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Matching with floor constraints

Sumeyra Akin
Instituto de Economía, Pontificia Universidad Católica de Chile

Floor constraints are a prominent feature of many matching markets, such as
medical residency, teacher assignment, and military cadet matching. We develop
a theory of matching markets under floor constraints. We introduce a stability
notion, which we call floor respecting stability, for markets in which (hard) floor
constraints must be respected. A matching is floor respecting stable if there is no
coalition of doctors and hospitals that can propose an alternative matching that
is feasible and an improvement for its members. Our stability notion imposes the
additional condition that a coalition cannot reassign a doctor outside the coali-
tion to another hospital (although she can be fired). This condition is necessary
to guarantee the existence of stable matchings. We provide a mechanism that is
strategy-proof for doctors and implements a floor respecting stable matching.
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1. Introduction

The theory of two-sided matching has been developed and applied in many assignment
markets. As it has been applied in various types of environments, designers have en-
countered distributional constraints that require special consideration. In this paper,
we study hard floor constraints. This type of constraint arises when the designer has to
guarantee the assignment of a minimum number of agents to individual institutions or
to groups of institutions.

To fix ideas, consider the Turkish public school teacher assignment market. The as-
signment of teachers to public schools is determined by a centralized process overseen
by the Turkish Ministry of Education. The education ministry targets a class size maxi-
mum of 30 students for elementary schools. This means that every school in the country
must have a minimum number of teachers. We call these minimum requirements floor
constraints. Thus, the government must assign teachers to schools in a way that respects
preferences as much as possible while also respecting floor constraints. In this market,
schools in the southeastern regions of Turkey are particularly difficult to fill due to their
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economic and geopolitical conditions. Thus, the education ministry implements vari-
ous policies to satisfy floor constraints in these regions.

Floor constraints are also prevalent in various other matching markets. For exam-
ple, Terrier (2014) notes that in the assignment process of teachers to public schools
in France, teachers may not be allowed to leave their regions because of geographical
imbalances in the demand and supply of vacant positions. Floor constraints also fea-
ture in the assignment of newly graduated cadets to positions in U.S. military branches.
A memorandum from the Army Deputy Chief of Staff notes that while the Army intends
to accommodate the preferences of cadets as much as possible, the assignment pro-
cess is subject to minimum staffing requirements (Fragiadakis and Troyan 2017). Finally,
consider medical residency matching markets. An important concern in these markets
is doctor shortages in rural communities, and governments implement various policies
to address this problem (see, e.g., Talbott 2007 for the United States, Alcoba 2009 for
India, and Nambiar and Bavas 2010 for Australia).

A common theme in all these markets is the desire to satisfy certain floor constraints
while maintaining the “stability” of the market. Stability is maintained in the sense that
no group of agents (for example, doctors) and institutions (for example, hospitals) can
improve their assignments by matching outside the market. This feature ensures that
the market is immune to common problems encountered in practice (e.g., instability
may lead to unraveling or low participation in the clearinghouse (Roth 1984), and sta-
bility is desired from a normative perspective). We develop a theory of matching mar-
kets under hard floor constraints. That is, matchings that violate floor constraints are
deemed infeasible in our model.1 We introduce a stability notion that allows for hard
floor constraints, and a mechanism that is strategy-proof for doctors and implements a
stable matching.

Our matching model consists of a finite set of doctors and hospitals. Each hospital
has a capacity constraint: the maximum number of doctors that the hospital can be as-
signed. We assume that every doctor and hospital prefers being assigned to some agent
than to remaining unassigned. This is a reasonable assumption in our applications. For
example, only 8% of K-12 students attend private schools in Turkey. Thus, teachers have
very limited options outside the public school system. Outside options also play a minor
role in most of the other markets mentioned above.

