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Justifying optimal play via consistency
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Developing normative foundations for optimal play in two-player zero-sum
games has turned out to be surprisingly difficult, despite the powerful strategic
implications of the minimax theorem. We characterize maximin strategies by
postulating coherent behavior in varying games. The first axiom, called conse-
quentialism, states that how probability is distributed among completely indis-
tinguishable actions is irrelevant. The second axiom, consistency, demands that
strategies that are optimal in two different games should still be optimal when
there is uncertainty regarding which of the two games will actually be played. Fi-
nally, we impose a very mild rationality assumption, which merely requires that
strictly dominated actions will not be played. Our characterization shows that a
rational and consistent consequentialist who ascribes the same properties to his
opponent has to play maximin strategies. This result can be extended to charac-
terize Nash equilibrium in bimatrix games whenever the set of equilibria is inter-
changeable.
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1. Introduction

Two-player zero-sum games, i.e., games in which the interests of both players are di-
ametrically opposed, are the historical point of departure for the theory of games. Per-
haps the most central result in game theory, the minimax theorem (von Neumann 1928),
has established that zero-sum games admit natural “optimal” strategies, which further-
more correspond to unique payoffs for both players. Twenty-five years after his seminal
discovery, John von Neumann wrote that “as far as I can see, there could be no theory
of games [. . . ] without that theorem [. . . ] I thought there was nothing worth publishing
until the ‘minimax theorem’ was proved” (von Neumann and Fréchet 1953).

When Nash (1950) and others initiated the study of more general, non-cooperative
games, it became apparent that much of the elegance of the theory of zero-sum games
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is lost and no unequivocal notion of optimality pertains. Unlike maximin strategies in
zero-sum games, Nash equilibria—their various refinements as well as their coarsenings
such as correlated equilibria—require some form of coordination among the players,
i.e., the optimality of a strategy depends on the strategies chosen by the other players.
In zero-sum games, the set of Nash equilibria is interchangeable, i.e., it is the Cartesian
set of pairs of maximin strategies. Hence, the optimality of a player’s strategy is inde-
pendent of the strategy chosen by the other player. Moreover, maximin strategies can be
efficiently computed using linear programming, while finding Nash equilibria in non-
zero-sum games has been shown to be computationally intractable, even when there
are only two players (Daskalakis et al. 2009, Chen et al. 2009).

Based on these considerations, a widespread sentiment in game theory states that
rational players ought to play maximin strategies in zero-sum games. However, this con-
clusion is premature, even under relatively strong interpretations of rationality.1 The
approach we pursue in this paper is based on axioms that require players to behave
coherently across varying hypothetical games. Our first axiom, called consequential-
ism, demands that players care only about the payoffs obtained by playing an action,
not about its name. More precisely, when there are actions that yield identical payoffs
against every action of the opponent, so-called clones, the probability assigned to other
actions should be independent of the number of clones and the remaining probability
can be distributed arbitrarily among the clones. Furthermore, a player’s strategy should
not depend on clones available to the other player. The second axiom prescribes how
players deal with games that they consider strategically equivalent. Consider two games
in which both players would choose the same pair of strategies: one for the row player
and one for the column player. Consistency requires that the same pair of strategies
should be played in a new game where a coin toss decides which of the two original
games is actually being played (the payoffs of the new game are given by the random-
ization between the payoffs of the two original games). This is, in fact, the only place
in our model where expected payoffs enter the picture. The only rationality assumption
we make—our third axiom—requires that a strictly dominated action will not be played.

Our main theorem then shows that every rational and consistent consequentialist
has to play maximin strategies if he ascribes the same properties to his opponent (The-
orem 2). This result can be extended to characterize Nash equilibrium in bimatrix games
whenever the set of equilibria is interchangeable.

1Early objections against the normative power of maximin strategies were raised by Bacharach (1987),
who wrote that “[the maximin principle] has been much criticized, and the qualified acceptance it has
enjoyed owes something to its protective alliance with other elements of von Neumann and Morgenstern’s
theory. Their own arguments for it were suggestive rather than apodictic. It is claimed to express a rational
caution in a situation in which a player has no valid basis for assigning probabilities to his opponent’s
decision. A second argument is also advanced, unworthy of them and justly attacked by Ellsberg (1956),
according to which it is rational for A to choose by supposing he is playing the ‘minorant game’ associated
with the payoff matrix: in this game A chooses first and B second in knowledge of A’s choice (so that A is a
Stackelberg ‘leader’). In this situation rock-hard principles of decision under certainty make it rational for
A to maximin. But convincing reasons for A to assume that it obtains are missing.”
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2. Related work

The question of which concrete assumptions lead to equilibrium play has been pri-
marily studied in epistemic game theory, which amends the traditional game-theoretic
models by formally modeling the knowledge of individual players. This is achieved us-
ing Bayesian belief hierarchies, which consist of a game and a set of types for each player
with each type including the action played by this type and a probability distribution
over types of the other players, called the belief of this type. In this model, it is not
assumed that players actively randomize. Instead, the beliefs about the types of the
other players are randomized. Players are rational if they maximize expected payoff
given their types and beliefs. Aumann and Brandenburger (1995) show that for two-
player (not necessarily zero-sum) games, the beliefs of every pair of types whose beliefs
are mutually known and whose rationality is mutually known constitute a Nash equilib-
rium.2 This result extends to games with more than two players if the beliefs are com-
monly known and admit a common prior. A different perspective is taken by Aumann
and Drèze (2008), who, among others things, investigate which payoffs rational players
should expect in zero-sum games. Aumann and Drèze show that if rationality is com-
mon knowledge and the beliefs admit a common prior, then the players should expect
the value of the game. In their proof, Aumann and Drèze (2008) consider games in which
all actions are “doubled,” roughly reminiscent of our consequentialism axiom.

Another stream of research has delivered characterizations of the value of a zero-
sum game using axioms that are not necessarily motivated by decision-theoretic con-
siderations (Vilkas 1963, Tijs 1981, Norde and Voorneveld 2004). Since the row player’s
payoff will always be the value when both players play maximin strategies, our result can
also be interpreted as a characterization of the value of a zero-sum game. Note, how-
ever, that characterizations of the value are weaker than characterizations of maximin
strategies because the value is devoid of any strategic content. In symmetric zero-sum
games, for example, the value is constantly zero, but finding or characterizing maximin
strategies is nontrivial.

