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This technical appendix provides derivations omitted in the main paper.

Verification for the signal examples

Example 1: A linear distribution Consider a signal X that follows

fHn (x) = 1
2

+ εnx and fL(x) = 1
2
� −1 ≤ x ≤ 1�

where εn = n−ξ/3 and 0 < ξ < 1. In this section, we show that this signal satisfies As-
sumptions 1, 2, and 3.

Clearly, the densities are strictly positive and continuously differentiable. The likeli-
hood ratio satisfies MLRP because

�n(x) = fHn (x)

fL(x)
= 1 + 2εnx

is strictly increasing in x. Moreover, �n(x) → 1 as n → ∞ uniformly in x ∈ [−1�1], satis-
fying Assumption 2. The cumulative distributions are

FH
n (x) =

∫ x

−1

1
2

+ εnz dz = x+ 1
2

+ x2 − 1
2

εn

FL(x) =
∫ x

−1

1
2
dz = x+ 1

2
�

Hence, λn(x) = 1 + (x− 1)εn. This implies λ′′
n(x) = 0, satisfying Assumption 3.
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Finally, we investigate Assumption 1. We note that

lim
x→1

log
(
�n(x)

λn(x)

)
= log

(
fHn (1)

fL(1)

)
= log(1 + 2εn) =O(εn)�

Thus, to show that the signal satisfies Assumption 1, it suffices to show that log(�n(x)/

λn(x)) is decreasing in x ∈ [−1�1]. We have

d

dx
log

(
�n(x)

λn(x)

)
= d

dx

[
log

(
1

FH
n (x)

− 1
)

− log
(

1

FL(x)
− 1

)]

= 1

1 − FL(x)

fL(x)

FL(x)
− 1

1 − FH
n (x)

fHn (x)

FH
n (x)

=
(
1 − FH

n (x)
)
FH
n (x)fL(x)− (

1 − FL(x)
)
FL(x)fHn (x)(

1 − FL(x)
)
FL(x)

(
1 − FH

n (x)
)
FH
n (x)

�

The denominator is positive. We inspect the numerator to find it negative:

(
1 − x+ 1

2
− x2 − 1

2
εn

)(
x+ 1

2
+ x2 − 1

2
εn

)(
1
2

)
−

(
1 − x+ 1

2

)(
x+ 1

2

)(
1
2

+ xεn

)

=
(
1 − x− (

x2 − 1
)
εn

)(
(x+ 1)+ (

x2 − 1
)
εn

) − (1 − x)(x+ 1)(1 + 2xεn)
8

= x+ 1
8

[(
1 − x− (

x2 − 1
)
εn

)(
1 + (x− 1)εn

) − (1 − x)(1 + 2xεn)
]

= (x+ 1)(1 − x)

8
[(

1 + (1 + x)εn
)(

1 + (x− 1)εn
) − (1 + 2xεn)

]

= (x+ 1)(1 − x)

8
[
(1 + x)εn

(
1 + (x− 1)εn

) − (x+ 1)εn
]

= −(x+ 1)2(1 − x)2ε2
n

8
< 0�

Hence, log(�n(x)/λn(x)) is bounded from below by log(1 + 2εn). Thus, Assumption 1 is
satisfied.

Example 2: An exponential signal Consider a signal X that follows an exponential dis-
tribution with

fH(x) = μe−μx

1 − e−μ and fLn (x) = (μ+ εn)e
−(μ+εn)x

1 − e−(μ+εn)
� 0 ≤ x≤ 1�

where εn = δεn
−ξ is a positive sequence, and δε > 0, μ > 2, and ξ ∈ (0�1) are constants.

In this section, we show that this signal satisfies Assumptions 1, 2, and 3.
The signal has the monotone increasing likelihood ratio �n(x) = (μ/(1 − e−μ))((1 −

e−(μ+εn))/(μ + εn))e
εnx. Thus, the signal satisfies all the properties assumed in Sec-

tion 2.2. In particular, f sn is continuously differentiable and strictly positive over com-
mon bounded support X and satisfies MLRP (�′

n(x) > 0) for any x ∈ X . Moreover, �n
converges to 1 uniformly on X and, therefore, satisfies Assumption 2.
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Next we show that the signal satisfies Assumption 1. We have

FH(x) = 1 − e−μx

1 − e−μ � 1 − FH(x) = e−μx − e−μ

1 − e−μ

FL
n (x) = 1 − e−(μ+εn)x

1 − e−(μ+εn)
� 1 − FL

n (x) = e−(μ+εn)x − e−(μ+εn)

1 − e−(μ+εn)
�

�n = (1 − FH)/(1 − FL
n ), and λn = FH/FL

n . Let δn := log(�n/λn). Then

δn(x�εn)= log
(

e−μx − e−μ

e−(μ+εn)x − e−(μ+εn)

1 − e−(μ+εn)x

1 − e−μx

)

= log
(
e(μ+εn)x − 1
eμx − 1

)
− log

(
e(μ+εn)(x−1) − 1

eμ(x−1) − 1

)
�

Note that δn is an analytic function of εn and converges to 0 as εn → 0 for any x ∈ X .

Thus, the first-order Taylor expansion of δn around εn = 0 yields

δn(x�εn) =
(

xeμx

eμx − 1
− (x− 1)eμ(x−1)

eμ(x−1) − 1

)
εn +O

(
ε2
n

)

= (
h(x)− h(x− 1)

)
εn +O

(
ε2
n

)
� (*)

where h(x) := x/(1 − e−μx). We note that h(x) is strictly increasing in x:

h′(x) = 1 − e−μx −μxe−μx

(
1 − e−μx

)2 > 0�

The inequality holds since 1 − e−y − ye−y > 0 for any y �= 0 and also since h′(0) = 1/2 by

l’Hôpital’s rule. Hence, h(x)−h(x−1) is bounded below by a positive number uniformly

on X .

