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I. Exact and numerical calculation in Mathematica

In this section, we describe the built-in Mathematica functions we use to prove exact
(analytical) results and to obtain numerical evaluations of exact expressions.

I.1 Algebraic numbers and solutions to polynomial equations

To obtain our analytical results, we take advantage of Mathematica’s ability to perform
exact computations using algebraic numbers. As described in Strzeboński (1996, 1997),
Mathematica represents algebraic numbers using Root objects, with Root[poly, k]
designating one of the roots of the minimal polynomial poly. The index k is used to
single out a particular root of poly, with the lowest indices referring to the real roots of
poly in increasing order, and the higher indices referring to the complex roots in a more
complicated way. Root objects also contain a hidden third element that specifies an
isolating set for the root, meaning a set that contains the root of poly in question and no
others.

The forms of isolating sets depend on whether roots are isolated using arbitrary-
precision floating point methods or exact methods. If Mathematica’s default settings are
used, then roots are isolated using arbitrary-precision floating point methods based on
the Jenkins–Traub algorithm (Jenkins (1969), Jenkins and Traub (1970a,b)), which is the
workhorse numerical algorithm for this purpose. While in theory this algorithm always
isolates all real and complex roots of poly in disjoint disks in the complex plane, flawless
implementation of the algorithm is difficult; see Strzeboński (1997, p. 649).

If we instead use the setting

SetOptions[Root,ExactRootIsolation->True]�
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then Mathematica isolates roots using exact methods—that is, methods that use only
rational number calculations. Real roots of polynomials are isolated in disjoint inter-
vals using the Vincent–Akritas–Strzeboński method, which is based on Descartes’ rule
of signs and a classic theorem of Vincent; see Akritas et al. (1994) and Akritas (2010).
Complex roots are isolated in rectangles using the Collins and Krandick (1992) method.

Exact roots of univariate polynomials (and much else) can be computed using the
Mathematica function Reduce. When computing the exact rest points of BEP dynamics,
we apply Reduce to the output of the function GroebnerBasis, which is described
next.

I.2 Algorithms from computational algebra

The Mathematica function GroebnerBasis is an implementation of a proprietary vari-
ation of the algorithm of Buchberger (1965, 1970).1 Choosing the option Method ->

Buchberger causes Mathematica to use the original Buchberger algorithm, which runs
considerably more slowly than the default algorithm; however, there was only one case
in which the default algorithm produced a Gröbner basis and the Buchberger algorithm
failed to terminate.

The Mathematica function CylindricalDecomposition implements the Collins
(1975) cylindrical algebraic decomposition algorithm with various improvements.2 If
this function is run in its default mode, it makes use of arbitrary-precision arithmetic.
To force Mathematica to work with algebraic numbers, one uses the settings

SetOptions[Root,ExactRootIsolation->True]

SetSystemOptions["InequalitySolvingOptions"

->"CADDefaultPrecision"->Infinity]�

Unfortunately, these settings cause CylindricalDecomposition to run extremely
slowly, and in the case of BEP dynamics in centipede, it generates a result only in cases
with two dimensions and, for some specifications of the dynamics, three dimensions.
Even if arbitrary-precision arithmetic is permitted, the function generates a result for all
BEP dynamics in cases with dimension 2 or 3, but not for higher dimensions.

I.3 Numerical evaluation and precision tracking

When Mathematica performs calculations using arbitrary-precision numbers x, it keeps
track of the digits whose correctness it views as guaranteed. The function Preci-

sion[x] reports the number of correct base 10 significant digits of x: for instance, if x =
d0�d1d2d3d4� � � × 10k, the precision is the number of the correct digits in d0�d1d2d3d4� � �

The function Accuracy[x] is the number of correct base 10 digits of x to the right of

1An up-to-date presentation of Gröbner basis algorithms, including many improvements on Buch-
berger’s algorithm, can be found in Cox et al. (2015).

2See reference.wolfram.com/language/tutorial/ComplexPolynomialSystems.html for details.

http://reference.wolfram.com/language/tutorial/ComplexPolynomialSystems.html
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the decimal point. Exact numbers in Mathematica (e.g., integers, rational numbers, and
algebrnumbers) have Precision equal to ∞.

To perform certain parts of our analysis (in particular, checking that an eigen-
value of a derivative matrix has a negative real part), we need to numerically evalu-
ate exact numbers and expressions. We do so using the Mathematica function N. The
function N[expr, n] evaluates expr as an arbitrary-precision number at guaranteed
precision n. When Mathematica performs computations using arbitrary-precision num-
bers, it maintains precision and accuracy guarantees, the values of which can be ac-
cessed using the Precision and Accuracy functions.