Hart et al. (1994) provide sufficient conditions for agents to evaluate zero-sum games
by their value and thereby attempt to motivate playing maximin strategies. In their
framework, the players have preferences over game forms satisfying a number of ax-
ioms, whose implications are twofold: first, they guarantee that lotteries over out-
comes are evaluated based on their expected utility for some underlying von Neumann–
Morgenstern (vNM) utility function; second, game forms are ranked based on the value
of the zero-sum game resulting from them given this utility function. A weakening of the
axiom that drives the second implication is called irrelevance of duplications and states
that the agent is indifferent between game forms that differ only with regard to duplicate
rows or columns. It is thus reminiscent of consequentialism. However, since evaluation
of games by their value does not necessitate maximin play, Hart et al. conclude that
“our goal has not been completely achieved, in that we have rationalized evaluation of

2In the model of Aumann and Brandenburger (1995), the payoff functions are unknown and the play-
ers have beliefs about the payoff functions that may depend on their type. For this model, their result
additionally requires the payoff functions to be mutually known.
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zero-sum games by their value, but we have not proved that ‘rationality’ implies playing
maxmin strategies.”

Our characterization bears some resemblance to a recent characterization of a ran-
domized voting rule that is based on the symmetric zero-sum game given by the pair-
wise majority margins of the voters’ preferences (Brandl et al. 2016). Even though the
proofs are quite different, the common key idea is to consider convex combinations of
matrices that are permutations of each other. The characterization described in Remark
5 by Brandl et al. uses population consistency, cloning consistency, and Condorcet con-
sistency. Population consistency corresponds to our consistency, cloning consistency is
slightly weaker than consequentialism, and Condorcet consistency is stronger than ra-
tionality. On top of that, Brandl et al. also need upper hemicontinuity, convexity, and
decisiveness of solution concepts, which are not required in our proof (essentially be-
cause it directly operates on game matrices rather than preference profiles). The zero-
sum games arising in the proof by Brandl et al. are always symmetric because they are
induced by majority margins.

3. The model

Let U be an infinite universal set of actions and denote by F(U) the set of all finite and
nonempty subsets of U . For A�B ∈ F(U), M ∈ QA×B is a (two-player zero-sum) game
with action sets A and B for the row and the column player, respectively. A (mixed)
strategy for a player with action set A ∈ F(U) is a probability distribution over A and
thus an element of �(A) = {p ∈ QA

≥0 : ∑
a∈Apa = 1}.3 With slight abuse of notation, we

sometimes identify actions with the degenerate strategy that puts all probability on the
respective action.

A solution concept f is a function that maps a game M ∈ QA×B with actions sets
A�B ∈ F(U) to a set of optimal strategies f (M) ⊆ �(A) for the row player. Note that
f (−Mt) is the set of optimal strategies for the column player in the game M . A widely
accepted solution concept for zero-sum games is the function that returns the set of
maximin strategies, i.e., strategies that maximize the minimum expected payoff. For-
mally, for all A�B ∈ F(U) and M ∈QA×B,

maximin(M) = arg max
p∈�(A)

min
q∈�(B)

ptMq� (maximin strategies)

A strategy p ∈ �(A) is a maximin strategy for the row player in M if p ∈ maximin(M).
Note that the set of maximin strategies is convex, since it is the set of solutions to a
linear program. The minimax theorem (von Neumann 1928) shows that the minimum
expected payoff of a maximin strategy for the row player is equal to the negative of the
minimum expected payoff of a maximin strategy for the column player. This payoff is
called the value of the game.

In the following discussion, assumptions about the players’ behavior are modeled as
properties of the underlying solution concept.

3Games with rational-valued payoffs admit rational-valued maximin strategies and, consequentially,
also have a rational value. For real-valued payoffs and probabilities, see Remark 4.
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3.1 Consequentialism

The first property we consider, consequentialism, prescribes that the players evaluate
actions solely based on their payoffs and disregard the names of the actions. Hence, if
two actions of the row player are indistinguishable in the sense that against every action
of the column player, they yield exactly the same payoff (we call such actions clones),
then optimality of a strategy is independent of how probability is distributed among
those two actions. Furthermore, optimality of a strategy is independent of the number
of clones of an action for the opponent. Formally, for Â ⊆ A ∈ F(U), B̂ ⊆ B ∈ F(U),

M ∈ QA×B, and M̂ ∈ QÂ×B̂, we say that M̂ is a reduced form of M if there exist surjec-
tive functions α : A → Â and β : B → B̂ such that for all (a�b) ∈ A× B, Mab = M̂α(a)β(b).

Actions in α−1(a) for the same a ∈ Â are called clones in M , since they yield the same
payoff against every action of the column player. A solution concept f satisfies conse-
quentialism if

f (M)=
⋃

p̂∈f (M̂)

{
p ∈ �(A) :

∑
a∈α−1(â)

p(a) = p̂(â) for all â ∈ Â

}
(consequentialism)

whenever M̂ is a reduced form of M through the function α and some arbitrary function
β. So the strategies returned for the game M have to be exactly those that put a total
probability of p̂(â) on the clones of â, where p̂ is some strategy returned for M̂ . In deci-
sion theory, consequentialism corresponds to Chernoff’s (1954) Postulate 6 (cloning of
player’s actions) and Postulate 9 (cloning of nature’s states, which are equivalent to op-
ponent’s actions in our model). The latter is also known as column duplication (Milnor
1954) and deletion of repetitious states (Arrow and Hurwicz 1972, Maskin 1979). In the
context of social choice theory, a related condition called independence of clones was
introduced by Tideman (1987).