The term O(ε2
n) can be made arbitrarily small (say, a half of the lower bound of

(h(x) − h(x − 1))εn) for large enough n. Therefore, applying εn = δεn
−ξ to (*) above,

we see that there exist constants δ > 0 and n1 such that δn(x) > δn−ξ for any x ∈ X and

for all n > n1. This confirms that the signal satisfies Assumption 1.

Finally, we show that the signal satisfies Assumption 3. Let us write μL := μ+ εn. For

this particular signal, we have

λn(x) = 1 − e−μL

1 − e−μ

1 − e−μx

1 − e−μLx

λ′
n(x) = 1 − e−μL

1 − e−μ

μe−μx
(
1 − e−μLx

) −μLe
−μLx

(
1 − e−μx

)
(
1 − e−μLx

)2 �
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Thus, we have

λ′′
n(x) = 1 − e−μL

1 − e−μ

[
− μ2

eμx − 1
+ μ2

L

eμLx − 1

](
1 − e−μLx

) − 2μLe
−μLx

[
μ

eμx − 1
− μL

eμLx − 1

]
(
1 − e−μLx

)2(1 − e−μx
)−1 �

(**)
Now we have that

d

dμ

(
μ

eμx − 1

)
= eμx − 1 −μxeμx(

eμx − 1
)2

is negative for μx> 0, because y − 1 < y log y for any y > 1. Hence, the term

−2μLe
−μLx

[
μ

eμx − 1
− μL

eμLx − 1

]

in (**) is negative since μL > μ. Also, we have

d

dμ

(
μ2

eμx − 1

)
= 2μeμx

(
1 − e−μx −μx/2

)
(
eμx − 1

)2 �

Note that 1 − e−y − y/2 is strictly negative at y = 2 and decreasing in y for y > 2. Hence,
for any fixed μ > 2, there exists an xc < 1 such that the above derivative is negative for

any x ∈ [xc�1]. Thus, [− μ2

eμx−1 + μ2
L

eμLx−1 ](1 − e−μLx) in (**) is negative in x ∈ [xc�1] for any
n, since μL > μ. Hence, there exists an xc such that, for every n, λ′′

n(x) ≤ 0 holds for any
x ∈ [xc�1]. Thus, we verify that the signal satisfies Assumption 3.

Derivation of λ′
n(xa)= �′

n(xa)/2 and �′
n(xb) = �′

n(xb)/2 for (8) and (9)

Using (8), we obtain

lim
x→xa

λ′
n(x) = fLn (xa) lim

x→xa

�n(x)− λn(x)

FL
n (x)

= fLn (xa)
�′
n(xa)− λ′

n(xa)

fLn (xa)

= �′
n(xa)− λ′

n(xa)�

which implies λ′
n(xa)= �′

n(xa)/2.
Similarly, using (9), we obtain

lim
x→xb

�′
n(x) = fLn (xb) lim

x→xb

�n(x)− �n(x)

1 − FL
n (x)

= fLn (xb)
�′
n(xb)− �′

n(xb)

−fLn (xb)

= −(
�′
n(xb)− �′

n(xb)
)
�

which implies �′
n(xb)= �′

n(xb)/2.
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Supplement to Proof of Lemma 2

In this section, we show that the probability of 
(t)/n in (15) exceeding n−ν0 for some
ν0 > 0 converges to 0 as n → ∞.

From Lemma 1, Kt ≡ 
(t + 1) − 
(1) asymptotically follows a Poisson distribution
with mean t. Combining with inequalities

√
2πe−kkk+0�5 ≤ k! ≤ e1−kkk+0�5 for any inte-

ger k, we obtain

Pr(Kt ≥ k) =
∞∑

Kt=k

tKt e−t/Kt !

=
∞∑
s=0

tk+se−t/(k+ s)!

= tke−t
∞∑
s=0

ts

s!
s!

(k+ s)!

≤ tke−t
∞∑
s=0

ts

s!
e1−sss+0�5

√
2πe−(k+s)(k+ s)k+s+0�5

= tke−t
∞∑
s=0

ts

s!
ek+1

√
2π(k+ s)k

(
s

k+ s

)s+0�5

≤ tke−t
∞∑
s=0

ts

s!
ek+1

√
2πkk

= e√
2π

(
te

k

)k

�

Now we consider a region t ∈ [0�T ] and let k = n1−ν0 for some ν0 ∈ (0�1). The upper

bound of Pr(KT ≥ k) becomes (e/
√

2π)(nν0−1Te)n
1−ν0 , which converges to 0 from above

as n → ∞. Also note that 
(t) is nondecreasing in t. Thus, the probability of events in
which 
(t) exceeds k= n1−ν0 declines to 0 as n→ ∞.

Derivation of (13)

This section derives the asymptotic expression (13) from (12) by applying Stirling’s for-
mula m! ∼ √

2πm(m/e)m as m→ ∞.
Substituting Stirling’s formula into (12), we obtain

bo

m

e−φm(φm)m−bo

(m− bo)! ∼ bo

m

e−φm+m−bo(φm)m−bo√
2π(m− bo)(m− bo)

m−bo

= bo

m
√

2π(m− bo)
e−φm+m−bo+(m−bo) logφ

(
1 − bo

m

)−m+bo
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∼ bo(φe)
−bo

m
√

2π(m− bo)
e−(φ−1−logφ)mebo

∼ boφ
−bo

√
2π

e−(φ−1−logφ)m

m1�5 �
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