.

An example that fits the model when there are more types is the one of the investor
and the project manager. Because the optimal IC mechanism is such that d∗

1(θ) ≥ d∗
0(θ)

for each contract θ, one can interpret each contract offered as an upfront payment of
d∗

0(θ) and then an increase on the investment of d∗
1(θ) − d∗

0(θ) ≥ 0, which is contingent
on some positive evaluation of the project. Better projects are more back loaded, with
less investment upfront, precisely because their project managers are more willing to
take those contracts as they are more confident that they will be evaluated positively
later on.

Returning to Figure 1, one can see that the rewards paid in the top contract are lower
than the principal’s preferred reward. Indeed, that is property (v); recall that the princi-
pal’s preferred reward when θ = θN is equal to x∗(θN). The argument here is related to
the fact that when the principal chooses d∗

1(θN) and d∗
0(θN), the only constraint that is

relevant is that type θN−1 does not mimic type θN . This implies that it does not make
sense for the principal to choose d∗

s (θN) to be larger than x∗(θN) for any s = 0�1, because
lowering that reward would not only improve the principal’s expected utility (because it
would bring the reward closer to x∗(θN)), but would also reduce type θN−1’s incentives
to mimic type θN . It also follows that d∗

0(θN) < x∗(θN) because property (iv) already
establishes that d∗

1(θN) > d∗
0(θN).

Property (v) is what motivates the study of renegotiation-proof mechanisms. It states
that in the optimal IC system ((��d∗)�σ∗), after receiving message θ = θN and observing
(at least) signal s = 0, the principal, after inferring the type of the agent, would prefer to
increase his reward from d∗

0(θN) to x∗(θN). Seeing as the agent would not oppose this
change, one has to imagine that the two players would renegotiate at that point and
would not implement d∗

0(θN). Anticipating this, lower types would be tempted to report
to be type θN , as they would be confident that the lower reward they were supposed to
get, should s = 0 be realized, would get renegotiated away.4 In the next section, I discuss

4In the example of the defendant, this means that when the defendant is innocent, he picks a contract
that gives him a punishment that the principal would like to reduce at least when s = 0. That is what makes
the contract renegotiable.
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how to construct a mechanism where these renegotiation opportunities do not exist and
then characterize the optimal one.

4. Renegotiation-proof mechanism design

4.1 Definition of RP systems

For each strategy σ , let Eσ(v(x�θ)|m�s) denote the principal’s expected utility of choos-
ing x, conditional on message m having been sent and signal s having been realized
(so that the expectation is over θ). Notice that, for any σ and for any pair (m� s),
Eσ(v(·� θ)|m�s) is strictly concave and has a unique maximizer, denoted by

γσ
s (m) ≡ arg max

x∈R
Eσ

(
v(x�θ)|m�s

)
�

Definition 1. A system ((M�d)�σ) is renegotiation-proof (RP) if, for all m ∈ M and
s ∈ {0�1},

ds(m) ≥ γσ
s (m)�

For a system to be RP, it must be that after any message m is sent and any signal s is
realized, there is no alternative x 
= ds(m) that makes the agent and the principal better
off, given the principal’s beliefs. The argument is that if there was such an alternative x,
there would be nothing to prevent the players from switching to it. Whenever ds(m) <

γσ
s (m), the alternative that makes both players better off is x = γσ

s (m), i.e., both players
would prefer to increase the reward of the agent. However, if ds(m) ≥ γσ

s (m), while the
agent would like to increase his reward, the principal would not, so that they would not
agree to renegotiate.5

4.2 Characterization of the optimal RPIC system

The goal of this section is to find the optimal renegotiation-proof incentive compati-
ble (RPIC) system. The challenge of analyzing RPIC systems is that beliefs matter: the
posterior belief that the principal forms after observing the agent’s report and the sig-
nal determines whether she is willing to renegotiate. As a result, the revelation principle
does not follow. However, Bester and Strausz (2001) show that a version of the revelation
principle does hold: while one can no longer exclusively focus on the truthful reporting
strategy of the agent, one can, without loss of generality, assume that the message space
has the same number of elements as the type space (M = �), i.e., in the optimal RPIC

5Another way to think of the optimal RPIC system is as follows. Consider the following game: (i) the
principal proposes mechanism (M�d), (ii) the agent chooses some message m ∈ M , (iii) signal s ∈ {0�1} is
realized, (iv) if she wants, the principal proposes some alternative reward x ∈ R, and (v) the agent chooses
between rewards ds(m) and x. Notice that there is no loss of generality in focusing on perfect bayesian
equilibria where the principal never proposes any alternative x. Therefore, one can interpret the optimal
RPIC system as the corresponding perfect bayesian equilibrium outcome.
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system, the number of contracts available to the agent does not exceed the number of
types.6

Let 
 be the set of “pooling at the top” strategies, i.e., 
 is the set of all strategies σ

for which there is n∗(σ) ∈ {1� � � � �N − 1}, τ(σ) ∈ [0�1], and θTop(σ) ∈ {θn∗(σ)+1� � � � � θN }
such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ(θn)
(
θTop(σ)

) = 1 for all n > n∗(σ)
σ(θn∗(σ))

(
θTop(σ)

) = 1 − τ(σ)

σ(θn∗(σ))(θn∗(σ))= τ(σ)

σ(θn)(θn)= 1 for all n < n∗(σ)�

In words, if a strategy is a pooling at the top strategy, then there is a threshold type n∗ ≥ 1
and a top message θTop > θn∗ such that if the agent’s type is larger than θn∗ , the agent
sends message θTop; if θn = θn∗ , the agent randomizes between confessing to being type
θn∗ and sending message θTop; if the agent’s type is smaller than θn∗ , the agent confesses
his type. There is pooling at the top in the sense that types above threshold θn∗ pool on
the same message θTop. In the next proposition, I show that there is an optimal RPIC
system where there is pooling at the top.

Let D denote the set of all mappings d : �× {0�1} → R.

Proposition 2. System ((�� d̂)� σ̂) is an optimal RPIC system if, of all pairs (d�σ) ∈ D×

, pair (d̂� σ̂) maximizes V �(d�σ) subject to the following constraints: (i) d1(·) is (weakly)
increasing for all θn, (ii) for all n = 1� � � � �N−1, E(u(ds(θn))|θn) =E(u(ds(θn+1))|θn), and
(iii) ds(θTop(σ)) = γσ

s (θTop(σ)) for s = 0�1.

The previous proposition describes the program that determines the optimal RPIC
system. There are two main differences between here and the previous section. First,
there is pooling at the top (σ̂ ∈ 
), which implies that the report of θTop(σ̂) induces the
largest belief by the principal, i.e., it is when the principal would like to reward the agent
the most. The second difference is that the RP constraint only binds at the top, i.e., it is
only necessary to impose that after observing message θTop(σ̂), the principal does not
want to increase the reward of the agent for any signal s. Seeing as that constraint binds,
it must hold with equality, which becomes constraint (iii). Constraints (i) and (ii) are
similar to the previous section and are the minimal conditions that guarantee incentive
compatibility.

4.3 Pooling at the top

As described above, pooling at the top means that types above a certain threshold pick
the same contract. Going back to the examples in the Introduction, this would imply

6In Bester and Strausz (2001), the principal can commit to a decision x ∈ X , which then constrains a
second decision y ∈ F(x) that the principal cannot commit to. Both x and y then enter the principal’s utility
function. My model can be interpreted as follows: the principal first commits to a decision ds(m) for some
signal s and some message m; after the signal s and the message m are realized, the principal can choose
any x ≤ ds(m), and only the latter choice impacts her utility.
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that there would be less variability in the types of investment contracts of good projects,
compared to those of lesser quality. In the case of the hurricane victim, where the con-
tract is a function of the reported damages, pooling at the top would mean that there
would be a cap, so that reported damages above a certain level would receive the same
compensation package. Additionally, in the case of the defendant, it means that inno-
cent agents are not the only ones who refuse to confess; guilty agents do also with some
positive probability.

4.3.1 The argument The failure of the revelation principle means that, in general, there
need not be any connection between an agent’s type θ and the message m he chooses.
In particular, it need not be that θ = m. Thus, without loss of generality, one can restrict
attention to mechanisms where d1(m) is increasing with m, i.e., d1(θn+1) ≥ d1(θn) for
all n. There is no loss of generality because I am simply giving a particular label to the
different messages.

Recall that Lemma 1 implies that the agent’s strategy must be monotone, i.e., larger
types choose messages with larger differences between d1 and d0. Therefore, if one im-
poses that d1(·) is weakly increasing, which, in turn, implies that d0(·) is weakly decreas-
ing, it follows that, from the point of view of the principal, the messages are ordered
according to her preferred reward. This means that

γσ
0 (θn+1)≥ γσ

1 (θn) for all n�

simply because, if there is some type θ who is indifferent between sending messages
θn and θn+1, all types above θ will certainly not send message θn, while all types below θ

will certainly not send message θn+1. If, for some strategy profile σ , one defines message
θTop(σ) as the “top” message, i.e., the one that is sent by the largest types, then it must
also be the message after which the principal would like to choose the largest reward.

The crucial property that leads to the pooling at the top property is that the only RP
constraint that binds is the one that restricts the top message (m = θTop(σ)), i.e., none
of the other RP constraints bind. To see why that is, let us, for the sake of argument,
consider only systems for which d1(θ)≥ d0(θ) for all θ ∈ � (I show in the proof of Propo-
sition 2 that this is without loss of generality). I argue that if an IC system is such that

ds
(
θTop(σ)

) ≥ γσ
s

(
θTop(σ)

)
for s = 0�1�

then for all m ∈� sent with positive probability,

ds(m) ≥ γσ
s (m) for s = 0�1�

The argument is easier to understand by considering Figure 2. On the left side of Fig-
ure 2 (part A), I represent, for each signal s ∈ {0�1}, γσ

s (θTop(σ)) and γσ
s (m) for some m 
=

θTop(σ) sent with positive probability. As stated above, it must be that γσ
1 (θTop(σ)) ≥

γσ
0 (θTop(σ)) > γσ

1 (m) ≥ γσ
0 (m).7 In part B, I add d1(θTop(σ)) and d0(θTop(σ)). Because

7Notice that, for any m, γσ
1 (m) ≥ γσ

0 (m), because, conditional on message m, it is more likely that the
agent’s type is large when s = 1 than when s = 0.
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Figure 2. Graphical explanation of why the only RP constraint that binds is the top one.

the top message is RP, then ds(θTop(σ)) ≥ γσ
s (θTop(σ)) for s = 0�1. Finally, in part C, I add

d1(m) and d0(m). By incentive compatibility, d1(m) and d0(m) must be “sandwiched” in
between d1(θTop(σ)) and d0(θTop(σ)). As one can see, this implies that ds(m) ≥ γσ

s (m)

for s = 0�1, i.e., the RP constraint relative to message m is satisfied.
What does this have to do with pooling at the top? If all but the top RP constraint do

not bind, it follows that the beliefs after each message that is not the top message do not
matter. The only beliefs that enter the principal’s problem are those that emerge after
the top message. Therefore, this means that if a type does not send the top message,
one can, without loss of generality, simply assume that he reports truthfully, i.e., there is
pooling at the top.