Consequentialism implies that permuting rows in the payoff matrix results in the
same permutation within the set of returned strategies and that permuting columns in
the payoff matrix has no effect on the recommended strategies for the row player. For a
formal definition, let �(A) denote the set of all permutations on A for some A ∈ F(U).
For x ∈ QA and π ∈ �(A), xπ is the permutation of entries of x with respect to π, i.e.,
xπ = x ◦ π−1. With this definition, (xπ)π(i) = xi for all i ∈ A. We extend this notation
to sets, so that, for example, f (M)π is the set of strategies obtained by permuting each
strategy in f (M) according to π. Similarly, for A�B ∈ F(U), M ∈ QA×B, π ∈ �(A), and
σ ∈�(B), Mπσ = M ◦(π−1 ×σ−1). A solution concept f satisfies permutation invariance
if, for all A�B ∈ F(U), M ∈QA×B, π ∈ �(A), and σ ∈�(B),

f (Mπσ)= f (M)π� (permutation invariance)

Permutation invariance is a classic condition in decision theory (e.g., Postulate 3 by
Chernoff 1954 or Milnor’s 1954 symmetry) and social choice theory (where it is known
as neutrality). It is clear from the definitions that consequentialism implies permuta-
tion invariance, since Mπσ is a reduced form of M for α = π and β = σ , since Mab =
(Mπσ)π(a)σ(b) for all (a�b) ∈A×B.
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3.2 Consistency

The next property is based on consistent behavior in related games. To this end, we con-
sider two games that are strategically related with respect to some solution concept in
the sense that for each player, the sets of recommended strategies overlap. Now con-
sider a situation where a coin toss decides which of M̂ and M̄ is played. Consistency
prescribes that since there is a strategy that is optimal for the row player in both games
after the resolution of the coin toss, this strategy should also be optimal prior to the coin
toss. The expected payoffs of the latter game are given by the convex combination of M̂
and M̄ with respect to some λ ∈ [0�1], representing the probability of “heads.” So, for-
mally, a solution concept f satisfies consistency if, for all A�B ∈ F(U), λ ∈ [0�1] ∩Q, and
M̂� M̄ ∈ QA×B such that f (M̂)∩ f (M̄) �=∅ and f (−M̂t)∩ f (−M̄t) �= ∅,

f (M̂)∩ f (M̄)⊆ f
(
λM̂ + (1 − λ)M̄

)
� (consistency)

Note that the antecedent of consistency involves both the row and the column player’s
strategies and therefore reflects the perspective of an outside observer. It is possible to
define a stronger notion of consistency by proclaiming that two games are strategically
related whenever f returns the same strategies for the row player but not necessarily for
the column player. However, this notion is too demanding and is violated by maximin
strategies. In fact, it is incompatible with our other axioms (cf. Remark 2). To the best of
our knowledge, consistency has not been considered in decision theory or game theory
before.4  Chernoff’s (1954) Postulate 9 is related in that it also requires that the optimal-
ity of an action in two different games implies its optimality in a third combined game.
However, the combined game is obtained by taking the union of actions rather than con-
vex combinations of payoff matrices. Convex combinations of actions (or states) have
been considered for various decision-theoretic axioms (see, e.g., Chernoff 1954, Milnor
1954, Gilboa and Schmeidler 2003). Consistency is related to Shapley’s (1953) additivity
axiom (which he calls law of aggregation) in the characterization of the Shapley value.
The analogue of consistency for social choice theory is the central property in a number
of important axiomatic characterizations (see, e.g., Smith 1973, Young 1975, Young and
Levenglick 1978, Brandl et al. 2016).

3.3 Rationality

The third condition, rationality, prescribes that a player does not play actions that are
never best responses. It is well known that an action is never a best response if and only
if it is (strictly) dominated. For A�B ∈ F(U) and M ∈ QA×B, an action a ∈ A dominates
another action a′ ∈ A in M if a yields a higher payoff than a′ against every action of the
column player, i.e., Mab > Ma′b for all b ∈ B. In the sequel, dom(M) denotes the set of
dominated rows in M . Clearly, a player who seeks to maximize his payoff should never
play a dominated action, since there is another action that yields higher payoff inde-
pendently of what the opponent does. Hence, any reasonable solution concept should

4Peleg and Tijs (1996) introduced an unrelated consistency condition that concerns games with a varying
number of players and can be used to characterize Nash equilibrium (see also Norde et al. 1996)
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not assign positive probability to dominated actions. We merely require that dominated
actions should not be played with probability 1.5 A solution concept f is called rational
if, for all A�B ∈ F(U) and M ∈QA×B,

f (M) ⊆ �(A \ dom(M))� (rationality)

Note that our notion of rationality does not rely on expected payoffs or any assump-
tions about the other player. It is equivalent to Milnor’s (1954) strong domination and
Maskin’s (1979) Property (5), and weaker than Chernoff’s (1954) Postulate 2.

4. The result

We first show that the solution concept that returns all maximin strategies satisfies all of
the properties defined in the previous section. While we only show that maximin satis-
fies our weak notion of rationality, it is also compatible with the much stronger common
knowledge of rationality assumption (see footnote 7).

Theorem 1. The solution concept maximin satisfies consequentialism, consistency, and
rationality.

Proof. To show that maximin satisfies consequentialism, let Â ⊆ A ∈ F(U), B̂ ⊆ B ∈
F(U), M ∈ QA×B, and M̂ ∈ QÂ×B̂ such that M̂ is a reduced form of M through α and β.
We have to show that

maximin(M) =
⋃

p̂∈maximin(M̂)

{
p ∈ �(A) :

∑
a∈α−1(â)

p(a) = p̂(â) for all â ∈ Â

}
�

First observe that the number of clones of an action for the column player does not in-
fluence the set of maximin strategies for the row player. Hence, we may assume without
loss of generality that B̂ = B and β is the identity function. For p ∈ maximin(M), let
p̂ ∈ �(Â) such that p̂(â) = ∑

a∈α−1(â) p(a) for all â ∈ Â. Since, for every â ∈ Â, all ac-

tions in α−1(â) are clones, it follows that p̂tM̂ = ptM , which shows that p̂ is a maximin
strategy and proves the inclusion from left to right.

For the other inclusion, let p ∈ ⋃
p̂∈maximin(M̂){p ∈ �(A) : ∑

a∈α−1(â) p(a) =
p̂(â) for all â ∈ Â}. Then there is p̂ ∈ maximin(M̂) such that, for all â ∈ Â,∑

a∈α−1(â) p(a) = p̂(â). As before, we have that ptM = p̂tM̂ , which shows that p ∈
maximin(M).