1The floor constraints in our model are different from soft floor constraints. Under soft floor constraints,
the minimum requirements are interpreted as a guideline. A classic market that is subject to soft floor
constraints is school choice markets, where schools have quotas or reserved seats for minorities, but these
serve only as a benchmark (see, e.g., Echenique and Yenmez 2015 and Hafalir et al. 2013). For example,
minority students are not forced to attend a school so that minority quotas are met, and it is rare to see
that a student would like to move to a school that has a vacant seat and she cannot do so because the floor
constraints at her current school would be violated. In this sense, the floor constraints are soft. In contrast,
in the markets that we study, including the Turkish teacher assignment market, the floor constraints are
interpreted as legal constraints, and active policies restrict agents’ mobility. Thus, we may see agents and
institutions that would like to be matched with each other, and even though the institutions’ capacity con-
straints are not binding, such improvements do not realize because of the existing regulatory controls. For
example, teachers in Turkey’s southeastern regions are not allowed to move to schools in other areas, even
when these schools have open slots.
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We formalize the distributional constraints by assuming that only a subset of all
matchings that respect hospital capacities are feasible. The set of feasible matchings is
a subset of all matchings that satisfy the following property. We require that if a match-
ing is feasible, then any matching that assigns weakly more doctors to hospitals is also
feasible (as long as it respects the hospital capacities). Our definition of feasibility gen-
eralizes the idea of regional floor constraints present in the examples given previously.
We provide a formal definition of regions and their floor constraints, and show that the
set of feasible matchings, in this case, satisfies the property mentioned above.

Our stability notion is defined as follows. A matching is floor respecting stable if there
is no group of doctors and hospitals that can propose a feasible matching that is a weak
improvement for every member of the coalition and strictly improves some of its mem-
ber. The key element of this definition is the specification that a doctor outside the coali-
tion cannot be reassigned to another hospital without her consent (although a doctor
can be fired without her consent). This condition is absent from the stability notion in-
troduced previously in the literature (Ehlers et al. 2014) and is the key element of our
definition that allows us to guarantee the existence of stable matchings.

Our first result states that any floor respecting stable matching is (constrained)
Pareto efficient. A matching is Pareto efficient if there is no other feasible matching that
(weakly) improves the assignment of every doctor and hospital. This result is signifi-
cant because Pareto efficiency is an essential criterion for a stability notion from both
a positive and a normative perspective. Interestingly, the absence of blocking pairs (of
doctors and hospitals) is not sufficient to verify Pareto efficiency in markets under floor
constraints. Thus, we conclude that a proper stability notion for markets under floor
constraints should consider coalitions of any size.

We propose the following two-stage mechanism. We give priority numbers to doc-
tors, with lower numbers indicating higher priorities. In the first stage, the deferred
acceptance algorithm (DA, henceforth) is run on doctors with priority numbers lower
than some cutoff priority number and all hospitals. In the second stage, we determine
the assignment of the rest of the doctors by running a variant of the serial dictatorship
mechanism (SD, henceforth); doctors sequentially choose from a restricted set of hos-
pitals. The cutoff priority number is endogenously determined by the floor constraints
and the preference profile. The rest of our results show that our mechanism has desir-
able properties.

We first show that our mechanism produces the outcome of the DA (run on all doc-
tors and hospitals) if the floor constraints are not binding in the matching implemented
by the DA. Thus, when there are no binding floor constraints, our mechanism has all the
desirable properties of the DA and departs from the DA only when the DA would not
produce a feasible outcome. This feature is desirable because the DA has been success-
fully applied in many settings, and departing from the DA is desirable only if doing so is
strictly necessary.

Second, we show that our mechanism produces a floor respecting stable matching.
From a practical perspective, this result is important because, as noted above, stability
plays a crucial role in the success of matching market design. From a theoretical per-
spective, we obtain the existence of floor respecting stable matchings as an immediate
corollary.
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Finally, we show that our mechanism is strategy-proof for doctors. The main chal-
lenge to proving this result is that the mechanism uses the reported preference profile to
determine the number of doctors who are assigned in the first stage. Therefore, it is con-
ceivable that doctors may have incentives to misreport their preferences to receive more
preferred assignments by influencing who is assigned in each stage. Nevertheless, this
problem does not arise in our case because of the way that we define the cutoff priority
number.