While, in principle, Mathematica’s precision tracking should not make mistakes,
there are at least two reasons to exercise caution when using it in proofs. First, Math-
ematica’s precision tracking is not based on interval arithmetic, which represents real
and complex numbers using exact intervals (in R) and rectangles (in C) that contain
the numbers in question, and which relies on theorems that define rules for performing
arithmetic and other mathematical operations on these intervals and rectangles that
maintain containment guarantees (Alefeld and Herzberger (1983), Tucker (2011)). In-
stead, Mathematica’s precision bounds are sometimes obtained using faster methods of
the Jenkins–Traub variety (see Section I.1), which work correctly in theory, but are dif-
ficult to implement perfectly. Second, Mathematica’s precision tracking is a black box:
the specific algorithms it employs are proprietary.

We contend with these issues by restricting our use of Mathematica’s numerical eval-
uation and precision tracking to a few clearly delineated cases: the evaluation of alge-
braic numbers, and the basic arithmetic operations of addition, subtraction, multiplica-
tion, and division. In particular, we do not use Mathematica for precision tracking in the
computation of matrix inverses or the solution of linear systems, operations for which
interval arithmetic does not generally provide clean answers (Alefeld and Herzberger
(1983)). While one could insist that interval arithmetic be used for all non-exact calcu-
lations, we chose not to do so.

II. The BEP_CENTIPEDE.NB notebook

In this section we describe the main functions from the BEP_Centipede.nb note-
book, which contains all of the procedures we use to analyze BEP dynamics. Sec-
tion II.1 describes functions used to prove analytical results, and Section II.2 describes
the functions used in numerical analyses and in approximations with error bounds
(cf. Appendix C). More details about the use of these functions are provided in the
BEP_Centipede.nb notebook itself. Section II.3 explains the algorithms used to com-
pute numerical values of rest points of the dynamics and eigenvalues of their derivative
matrices.

Unless stated otherwise, the functions described below take a test-set rule τ ∈
{τall� τtwo� τadj}, a tie-breaking rule β ∈ {βmin�βstick�βunif}, and a length d of the cen-
tipede game as parameters. All functions besides the last three are for BEP dynamics
with number of trials κ = 1. The BEP_Centipede.nb notebook includes examples of
the use of each of the functions.
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II.1 Exact analysis

The functions for exact analysis of BEP dynamics in centipede are as follows.
ExactRestPoints, which uses GroebnerBasis and Reduce to compute the exact

rest points of the dynamic.
InstabilityOfVertexRestPoint, which conducts an analysis of the local sta-

bility of the vertex rest point ξ†. To do this, the function computes the derivative ma-
trix DV(ξ†) of the dynamic and the eigenvalues and eigenvectors of DV(ξ†), where
V : aff(�) → T� (see Appendix A). Finally, the function reports whether one can con-
clude that ξ† is unstable. The function was not used explicitly in our analysis. Instead,
we used it to determine the form of the derivative matrix, eigenvalues, and eigenvectors
for arbitrary values of d.

LocalStabilityOfInteriorRestPoint, which conducts an analysis of the local
stability of the interior rest point ξ∗. To do this, the function computes a rational approx-
imation ξ of the exact interior rest point ξ∗. The function then evaluates the eigenval-
ues of DV(ξ), evaluates a version of the perturbation bound from Proposition C.1, and
reports whether one can conclude that ξ∗ is asymptotically stable.

GlobalStabilityOfInteriorRestPoint, which conducts an analysis of the
global stability of the interior rest point ξ∗. To do this, the function uses Cylindri-
calDecomposition to determine whether the relevant Lyapunov function (see Sec-
tion 3.3) is a strict Lyapunov function for the interior rest point ξ∗ on domain � \ {ξ†}.

II.2 Numerical analysis

The following functions from the BEP_Centipede.nb are used for numerical analysis
and as subroutines for LocalStabilityOfInteriorRestPoint.

FloatingPointApproximateRestPoint, which computes a floating point ap-
proximation of the stable interior rest point of the BEP dynamic. See Section II.3 for
details.

RationalApproximateRestPoint, which computes a rational approximation of
the stable interior rest point of the BEP dynamic. See Section II.3 for details.