To show that maximin satisfies consistency, let A�B ∈ F(U) and M̂� M̄ ∈ QA×B be
such that

p ∈ maximin(M̂)∩ maximin(M̄)

q ∈ maximin
(−M̂t

) ∩ maximin
(−M̄t

)
�

5In fact, the notion of rationality used in the proof of Theorem 2 is even weaker because we only need
rationality in 2 × 2 games.
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Let λ ∈ [0�1] ∩Q and M = λM̂ + (1 − λ)M̄ . For the values v̂� v̄ ∈ Q of M̂ and M̄ , it follows
that ptM̂q ≥ v̂ and ptM̄q ≥ v̄. Hence, ptMq ≥ λv̂ + (1 − λ)v̄. For q, we have that ptM̂q ≤
v̂, and ptM̄q ≤ v̄. Hence, ptMq ≤ λv̂ + (1 − λ)v̄. This implies that λv̂ + (1 − λ)v̄ is the
value of M . Thus, p ∈ maximin(M).

To see that maximin satisfies rationality, let A�B ∈ F(U), M ∈ QA×B, and q ∈ �(B).
Assume for contradiction that a ∈ maximin(M) for some a ∈ dom(M) and let a be dom-
inated by some action â. Clearly, âtMq > atMq, which contradicts the assumption that
a ∈ maximin(M).

4.1 Characterization of maximin strategies

Our main theorem shows that every solution concept that satisfies consequentialism,
consistency, and rationality has to return maximin strategies. Together with Theorem 1,
this implies that maximin is the coarsest solution concept that satisfies these properties.

The key insight to prove this statement is that, while consequentialism seems very
innocuous on its own, it becomes quite powerful when used in conjunction with consis-
tency. In particular, taking the convex combination of game matrices that are permuta-
tions of each other can be used to generate games with cloned actions, which eventually
rules out solution concepts other than maximin (see Remark 1 for examples).

The high-level structure of the proof is as follows. If one of the players does not play
a maximin strategy, their strategies p and q do not constitute a Nash equilibrium and
one of the players, say the row player, does not best respond to his opponent’s strategy.
By linearity of the payoff function, the row player has a pure best response, say â, against
q, which, by consequentialism, may be assumed to be outside the support of p. We con-
struct a game in which the row player has only two actions and does not best respond.
To this end, we introduce a number of clones for each action in the support of p propor-
tional to the probability assigned to it. Since then, by consequentialism, the row player
plays the uniform strategy over all those clones (among other strategies), permutation
invariance implies that he also plays the uniform strategy in all games that result from
permuting these actions, while the column player invariably plays q. Taking the uniform
convex combination of all these permuted games yields a game in which all clones of ac-
tions in the support of p are clones of each other. Moreover, consistency implies that the
row player plays the uniform strategy over these clones. An application of consequen-
tialism then yields a game where the row player plays a pure strategy, say a1, which is
not a best response.

In the remainder of the proof, we modify this game further to obtain a 2 × 2 game in
which the row player plays a dominated action. We start by cloning â (which is still a best
response) a number of times. By consequentialism, this does not change either player’s
strategy. Then we apply a similar procedure to the actions outside the support of the row
player’s strategy as we did before to those inside the support, i.e., we take the uniform
convex combination of all games resulting from permuting these actions, which yields
a game in which they are all clones of each other and consequentialism allows us to
contract them into one action, say a2. In the resulting game, the row player plays the
pure strategy a1, the column player plays q, and, by cloning â sufficiently many times,
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a2 is a best response while a1 is not. By a number of similar steps, we can construct a
game such that the column player also has only two actions, say b1 and b2 (where b1

corresponds to actions in the support of q and b2 corresponds to actions outside the
support of q), and plays b1 with probability 1.

In this game, a2 yields a higher payoff against b1 than a1, since a2 is a best response
against b1 while a1 is not. However, a2 may not dominate a1 because of their payoffs
against b2. To address this, we introduce a number of clones of b1 and, by consequen-
tialism, may assume that the strategies remain unchanged. Then when taking the uni-
form convex combination of all games resulting from permuting b2 and all clones of b1

(except for b1 itself), we obtain a game in which, by consistency, the row player plays a1

but a2 dominates a1 (provided we cloned b1 sufficiently many times). This contradicts
rationality and concludes the proof.

Theorem 2. If a solution concept f satisfies consequentialism, consistency, and rational-
ity, then f ⊆ maximin.

Proof. For A�A′ ∈ F(U) with A′ ⊆ A, let uniA(A′) denote the strategy in �(A) that
randomizes uniformly over A′.

Now, assume, to the contrary, that f � maximin, i.e., there are A�B ∈ F(U) and
M ∈ QA×B such that f (M) � maximin(M). Let v ∈ Q be the value of M , let p ∈ f (M) \
maximin(M), and let q ∈ f (−Mt). If ptMq < v, there is a ∈ A such that atMq > ptMq.
If ptMq ≥ v, there is b ∈ B such that ptMb < ptMq. In any case, (p�q) is not a Nash
equilibrium of M . By symmetry of the roles of the row player and the column player,
we may assume without loss of generality that the former case obtains, i.e., that the row
player does not play a best response to the column player’s strategy. Let â ∈ A be a best
response to q, so that for all a ∈ A, âtMq ≥ atMq, with a strict inequality for at least one
a ∈ supp(p).

First we show that we may assume without loss of generality that â /∈ supp(p) and
supp(q)� B. If â ∈ supp(p), let â′ ∈ U \A and M ′ ∈ Q(A∪{â′})×B such that M is a reduced
form of M ′ with α(â) = α(â′) = â, α(a) = a for all a ∈ A \ {â}, and β equal to the identity
function. Consequentialism implies that {p′ ∈ �(A) : ∑

a∈α−1(â) p
′(a) = p(â) for all â ∈

Â} ⊆ f (M ′). In particular, p′′ ∈ f (M ′), where p′′(a) = p(a) for all a ∈ A (and, hence,
p′′(â′) = 0). Note that p′′ /∈ maximin(M ′), since maximin satisfies consequentialism by
Theorem 1. Then â′ /∈ supp(p′′) and, for all a ∈ A ∪ {â′}, (â′)tM ′q ≥ atM ′q, with a strict
inequality for at least one a ∈ supp(p′′). The argument for showing that we may assume
supp(q) � B is analogous and is therefore omitted. So from now on, we assume that
â /∈ supp(p) and supp(q)� B.