Loosely speaking, the idea is that incentive compatibility alone already makes it so
that low types receive more than what the principal would like to give them: low types
must be given larger rewards than those the principal would have preferred so that they
will not mimic larger types. Therefore, the requirement that the principal does not want
to increase their rewards ex post ends up not mattering.8

4.3.2 Only pooling at the top? Proposition 2 states that there is pooling at the top, but it
leaves open the possibility that there is also some form of pooling at the bottom. If u and
v are differentiable, one can find sufficient conditions for which pooling only happens
at the top. In what follows, let n̂∗ ≡ n∗(σ̂) and τ̂ ≡ τ(σ̂).

8In Kartik (2009) and Chen (2011), the top types of the agent also pool in their report, as in this paper.
These papers extend the classic cheap talk framework of Crawford and Sobel (1982) to include costs of lying
in the case of the former, and a probability that either the sender or the receiver is naive in the latter. By
contrast, in this paper, one can show that the only cheap talk equilibrium is uninformative: the principal
ignores the agent’s report and decides based solely on the signal. In addition, even if the principal has some
commitment power and can implement any RP mechanism, it follows that there are many systems where
there is no pooling at the top. What I show in this paper is that at least one of the optimal RPIC systems
exhibits pooling at the top.



Theoretical Economics 14 (2019) Renegotiation-proof mechanism design 983

Proposition 3. Assume that u and v are differentiable, and let

h(x�θ) ≡ −
∂v

∂x
(x�θ)

u′(x)
�

(i) There cannot be complete pooling at the bottom, i.e., whenever n̂∗ > 1,

d̂1(θn̂∗) > d̂1(θ1)= d̂0(θ1) > d̂0(θn̂∗)�

(ii) If ∂2h
∂x∂θ(x�θ)≤ 0 for all (x�θ) ∈R×� and

1
p(θn)

π(θn)−π(θn−1)

π(θn)π(θn−1)
(1)

is weakly increasing for all n > 1, then d̂1(θ) is strictly increasing for all θ ≤ θn̂∗ .9

Regarding (ii), notice that if v(x�θ) = −(x− θ)2 and u(x) = x, then ∂2h
∂x∂θ(x�θ) = 0 for

all (x�θ) ∈R×�. Furthermore, if one assumes that π(θn)= n/N , then (1) being (weakly)
increasing can be written as

p(θn+1)

p(θn)
≤

(
1 − n

N

)(
n

N
− 1

N

)
(

1 − n

N
− 1

N

)(
n

N
+ 1

N

) → 1 as N → ∞�

Therefore, if there are many types, condition (1) is equivalent to p(θn) being decreasing.

4.4 Only regret at the bottom

The other aspect that is different when one considers renegotiation is the issue of regret
by the principal. In the optimal IC system, the principal experiences regret in two ways:
it could be that the choice of a particular contract reveals to the principal that the agent’s
type is high, so that she would rather increase the agent’s reward, and it could be that the
inference is that the agent’s type is low, so that the principal would prefer a lower reward.
However, if one allows the players to renegotiate, only the latter type of regret emerges.
As stated in Proposition 2, this regret has a particular form in the optimal RPIC system in
that it is triggered by all but the top contract, i.e., whenever the agent chooses a contract
that is not the top one, he reveals himself to be one of the lowest types, which, in turn,
reveals to the principal that the contractualized rewards are “too large.” The argument
essentially follows from Figure 2: only the top RP constraint binds.

This result has relevant implications for the investment example in the Introduc-
tion. If one does not consider renegotiation, one finds that sometimes there is over-
investment, i.e., the investor/principal invests more than what she would have liked ex

9The result that d̂1(θ1) = d̂0(θ1) does not depend on u and v being differentiable and is also true when
n̂∗ = 1.
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Figure 3. The optimal RPIC system when N = 2.

post, and sometimes there is underinvestment. However, when one allows the players to
renegotiate, there is only overinvestment, and, according to Proposition 2, this overin-
vestment is concentrated on the projects with the least quality. Renegotiation then pro-
vides an alternative explanation for the apparent prevalence of overinvestment in some
markets to some of the explanations in the literature that are based on agency prob-
lems (Albuquerque and Wang 2008 or Dow et al. 2005) and on investors’ overconfidence
(Malmendier and Tate 2008).

Figure 3 illustrates the optimal RPIC system when N = 2, which can be used to dis-
cuss, among others, the defendant example. Message m = θTop is sent by type θ2 with
probability 1 and by type θ1 with some probability τ ∈ (0�1). This means that upon re-
ceiving message m= θ2, the principal will not be certain of the type of the agent. There-
fore, when she observes that s = 1, she will be more convinced that the agent’s type is
θ2 (the innocent type), which will make her want to give the agent a larger reward (a
smaller punishment). Seeing as the mechanism is sequentially optimal at the top, the
optimal RPIC system has the principal do exactly that. When the principal observes
message m= θ1, she infers that the agent’s type is θ1 (the guilty type). While the optimal
RPIC system specifies that the reward that follows that message is constant, it must be
larger than the reward that the principal would prefer to give type θ1 to ensure that the
low type has enough incentives to confess to being the low type: because the principal
infers that the agent is guilty, she would like to renege on her promise of leniency and
increase her punishment. Naturally, she cannot do this as the rights of confessing agents
are generally protected.10

4.5 The threshold type

Proposition 2 provides a two-step description of how to find the optimal RPIC system.
The first step involves finding the optimal mechanism, given any threshold (n∗� τ). Let
that mechanism be denoted by d(n∗� τ). The second step is about optimizing over all
the thresholds and finding the optimal threshold (̂n∗� τ̂). Notice that the expected utility
of the principal, given some threshold (n∗� τ) and mechanism d(n∗� τ) is given by

A
(
n∗� τ

) +B
(
n∗� τ

)
�

10In the United States, the rights of confessing agents are protected under rule 11 of the Federal Rules of
Criminal Procedure.
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where

A
(
n∗� τ

) ≡ max
x0�x1

{
N∑

n=n∗+1

p(θn)g(θn�x1�x0)+ (1 − τ)p(θn∗)g(θn∗�x1�x0)

}

and

B
(
n∗� τ

) ≡
{
n∗−1∑
n=1

p(θn)
(
g
(
θn�d1

(
n∗� τ

)
(θn)�d0

(
n∗� τ

)
(θn)

))

+ τp(θn∗)
(
g
(
θn∗� d1

(
n∗� τ

)
(θn∗)�d0

(
n∗� τ

)
(θn∗)

))}
�

and where

g(θn�x1�x0) ≡ π(θn)v(x1� θn)+ (
1 −π(θn)

)
v(x0� θn)�

If one assumes that u and v are differentiable, then the optimal threshold (̂n∗� τ̂) is
such that

∂A

∂τ

(̂
n∗� τ̂

) + ∂B

∂τ

(̂
n∗� τ̂

) = 0�

By the envelope theorem, we have that

∂A

∂τ

(̂
n∗� τ̂

) = −p(θn̂∗)g
(
θn̂∗�γ1

(̂
n∗� τ̂

)
�γ0

(̂
n∗� τ̂

))
� (2)

where

(
γ1

(
n∗� τ

)
�γ0

(
n∗� τ

)) = arg max
x0�x1

{
N∑

n=n∗+1

p(θn)g(θn�x1�x0)+ (1 − τ)p(θn∗)g(θn∗�x1�x0)

}

while

∂B

∂τ

(̂
n∗� τ̂

) = p(θn̂∗)g
(
θn̂∗� d̂1(θn̂∗)� d̂0(θn̂∗)

)
(3)

+ λ
(̂
n∗� τ̂

)[
π(θn̂∗)u′(γ1

(̂
n∗� τ̂

))∂γ1

∂τ

(̂
n∗� τ̂

)
+ (

1 −π(θn̂∗)
)
u′(γ0

(̂
n∗� τ̂

))∂γ0

∂τ

(̂
n∗� τ̂

)
�

]
� (4)

where λ(n∗� τ) represents the multiplier associated with the incentive constraint

π(θn∗)u
(
d1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗)

)
= π(θn∗)u

(
γ1

(
n∗� τ

)) + (
1 −π(θn∗)

)
u
(
γ0

(
n∗� τ

))
�

Analyzing these two expressions reveals the trade-off that determines the choice
of the optimal threshold. Raising the threshold makes more types confess, which
has two effects. On the one hand, this is good for the principal because she is
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risk averse: for any (n∗� τ), the principal would prefer type θn∗ to take contract
(d1(n

∗� τ)(θn∗)�d0(n
∗� τ)(θn∗)) over contract (γ1(n

∗� τ)�γ0(n
∗� τ)), because, while the

agent is indifferent between the two, the former has less variance, i.e.,

γ1
(
n∗� τ

) − γ0
(
n∗� τ

)
> d1

(
n∗� τ

)
(θn∗)− d0

(
n∗� τ

)
(θn∗)�

This means that that (2) + (3) > 0.
However, if more types confess, the beliefs held by the principal after observing that

the top contract has been chosen become larger. Therefore, there will be an increase
in the top contract’s rewards: γs(n

∗� τ) is increasing with τ for s = 0�1, which, in turn,
implies that the rewards of all other contracts must also be larger, by incentive compat-
ibility. Seeing as the types below the threshold are types that receive rewards that are
above the principal’s preferred rewards (as discussed in the previous section), this ends
up being negative for the principal, which is why λ(̂n∗� τ̂) < 0 and (4) < 0.11

Finally, one can also show that the optimal threshold is always interior, because
whenever (n∗� τ) = (1�0), then (4) is equal to 0. This means that the lowest type always
confesses with positive probability.