2. Literature review

There is a rich literature studying matching markets under distributional constraints.
However, few papers study matching markets under hard floor constraints. We believe
that one of the reasons for this is that there is no suitable notion of stability for markets
under floor constraints. Thus, the literature is largely divided between papers finding
mechanisms that have desirable properties and papers using ceiling constraints to indi-
rectly satisfy floor constraints. Our contribution is to provide a stability notion that ac-
commodates floor constraints and a strategy-proof mechanism that implements a (floor
respecting) stable matching.

To the best of our knowledge, the study of hard floor constraints in matching markets
was pioneered by Ehlers (2010). An example developed by Ehlers et al. (2014) (which su-
persedes Ehlers 2010) show that an immediate extension of the stability notion to one
that accommodates floor constraints may result in the nonexistence of a stable match-
ing.2 We show that this nonexistence problem disappears when one imposes a condi-
tion on the reassignment of doctors outside the coalition. A similar solution appears in
the context of an allocation problem. Ehlers (2014) shows that an efficient allocation
may fail to exist when we allow for indifferences in agents’ preferences, but its existence
may be guaranteed by imposing restrictions on the reassignment of objects.3

Fragiadakis et al. (2016) take the impossibility result of Ehlers et al. (2014) and
propose two mechanisms that offer different trade-offs between fairness and non-
wastefulness. Tomoeda (2018) adopts the stability notion introduced by Ehlers et al.
(2014) and finds sufficient conditions on hospital preferences such that a stable match-
ing exists.

Kamada and Kojima (2017b) propose stability notions for a broad class of matching
markets under ceiling constraints. That is, there is a cap on the number of doctors who
can be assigned to hospitals or groups of hospitals. Kamada and Kojima (2015) offer a
strategy-proof stable mechanism in the Japanese medical residency matching context.
Kamada and Kojima (2018) find necessary and sufficient conditions on the structure
of ceiling constraints such that a strategy-proof stable mechanism always exists.4  Goto

2In their paper, fairness and non-wastefulness, which together comprise stability, are defined separately.
They introduce a fairness notion in the presence of floor constraints and show that there may not exist a
fair and non-wasteful matching.

3In Ehlers (2014), the weaker efficiency notion is called normal efficiency. After Proposition 2, they re-
mark that the nonexistence result of Proposition 2 is reversed when they require normal efficiency instead
of (strong) efficiency.

4A summary of their findings can be found in Kamada and Kojima (2017a).
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et al. (2017) propose a strategy-proof mechanism that is non-wasteful and weakly Pareto
efficient, but the implemented outcome may not be stable.

Recognizing that in many situations, ceiling constraints are introduced to satisfy
floor constraints, Fragiadakis and Troyan (2017) offer a strategy-proof mechanism that,
by endogenously adjusting the ceiling constraints, finds a fair matching that satisfies the
floor constraints. They show that doctors unanimously prefer their mechanism over the
mechanism with fixed ceiling constraints.5 In contrast to our mechanism, their mecha-
nism is wasteful.

We also note that the tools developed for the study of ceiling constraints cannot be
applied to the study of matching markets subject to floor constraints. Intuitively, a sta-
bility notion that accommodates ceiling constraints prevents doctors from moving to an
overdemanded region, while a stability notion that respects floor constraints prevents
doctors from moving away from an underserved region.

A different strand of the literature studies diversity concerns in the school choice
context.6 In these models, distributional constraints serve only as a guideline rather
than a requirement. That is, the constraints might be violated in a feasible matching.

Matching markets with distributional constraints also garner interest in the com-
puter science literature. For example, papers by Biró et al. (2010) and Huang (2010)
show the NP-completeness of checking whether a stable matching exists in the presence
of distributional constraints and find a class of distributional constraints in which this
problem does not arise. Goto et al. (2014) report a similar result and offer two strategy-
proof fair mechanisms.

3. Model

Doctors and hospitals There is a finite set of doctors D and hospitals H. Each doctor
d ∈D has a strict preference �d over hospitals and remaining unassigned, denoted by ∅.
Each hospital h is endowed with a physical capacity qh > 0 and has a strict preference
�h over the subsets of doctors. A preference profile (�i)i∈D∪H is denoted by �. For
any h�h′ ∈ H ∪ {∅}, we write h �d h′ if and only if h �d h′ or h = h′; the corresponding
notation is used for hospital preferences.