EigenvaluesAtRationalApproximateRestPoint, which computes the exact
eigenvalues of DV(ξ), where ξ is the rational approximation to the interior rest point
obtained from a call to RationalApproximateRestPoint. See Section II.3 for details.

NEigenvaluesAtRationalApproximateRestPoint, which computes the
eigenvalues of DV(ξ̃) using arbitrary-precision arithmetic, where ξ̃ is a 16-digit pre-
cision approximation to the rational point computed using RationalApproximate-

RestPoint. See Section II.3 for details.
NumericalGlobalStabilityOfInteriorRestPointLyapunov Evaluates the

time derivative 	̇(ξ) = ∇	(ξ)′V (ξ) at a floating-point approximation 	 of the appro-
priate candidate Lyapunov function L for the interior rest point ξ∗, reporting instances
in which the time derivative is not negative, should any exist. The (presumably large
number of) states ξ at which to evaluate 	̇(ξ) is chosen by the user.

NumericalGlobalStabilityOfInteriorRestPointNDSolve, which computes
numerical solutions to the BEP dynamic from initial conditions provided by the user,
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and reports whether any of these numerical solutions fails to converge to a neighbor-
hood of the interior rest point ξ∗.

NDSolveMeanDynamics, which uses Mathematica’s NDSolve function to compute
a numerical solution to the BEP dynamic from an initial condition provided by the user.
The solution is computed until the time at which the norm of the law of motion is suf-
ficiently small, where what constitutes sufficiently small can be chosen by the user. The
function also graphs the components of the state as a function of time, and reports the
terminal point and the time at which this point is reached.

FloatingPointApproximateRestPointTestAllMinIfTieManyTrials, which
uses Mathematica’s FindRoot function to compute a floating point approximation of
a rest point of the BEP(τall�κ�βmin) dynamic, where the number of trials κ is specified
by the user. The function returns only one rest point. When there is more than one rest
point, the one that is computed depends strongly on the initial condition given to the
function as an input. This function was used to produce Figures 3 and 4 in the main
paper and to compute the saddle points shown in Table S5 herein.

NDSolveMeanDynamicsTestAllMinIfTieManyTrials, which uses Mathemat-
ica’s NDSolve function to compute a numerical solution of the BEP(τall�κ�βmin) dy-
namic, where the number of trials κ and the initial condition of the solution are speci-
fied by the user. The solution is computed until the time at which the norm of the law
of motion is sufficiently small, where what constitutes sufficiently small can be chosen
by the user. The function also graphs the components of the state as a function of time,
and reports the terminal point and the time at which this point is reached. The function
was used in the production of Figure 5.
EstimateSizeOfBasinOfAttractionOfVertexTestAllMinIfTieManyTrials,

which provides an estimate of the size of the basin of attraction of the vertex rest point
ξ† under the BEP(τall�κ�βmin) dynamic. To do so, it discretizes the set of population
states � into a grid whose mesh is chosen by the user, and solves the dynamic with
these grid points as initial conditions using Mathematica’s NDSolve function. It returns
the set of initial conditions from which the solution converges to ξ† and the set of all
their neighbors in the grid. See Section IV for details.

II.3 More on computation of approximate rest points and eigenvalues

The BEP_Centipede.nb notebook computes approximate rest points of BEP(τ�1�β)
dynamics using the Euler method: {ξt}Tt=0 is computed starting from an initial condition
ξ0 by iteratively applying

ξt+1 = ξt + hV(ξt)� (S1)

where V : Rs → R
s is the (extended) law of motion of the dynamics and h is the step size

of the algorithm. This algorithm is run in two sequential stages, which we describe next.
When one of the first two FloatingPointApproximateRestPoint... func-

tions from Section II.2 is called, algorithm (S1) is run using IEEE 754 Standard double-
precision floating-point arithmetic. The step size of the algorithm is set to h = 2−4 by
default, and the initial condition is ξ0 = (x0� y0) ∈ � = (X�Y), where x0 and y0 are the
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barycenters of simplices X and Y by default. Several thousand iterations of (S1) are run,
and the output of each iteration is projected onto � to minimize the accumulation of
roundoff errors from the floating-point calculation.