4.6 Comparative statics

By rearranging some terms, one can write the principal’s expected utility under the op-
timal RPIC system as Â+ B̂, where

Â≡
N∑
n=1

p(θn)g
(
θn�γ1

(̂
n∗� τ̂

)
�γ0

(̂
n∗� τ̂

))
and

B̂ ≡
{
n̂∗−1∑
n=1

p(θn)
(
g
(
θn�d1

(̂
n∗� τ̂

)
(θn)�d0

(̂
n∗� τ̂

)
(θn)

) − g
(
θn�γ1

(̂
n∗� τ̂

)
�γ0

(̂
n∗� τ̂

)))

+ τ̂p(θn̂∗)
(
g
(
θn̂∗� d1

(̂
n∗� τ̂

)
(θn̂∗)�d0

(̂
n∗� τ̂

)
(θn̂∗)

) − g
(
θn̂∗�γ1

(̂
n∗� τ̂

)
�γ0

(̂
n∗� τ̂

)))}
�

Dividing the principal’s expected utility in this manner is useful in that it makes clear
the influence of risk aversion in the ability of the principal to benefit from interacting

11In the proof of Proposition 2 (Step 3), I show that constraint

π(θn∗)u
(
d1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗)

)
= π(θn∗)u

(
γ1

(
n∗� τ

)) + (
1 −π(θn∗)

)
u
(
γ0

(
n∗� τ

))
can be replaced by

π(θn∗)u
(
d1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗)

)
≥ π(θn∗)u

(
γ1

(
n∗� τ

)) + (
1 −π(θn∗)

)
u
(
γ0

(
n∗� τ

))
and is binding, which proves that λ(n∗� τ) < 0 for any threshold (n∗� τ).
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with the agent. Notice that Â represents the payoff the principal would get if, instead
of allowing the agent to choose, she were to impose contract (γ1(̂n

∗� τ̂)�γ0(̂n
∗� τ̂)). If the

principal was not able to offer more than a single contract, she would not want to offer
(γ1(̂n

∗� τ̂)�γ0(̂n
∗� τ̂)), but rather a contract with smaller rewards. In particular, she would

like to choose contract (
x′

0�x
′
1
) = arg max

x0�x1

E
(
g(θn�x1�x0)

)
�

The reason why she prefers to offer a menu of different contracts comes from B̂, which
represents the gain for the principal of having each type θn ≤ θn̂∗ confess rather than
pool with the larger types. As discussed above, because the principal is risk averse, she
benefits from having the agent confess and receive a less variant contract. I show below
that the agent being more risk averse is also beneficial for the principal for similar rea-
sons. If the principal knows the agent is risk averse, she is able to reduce the expected
reward the agent receives when he chooses to confess his type and still have the agent
willing to do so, provided that she also reduces the variance of that contract.12

Proposition 4. Let u : R → R be any concave utility function and let ξ : R → R be any
strictly concave function. The expected utility of the principal under the optimal RPIC
system is smaller when the agent’s utility function is u than when it is ξ(u).

5. Related literature

5.1 The setting

The environment studied in this paper, where the agent’s utility function is independent
of his type, has been studied before in different contexts. First, there is a literature on
hard evidence that considers the same type of preferences, but instead of assuming that
there is an exogenous public signal that allows the principal to differentiate between the
different types of the agent, it assumes that the message set of the agent is type depen-
dent (for example, Green and Laffont 1986, Bull and Watson 2007, Glazer and Rubinstein
2004, 2006, Hart et al. 2017). In a separate paper (Silva 2019), I show that these models
are equivalent to assuming that the signal of this paper is perfectly correlated with the
agent’s type but is privately observed by the agent, who can then verifiably present it to
the principal. Those assumptions, coupled with the assumption that I make that better
types are more likely to draw the “good” signal imply that the principal would be able to
implement her most preferred allocation through a simple unravelling argument, even
if she did not have any commitment power.

Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2017) study a similar
problem in that there is a principal who cares about the type of the agent, agents have
type independent utility functions, there are no transfers, and there is an exogenous sig-
nal correlated with the agent’s type. However, they focus on the case where the principal

12By this argument, it follows that if both the principal and the agent were risk neutral, the optimal RPIC
system would simply consist of the principal imposing one contract. I discuss this case in more detail in
Silva (forthcoming).
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has commitment power, while the largest portion of this paper is devoted to studying
limited commitment power. In terms of the setting, there are two main differences. First,
both papers consider a problem where the principal chooses one of the many agents to
allocate one unit of a good, while I focus on the case where there is a single agent and the
principal chooses how many units of a good to allocate to him. Second, they have dif-
ferent assumptions with respect to the verification technology; Ben-Porath et al. (2014)
assume that, at a cost, the principal can get to know the type of a given agent, while
Mylovanov and Zapechelnyuk (2017) assume that only the chosen agent can be verified.

Finally, Siegel and Strulovici (2018) study a similar environment, but assume that the
agent only has two types, in addition to considering only the case where the principal
is able to commit. In Silva (forthcoming), I consider an application of this problem to
N agents, but assume that each agent only has two types and that the principal is risk
neutral.

5.2 Renegotiation-proof mechanism design

5.2.1 The one-shot problem RP mechanisms have been studied in the contexts of com-
plete and incomplete information. If there is complete information, notions of renego-
tiation proofness are tied together with ex post Pareto efficiency (Maskin and Moore
1999, Neeman and Pavlov 2013). In particular, if nothing else, if a mechanism is RP, then
it must be efficient. If not, agents would simply somehow settle on something that made
them all better off. Adding incomplete information complicates the problem in that ex-
pressing a willingness to renegotiate reveals information that might impact the desire of
the other player(s) to renegotiate.

Some of the literature addresses this issue by adding an RP constraint to the typical
mechanism design problem (Green and Laffont 1987, Forges 1994, Neeman and Pavlov
2013, Goltsman 2011, Beshkar 2016). While different papers have different definitions,
the overall goal of adding the constraint is to guarantee that if a mechanism is RP, then,
after the choice of the agent becomes known, the principal does not wish to propose
a second alternative mechanism that the agent, at least for some types, prefers over
the original one. More rigorously, consider some mechanism (M�d). Suppose that, in
equilibrium, for some type, the agent chooses some m ∈ M . After observing m, imagine
that the principal is able to propose the following procedure to the agent: the agent can
choose to implement outcome d(m) or, instead, choose a message m′ ∈M ′ with the un-
derstanding that the outcome to be implemented will be d′(m′). If, for some m, there is a
second mechanism (M ′� d′) that the principal strictly prefers to propose after observing
m, then (M�d) is not RP.

One of the drawbacks of the previous literature is that it uses a “one-shot” criterion
to determine whether a mechanism is RP. In particular, it might be that (M�d) is not
RP because there is a “blocking” mechanism (M ′� d′), which might itself not be RP, i.e.,
after observing m′ it might be that the principal wishes to propose some other rene-
gotiation mechanism (M ′′� d′′). However, if (M ′� d′) is not RP, its validity as a blocking
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mechanism is put into question. As a result, these types of constraints end up being too
demanding.13

5.2.2 Overcoming the one-shot criterion problem One way to overcome the one-shot
criterion problem is to explicitly model renegotiation as an infinite game, where the
principal can always propose a renegotiation mechanism before implementing a con-
tract. Strulovici (2017) does exactly this; he explicitly models a dynamic renegotiation
game, where the principal proposes binding mechanisms in each period until choosing
to stop. In particular, he characterizes the set of perfect bayesian equilibria in the case
that negotiation frictions (the probability that the negotiation is exogenously terminated
in each period) are negligible.

I follow a different approach. As described in Section 4, I also add an RP constraint
to the standard mechanism design problem. That constraint essentially guarantees that
once the agent has chosen a message m and signal s has been realized, the principal
does not want to propose a different mechanism. Thus, essentially, the difference be-
tween my approach and the more classical approach is that the opportunity to renego-
tiate comes after signal s has been realized. This change in timing is key in that, once
the signal is realized, what the agent finds optimal is independent of his type, unlike
what happens before the signal is realized (remember that while the ex post utility of the
agent is independent of his type, the ex ante utility is not, because the type is correlated
with the signal). Using the notation from above, given a second renegotiation mecha-
nism (M ′� d′), the agent chooses the same message m′ for any type, provided signal s has
already been realized. As a result, receiving m′ does not convey any new information to
the principal, which, in turn, does not make her want to propose some new mechanism
(M ′′� d′′), i.e., (M ′� d′) is not renegotiated.14

5.2.3 Comparison to Strulovici (2017) The main result in Strulovici (2017) is that the
mechanism that is implemented is separating (each type reports truthfully; when there
are only two types, the high type picks one contract while the low type picks a differ-
ent contract) and ex post efficient. This would mean that, in equilibrium, the principal
would get to know with certainty (or close to it) the real type of the agent. However, in my
setting, while the mechanism is still ex post efficient, I find that there is no complete sep-
aration; for example, when there are only two types, the low type randomizes between
choosing the high type contract and the low type contract. The reason for the contrast is
that in Strulovici (2017), should there not be complete separation and should the nego-
tiation frictions be small, there would be an impetus for the principal to propose further
mechanisms that succeed in screening between the agent’s types. In a way, the agent’s

13This one-shot criterion problem is related to the discussion over farsightedness in the literature on
coalition formation. For example, simple notions of the “core” of a game suffer from the same criticism (see
Ray 2007 for an overview).

14There is also a literature that studies the impact of assuming that players cannot commit not to rene-
gotiate in long-term relationships (Laffont and Tirole 1990, Hart and Tirole 1988, Battaglini 2007, Maestri
2017), as opposed to a short-term relationship as in this paper. The idea is to model the interaction between
two players who, at the beginning of a long relationship, may write a long-term contract but may not com-
mit to renegotiate it in future periods. The renegotiation protocol is typically one-shot: one of the players
proposes an amendment to the active contract, which, if accepted, produces immediate effects.
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private information always matters to the renegotiation, so that as long as the principal
is uncertain about the agent’s type, she always benefits from renegotiating. In my paper,
that impetus does not exist once the signal has been realized, which is when the rene-
gotiation is assumed to take place; once the signal becomes publicly known, the agent’s
decision becomes independent of his type, so further separation becomes impossible.