Assumptions on the preferences We assume throughout the paper that the hospital
preferences are responsive (cf. Roth 1985a). Formally, hospital h’s preference �h is re-
sponsive if for every D′ ⊆ D with |D′| < qh and i� j ∈D \D′,

(i) D′ ∪ {i} �h D′ ∪ {j} if and only if i �h j

(ii) D′ ∪ {i} �h D′ if and only if i �h ∅.

In other words, if two subsets of doctors differ by only one doctor, then the hospital
prefers the subset of doctors containing the more preferred doctor. This condition rules
out any complementarities in hospital preferences.

5The mechanism with fixed ceiling constraints is called artificial caps deferred acceptance.
6Recent studies on diversity concerns in matching markets include Abdulkadiroğlu and Sönmez (2003),

Abdulkadiroğlu (2005), Hafalir et al. (2013), Echenique and Yenmez (2015), Erdil and Kumano (2013), Dur
et al. (2018), and Aygün and Turhan (2020).
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We also assume that there are no individual rationality constraints. Formally, h �d ∅

and d �h ∅ for every d ∈ D and h ∈ H. That is, every hospital is acceptable to every
doctor and every doctor is acceptable to every hospital.

Matching function A matching μ is a mapping, μ : D∪H → D∪H ∪ {∅}, that satisfies
(i) μ(d) ∈ H ∪ {∅} for all d ∈ D, (ii) μ(h) ⊆ D for all h ∈ H, and (iii) for any d ∈ D and
h ∈H, d ∈ μ(h) if and only if μ(d)= h.

Feasible matchings The set of feasible matchings, denoted by M, is a nonempty subset
of all matchings that satisfy the following properties:

(i) If μ ∈M, then for all h ∈ H, |μ(h)| ≤ qh.

(ii) If μ ∈ M, then every matching μ′ satisfying qh ≥ |μ′(h)| ≥ |μ(h)| for every h ∈ H is
feasible (i.e., μ′ ∈M).

The first condition states that every matching in μ ∈ M respects the hospital capacities.
The second condition states that if a matching is feasible, then every matching that as-
signs weakly more doctors to each hospital is also feasible (as long as it respects hospital
capacities). We say that a matching is feasible if and only if μ ∈M. To understand better
the implications of the second condition, we note its contraposition. The contraposi-
tion states that if a matching is not feasible (and it respects hospital capacities), then
any matching that assigns weakly fewer doctors to each hospital is also not feasible. In-
tuitively, this feasibility condition requires a certain number of doctors at each hospital
and formalizes the general notion of floor constraints in our paper.

Regional floor constraints Our leading motivation is the study of regional floor con-
straints, which we now formally introduce. We discuss our results as if the set of feasible
matchings M is constructed from the set of matchings that satisfy some regional floor
constraints (as we introduce next), but our results carry through to any set of match-
ings M that satisfy the two aforementioned properties. Hence, the introduction of re-
gions is only for the interpretation of our results.

There is a set of regions R and each hospital h resides in a subset of regions r(h) ⊆R.
We denote the set of hospitals in region r by Hr (i.e., Hr = {h ∈ H : r ∈ r(h)}). There is a
minimum number of doctors that need to be assigned to the hospitals of region r, which
we denote by q

r
. Matching μ satisfies the floor constraints if for all r ∈R,

q
r
≤

∑
h∈Hr

∣∣μ(h)∣∣�
The set of feasible matchings M contains all the matchings that satisfy hospital capaci-
ties and the floor constraints. We note that in this case, M satisfies the conditions stated
above.

A particular case of interest is when each hospital belongs to only one region, in
which case we say that we have disjoint regions. This case is the simplest one to study
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because the assignment of each doctor can relax the floor constraint of at most one re-
gion. Additionally, most of the papers in the literature on distributional constraints al-
low for disjoint regions. For these reasons, we consider disjoint regions to illustrate our
results.