The floating-point numbers obtained in this way are very close to the exact quanti-
ties they approximate, but their digits (i.e., the values of the di in x = d0�d1d2d3d4 � � � ×
10k) may all be wrong, especially in small numbers, since many of the exact numbers we
aim to approximate lie outside the range of IEEE 754 double-precision.3

To address this issue, the function RationalApproximateRestPoint begins with
a call to FloatingPointApproximateRestPoint and then uses the output of this
procedure to create the initial condition for a second stage that employs rational arith-
metic. This initial condition is the rational point in � that lies closest to the floating-
point output of the first stage. The step size h is set to 1 by default in the second
stage, since overshooting is no longer a problem in the neighborhood of the exact rest
point. Increment (S1) is executed repeatedly using rational arithmetic until it locates
a rational point ξ∗

T that is an approximate fixed point of (S1) in the sense that ξT and
ξT+1 = ξT + V(ξT ) agree with six digits of precision for numbers greater than or equal
to 10−4, or three digits of precision for smaller numbers. This agrees with the format we
use to report rest points in Section III.

The function NEigenvaluesAtRationalApproximateRestPoint computes the
eigenvalues of DV(ξ̃) using arbitrary-precision arithmetic, where ξ̃ is a 16-digit pre-
cision approximation to the rational point computed by calling RationalApproxi-
mateRestPoint. The use of arbitrary precision allows us to keep track of the preci-
sion of the computed eigenvalues. Proposition C.1 provides a bound on the distances
between the eigenvalues of DV(ξ) and the eigenvalues of DV(ξ∗). In Section III, the
reported eigenvalues, which are arbitrary-precision approximations to the (algebraic-
valued) eigenvalues of DV(ξ), are shown with five digits of precision for numbers greater
or equal to 1, four digits of precision for numbers greater than or equal to 10−2, and three
digits of precision for smaller numbers.

III. Numerical evaluation of the interior rest point

Table S1 presents approximate components of the unique interior rest point of the
BEP(τall�1�βmin) dynamic in centipede games of lengths up to d = 20.

Table S2 shows approximate eigenvalues of the derivative matrix DV(ξ∗) at the in-
terior rest point ξ∗ of BEP(τall�1�βmin) dynamics in centipede games of lengths up to
d = 20.

IV. Estimates of the basin of attraction of ξ† for BEP(τall�κ�βmin) dynamics

in centipede of length d = 4

In this section, we provide estimates of the basin of attraction of the backward induction
state ξ† in centipede games of length d = 4 under BEP(τall�κ�βmin) dynamics. We do so

3For example, note that the IEEE 754 double-precision representation of numbers such as 3�78 × 10−681

and 2�18 × 10−20,413 (both of which appear in Table S1) is 0, since both numbers are well below 2−1074 ≈
4�94 × 10−324, which is the smallest positive IEEE 754 double-precision number.
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p [6] [5] [4] [3] [2] [1] [0]

3 – – – – – 0�618034 0�381966
4 – – – – 0�113625 0�501712 0�384663
5 – – – – 0�113493 0�501849 0�384658
6 – – – 3�12 × 10−9 0�113493 0�501849 0�384658

7 – – – 3�12 × 10−9 0�113493 0�501849 0�384658
8 – – 8�23 × 10−137 3�12 × 10−9 0�113493 0�501849 0�384658
9 – – 8�23 × 10−137 3�12 × 10−9 0�113493 0�501849 0�384658

10 – 7�75 × 10−3403 8�23 × 10−137 3�12 × 10−9 0�113493 0�501849 0�384658
11 – 7�75 × 10−3403 8�23 × 10−137 3�12 × 10−9 0�113493 0�501849 0�384658
12 1�06 × 10−122,476 7�75 × 10−3403 8�23 × 10−137 3�12 × 10−9 0�113493 0�501849 0�384658
���

���
���

���
���

���
���

���

20 1�06 × 10−122,476 7�75 × 10−3403 8�23 × 10−137 3�12 × 10−9 0�113493 0�501849 0�384658

q [6] [5] [4] [3] [2] [1] [0]

3 – – – – �381966 �381966 �236068
4 – – – – 0�337084 0�419741 0�243175
5 – – – 0.001462 0�335672 0�419706 0�243160
6 – – – 0.001462 0�335672 0�419706 0�243160

7 – – 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160
8 – – 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160
9 – 3�78 × 10−681 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160

10 – 3�78 × 10−681 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160
11 2�18 × 10−20,413 3�78 × 10−681 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160
12 2�18 × 10−20,413 3�78 × 10−681 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160
���

���
���

���
���

���
���

���

20 2�18 × 10−20,413 3�78 × 10−681 9�53 × 10−35 0.001462 0�335672 0�419706 0�243160

Note: The p denotes the penultimate player and the q denotes the last player. The dashed lines separate exact (d ≤ 6) from
numerical (d ≥ 7) results.