One question the reader might have, following the description of Strulovici (2017),
concerns what in my model prevents the principal from renegotiating with the agent
after receiving his message but before the public signal is realized. The answer to this
depends very much on the timing of events. Imagine that the public signal is certain to
arrive at some period t, say t = 5. The best mechanism the principal can hope to im-
plement is the optimal RPIC mechanism, because any mechanism that is not RP would
be renegotiated once the signal has arrived at period t = 5. However, the concern might
be that the optimal RPIC mechanism may not be implementable because it might get
renegotiated away before period t = 5. In fact, if the principal were to propose the opti-
mal RPIC mechanism at period t = 1, it might be the case that at period t = 2, she would
like to renegotiate it for reasons that are similar to Strulovici (2017): as long as there is
uncertainty with respect to the agent’s type, the principal might benefit from proposing
further and further renegotiation offers to the agent. However, to prevent this, what the
principal can do to implement the optimal RPIC mechanism is to wait precisely until pe-
riod t = 5 to propose the optimal RPIC mechanism to the agent. In that way, there would
be no time to renegotiate. Once the agent responds to the offer of the principal, the sig-
nal is realized, which destroys any desire of the principal to renegotiate further. Thus,
it is not as if the principal does not want to renegotiate the RPIC mechanism before the
signal arrives; it is more that she waits until the last minute before the signal is realized
to propose it, precisely to prevent those renegotiation opportunities from arising.15

Appendix A: The continuum case

In this section, I extend the model to the case where the agent’s type θ is a continuous
random variable. Assume that � = [θ�θ], where 0 < θ < θ < 1, and that, without loss of
generality, π(θ) = θ for all θ ∈ [θ�θ].

A.1 Optimal IC system

Let us start by considering the problem of finding the optimal IC system. Once again
by the revelation principle, I only consider direct mechanisms with truthful reporting.
The only difference from Section 3 is that one must replace the “discrete” incentive con-
straints by continuous ones. Notice that system ((��d)�σ∗) is incentive compatible if

15This logic is somewhat similar to Evans and Reiche (2015), where it is shown that if one considers a fixed
renegotiation length, the optimal IC mechanism can be implemented. Thus, the fact that the mechanism
can be renegotiated does not matter. In my paper, it is as if renegotiation can always occur, so the optimal
IC system cannot be implemented, because it would be renegotiated after the signal has been realized.
However, because the public signal arrives at a specific moment of time, the renegotiation that could occur
before the signal is known will not occur.
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and only if, for all θ ∈ [θ�θ],

θ ∈ arg max
θ′∈[θ�θ]

θu
(
d1

(
θ′)) + (1 − θ)u

(
d0

(
θ′))�

For any mapping d, let

ũd(θ)≡ θu
(
d1(θ)

) + (1 − θ)u
(
d0(θ)

)
�

Following Myerson (1981), it follows that system ((��d)�σ∗) is incentive compatible if
and only if (i) for all θ ∈ [θ�θ],

ũd(θ)=
∫ θ

θ

(
u
(
d1(z)

) − u
(
d0(z)

))
dz + ũ(θ)�

and (ii) u(d1(·))− u(d0(·)) is (weakly) increasing.
Following Milgrom and Segal (2002), it follows that one can replace conditions (i)

and (ii) by (a) for all θ ∈ [θ�θ],

ũ′
d(θ)= u

(
d1(θ)

) − u
(
d0(θ)

)
for all θ ∈ [θ�θ]�

and (b) ũ′
d(·) is weakly increasing.

Notice that, given ũd , one can find the corresponding incentive compatible alloca-
tion (d1� d0) as follows: for all θ ∈ [θ�θ],

d0(θ)= u−1(ũd(θ)− θũ′
d(θ)

)
and

d1(θ) = u−1(ũd(θ)+ (1 − θ)ũ′
d(θ)

)
�

Therefore, the problem of finding the optimal mapping d for which system ((��d)�σ∗)
is the optimal IC system becomes one of finding the function ũ that maximizes∫ θ

θ
p(θ)g

(
θ�u−1(ũ(θ)+ (1 − θ)ũ′(θ)

)
�u−1(ũ(θ)− θũ′(θ)

))
dθ (5)

subject to

ũ′ is weakly increasing. (6)

Formulating the problem with continuous types facilitates the analysis of whether
there are any conditions for which the optimal d∗ is separating, i.e., d∗

1 is strictly increas-
ing. For that to happen, it would have to be that constraint (6) is not binding. In the
following proposition, I show that, in general, there are no such conditions, i.e., there is
always some pooling in the optimal IC system.

Proposition 5. If h(·� θ) is strictly monotone for all θ ∈ �, then the mapping d′ that
maximizes (5) violates constraint (6).



992 Francisco Silva Theoretical Economics 14 (2019)

A.2 Optimal RPIC system

One of the difficulties involved with a continuum of types is that the result in Bester and
Strausz (2001) is not certain to extend to continuous types. So there might be loss of gen-
erality in assuming that M = �. However, if one does assume that M = �, all the steps
of Proposition 2 still follow. The only difference is that, just as in the optimal IC system,
one has to replace the local incentive constraints by their continuous counterpart.

Proposition 6. If M = �, there is an optimal RPIC system ((�� d̂)� σ̂) such that (i) there
is pooling at the top, i.e., every type θ above some threshold θ∗ reports the same message
θTop, (ii) the top contract is sequentially optimal, i.e.,

d̂s(θTop)= arg max
x∈R

Eσ̂
(
v(x�θ)|m= θTop� s

)
�

and (iii) for all θ ≤ θ∗,

d̂1(θ) = u−1(ũ(θ)+ (1 − θ)ũ′(θ)
)

and d̂0(θ)= u−1(ũ(θ)− θũ′(θ)
)
�

where ũ : [θ�θ∗] → R maximizes∫ θ∗

θ
p(θ)g

(
θ�u−1(ũ(θ)+ (1 − θ)ũ′(θ)

)
�u−1(ũ(θ)− θũ′(θ)

))
dθ

subject to (a) ũ′ being weakly increasing, (b)

u−1(ũ(θ)+ (1 − θ)ũ′(θ)
) ≤ d̂1(θTop)�

and (c)

ũ
(
θ∗) = θu

(
d̂1(θTop)

) + (1 − θ)u
(
d̂0(θTop)

)
�

As Proposition 6 shows, the main insights of the optimal RPIC system still remain
true when the agent’s type is a continuous random variable: there is still pooling at the
top and there is only regret at the bottom.

Appendix B: Proofs

B.1 Proof of Proposition 1

Proposition 1(ii). For all n = 1� � � � �N − 1,

E
(
u
(
d∗
s (θn)

)|θn) =E
(
u
(
d∗
s (θn+1)

)|θn)�
Proof. Notice that d∗ maximizes V �(d�σ) subject to all incentive constraints. By
Lemma 1, one can add the constraint that imposes that d1(·) is increasing without con-
straining the problem further. Consider a relaxed version of this problem, where the
principal maximizes V �(d�σ) subject only to the following constraints: (C1) d1(·) is in-
creasing and (C2) for all n = 1� � � � �N − 1,

π(θn)u
(
d1(θn)

) + (
1 −π(θn)

)
u
(
d0(θn)

) ≥ π(θn)u
(
d1(θn+1)

) + (
1 −π(θn)

)
u
(
d0(θn+1)

)
�
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In words, constraint (C2) states that each type does not want to mimic the next largest
type. I start by showing that, in any solution d̃ of the relaxed problem, (C2) must hold
with equality: for all n = 1� � � � �N − 1,

π(θn)u
(
d̃1(θn)

) + (
1 −π(θn)

)
u
(
d̃0(θn)

)
= π(θn)u

(
d̃1(θn+1)

) + (
1 −π(θn)

)
u
(
d̃0(θn+1)

)
� (7)

Suppose not. Then there is some type θn such that

π(θn)u
(
d̃1(θn)

) + (
1 −π(θn)

)
u
(
d̃0(θn)

)
>π(θn)u

(
d̃1(θn+1)

) + (
1 −π(θn)

)
u
(
d̃0(θn+1)

)
�

By (C1), it follows that d̃1(θn+1) ≥ d̃1(θn) and so d̃0(θn+1) < d̃0(θn).
Assume first that x∗(θn+1) > d̃0(θn+1). Then the principal would be better off by

increasing d̃0(θn+1) and still satisfy (C2), which is a contradiction to optimality of the
relaxed problem. Assume instead that x∗(θn+1) ≤ d̃0(θn+1). This implies that x∗(θn) <
d̃0(θn). As a result, the principal would prefer to lower d̃0(θn) and still satisfy (C2), which
is again a contradiction to optimality of the relaxed problem. Therefore, (C2) holds with
equality.

The argument is complete by noticing that the solution of the relaxed problem is, in
fact, the solution of the original problem, i.e., d̃ = d∗, because if d̃ is such that (C1) and
(7) hold, then system ((�� d̃)�σ∗) is IC.

Proposition 1(iii). Mapping d∗ is such that

d∗
1(θ) ≥ d∗

0(θ) for all θ ∈��

Proof. Suppose not and let θn̂ ∈� be the largest θ ∈� such that d∗
1(θn̂) < d∗

0(θn̂). Let

z(θ)≡ π(θ)d∗
1(θ)+ (

1 −π(θ)
)
d∗

0(θ)�

Consider the alternative mechanism d′, where

(a) for all θ > θn̂,

d′(θ)= d∗(θ)�

(b) for all θ ≤ θn̂,

d′
1(θn) = d′

1(θn̂)= min
{
d′

1(θn̂+1)� z(θn̂)
}
�

and

d′
0(θ) = z(θ)−π(θ)d′

1(θ)(
1 −π(θ)

) �

I first show that z(·) is decreasing for θ ≤ θn̂. Take any θn < θn+1 ≤ θn̂. If d∗(θn) =
d∗(θn+1), the statement trivially follows. If d∗(θn) 
= d∗(θn+1), it follows that

π(θn)(
1 −π(θn)

) = u
(
d∗

0(θn)
) − u

(
d∗

0(θn+1)
)

u
(
d∗

1(θn+1)
) − u

(
d∗

1(θn)
) ≤ d∗

0(θn)− d∗
0(θn+1)

d∗
1(θn+1)− d∗

1(θn)
�
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where the last inequality follows because u is concave and because

d∗
1(θn) < d∗

1(θn+1) < d∗
0(θn+1) < d∗

0(θn)�

As a result, it follows that

z(θn) ≥ π(θn)d
∗
1(θn+1)+ (

1 −π(θn)
)
d∗

0(θn+1) > z(θn+1)� (8)

Notice also that

d′
0(θn)− d′

0(θn+1) = z(θn)−π(θn)d
′
1(θn)(

1 −π(θn)
) − z(θn+1)−π(θn+1)d

′
1(θn+1)(

1 −π(θn+1)
)

=
(
1 −π(θn)

)−1(
1 −π(θn+1)

) (
z(θn)

(
1 −π(θn+1)

) − z(θn+1)
(
1 −π(θn)

)
+ (

π(θn+1)−π(θn)
)
d′

1(θn+1)
)
�

By (8), it follows that

z(θn)
(
1 −π(θn+1)

) − z(θn+1)
(
1 −π(θn)

) ≥ (
π(θn)−π(θn+1)

)
d∗

1(θn+1)�

which implies that

d′
0(θn)− d′

0(θn+1) ≥ 1 −π(θn)

1 −π(θn+1)

(
π(θn+1)−π(θn)

)(
d′

1(θn+1)− d∗
1(θn+1)

)
> 0

because

d′
1(θn+1) > d∗

1(θn+1)

so that d′
0(·) is decreasing for θ ≤ θn̂.