Throughout the paper, we assume that M �= ∅. For the study of regional floor con-
straints, a sufficient condition for the existence of feasible matchings is

∑
r∈R q

r
≤ |D|.

That is, the number of doctors is greater than the total number of floor constraints. We
note that this condition is necessary when regions are disjoint.

Examples of regional floor constraints We now provide some examples of different re-
gional floor constraints. Suppose that H = {h1�h2�h3�h4}. We omit the reference to the
hospital capacities and the floor constraints. We simply describe different sets of regions
and provide an interpretation of them.

As a first example, suppose that there are two regions and hospitals are distributed
across regions as

r(h1) = r(h2)= {r1} and r(h3) = r(h4) = {r2}�

That is, hospitals h1 and h2 reside in region r1 and hospitals h3 and h3 reside in region
r2. In this case, the regions are disjoint.

As a second example, suppose that there are six regions and hospitals are distributed
across regions as

r(h1) = {r1� r3} and r(h2) = {r1� r4}
r(h3) = {r2� r5} and r(h4) = {r2� r6}�

That is, hospitals are distributed to regions r1 and r2 in the same way as in the first ex-
ample, and, additionally, each hospital belongs to a distinct region. This distributional
constraint can accommodate a situation in which we have regional floor constraints
presented in the first example. Additionally, there are floor constraints on the number
of doctors assigned to each hospital (e.g., because hospitals need a minimum number
of doctors to operate). The floor constraints on regions r3–r6, respectively, indicate the
minimum number of doctors who need to be assigned to hospitals h1–h4.

As a third example, suppose that there are three regions and hospitals are distributed
across regions as

r(h1)= {r1} and r(h2) = {r1� r3}
r(h3)= {r2� r3} and r(h4)= {r2}�

That is, hospitals are distributed to regions r1 and r2 in the same way as in the first ex-
ample and, additionally, hospitals h2 and h3 reside in region r3. This distributional con-
straint can accommodate a situation where hospitals are located on a line, patients live
between the hospitals, and patients need care at an adjacent hospital. That is, patients
living between hospital h1 and h2 are those living in region r1; patients living between
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hospital h2 and h3 are those living in region r3; patients living between hospital h3 and
h4 are those living in region r2.

As a fourth example, suppose that there are three regions and hospitals are dis-
tributed across regions as

r(h1) = {r1} and r(h2)= {r1� r2� r3}
r(h3) = {r2} and r(h4)= {r3}�

That is, every hospital except hospital h2 is located in a distinct region and hospital h2

shares regions with others. This distributional constraint can accommodate a situation
where hospital h2 is located at the center of an area and the rest of the hospitals are
located on the periphery. Each patient can go either to the central hospital or to their
“local” peripheral hospital.

4. Stability notion with floor constraints

We begin this section by introducing our stability notion that accommodates floor con-
straints: floor respecting stability. We then discuss the key element in the definition of
stability that is necessary to guarantee the existence of stable matchings. We also show
that every floor respecting stable matching is Pareto efficient and explain why it is nec-
essary to consider coalitions of size larger than 2 to verify efficiency.

4.1 Floor respecting stability

We first define our stability notion and then discuss the elements of this definition.

Definition 1 (Floor respecting stability). We say that a matching μ ∈ M is blocked by
coalition A⊆ D∪H if there is another matching μ′ ∈ M such that

(i) μ′(d) ∈A and μ′(d) �d μ(d) for all doctors d ∈A∩D

(ii) μ′(h) ⊆A and μ′(h)�h μ(h) for all hospitals h ∈A∩H

(iii) μ′(i) �i μ(i) for some doctor or hospital i ∈A

(iv) if doctor d /∈A, then μ′(d) = μ(d) or μ′(d) =∅.

A matching μ is floor respecting stable if it is feasible and there is no coalition blocking
it.