Table S1. The interior rest point of the BEP(τall�1�βmin) dynamic for centipede of lengths

d ∈ {3� � � � �20}.

for numbers of trials ranging from κ = 5, the smallest number for which ξ† is asymptot-
ically stable (see Proposition 4.1), to κ= 34 and for selected larger values.

We estimated the size of the basin by numerically computing solutions to the
BEP(τall�κ�βmin) dynamics from points in a grid of initial conditions of mesh 1

50 in the

set of population states �. This grid contains a total of
(52

50

)2 = 1,758,276 points, so an
exhaustive exploration is not feasible. The algorithm we used to decide which points in
the grid to explore aims at “growing” the basin of attraction from ξ† outward. Specifi-
cally, we start at the vertex ξ† and extend outward, recursively visiting all neighboring
points in the grid until we obtain a “boundary” that is two-grid-points thick in which no
solution converges to ξ†.

For κ ∈ {5� � � � �34}, Table S3 presents all of the grid points from which solutions of
BEP(τall�κ�βmin) dynamics converge to ξ†. Table S4 presents the total number of such
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d = 3 −1 ± 0�3820 −1
d = 4 −1�1411 ± 0�3277i −0�8589 ± 0�3277i
d = 5 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1.
d = 6 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1�± 9�74 × 10−5i

d = 7 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1�± 9�74 × 10−5i −1.
d = 8 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1�± 9�74 × 10−5i −1. −1.
d = 9 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1�± 9�74 × 10−5i −1. −1. −1.
d = 10 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1�± 9�74 × 10−5i −1. −1. −1. · · ·
���

���
���

���
���

���
��� · · ·

d = 20 −1�1355 ± 0�3284i −0�8645 ± 0�3284i −1�± 9�74 × 10−5i −1. −1. −1. · · ·

Note: The symbol “−1.” is used as a shorthand for −1�0000. The dashed lines separate exact (d ≤ 6) from numerical (d ≥ 7)
results.

Table S2. Approximate eigenvalues of DV(ξ∗) for the BEP(τall�1�βmin) dynamic.

Condition on κ x1 x2 x3 y1 y2 y3

1 0 0 1 0 0
κ≥ 6 1 0 0 0�98 0�02 0
κ= 7 or κ≥ 9 1 0 0 0�96 0�04 0
κ≥ 9 1 0 0 0�94 0�06 0
κ≥ 10 1 0 0 0�98 0 0�02
κ= 10 or κ ≥ 12 1 0 0 0�96 0�02 0�02
κ= 10 or κ ≥ 12 1 0 0 0�92 0�08 0
κ≥ 12 1 0 0 0�94 0�04 0�02
κ= 12, 13 or κ≥ 15 1 0 0 0�9 0�1 0
κ≥ 15 1 0 0 0�92 0�06 0�02
κ= 15, 16 or κ≥ 18 1 0 0 0�88 0�12 0
κ= 15, 16, 17, 18 or κ ≥ 20 1 0 0 0�96 0 0�04
κ≥ 17 1 0 0 0�9 0�08 0�02
κ= 17 or κ ≥ 20 1 0 0 0�94 0�02 0�04
κ= 18, 19 or κ≥ 21 1 0 0 0�88 0�1 0�02
κ= 18 or κ ≥ 21 1 0 0 0�86 0�14 0
κ≥ 20 1 0 0 0�92 0�04 0�04
κ= 20 or κ ≥ 25 1 0 0 0�94 0 0�06
κ= 21 or κ ≥ 24 1 0 0 0�86 0�12 0�02
κ= 22 or κ ≥ 24 1 0 0 0�9 0�06 0�04
κ= 24 or κ ≥ 27 1 0 0 0�84 0�16 0
κ≥ 26 1 0 0 0�88 0�08 0�04
κ= 27 or κ ≥ 30 1 0 0 0�92 0�02 0�06
κ= 27 or κ ≥ 30 1 0 0 0�84 0�14 0�02
κ≥ 30 1 0 0 0�86 0�1 0�04
κ= 30 or κ ≥ 33 1 0 0 0�82 0�18 0
κ≥ 32 1 0 0 0�9 0�04 0�06
κ= 33 1 0 0 0�82 0�16 0�02

Note: The initial conditions from which solutions of BEP(τall�κ�βmin) dynamics converge to ξ† (κ ∈ {5� � � � �34}).