System ((��d′)�σ∗) satisfies (C1) by definition. It also satisfies (C2) because, for n <

n̂,

E
(
u
(
d′
s(θn)

)|θn) ≥E
(
u
(
d′
s(θn+1)

)|θn)�
which follows because d′

0(·) is decreasing for θ ≤ θn̂, while

E
(
u
(
d′
s(θn̂)

)|θn̂) ≥E
(
u
(
d′
s(θn̂+1)

)|θn̂)
because

E
(
u
(
d′
s(θn̂)

)|θn̂) ≥E
(
u
(
d∗
s (θn̂)

)|θn̂)�
Finally, notice that under d′, for every θ ≤ θn̂, the expected x of reporting truthfully is the
same (and equal to z(θ)), but the gap is smaller than with d∗, because

d∗
1(θ) < d′

1(θ)≤ d′
0(θ) < d∗

0(θ)�

As a result, it follows that

E
(
v
(
d′
s(θ)�θ

)|θ)
>E

(
v
(
d∗
s (θ)�θ

)|θ)
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because v(·� θ) is strictly concave, which means that system ((��d′)�σ∗) is strictly pre-
ferred by the principal to system ((��d∗)�σ∗), which is a contradiction.

Proposition 1(iv). Mapping d∗ is such that

d∗
1(θN) > d∗

1(θ1) = d∗
0(θ1) > d∗

0(θN)�

Proof. I start by showing that d∗
1(θ1) = d∗

0(θ1). Suppose not so that d∗
1(θ1) > d∗

0(θ1).
Consider the alternative mechanism d′, where d′ = d∗ except that

d′
1(θ1)= d′

0(θ1)= π(θ1)d
∗
1(θ1)+ (

1 −π(θ1)
)
d∗

0(θ1) < d∗
1(θ1)�

It follows that system ((��d′)�σ∗) satisfies (C1), it satisfies (C2) because u is concave,
and is strictly preferred by the principal to system ((��d∗)�σ∗) because v(·� θ1) is strictly
concave, which is a contradiction.

As for the second part of the statement, notice that d∗
1(θN) ≥ d∗

1(θ1) by (C1). If
d∗

1(θN) = d∗
1(θ1), then this would mean that d∗

s (θ) would be independent of s and θ:
the principal would simply impose a certain reward. That system would be worse than
system d′′, where

d′′
s (θ)= arg max

x∈R
E

(
v(x�θ)|s) for s = 0�1

for all θ ∈�, which is trivially IC. So, the statement follows.

Proposition 1(v). Mapping d∗ is such that

d∗
1(θN) ≤ x∗(θN) and d∗

0(θN) < x∗(θN)�

Proof. First, I show that d∗
0(θN) ≤ x∗(θN). Suppose not. In that case, if one considers

an alternative mechanism d′ such that d′ = d∗ except that d′
0(θN) = x∗(θN), we get a con-

tradiction in that system: ((��d′)�σ∗) would satisfy (C1) and (C2), and would be strictly
preferred by the principal to system ((��d∗)�σ∗) because v(·� θ) is strictly concave for
all θ ∈�.

Now I show that d∗
1(θN) ≤ x∗(θN). Let n̂≥ 1 be such that d∗(θn) = d∗(θn̂) for all n ≥ n̂.

In that case, consider the following alternative mechanism d′′ where, for all θ ∈ � and
s = 0�1,

d′′
s (θ)=

{
d∗
s (θ) if θ < θn̂ or if (θ ≥ θn̂ and s = 0)

max
{
d∗

1
(
θ∗
n̂−1

)
�x∗(θN)

}
if θ ≥ θn̂ and s = 1

(where it is assumed that d∗
1(θ0) < x∗(θN)). Once again, system ((��d′′)�σ∗) satisfies

(C1) and (C2), and is strictly preferred by the principal to system ((��d∗)�σ∗) because
v(·� θ) is strictly concave for all θ ∈ �.

It follows that if the statement is not true, then d∗
1(θN) = d∗

0(θN) = x∗(θN). This
means that d∗

s (θ) = x∗(θN) for all θ ∈ � and s = 0�1. Consider the alternative mecha-
nism d′′′, where, for all θ ∈ � and for s = 0�1,

d′′′
s (θ)= arg max

x∈R
E

(
v(x�θ)|s)�



996 Francisco Silva Theoretical Economics 14 (2019)

Notice that d′′′
s (θ) is independent of θ and is such that d′′′

1 (θ) 
= d′′′
0 (θ). As a result, it

follows that system ((��d′′′)�σ∗) satisfies (C1) and (C2), and is strictly preferred by the
principal to system ((��d∗)�σ∗).

B.2 Proof of Proposition 2

Preliminaries. The first thing to notice is that if there are two distributions F and F ′ over
� such that

max
[
supp[F]] ≤ min

[
supp

[
F ′]]�

then

arg max
x∈R

E
[
v(x�θ)|F] ≤ arg max

x∈R
E

[
v(x�θ)|F ′]�

This observation allows me to show that any two nondistinct messages can be merged.

Lemma 2. If there is a RPIC system ((M�d)�σ) such that there are two messages m′ ∈ M

and m′′ ∈ M such that d(m′) = d(m′′), then system ((M�d)�σ ′) is also RPIC, where σ ′ = σ

except that

σ ′(θn)
(
m′) = σ(θn)

(
m′) + σ(θn)

(
m′′) for all n

and

σ ′(θn)
(
m′′) = 0�

Proof. Take any RPIC system ((M�d)�σ) and any two messages m′ ∈ M and m′′ ∈ M

such that d(m′)= d(m′′) ≡ (x̂1� x̂0). Let

x′
s ≡ arg max

x∈R
Eσ

(
v(x�θ)|m′� s

)
and

x′′
s ≡ arg max

x∈R
Eσ

(
v(x�θ)|m′′� s

)
for s = 0�1. Because the system is RP, x̂s ≥ max{x′

s� x
′′
s }.

For s = 0�1, let

x̃s ≡ arg max
x∈R

Eσ ′(
v(x�θ)|m′� s

)
= arg max

x∈R
{
κEσ

(
v(x�θ)|m′� s

) + (1 −κ)Eσ
(
v(x�θ)|m′′� s

)}
for some κ ∈ [0�1]. I claim that x̃s ≤ max{x′

s� x
′′
s }, which proves the statement.

Suppose not, so that x̃s > max{x′
s� x

′′
s } for some s = 0�1. Because Eσ [v(·� θ)|m�s] is

strictly concave for any (m� s), it follows that

Eσ
[
v(x̃s� θ)|m′� s

]
<Eσ

[
v
(
max

{
x′
s� x

′′
s

}
� θ

)|m′� s
]
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and that

Eσ
[
v(x̃s� θ)|m′′� s

]
<Eσ

[
v
(
max

{
x′
s� x

′′
s

}
� θ

)|m′′� s
]
�

which is a contradiction to x̃s being sequentially optimal under profile σ ′, after message
m′ and signal s.

As discussed in the text, by Bester and Strausz (2001), there is an optimal RPIC sys-
tem where M = �, so that, without loss of generality, in what follows I assume that
M =�.

I prove Proposition 2 in four steps.

Step 1. If system ((��d)�σ) is an optimal RPIC system, then, for any m ∈ � such that
there is θ ∈� where σ(θ)(m) > 0, d1(m) ≥ d0(m).

Proof. Suppose not, so that there is an optimal RPIC system ((��d)�σ) such that

M̃ ≡ {
m ∈� : d1(m) < d0(m) and σ(θ)(m) > 0 for some θ ∈�

}
is nonempty. The proof shows that there is an alternative RPIC system ((��d′)�σ) that
the principal strictly prefers to ((��d)�σ).

Description of d′. Let

θ′ ≡
{
θN if M̃ =�

min
{
θ ∈� : σ(θ�m) > 0 for some m /∈ M̃

}
if M̃ ⊂�

and

θ′′ ≡ max
{
θ ∈� : σ(θ�m) > 0 for some m ∈ M̃

}
�

Notice that θ′ ≥ θ′′ and that, if M̃ =�, then θ′ = θ′′. Likewise,

m′ ∈

⎧⎪⎪⎨⎪⎪⎩
arg max
m∈M̃

d1(m) if M̃ =�

arg min
m∈�\M̃

d1(m) if M̃ ⊂�

and

m′′ ∈ arg max
m∈M̃

d1(m)�

Finally, let z′(z′′) denote the certainty equivalent of the agent when his type is θ = θ′(θ′′):

u
(
z′) = π

(
θ′)u(

d1
(
m′)) + (

1 −π
(
θ′))u(

d0
(
m′))

and

u
(
z′′) = π

(
θ′′)u(

d1
(
m′′)) + (

1 −π
(
θ′′))u(

d0
(
m′′))�
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For all m ∈� and s = 0�1,

d′
s(m) =

{
ds(m) if m /∈ M̃

z if m ∈ M̃�

where z = min{z′� z′′}.
System ((��d′)�σ) is RPIC. I start by showing that system ((��d′)�σ) is IC. If M̃ = �,

then the statement follows trivially. Suppose, instead, that M̃ ⊂�.
Assume first that z = z′ ≤ z′′. In this case, type θ = θ′ is indifferent between m′ and

m′′, so system ((��d′)�σ) is IC because d1(m
′) ≥ z′. If, on the contrary, z = z′′ < z′, then

type θ = θ′ strictly prefers m′ to m′′. Given that d1(m
′) ≥ z′, it follows that all types θ ≥ θ′

do not strictly prefer to report m′′. It also follows that type θ = θ′′ has the same utility
under system ((��d′)�σ) that he did under system ((��d)�σ). As a result, and because
system ((��d)�σ) is IC, he does not want to deviate to any m /∈ M̃ . Finally, it follows that
all types θ ≤ θ′′ also do not strictly prefer to report m /∈ M̃ because d1(m

′) ≥ z′′, so the
system ((��d′)�σ) is IC.