A feasible matching is floor respecting stable if there is no coalition that can propose
another feasible matching that satisfies the four conditions in Definition 1. The first
three conditions state that all doctors and hospitals that belong to the coalition are bet-
ter off under the alternative matching, with at least one of them being strictly better off.
If there are no distributional constraints (that is, M coincides with the set of all match-
ings that respect hospital capacities), then our definition coincides with the definition
of the (weakly dominating) core (cf. Roth 1985b) and the classic stability notion (cf.
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Gale and Lloyd 1962).7 This is because when there are no floor constraints, a blocking
coalition can always fire doctors, so condition (iv) becomes irrelevant.

The key novelty in our stability definition is condition (iv). This condition requires
that if a doctor is assigned to a hospital other than her current assignment, then she
belongs to the coalition. In other words, a coalition can only propose a matching in
which doctors are either reassigned to more preferred hospitals or fired (or assigned to
their original hospitals). This condition prevents a coalition from forcefully reassigning
a doctor to a less preferred hospital. For example, suppose that a hospital and a doc-
tor would like to block some status quo matching, but the doctor’s original assignment
is located in a region with a binding floor constraint. That is, if doctor d were to leave
her current region, the region’s floor constraint would be violated. Then, to meet the
floor constraint, another doctor needs to be assigned to this region. At this point, con-
dition (iv) stipulates that the change in the assignment of the other doctor should be
an improvement for her. In other words, if there is no doctor willing to fill the vacancy
created, then the hospital and the doctor cannot block the matching.

The implicit assumption behind our stability definition is that there is a government
or a central authority that prevents blocking coalitions from being formed if floor con-
straints are violated. Indeed, matching markets under floor constraints seem to be ap-
propriately regulated. For example, in Turkey, the Ministry of Education assigns newly
graduated teachers predominantly to underserved areas every year. Furthermore, if a
teacher wants to change her school, she has to submit a relocation application, and her
request needs the ministry’s approval even if there is a vacancy at the other school.8 Al-
though a priori the government could implement any matching without regard to the
preferences, this would lead to the perception that the assignment process is potentially
inefficient or unfair. Hence, our stability notion is a criterion that the authorities can
adopt on efficiency grounds or to eliminate blocking coalitions that are not justified by
the floor constraints, which we see as desirable from a normative perspective.9

The blocking coalitions that are regarded as illegitimate only because they violate
condition (iv) (i.e., they require reassigning a doctor against her consent) are unlikely to
materialize in markets subject to floor constraints. Specifically, the blocking coalitions
that reassign a doctor to another hospital without her consent are inadmissible in most
of the markets that we consider (which we mentioned in the Introduction). For exam-
ple, in Turkey, teachers who are currently teaching cannot be reassigned against their
consent.10 Similarly, hospitals usually have the power to fire doctors, but not the right

7Roth (1985b) proves that the (weakly dominating) core coincides with the set of stable matchings.
8Another example of a heavily regulated matching market is the Japanese medical residency market (cf.

Kamada and Kojima 2015).
9In the school choice context, for example, our stability notion corresponds to a “no justified envy” con-

dition, and the literature usually views it as a normative criterion.
10A forceful reassignment may occur if a teacher does not fulfill her compulsory service duty in under-

served regions on time and does not submit a preference list over the schools located in these regions.
However, this situation does not arise because the teacher’s original school hires a more preferred teacher;
rather, it arises to satisfy floor constraints.
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to reassign them to a different hospital, which is consistent with the fact that coalitions

cannot violate condition (iv).

If we drop condition (iv) from our stability definition, a stable matching may fail to

exist (as shown by Ehlers 2010). Ensuring the existence of stable matchings is impor-

tant from a theoretical perspective. Thus, relaxing the stability notion is unavoidable

in the presence of floor constraints. In Section 4.2, we explore alternatives to condi-

tion (iv) and demonstrate its necessity for the existence of stable matchings. In Sec-

tion 4.3, we show that floor respecting stable matchings are Pareto efficient. Interest-

ingly, in the presence of floor constraints, considering only blocking pairs (that is, pairs

of doctors and hospitals) is not sufficient to verify Pareto efficiency, which we explain in

Section 4.4.

4.2 Condition (iv) and the existence of stable matchings

Condition (iv) in Definition 1 is critical to guarantee the existence of floor respecting

stable matchings. Ehlers et al. (2014) adopt a stability notion similar to ours, but they

allow coalitions to reassign doctors who are not in the coalition to different hospitals.