Table S3. Initial conditions in a grid of mesh 1
50 .
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κ # In-basin points # In-basin points and
their out-of-basin

neighbors

5 1 5
6 2 9
7 3 13
8 2 9
9 4 17

10 7 27
11 5 20
12 9 34
13 9 34
14 8 30
15 12 44
16 12 44
17 13 46
18 15 54
19 13 47
20 16 56
21 18 63
22 18 63
23 17 60
24 20 70
25 20 69
26 21 72
27 24 82
28 22 76
29 22 76
30 26 89
31 25 85
32 26 88
33 28 95
34 27 92
50 35 116

100 51 166

Note: The number of initial conditions from which solu-

tions of BEP(τall�κ�βmin) dynamics converge to ξ† , and the to-
tal number of such points and their neighbors.

Table S4. Conditions in a grid of mesh 1
50 .

points as well as the sum of the number of such points and the number of neighbors of
such points; these numbers provide lower and upper bounds on the size of the basin.

We make two observations about these results. First, Table S3 shows that state ξ† is
not at all robust to changes in the behavior of population 1. This point is reinforced in
Table S5, which shows that the saddle points of the dynamics all place mass of at least
.998 on strategy 1. Second, Table S4 shows that the estimated size of the basin is very
small. For instance, for κ = 100, the lower and upper estimates of the size of the basin
are 51 and 166 grid points, out of the total of 1,758,276 grid points.
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x1 x2 x3

5 0�999417 0�000333 0�000250
6 0�999374 8�23 × 10−6 0�000617
7 0�999093 6�76 × 10−5 0�000839
8 0�999474 3�20 × 10−5 0�000494
9 0�999649 1�93 × 10−7 0�000351

10 0�998505 0�000137 0�001358
11 0�998889 9�75 × 10−5 0�001013
12 0�998404 4�76 × 10−5 0�001549
13 0�998759 3�35 × 10−5 0�001207
14 0�998926 3�65 × 10−5 0�001038
15 0�998396 3�72 × 10−5 0�001567
16 0�998629 3�45 × 10−5 0�001337
17 0�998367 0�000180 0�001453
18 0�998551 1�69 × 10−5 0�001432
19 0�998578 3�19 × 10−5 0�001390
20 0�998447 0�000109 0�001444
21 0�998540 1�58 × 10−5 0�001444
22 0�998380 6�61 × 10−5 0�001554
23 0�998535 6�48 × 10−5 0�001400
24 0�998484 2�03 × 10−5 0�001495
25 0�998484 4�05 × 10−5 0�001476
30 0�998544 1�69 × 10−5 0�001439
35 0�998612 4�21 × 10−5 0�001345
40 0�998669 2�03 × 10−5 0�001310
45 0�998726 1�04 × 10−5 0�001264
50 0�998782 2�29 × 10−5 0�001195

100 0�999169 2�75 × 10−6 0�000828
150 0�999368 5�23 × 10−7 0�000632
200 0�999487 2�93 × 10−7 0�000513

y1 y2 y3

5 0�994197 0�002904 0�002899
6 0�992520 0�003747 0�003733
7 0�987382 0�006326 0�006292
8 0�991613 0�004201 0�004186
9 0�993702 0�003154 0�003144

10 0�970561 0�014810 0�014629
11 0�975875 0�012124 0�012001
12 0�962408 0�018963 0�018629
13 0�968257 0�015991 0�015752
14 0�970372 0�014917 0�014711
15 0�953015 0�023757 0�023228
16 0�957068 0�021686 0�021246
17 0�946117 0�027235 0�026647
18 0�949167 0�025733 0�025100
19 0�947422 0�026621 0�025958
20 0�939865 0�030463 0�029672
21 0�940517 0�030176 0�029308
22 0�931278 0�034908 0�033814
23 0�934926 0�033024 0�032050
24 0�929859 0�035671 0�034470
25 0�927065 0�037100 0�035835
30 0�916397 0�042658 0�040945
35 0�907601 0�047209 0�045190
40 0�899161 0�051657 0�049182
45 0�891781 0�055554 0�052664
50 0�885579 0�058794 0�055627

100 0�847323 0�079244 0�073433
150 0�827851 0�089787 0�082362
200 0�815327 0�096613 0�088061

Table S5. Saddle points of BEP(τall�κ�βmin) dynamics for centipede of length d = 4.

V. Saddle points of BEP(τall�κ�βmin) dynamics in centipede of length d = 4

Table S5 presents approximate components of saddle points of BEP(τall�κ�βmin) dy-
namics for centipede games of length d = 4 for various κ.
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