The next step is to construct a game M̄ , where the row player only has two dif-
ferent types of actions and puts all probability on actions that are not best responses
to the strategy of the column player. Let δ ∈ Q be the greatest common divisor of
{pa : a ∈ A}, which exists, since f is assumed to map to �(A) ⊆ QA.6 For all a ∈ A \ {â},

6The greatest common divisor of a set of rational numbers {x1� � � � � xk} is defined as max{δ ∈ Q : xi
δ ∈

N for all i ∈ {1� � � � �k}}.
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let ma = max{1� pa
δ } and Aa ∈ F(U) such that |Aa| = ma, Aa∩A= {a}, and all Aa are pair-

wise disjoint. Let ε1 = âtMq − ptMq and ε2 = ptMq − vmin, where vmin = mina∈A atMq.
Observe that ε1 > 0 by the choice of â. Now let k = |A \ (supp(p) ∪ {â})| and Aâ ∈ F(U)

such that |Aâ|> kε2
ε1

, Aâ ∩A= {â}, and Aâ ∩Aa =∅ for all a ∈A \ {â}. Let Â = ⋃
a∈AAa

and M̂ ∈ QÂ×B such that M is a reduced form of M̂ with α such that α−1(a) = Aa for
all a ∈ A and β equal to the identity function. By application of consequentialism
to M̂ and M with α and β as above, it follows that uni

Â
(Ā) ∈ f (M̂) and q ∈ f (−M̂t),

where Ā = ⋃
a∈supp(p) Aa. Let �̄ ⊆ �(Â) be the set of permutations π ∈ �(Â) such

that π(Ā) = Ā (and, thus, π(Â \ Ā) = Â \ Ā). Note that Â \ Ā is nonempty, since
â /∈ supp(p) by assumption. Since f satisfies permutation invariance, it follows that
uni

Â
(Ā) ∈ f (M̂π�id) and q ∈ f (−(M̂π�id)

t) for all π ∈ �̄. Let M̄ = 1
|�̄|

∑
π∈�̄ M̂π�id. Con-

sistency implies that uni
Â
(Ā) ∈ f (M̄) and q ∈ f (−M̄t). Observe that Ā and Â \ Ā are

sets of clones in M̄ . The following calculation shows that the number of clones of â in M̂

was chosen large enough such that when the column player plays q in M̄ , the expected
payoff of actions in Â \ Ā is larger than that of actions in Ā. By construction of M̄ , we
have that, for all a ∈ Ā and a′ ∈ Â \ Ā,

(
a′)tM̄q− atM̄q ≥ 1

|Aâ| + k

(|Aâ|
(
âtMq−ptMq

) − k
(
ptMq− vmin

))

>
1

|Aâ| + k

(
k
(
ptMq− vmin

)
âtMq−ptMq

(
âtMq−ptMq

) − k
(
ptMq− vmin

))

= 0� (1)

where the first inequality follows from the definition of M̄ , the second inequality follows
from the definition of Aâ, and the last equality follows from basic algebra.

Now we apply a construction similar to M̄ to construct a game M̃ in which the col-
umn player also has only two different types of actions. Let τ ∈ Q be the greatest com-
mon divisor of {qb : b ∈ B}. For all b ∈ B, let mb = max{1� qb

τ } and Bb ∈ F(U) such that

|Bb| = mb, Bb ∩B = {b}, and all Bb are pairwise disjoint. Let B̂ = ⋃
b∈B Bb and M̊ ∈ QÂ×B̂

such that M̄ is a reduced form of M̊ for α equal to the identity function and β such
that β−1(b) = Bb for all b ∈ B. By two applications of consequentialism (once to M̊ and
M̄ and once to −M̊t and −M̄t ), it follows that uni

Â
(Ā) ∈ f (M̊) and uniB̂(B̄) ∈ f (−M̊t),

where B̄ = ⋃
b∈supp(q) Bb. Let �̄ ⊆ �(B̂) be the set of permutations σ ∈ �(B̂) such that

σ(B̄) = B̄. Since f satisfies permutation invariance, it follows that uni
Â
(Ā) ∈ f (M̊id�σ)

and uniB̂(B̄) ∈ f (−(M̊id�σ)
t) for all σ ∈ �̄. Let M̃ = 1

|�̄|
∑

σ∈�̄ M̊id�σ . Consistency implies

that uni
Â
(Ā) ∈ f (M̃) and uniB̂(B̄) ∈ f (−M̃t). Observe that Ā and Â\Ā are sets of clones

in M̃ and B̄ and B̂ \ B̄ are sets of clones in −M̃t , and that B̂ \ B̄ �= ∅ since supp(q)� B by
assumption. So both players have exactly two different types of actions in M̃ . We use
this fact to construct a game M2 in which both players have only two actions, one of
which they play with probability 1, and the row player does not play a best response to
the strategy of the column player. To this end, let a1 ∈ Ā, a2 ∈ Â \ Ā, b1 ∈ B̄, b2 ∈ B̂ \ B̄,
and M2 ∈ Q{a1�a2}×{b1�b2} such that M2 is a reduced form of M̃ for α and β such that



Theoretical Economics 14 (2019) Justifying optimal play via consistency 1195

α−1(a1) = Ā, α−1(a2) = Â \ Ā, β−1(b1) = B̄, and β−1(b2) = B̂ \ B̄. Consequentialism
implies that a1 ∈ f (M2) and b1 ∈ f (−(M2)t). Moreover, at2M

2b1 > at1M
2b1 by (1).