Given that ((��d)�σ) is RP, it follows that, for s = 0�1 and for m ∈ M̃ ,

arg max
x∈R

Eσ
(
v(x�θ)|m�s

) ≤ arg max
x∈R

Eσ
(
v(x�θ)|m′′� s

)
≤ arg max

x∈R
Eσ

(
v(x�θ)|m′′� s = 1

)
≤ d1

(
m′′)

< z�

Therefore, it follows that system ((��d′)�σ) is RP.
The principal strictly prefers ((��d′)�σ) to ((��d)�σ). I show that, for any m ∈ M̃ ,

N∑
n=1

p(θn)σ(θn)(m)
(
π(θn)v

(
d1(m)�θn

) + (
1 −π(θn)

)
v
(
d0(m)�θn

))

<

N∑
n=1

p(θn)σ(θn)(m)v(z�θn)� (9)

which proves the statement.
Take one such m ∈ M̃ and let θ̂ ∈ [θ1� θN ] be such that

π(θ̂)=

N∑
n=1

p(θn)σ(θn)(m)π(θn)

N∑
n=1

p(θn)σ(θn)(m)

≤ π
(
θ′′)�
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Likewise, let ẑ ∈R be such that

u(̂z)= π(θ̂)u
(
d1(m)

) + (
1 −π(θ̂)

)
u
(
d0(m)

)
≥ π(θ̂)u

(
d1

(
m′′)) + (

1 −π(θ̂)
)
u
(
d0

(
m′′))

≥ u
(
z′′)

≥ u(z)�

Notice that the left hand side of (9) can be written as the sum of A and B, where

A=
N∑
n=1

p(θn)σ(θn)(m)
(
π(θ̂)v

(
d1(m)�θn

) + (
1 −π(θ̂)

)
v
(
d0(m)�θn

))
and

B =
N∑
n=1

p(θn)σ(θn)(m)
(
π(θn)−π(θ̂)

)(
v
(
d1(m)�θn

) − v
(
d0(m)�θn

))
�

Let

B̂ = B
N∑
n=1

p(θn)σ(θn)(m)

and

h(θn) ≡ v
(
d1(m)�θn

) − v
(
d0(m)�θn

)
�

Notice that h is nonincreasing because v has nondecreasing differences. Therefore,

B̂ ≤

⎡⎢⎢⎢⎢⎢⎣
N∑
n=1

p(θn)σ(θn)(m)
(
π(θn)−π(θ̂)

)
N∑
n=1

p(θn)σ(θn)(m)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
N∑
n=1

p(θn)σ(θn)(m)h(θn)

N∑
n=1

p(θn)σ(θn)(m)

⎤⎥⎥⎥⎥⎥⎦ = 0

(see Lemma 2.1 in See and Chen 2008) and so B ≤ 0.
Notice that

A<
N∑
n=1

p(θn)σ(θn)(m)v
(
π(θ̂)d1(m)+ (

1 −π(θ̂)
)
d0(m)�θn

)
because v(·� θn) is strictly concave for any θ ∈�.

Furthermore, we have that

arg max
x∈R

N∑
n=1

p(θn)σ(θn)(m)v(x�θn) < d1(m) < z ≤ ẑ ≤ π(θ̂)d1(m)+ (
1 −π(θ̂)

)
d0(m)�
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where the last inequality follows because u is concave. This, together with the fact that
v(·� θn) is strictly concave for any θ ∈�, implies that

N∑
n=1

p(θn)σ(θn)(m)v
(
π(θ̂)d1(m)+ (

1 −π(θ̂)
)
d0(m)�θn

) ≤
N∑
n=1

p(θn)σ(θn)(m)v(z�θn)�

which implies (9).

Step 2 is divided into two parts.

Step 2(a). If system ((��d)�σ) is IC, is such that d1(m) ≥ d0(m) for any m ∈�, and there
is mN ∈� such that

(i)

σ(θN)(mN) > 0�

(ii)

d1(mN) > d1(m) for all m such that σ(θ)(m) > 0 for some θ ∈��

and

(iii)

ds(mN)≥ arg max
x∈R

Eσ
(
v(x�θ)|mN�s

)
for s = 0�1�

then system ((��d)�σ) is RP.

Proof. Notice that

arg max
x∈R

Eσ
(
v(x�θ)|m�s

) ≤ arg max
x∈R

Eσ
(
v(x�θ)|mN�s = 0

) ≤ d0(mN)≤ ds(m)

for any m ∈� and for s = 0�1.

Step 2(a) is particularly useful in that it allows me to apply the revelation principle
to non-top messages. The reason that the revelation principle does not hold in an envi-
ronment with limited commitment is that beliefs matter. But, as I show in Step 2(b), in
this case, beliefs only matter after the top message θN .

Step 2(b). For any optimal RPIC system ((��d)�σ), there is another RPIC system
((��d′)�σ ′) that the principal is indifferent to, where

(i)

σ ′(θn)(m) =
{

1 if m=mN

0 if m 
=mN

if n > n∗�
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(ii)

σ ′(θn)(m) =

⎧⎪⎪⎨⎪⎪⎩
1 − τ if m= mN

τ if m= mn

0 if m 
= mn�mN

if n = n∗�

(iii)

σ ′(θn)(m) =
{

1 if m= mn

0 if m 
= mn

if n < n∗

for some n∗ = 1� � � � �N , τ ∈ [0�1], and mN ∈�.

Proof. Take any optimal RPIC system ((��d)�σ) and, without loss of generality, as-
sume that there is a unique top message mN :

σ(θN)(mN) > 0

and

d1(mN) > d1(m) for all m ∈ ��

Let n∗ be the index of the smallest type to send message mN with a positive probability,

n∗ = min
{
n : σ(θn)(mN) > 0

}
�

and let

τ = 1 − σ(θn∗)(mN)�

Define d′ as

(i)

d′(mn) = d(mN) for all n > n∗

(ii)

d′(mn) = d(m̂n) for all n≤ n∗�

where

m̂n ∈ arg max
m:σ(θn)(m)>0

π(θn)v
(
d1(m)�θn

) + (
1 −π(θn)

)
v
(
d0(m)�θn

)
�

Notice that in system ((��d′)�σ ′), the agent has the same expected utility for any
type θ ∈ � as under system ((��d)�σ). Furthermore, there are less distinct contracts to
choose from, so it follows that system ((��d′)�σ ′) is IC. In addition, by Step 2(a) it is RP.
Finally, the principal (weakly) prefers system ((��d′)�σ ′) because, for all θ ∈�,∑

m∈�
σ(θ)(m)

(
π(θ)v

(
d1(m)�θ

) + (
1 −π(θ)

)
v
(
d0(m)�θ

))
≤

∑
m∈�

σ ′(θ)(m)
(
π(θ)v

(
d′

1(m)�θ
) + (

1 −π(θ)
)
v
(
d′

0(m)�θ
))
�
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Step 2 implies that there is an optimal system where there is pooling at the top: no-
tice that, without loss of generality, for all σ ∈ 
, θTop(σ) described in the text can be
defined to be equal to mN = θN . It also implies that the problem of finding a strategy
profile that is a part of an optimal RPIC system can be reduced to the simpler problem of
finding n∗ = 1� � � � �N and τ ∈ [0�1]. In particular, it follows that RPIC system ((�� d̂)� σ̂)

is an optimal RPIC system provided that

(i)

σ̂(θn)(m) =
{

1 if m = θN

0 if m 
= θN
if n > n̂∗

(ii)

σ̂(θn)(m) =

⎧⎪⎪⎨⎪⎪⎩
1 − τ̂ if m= θN

τ̂ if m= θn

0 if m 
= θn�θN

if n = n̂∗

(iii)

σ̂(θn)(m) =
{

1 if m= θn

0 if m 
= θn
if n < n̂∗

and that (d̂� n̂∗� τ̂) solves the following program, labeled as �.

The principal chooses (d�n∗� τ) so as to maximize her expected utility subject to (a)
a monotonicity condition stating that d1(m) is increasing, (b) an “upper” incentive con-
straint, stating that the lowest type sending each message does not want to send the
following one, (c) a “lower” incentive constraint, stating that the largest type sending
each message does not want to send the preceding one, and (d) a renegotiation-proof
condition that applies only to the largest message m= θN .

Formally,

V̂
(
d�n∗� τ

) =
N∑

n=n∗+1

p(θn)
(
π(θn)v

(
d1(θN)�θn

) + (
1 −π(θn)

)
v
(
d0(θN)�θn

))
+p(θn∗)

[
(1 − τ)

(
π(θn∗)v

(
d1(θN)�θn∗

) + (
1 −π(θn∗)

)
v
(
d0(θN)�θn∗

))
+ τ

(
π(θn∗)v

(
d1(θn∗)�θn∗

) + (
1 −π(θn∗)

)
v
(
d0(θn∗)�θn∗

))]
+

n∗−1∑
n=1

p(θn)
(
π(θn)v

(
d1(θn)�θn

) + (
1 −π(θn)

)
v
(
d0(θn)�θn

))
�

Condition (a) can be stated as{
d1(θn)= d1(θN) for all n > n∗

d1(θn)≥ d1(θn−1) for all n = 2� � � � � n∗ + 1�
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Condition (b) can be written as

(1 − τ)
[
π(θn∗)u

(
d1(θN)

) + (
1 −π(θn∗)

)
u
(
d0(θN)

)]
≥ (1 − τ)

[
π(θn∗)u

(
d1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗)

)]
and

τ
[
π(θn∗)u

(
d1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗)

)]
≥ τ

[
π(θn∗)u

(
d1(θn∗−1)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗−1)

)]
�

and, for all n= 2� � � � � n∗ − 1,

π(θn)u
(
d1(θn)

) + (
1 −π(θn)

)
u
(
d0(θn)

)
≥ π(θn)u

(
d1(θn−1)

) + (
1 −π(θn)

)
u
(
d0(θn−1)

)
�

while condition (c) can be written as

τ
[
π(θn∗)u

(
d1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d0(θn∗)

)]
≥ τ

[
π(θn∗)u

(
d1(θN)

) + (
1 −π(θn∗)

)
u
(
d0(θN)

)]
and, for all n= 1� � � � � n∗ − 1,

π(θn)u
(
d1(θn)

) + (
1 −π(θn)

)
u
(
d0(θn)

)
≥ π(θn)u

(
d1(θn+1)

) + (
1 −π(θn)

)
u
(
d0(θn+1)

)
�

Finally, the RP condition (d) can be stated as

d1(θN)≥ arg max
d1∈R

{
N∑

n=n∗+1

p(θn)π(θn)v(d1� θn)+ (1 − τ)p(θn∗)π(θn∗)v(d1� θn∗)

}

and

d0(θN)≥ arg max
d0∈R

{
N∑

n=n∗+1

p(θn)
(
1−π(θn)

)
v(d0� θn)+(1−τ)p(θn∗)

(
1−π(θn∗)

)
v(d0� θn∗)

}
�

Consider the relaxed problem �′ that is equal to � except that (b) is eliminated.