They show that a stable matching may not exist.11

Alternatively, we could consider a stability notion as in Definition 1, but change con-

dition (iv) to

if doctor d /∈A� then μ′(d) = μ(d) or μ′(d) �= ∅� (1)

This stability notion allows a blocking coalition to reassign doctors who are not in the

coalition without any restriction, but prevents them from being fired. However, such a

stable matching may not exist (shown in Example 1).

We now explain why condition (iv) is necessary to guarantee the existence of a floor

respecting stable matching with an example.

Example 1. There are two doctors and three hospitals. The hospitals’ capacities are

given by qhi = 1 for i = 1�2�3. The preference profile is

�d1 : h2�h1�h3�

�d2 : h1�h2�h3�

�h1 : d1� d2

�h2��h3 : d2� d1�

There are three regions, r1, r2, and r3, the floor constraints of which are given by q
r1

=
q
r2

= 0 and q
r3

= 1. The hospitals are located across regions as r(hi) = {ri} for i = 1�2�3.

Because we revisit this example later, we summarize the market in Table 1.

11In their paper, the stability notion is separated into fairness and non-wastefulness. They show that a
feasible fair and non-wasteful matching does not exist.
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Hospitals

Preferences
Hospitals’
capacities

Region of
the hospital

Region’s floor
constraint

h1 d1 �h1 d2 1 r(h1) = {r1} 0
h2 d2 �h2 d1 1 r(h2) = {r2} 0
h3 d2 �h3 d1 1 r(h3) = {r3} 1

Doctors

d1 h2 �d1 h1 �d1 h3
d2 h1 �d2 h2 �d2 h3

Table 1. Preferences, capacities, regions, and floor constraints.

To satisfy the floor constraints, one of the doctors has to be assigned to hospital h3.
Consider the feasible matchings12

μ1 =
(
h1 h2 h3

d1 ∅ d2

)
� μ2 =

(
h1 h2 h3

∅ d1 d2

)

μ3 =
(
h1 h2 h3

∅ d2 d1

)
� μ4 =

(
h1 h2 h3

d2 ∅ d1

)
�

Matching μ1 (resp. μ3) is not floor respecting stable. Coalition {d1�h2} (resp. {d2�h1})
would block matching μ1 (resp. μ3) with matching μ2 (resp. μ4).

Matching μ2 is floor respecting stable. Coalition {d2�h2} would like to block match-
ing μ2, but it cannot do so because its alternative matching would violate the floor con-
straints. To satisfy the floor constraints, coalition {d2�h2} needs to assign doctor d1 to
hospital h3. By condition (iv) of our stability notion, doctor d1 needs to be included
in the coalition. Coalition {d1� d2�h2�h3} (with alternative matching μ3) cannot block
matching μ2 because doctor d1 is strictly worse off in the alternative matching. Similar
arguments can be used to show that matching μ4 is also floor respecting stable.

If we consider a definition of stability as in Definition 1 but drop condition (iv) or
change it to the condition in (1), then no stable matching would exist under this new
definition. Specifically, matching μ2 (resp. μ4) would be blocked by coalition {d2�h2}
(resp. {d1�h1}) with alternative matching μ3 (resp. μ1). Matchings μ1 and μ3 would be
blocked by the same coalitions that arise when we assume Definition 1. ♦

4.3 Stability and Pareto efficiency

One important reason why stability is a desirable criterion in matching markets is that it
implies Pareto efficiency. In this section, we show that any floor respecting stable match-
ing is Pareto efficient. A matching μ ∈ M is Pareto efficient if there is no other matching

12There are two more feasible matchings in which some doctor remains unassigned: μ5 = (h1 h2 h3
∅ ∅ d2

)
and

μ6 = (h1 h2 h3
∅ ∅ d1

)
. We exclude them from the discussion because it is clear that these matchings are not stable.