The last step is to use M2 to construct a game M̃2 in which both players have
two actions and the row player plays a dominated action with probability 1. To this
end, let κ1 = at2M

2b1 − at1M
2b1 and κ2 = at1Mb2 − at2Mb2. Observe that κ1 > 0 by

(1). Let Bb1 ∈ F(U) such that |Bb1 | > κ2
κ1

+ 1 and Bb1 ∩ {b1� b2} = {b1}. Moreover, let

B̄2 = Bb1 ∪ {b2} and M̂2 ∈ Q{a1�a2}×B̄2
such that M2 is a reduced form of M̂2 for α equal

to the identity function and β such that β−1(b1) = Bb1 . Consequentialism implies that
a1 ∈ f (M̂2) and b1 ∈ f (−(M̂2)t). Now let �̄2 = {σ ∈ �(B̄2) : σ(b1) = b1}. It follows from
permutation invariance that, for all σ ∈ �̄2, a1 ∈ f (M̂2

id�σ) and b1 ∈ f (−(M̂2
id�σ)

t). Let

M̄2 = 1
|�̄2|

∑
σ∈�̄2 M̂

2
id�σ . Consistency implies that a1 ∈ f (M̄2) and b1 ∈ f (−(M̄2)t). Ob-

serve that all actions in B̄2 \ {b1} are clones in −(M̄2)t and that, for all b ∈ B̄2 \ {b1},

at2M̄
2b− at1M̄

2b = 1
|Bb1 |

((|Bb1 | − 1
)(
at2M

2b1 − at1M
2b1

) + at2M
2b2 − at1M

2b2
)

>
1

|Bb1 |
(
at1M

2b2 − at2M
2b2

at2M
2b1 − at1M

2b1

(
at2M

2b1 − at1M
2b1

) + at2M
2b2 − at1M

2b2

)

= 0�

where the equality follows from the definition of M̄2, the inequality follows from the
cardinality lower bound on Bb1 , and the last equality follows from basic algebra. Re-
call that, by definition of M̄2, at2M̄

2b1 > at1M̄
2b1. Hence, a2 dominates a1 in M̄2. Last,

let M̃2 ∈ Q{a1�a2}×{b1�b2} such that M̃2 is a reduced form of M̂2 for α equal to the identity
function and β such that β−1(b2)= B̄2 \ {b1}. Consequentialism implies that a1 ∈ f (M̃2)

and b1 ∈ f (−(M̃2)t). However, by construction of M̃2, a2 dominates a1 in M̃2. This con-
tradicts the rationality of the row player.

4.2 Illustrative example

To illustrate the proof construction, consider a variant of rock–paper–scissors (or
roshambo), in which each of the traditional three actions is available as a “positive”
or “negative” version. The relationship between the positive actions is cyclical as usual
whereas that between the negative actions is reversed. Every positive action is beaten by
its negative, but beats the other two negative actions. The corresponding payoff matrix
M is depicted in Figure 1(a). The unique maximin strategy of this game puts probability
1
3 on each positive action. None of the actions is dominated and therefore playing any of
the negative actions is rational even in the presence of common knowledge of rational-
ity.7 For example, the row player could justifiably play r̄ if he believes that his opponent
plays r.

7In general, common knowledge of rationality in two-player games is equivalent to the condition that
players assign positive probability only to actions that survive the iterated elimination of dominated actions
(Pearce 1984, Bernheim 1984).
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Figure 1. Payoff matrices for the variant of rock–paper–scissors and the corresponding games
constructed in the proof of Theorem 2 under the (incorrect) assumption that players random-
ize uniformly between the first and the fourth action. Probabilities of the player’s strategies are
denoted as row and column headers (zeros omitted).

Theorem 2 shows that rationality suffices to single out the maximin strategy if both
players are consequentialists and act consistently. Assume, to the contrary, that both
players, instead of playing the maximin strategy, for example, play p and q, which ran-
domize uniformly over each player’s first and fourth actions, respectively. Consequen-
tialism implies that both players still do so if there were four clones of the second row.
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The resulting game M̂ is depicted in Figure 1(b). Since consequentialism implies permu-
tation invariance, the players would still play p and q if the rows corresponding to these
two actions were permuted or the remaining rows were permuted. By consistency, they
would still play the same strategy if one of the permutations of M̂ was chosen uniformly
at random. The game M̄ resulting from having to choose a strategy before knowing the
outcome of this randomization is depicted in Figure 1(c). Similarly, the players would
still play p and q if the columns of M̄ were permuted likewise and one of those games
was chosen uniformly at random.

In the resulting game M̃ (see Figure 1(d)), both players only have two different types
of actions: the actions within the support of p and q, respectively, and the remaining ac-
tions. Moreover, since the second row was cloned sufficiently often in M̂ , the actions in
the support of p yield less expected payoff against q than the remaining actions. By con-
sequentialism, the game M̃ can be reduced to the game M2 shown in Figure 1(e), where
both players have only two actions, the first of which is played with probability 1. Ob-
serve that the first row is not a best response to the first column in M2. Yet, the first row
is not dominated by the second row. Now consider the game M̂2 depicted in Figure 1(f)
with two clones of the first column. Consequentialism implies that both players can still
play their first actions in M̂2. Again by consequentialism, they would still do so if a coin
was tossed to decide if M̂2 was played or the game that results from it by permuting the
last two columns. The game M̄2 resulting from having to choose a strategy before the
coin toss is depicted in Figure 1(g). Consistency implies that both players would play
their first action in M̄2. By construction of M̄2, the last two columns are clones in M̄2.
Hence, a final application of consequentialism implies that the row player would play
the first row in the game M̃2 depicted in Figure 1(h). However, the first row is dominated
by the second row in M̃2, which contradicts the rationality of the row player.

4.3 Extension to non-zero-sum games

When applied to two-player normal-form (henceforth bimatrix) games, our axioms im-
ply that every strategy profile composed of one recommended strategy for each player
constitutes a Nash equilibrium. Since Nash equilibria are in general not interchange-
able, we cannot characterize the solution concept that returns all Nash equilibria of
a given game. However, we can characterize solution concepts that map to an inter-
changeable subset of Nash equilibria. Such subsets always exist because any set that
consists of only one equilibrium is interchangeable. This effectively shifts the burden of
solving the equilibrium selection problem to the solution concept (for instance, based
on Schelling’s focal points).

An alternative interpretation of this result is obtained when restricting the set of
considered bimatrix games to the set of games in which equilibria are interchangeable.
Nash (1951) referred to these games as solvable bimatrix games. The most natural sub-
class within this class is formed by zero-sum games, but it also contains Moulin and
Vial’s (1978) strategically zero-sum games and all games that admit a unique equilib-
rium. Within the class of solvable games, Nash equilibrium satisfies consistency.