Step 2. There is a solution (d̂� n̂∗� τ̂) of the program �′ such that

π(θn∗)u
(
d̂1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d̂0(θn∗)

) = π(θn∗)u
(
d̂1(θN)

) + (
1 −π(θn∗)

)
u
(
d̂0(θN)

)
and, for all n = 1� � � � � n̂∗ − 1,

π(θn)u
(
d̂1(θn)

) + (
1 −π(θn)

)
u
(
d̂0(θn)

) = π(θn)u
(
d̂1(θn+1)

) + (
1 −π(θn)

)
u
(
d̂0(θn+1)

)
�
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Proof. Take any solution of �′ and denote it by (d̂� n̂∗� τ̂). Suppose that (c) holds strictly.
If

τ̂
[
π(θn∗)u

(
d̂1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d̂0(θn∗)

)]
> τ̂

[
π(θn∗)u

(
d̂1(θN)

) + (
1 −π(θn∗)

)
u
(
d̂0(θN)

)]
(which implies that τ̂ > 0), then there is mapping d′ : � × {0�1} such that d′ = d̂ except
that d′

0(θn∗) is such that

τ̂
[
π(θn∗)u

(
d̂1(θn∗)

) + (
1 −π(θn∗)

)
u
(
d′

0(θn∗)
)]

= τ̂
[
π(θn∗)u

(
d̂1(θN)

) + (
1 −π(θn∗)

)
u
(
d̂0(θN)

)]
�

Given that

x∗(θn∗)≤ d̂0(θN) ≤ d′
0(θn∗) < d̂0(θn∗)�

it follows that the principal strictly prefers the alternative (d′� n̂∗� τ̂) to (d̂� n̂∗� τ̂), which
contradicts the optimality of the latter.

If, for some n = 1� � � � � n∗ − 1,

π(θn)u
(
d̂1(θn)

) + (
1 −π(θn)

)
u
(
d̂0(θn)

)
>π(θn)u

(
d̂1(θn+1)

) + (
1 −π(θn)

)
u
(
d̂0(θn+1)

)
�

then there is mapping d′ : �× {0�1} such that d′ = d̂ except that d′
0(θn) is such that

π(θn)u
(
d̂1(θn)

) + (
1 −π(θn)

)
u
(
d′

0(θn)
) = π(θn)u

(
d̂1(θn+1)

) + (
1 −π(θn)

)
u
(
d̂0(θn+1)

)
�

Given that

x∗(θn) ≤ d̂0(θn+1) ≤ d′(θn) < d̂0(θn)�

it follows that the principal strictly prefers the alternative (d′� n̂∗� τ̂) to (d̂� n̂∗� τ̂), which
contradicts the optimality of the latter.

Thus, one concludes that (c) must bind in any solution of �′. Finally, if the optimal
τ̂ = 1, then it is a solution to choose d̂s(θn∗) = d̂s(θN) for s = 0�1 (among others).

Step 3 implies that the solution of �′ satisfies (b), which makes it also the solution of
�. This means that (i) and (ii) of the statement of Proposition 2 have been proved. What
is left is (iii).

Step 3. In any solution (d̂� n̂∗� τ̂) of the program �′ such that d̂(θN) 
= d̂(θn̂∗), it must be
that

d̂1(θN)= arg max
d1∈R

{
N∑

n=n∗+1

p(θn)π(θn)v(d1� θn)+ (1 − τ̂)p(θn∗)π(θn∗)v(d1� θn∗)

}

and

d̂0(θN) = arg max
d0∈R

{
N∑

n=n∗+1

p(θn)
(
1−π(θn)

)
v(d0� θn)+(1− τ̂)p(θn∗)

(
1−π(θn∗)

)
v(d0� θn∗)

}
�
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Proof. Suppose not. Consider first the case where

d̂0(θN) > x̂0

≡ arg max
d0∈R

{
N∑

n=n∗+1

p(θn)
(
1 −π(θn)

)
v(d0� θn)

+ (1 − τ̂)p(θn∗)
(
1 −π(θn∗)

)
v(d0� θn∗)

}
�

Consider the alternative mechanism d′, where d′ is identical to d̂ except that

d′
0(θN) = x̂0

The new mechanism satisfies (c), because reporting θN is less appealing with d′ than
with d, and satisfies (a) and (d) by definition and is strictly preferred by the principal,
which is a contradiction to optimality.

Suppose instead that

d̂1(θN) > x̂1

≡ arg max
d1∈R

{
N∑

n=n∗+1

p(θn)π(θn)v(d1� θn)+ (1 − τ̂)p(θn∗)π(θn∗)v(d1� θn∗)

}
�

Consider the alternative mechanism d′, where d′ is identical to d̂ except that

d′
1(θN)= max

{
x̂1� d̂1(θn∗)

}
�

The new mechanism satisfies (c), because reporting θN is less appealing with d′ than
with d, and satisfies (a) and (d) by definition. Mechanism d′ is strictly preferred by the
principal due to the strict concavity of v and the fact that x̂1 ≤ d′

1(mN) < d̂1(mN), which
is a contradiction to d̂ being optimal.

Step 4 shows (iii) of the statement of Proposition 2.

B.3 Proof of Proposition 3

Part (i) has two parts:

Proposition 3(i)(a). d̂1(θ1)= d̂0(θ1).

Proof. This result follows for the same argument as with the optimal IC system: the
only constraint than binds the choice of d̂1(θ1) and of d̂0(θ1) is the incentive constraint
that states that type θ = θ1 does not want to mimic type θ = θ2. So, giving type θ1, the
only type who might send message m = θ1, a constant reward both increases the prin-
cipal’s expected utility (because she is risk averse) and increases the incentives for the
lowest type to report to being the lowest type (because he is also risk averse).
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Proposition 3(i)(b). If n̂∗ > 1, then

d̂1(θn̂∗) > d̂1(θ1) = d̂0(θ1) > d̂0(θn̂∗)�

Proof. Suppose not, so that

d̂1(θn) = d̂0(θn) = k

for any n ≤ n̂∗. By Proposition 2, it follows that k is such that

u(k) = π(θn̂∗)u(γ̂1)+ (
1 −π(θn̂∗)

)
u(γ̂0)�

where

γ̂s ≡ arg max
x∈R

Eσ̂
(
v(x�θ)|m= θTop(σ̂)� s

)
�

Notice that γ̂1 >k> γ̂0. Consider the alternative system ((��d′)� σ̂), where d′ = d̂ except
that

d′
1(θn) = k+ ε and d′

0(θn)= k− δ(ε)

for all n ≤ n̂∗, where δ(ε) is such that

u(k) = π(θn̂∗)u(k+ ε)+ (
1 −π(θn̂∗)

)
u
(
k− δ(ε)

)
(10)

for some ε ≥ 0. If ε is sufficiently small, then k+ε < γ̂1, so that system ((��d′)� σ̂) would
be RPIC.

Notice that if ε = 0, the two systems are equal. Let V ε denote the expected utility of
the principal, under system ((��d′)� σ̂) for a given ε ≥ 0. Notice that

dV ε

dε
=

n̂∗−1∑
n=1

p(θn)

(
π(θn)

∂v

∂x
(k+ ε�θn)− (

1 −π(θn)
)∂v
∂x

(
k− δ(ε)�θn

)
δ′(ε)

)

+ τ̂p(θn̂∗)

(
π(θn̂∗)

∂v

∂x
(k+ ε�θn̂∗)− (

1 −π(θn̂∗)
)∂v
∂x

(
k− δ(ε)�θn̂∗

)
δ′(ε)

)
�

Using (10), we have that

δ′(0) = π(θn̂∗)

1 −π(θn̂∗)

so that

dV ε

dε
(0) =

n̂∗−1∑
n=1

p(θn)
∂v

∂x
(k�θn)

(
π(θn)− (

1 −π(θn)
) π(θn̂∗)

1 −π(θn̂∗)

)

+ τ̂p(θn̂∗)
∂v

∂x
(k�θn̂∗)

(
π(θn̂∗)− (

1 −π(θn̂∗)
) π(θn̂∗)

1 −π(θn̂∗)

)
�

Recall that k > γ0 > x∗(θn) for all θn ≤ θn̂∗ so that ∂v
∂x(k�θn) < 0 for all θn ≤ θn̂∗ . This

implies that

π(θn) <
(
1 −π(θn)

) π(θn̂∗)

1 −π(θn̂∗)
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for all θn < θn̂∗ , which means that that dV ε

dε (0) > 0, so that there is a sufficiently small
ε > 0 for which system ((��d′)� σ̂) is both RPIC and better for the principal than the
optimal RPIC system, which is a contradiction.

Proof of Proposition 3(ii). Following Proposition 2, mapping d̂ : {θ1� � � � � θn̂∗} ×
{0�1} →R maximizes

n̂∗−1∑
n=1

p(θn)
(
π(θn)v

(
d1(θn)�θn

) + (
1 −π(θn)

)
v
(
d0(θn)�θn

))
+ τ̂p(θn̂∗)

(
π(θn̂∗)v

(
d1(θn̂∗)�θn̂∗

) + (
1 −π(θn̂∗)

)
v
(
d0(θn̂∗)�θn̂∗

))
subject to the following local incentive constraints: for all n < n̂∗,

π(θn)u
(
d1(θn)

) + (
1 −π(θn)

)
u
(
d0(θn)

)
= π(θn)u

(
d1(θn+1)

) + (
1 −π(θn)

)
u
(
d0(θn+1)

)
and

π(θn̂∗)u
(
d1(θn̂∗)

) + (
1 −π(θn̂∗)

)
u
(
d0(θn̂∗)

)
= π(θn̂∗)u(γ̂1)+ (

1 −π(θn̂∗)
)
u(γ̂0)�

and the monotonicity constraint

d1(θ1) ≤ d1(θ2)≤ · · · ≤ d1(θn̂∗) ≤ γ̂1�

Start by noticing that γ̂1 > d̂1(θn̂∗), so that constraint d1(θn̂∗) ≤ γ̂1 is not binding. I
show that under the stated conditions, the solution of the relaxed problem, where all
monotonicity constraints are eliminated, satisfies the monotonicity constraint, which
shows the result, i.e., if the solution of the relaxed problem is d̃, I show that d̃1(θn) is
strictly increasing with n, for all n ≤ n̂∗.