Interestingly, there are bimatrix games that admit a unique Nash equilibrium whose
strategies do not coincide with maximin strategies (Aumann and Maschler 1972). In
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these games, our axioms characterize equilibrium rather than maximin play. This is be-
cause solution concepts, as we define them, give recommendations based on the same
assumptions for both players. Recommending maximin strategies to both players in
these games seems intuitively inconsistent (and, in fact, it does violate our formal con-
sistency axiom).8

Yet another way to extend our result to bimatrix games is obtained by changing the
model such that solution concepts return strategy profiles rather than strategies for just
one player. In this model, consistency requires that the intersection of strategy profiles
chosen by f in two games has to be a subset of strategy profiles chosen by f in any
convex combination of these two games. It can then be concluded that all returned
strategy profiles for a given bimatrix game are Nash equilibria. However, in this model,
strategic advice given to one player is not independent of the advice given to the other
player.

Extensions to games with more than two players require the admissibility of real-
valued probabilities (see Remark 4) because these games may not have equilibria with
rational probabilities even if all payoffs are rational-valued.

5. Concluding comments

We conclude this paper with a number of remarks.

Remark 1 (Independence of axioms). All properties in Theorem 2 are required to de-
rive the conclusion. The trivial solution concept that always returns all strategies vio-
lates rationality but satisfies consistency and consequentialism. The solution concept
maximax that returns all randomizations over rows that contain a maximal entry of the
game matrix violates consistency but satisfies the remaining properties. To see this, con-
sider the following games where the row player can play either top or bottom (A= {t� b})
and the column player can play either left, middle, or right (B = {l�m� r}):

M̂ =
(

5 1 0
4 4 0

)
M̄ =

(
1 5 0
4 4 0

)
M = 1

2
M̂ + 1

2
M̄ =

(
3 3 0
4 4 0

)
�

Then maximax(M̂) = maximax(M̄) = {t} and maximax(−M̂t) = maximax(−M̄t) = {r},
and consistency would imply that maximax(M)= {t}. However, maximax(M) = {b}.

The solution concept average that returns all randomizations over rows with the
highest average payoffs (i.e., it best responds to a uniform strategy by the opponent)
violates consequentialism but satisfies the remaining properties. Violations of conse-
quentialism arise from deleting cloned columns as in the example (again, A = {t� b})
and B = {l�m� r}).

M =
(

0 2 2
3 0 0

)
M̂ =

(
0 2
3 0

)
�

8In Aumann and Maschler’s (1972) introductory example, maximin strategies violate consistency be-
cause taking the uniform convex combination of the original game and the game in which both rows are
permuted yields a game in which the column player’s maximin strategy of the original game is dominated.
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Clearly, average(M) = {t} but average(M̂) = {b}, whereas consequentialism implies that
the same strategy must be played in both games.

Remark 2 (Strong consistency). The solution concept maximin violates the stronger
notion of consistency where it is only required that f (M̂)∩f (M̄) �= ∅, but not necessarily
that f (−M̂t)∩f (−M̄t) �=∅. Consider the games M̂ and M̄ in QA×B. where the row player
can play either top or bottom (A = {t� b}) and the column player can play either left or
right (B = {l� r}).

M̂ =
(

0 4
2 0

)
M̄ =

(
4 0
0 2

)
M = 1

2
M̂ + 1

2
M̄ =

(
2 2
1 1

)
�

The unique maximin strategy in M̂ and M̄ is 1
3 t + 2

3b. But in the game M , which results

from randomizing uniformly over M̂ and M̄ , the unique maximin strategy is to play t

with probability 1. In particular, 1
3 t + 2

3b is not a maximin strategy in M . Notice that the

maximin strategies in −M̂t and −M̄t are different.
As a consequence, Theorem 2 turns into an impossibility theorem when replacing

consistency with strong consistency.

Remark 3 (Symmetric games). For symmetric games, the strong notion of consistency
discussed in Remark 2 is equivalent to consistency and is, hence, satisfied by maximin.
Theorem 2 remains valid within the domain of symmetric games. This requires modify-
ing the proof such that all constructed games are symmetric.9 More precisely, M̂ has to
be defined such that Aa is a set of clones for the row player and for the column player
for all a ∈A. The game M̄ can be defined by summing over all M̂ππ , where π ranges over
the same set of permutations as in the original proof. The step of constructing the game
M̃ is not necessary. Instead, the game M2 can be obtained directly from M̄ by applying
consequentialism. It follows directly from symmetry of M2 that a2 dominates a1, which
makes the remainder of the proof disposable.

Remark 4 (Real-valued probabilities). The proof of Theorem 2 relies on the fact that
probabilities are rational-valued. The proof can, however, be extended to real-valued
probabilities when assuming that f is upper hemi-continuous. This is achieved by in-
troducing one additional clone for every action a in supp(p) and b in supp(q) when con-
structing the games M̂ and M̊ . The probabilities assigned to these additional actions
is chosen such that the probabilities on the remaining clones of a and b are rational.
Since the rationals are dense in the reals, the probabilities of the additional clones can
be made arbitrarily small. This yields a convergent sequence of games M2�k such that
the probabilities on the additional clones go to 0. Using upper hemi-continuity of f ,
we obtain a game M2 in which both players play a degenerate strategy. The remaining
adjustments are technicalities.

9For the illustrative example in Section 4.2, the standard proof is used even though the game is symmet-
ric.