Let λn ≥ 0 be Lagrange multiplier associated with each of the incentive constraints.
I start by showing that, for all n≤ n̂∗,

λn =
n∑

n′=1

p(θn′)ξn′h
(
d̃1(θn′)�θn′

)π(θn′)

π(θn)
� (11)

where

ξn =
{

1 − τ̂ if n = n̂∗

1 if n < n̂∗�

I show this result by induction. Notice that the first order condition (foc) with respect to
d1(θ1) can be written as

p(θ1)
∂v

∂x

(
d̃1(θ1)�θ1

) + λ1u
′(d̃1(θ1)

) = 0 ⇔ λ1 = p(θ1)h
(
d̃1(θ1)�θ1

)
�
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Now, take any n < n̂∗ and assume that

λn−1 =
n−1∑
n′=1

p(θn′)h
(
d̃1(θn′)�θn′

) π(θn′)

π(θn−1)
� (12)

The foc with respect to d1(θn) can be written as

p(θn)π(θn)
∂v

∂x

(
d̃1(θn)�θn

) + λnπ(θn)u
′(d̃1(θn)

) = λn−1π(θn−1)u
′(d̃1(θn)

)
�

After replacing (12), one gets (11). Finally, if one considers the foc with respect to d1(θn̂∗),
we get that

p(θn̂∗)(1 − τ̂)π(θn̂∗)
∂v

∂x

(
d̃1(θn̂∗)�θn̂∗

) + λn̂∗π(θn̂∗)u′(d̃1(θn̂∗)
) = λn̂∗−1π(θn̂∗−1)u

′(d̃1(θn̂∗)
)
�

By replacing λn∗−1, we get (11) evaluated at n = n̂∗.
Notice that, for any 0 < n ≤ n̂∗, the foc with respect d0(θn) is given by

p(θn)ξn
(
1 −π(θn)

)∂v
∂x

(
d̃0(θn)�θn

) + λn
(
1 −π(θn)

)
u′(d̃0(θn)

)
= λn−1

(
1 −π(θn−1)

)
u′(d̃0(θn)

)
�

Using (11), one can rewrite it as

h
(
d̂1(θn)�θn

) − h
(
d̂0(θn)�θn

) = κn

ξn

n−1∑
n′=1

p(θn′)ξn′π(θn′)h
(
d̂1(θn′)�θn′

)
� (13)

where

κn ≡ π(θn)−π(θn−1)

p(θn)
(
1 −π(θn)

)
π(θn)π(θn−1)

> 0�

Notice that the conditions of the statement imply that κn is (weakly) increasing,
while, by definition ξn is (weakly) decreasing. Therefore, κn/ξn is weakly increasing.
Furthermore, because the system is RP, it follows that h(d̂1(θn)�θn) > 0 for all n ≤ n̂∗.

This means that the right hand side of (13) is strictly increasing with n. If ∂2h
∂x∂θn

(x�θn)≤ 0
for all (x�θn), then it must be that, for all n < n̂∗,

0 ≤ d̂1(θn)− d̂0(θn) < d̂1(θn+1)− d̂0(θn+1)�

Given that the local incentive constraints imply that either

d̂1(θn+1) ≥ d̂1(θn) or d̂0(θn+1) ≥ d̂0(θn)�

it follows that d̂1(θn) is strictly increasing with n, for all n≤ n̂∗.
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B.4 Proof of Proposition 4

I start by showing the following statement.

Lemma 3. For any

x′
1 > x′′

1 ≥ x′′
0 > x′

0

such that

πu
(
x′

1
) + (1 −π)u

(
x′

0
) = πu

(
x′′

1
) + (1 −π)u

(
x′′

0
)

for some π ∈ (0�1), then

πξ
(
u
(
x′

1
)) + (1 −π)ξ

(
u
(
x′

0
))

<πξ
(
u
(
x′′

1
)) + (1 −π)ξ

(
u
(
x′′

0
))
�

Proof. Let η be such that

ηu
(
x′

1
) + (π −η)u

(
x′

0
) = πu

(
x′′

1
)

and notice that

η ∈ (
max{0�2π − 1}�π)

�

It follows that

ξ
(
u
(
x′′

1
)) = ξ

(
η

π
u
(
x′

1
) + (π −η)

π
u
(
x′

0
))

>
η

π
ξ
(
u
(
x′

1
)) + (π −η)

π
ξ
(
u
(
x′

0
))

and

ξ
(
u
(
x′′

0
)) = ξ

(
(π −η)

(1 −π)
u
(
x′

1
) + (1 − 2π +η)

(1 −π)
u
(
x′

0
))

>
(π −η)

(1 −π)
ξ
(
u
(
x′

1
)) + (1 − 2π +η)

(1 −π)
ξ
(
u
(
x′

0
))
�

Therefore,

ηξ
(
u
(
x′

1
)) + (π −η)ξ

(
u
(
x′

0
)) + (π −η)ξ

(
u
(
x′

1
)) + (1 − 2π +η)ξ

(
u
(
x′

0
))

<πξ
(
u
(
x′′

1
)) + (1 −π)ξ

(
u
(
x′′

0
))
�

which implies that

πξ
(
u
(
x′

1
)) + (1 −π)ξ

(
u
(
x′

0
))

<πξ
(
u
(
x′′

1
)) + (1 −π)ξ

(
u
(
x′′

0
))
�

Consider the program described in Proposition 2, assuming that the agent’s utility
function is u. Solving that program returns a threshold (̂n∗� τ̂) and a mapping d̂. In
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Step 3 in the proof of Proposition 2, I show that one can replace the “equality” incentive
constraints in the optimal program

E
(
u
(
ds(θn)

)|θn) =E
(
u
(
ds(θn+1)

)|θn+1
)

by

E
(
u
(
ds(θn)

)|θn) ≥E
(
u
(
ds(θn+1)

)|θn+1
)
�

Therefore, threshold (̂n∗� τ̂) and d̂ would still satisfy all constraints of the program if the
agent’s utility function was η(u), by Lemma 3 and by the fact that whenever d̂(θn) 
=
d̂(θn+1),

d̂1(θn+1) > d̂1(θn)≥ d̂0(θn) > d̂0(θn+1)�

But it will not be optimal, because not all incentive constraints will not hold with equal-
ity, a condition for optimality. Therefore, it must be that the principal’s expected utility
is larger if the agent’s utility function is given by η(u).

B.5 Proof of Proposition 5

Recall that to find the optimal IC system, one must find the function ũ that maximizes∫ θ

θ
�

(
θ� ũ(θ)� ũ′(θ)

)
dθ�

where

�
(
θ� ũ� ũ′) ≡ p(θ)g

(
θ�u−1(ũ+ (1 − θ)ũ′)�u−1(ũ− θũ′))

subject to ũ′ being weakly increasing. Consider the relaxed problem where the con-
straint is disregarded and let the solution of that problem be denoted by û. Seeing as
there is no explicit boundary condition, it must be that

∂�

∂ũ′
(
θ� û(θ)� û′(θ)

) = ∂�

∂ũ′
(
θ� û(θ)� û′(θ)

) = 0�

Given that

∂�

∂ũ′
(
θ� ũ� ũ′) = p(θ)θ(1 − θ)

(−h
(
u−1(ũ+ (1 − θ)ũ′)� θ) + h

(
u−1(ũ− θũ′)� θ))

�

it follows that

û′(θ) = û′(θ) = 0�

Therefore, for the solution of the relaxed problem to satisfy the disregarded constraint,
it would have to be that û′(θ) = 0 for all θ ∈ �, i.e., d̂1(θ) = d̂0(θ) for all θ ∈ �. Such
an allocation is clearly not optimal among all incentive compatible allocations, as it is
worse than an allocation that also does not depend on θ but does depend on the signal s.
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B.6 Proof of Proposition 6

Steps 1 and 2 of the proof of Proposition 2 still hold true, so that there is pooling at the top
and the RP constraints of all non-top messages do not bind. Let θ∗ denote the threshold
type, so that all types θ > θ∗ send message θTop, while each type θ ≤ θ∗ sends message
m = θ. The principal wants to choose θ∗ and d so as to maximize her expected utility
subject to the following constraints: (i) the RP constraints

d1(θTop)≥ arg max
x∈R

∫ θ

θ∗
θv(x�θ)dθ

and

d0(θTop) ≥ arg max
x∈R

∫ θ

θ∗
(1 − θ)v(x�θ)dθ�

(ii) the monotonicity constraint

d1(θTop) ≥ d1
(
θ∗)

and d1(θ) is (weakly) increasing for all θ ≤ θ∗, (iii) the incentive constraint below θ∗ is

θ ∈ arg max
θ′∈[θ�θ∗]

θu
(
d1

(
θ′)) + (1 − θ)u

(
d0

(
θ′))

for all θ ≤ θ∗, and (iv) the incentive constraint at θ∗ is

θ∗u
(
d1

(
θ∗)) + (

1 − θ∗)u(
d0

(
θ∗)) = θ∗u

(
d1(θTop)

) + (
1 − θ∗)u(

d0(θTop)
)
�

Consider the relaxed version of this problem where (iv) is replaced by

(iv′)

θ∗u
(
d1

(
θ∗)) + (

1 − θ∗)u(
d0

(
θ∗)) ≥ θ∗u

(
d1(θTop)

) + (
1 − θ∗)u(

d0(θTop)
)
�

Notice that any d for which (i)–(iv′) hold is such that ds(θ) > x∗(θ) for all θ < θ∗. There-
fore, it must be that the solution of the relaxed version is such that (iv′) holds with equal-
ity; if not, the principal could decrease all the rewards below θ∗, which would improve
her expected utility and still not violate constraints (i)–(iii), which would be a contradic-
tion. Therefore, the solution of the relaxed problem is also the solution of the original
problem.

Considering the relaxed version of the problem is useful in that it makes clear that
the RP constraint binds:

d̂1(θTop) = arg max
x∈R

∫ θ

θ∗
θv(x�θ)dθ

and

d̂0(θTop) = arg max
x∈R

∫ θ

θ∗
(1 − θ)v(x�θ)dθ�
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This is because having d̂s(θTop) for any s larger than what is sequentially optimal for the
principal only makes constraint (iv′) harder to satisfy. Therefore, there is only regret at
the bottom.

The rest of the statement of Proposition 6 follows by taking the same steps as in the
case with commitment power and replacing the incentive compatibility condition (iii)
by the one that is in the text, i.e.,

d̂1(θ)= ũ(θ)+ (1 − θ)ũ′(θ) and d̂0(θ) = ũ(θ)− θũ′(θ)�

where ũ : [θ�θ∗] →R maximizes the program described in the statement of the proposi-
tion.
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