1200 Brandl and Brandt Theoretical Economics 14 (2019)

References

Arrow, Kenneth J. and Leonid Hurwicz (1972), “An optimality criterion of decision-
making under ignorance.” In Uncertainty and Expectations in Economics (C. F. Carter
and J. L. Ford, eds.). Basil Blackwell. [1189]

Aumann, Robert J. and Adam Brandenburger (1995), “Epistemic conditions for Nash
equilibrium.” Econometrica, 63, 1161–1180. [1187]

Aumann, Robert J. and Jacques H. Drèze (2008), “Rational expections in games.” Ameri-
can Economic Review, 98, 72–86. [1187]

Aumann, Robert J. and Michael Maschler (1972), “Some thoughts on the minimax prin-
ciple.” Management Science, 18, 54–63. [1197, 1198]

Bacharach, Michael (1987), “Zero-sum games.” In The New Palgrave: A Dictionary of
Economics, volume 2 (J. Eatwell, M. Milgate, and P. Newman, eds.). MacMillan. [1186]

Bernheim, B. Douglas (1984), “Rationalizable strategic behavior.” Econometrica, 52,
1007–1028. [1195]

Brandl, Florian, Felix Brandt, and Hans Georg Seedig (2016), “Consistent probabilistic
social choice.” Econometrica, 84, 1839–1880. [1188, 1190]

Chen, Xi, Xiaotie Deng, and Shang-Hua Teng (2009), “Settling the complexity of com-
puting two-player Nash equilibria.” Journal of the ACM, 56, 14. [1186]

Chernoff, Herman (1954), “Rational selection of decision functions.” Econometrica, 22,
422–443. [1189, 1190, 1191]

Daskalakis, Constantinos, Paul Goldberg, and Christos H. Papadimitriou (2009), “The
complexity of computing a Nash equilibrium.” SIAM Journal on Computing, 39, 195–
259. [1186]

Gilboa, Itzhak and David Schmeidler (2003), “A derivation of expected utility maximiza-
tion in the context of a game.” Games and Economic Behavior, 44, 172–182. [1190]

Hart, Sergiu, Salvatore Modica, and David Schmeidler (1994), “A Neo2 Bayesian foun-
dation of the maxmin value for two-person zero-sum games.” International Journal of
Game Theory, 23, 347–358. [1187]

Maskin, Eric (1979), “Decision-making under ignorance with implications for social
choice.” Theory and Decision, 11, 319–337. [1189, 1191]

Milnor, John (1954), “Games against nature.” In Decision Processes, 49–59, Wiley. [1189,
1190, 1191]

Moulin, Hervé and Jean-Philippe Vial (1978), “Strategically zero-sum games: The class
of games whose completely mixed equilibria cannot be improved upon.” International
Journal of Game Theory, 7, 201–221. [1197]

Nash, John F. (1950), “Equilibrium points in n-person games.” Proceedings of the Na-
tional Academy of Sciences (PNAS), 36, 48–49. [1185]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/ArHu72a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/AuBr95a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/AuDr08a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/AuMa72a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/Bern84a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/Bran13a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/CDT09a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/Cher54a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/DGP09a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/GiSc03a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/HMS94a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/Mask79a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/MoVi78a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/Nash50a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/ArHu72a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/ArHu72a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/AuBr95a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/AuDr08a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/AuMa72a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/Bern84a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/Bran13a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/CDT09a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/Cher54a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/DGP09a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/DGP09a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/GiSc03a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/HMS94a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/HMS94a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/Mask79a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/MoVi78a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/MoVi78a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/Nash50a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K


Theoretical Economics 14 (2019) Justifying optimal play via consistency 1201

Nash, John F. (1951), “Non-cooperative games.” Annals of Mathematics, 54, 286–295.
[1197]

Norde, Henk, Jos Potters, Hans Reijnierse, and Dries Vermeulen (1996), “Equilibrium
selection and consistency.” Games and Economic Behavior, 12, 219–225. [1190]

Norde, Henk and Mark Voorneveld (2004), “Characterizations of the value of matrix
games.” Mathematical Social Sciences, 48, 193–206. [1187]

Pearce, David G. (1984), “Rationalizable strategic behavior and the problem of perfec-
tion.” Econometrica, 52, 1029–1050. [1195]

Peleg, Bezalel and Stef H. Tijs (1996), “The consistency principle for games in strategic
form.” International Journal of Game Theory, 25, 13–34. [1190]

Shapley, Lloyd S. (1953), “A value for n-person games.” Annals of Math Studies, 28, 307–
317. [1190]

Smith, John H. (1973), “Aggregation of preferences with variable electorate.” Economet-
rica, 41, 1027–1041. [1190]

Tideman, T. Nicolaus (1987), “Independence of clones as a criterion for voting rules.”
Social Choice and Welfare, 4, 185–206. [1189]

Tijs, Stef H. (1981), “A characterization of the value of zero-sum two-person games.”
Naval Research Logistics Quarterly, 28, 153–156. [1187]

Vilkas, Èduardas I. (1963), “Axiomatic definition of the value of a matrix game.” Theory
of Probability and Its Applications, 8, 304–307. [1187]

von Neumann, John (1928), “Zur Theorie der Gesellschaftspiele.” Mathematische An-
nalen, 100, 295–320. [1185, 1188]

von Neumann, John and Maurice Fréchet (1953), “Communication on the Borel notes.”
Econometrica, 21, 124–127. [1185]

Young, H. Peyton (1975), “Social choice scoring functions.” SIAM Journal on Applied
Mathematics, 28, 824–838. [1190]

Young, H. Peyton and Arthur Levenglick (1978), “A consistent extension of Condorcet’s
election principle.” SIAM Journal on Applied Mathematics, 35, 285–300. [1190]

Co-editor Ran Spiegler handled this manuscript.

Manuscript received 4 September, 2018; final version accepted 16 February, 2019; available on-
line 25 February, 2019.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/Nash51a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/NPRV96a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/NoVo04a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/Pear84a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/PeTi96a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/Shap53c&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/Smit73a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Tide87a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/Tijs81a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/Vilk63a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/vNeu28a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/vNFr53a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/Youn75a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/YoLe78a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/NPRV96a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/NoVo04a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/Pear84a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/PeTi96a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/Shap53c&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/Smit73a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Tide87a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/Tijs81a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/Vilk63a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/vNeu28a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/vNFr53a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/Youn75a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/YoLe78a&rfe_id=urn:sici%2F1933-6837%28201911%2914%3A4%3C1185%3AJOPVC%3E2.0.CO%3B2-K

	Introduction
	Related work
	The model
	Consequentialism
	Consistency
	Rationality

	The result
	Characterization of maximin strategies
	Illustrative example
	Extension to non-zero-sum games

	Concluding comments
	References