The unassigned doctors and any hospital with a vacant position can block these matchings.
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μ′ ∈ M such that μ′(i) �i μ(i) for all i ∈ D ∪ H and μ′(i) �i μ(i) for some i ∈ D ∪ H. We
now state the efficiency of floor respecting stable matchings.

Proposition 1 (Pareto Efficiency). Every floor respecting stable matching is Pareto effi-
cient.

If a matching is not Pareto efficient, then there exists another feasible matching
that is a weak improvement for every agent and strictly improves some agent. Thus,
the grand coalition can block a Pareto inefficient matching with a matching that Pareto
dominates it.

4.4 Blocking pairs versus larger coalitions

In (unconstrained) matching markets, the stability notion of Gale and Lloyd (1962) con-
siders only two-member coalitions, that is, pairs of doctors and hospitals, and every sta-
ble matching is Pareto efficient.13 However, to guarantee the efficiency of stable match-
ings in markets under floor constraints, an appropriate stability notion should consider
any-size coalitions. This is because a pair of a doctor and a hospital may not be pow-
erful enough to achieve an improvement for themselves without violating some floor
constraints. A group of doctors and hospitals, however, might be able to achieve an im-
provement for themselves while satisfying the floor constraints (we illustrate this feature
below in Example 2).

Given that coalitions of size 2 are not sufficient to verify whether a matching is floor
respecting stable (or even efficient), we now characterize in greater detail when it is nec-
essary to consider coalitions of size larger than 2.

Proposition 2 (Size and type of blocking coalitions). Suppose that matching μ is not
floor respecting stable. Then there exists a coalition A that blocks matching μ with match-
ing μ′ that satisfies one of the following statements:

(i) Coalition A does not fire any doctor, i.e., for every doctor d ∈ D, μ′(d) = ∅ implies
that μ(d) =∅.

(ii) Coalition A consists of one doctor and one hospital.

Proposition 2 states that we can verify whether a matching is floor respecting stable
by checking for two types of blocking coalitions. The first is blocking coalitions that do
not fire any doctor. By condition (iv) in Definition 1, such coalitions propose a matching
that is a Pareto improvement for doctors. The second type of blocking coalitions is pairs
of doctors and hospitals.

We now provide an example to illustrate the extent to which the absence of blocking
pairs may be insufficient to verify that a matching is stable or even Pareto efficient. We
first provide a matching that cannot be blocked by a pair of a doctor and a hospital, but

13In (unconstrained) matching markets, matching μ is stable if there is no pair of a doctor and a hospital
that prefers another one over their current assignments at μ.
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that can be blocked by the grand coalition. In other words, a matching may be Pareto
inefficient despite there being no blocking pairs. We then provide a matching that can
be blocked by only one coalition that does not fire any doctor, but this coalition leaves a
hospital worse off. In other words, the only blocking coalition proposes a matching that
is not a Pareto improvement for all agents in the economy (only for doctors).

Example 2. There are two doctors and three hospitals. The hospitals’ capacities are
given by qhi = 1 for i = 1�2�3. The preference profile is

�d1 : h1�h3�h2�

�d2 : h3�h2�h1�

�h1 : d1� d2

�h2 : d2� d1

�h3 : d2� d1�

There are two regions with floor constraints given by q
ri

= 1 for i = 1�2. The hospitals

are located across regions as r(h1)= {r1} and r(h2)= r(h3) = {r2}.
Consider the matching

μ′ =
(
h1 h2 h3

d2 ∅ d1

)
�

It is easy to verify that this matching is not Pareto efficient. The grand coalition blocks
matching μ′ with the matching (

h1 h2 h3

d1 ∅ d2

)
�

Nonetheless, there is no pair of a doctor and a hospital that can block matching μ′. For
example, if hospital h1 hires doctor d1 and fires doctor d2, this would violate region r2’s
floor constraint (analogously, (d2�h2) or (d2�h3) cannot block this matching). Thus, it
is clear that allowing for coalitions larger than one doctor and one hospital is natural in
our environment.

Now suppose that the preference of doctor d1 is �d1 : h1, h2, h3 and that of doctor d2
is �d2 : h3, h1, h2, while everything else is the same as previously specified. Consider the
matching

μ′′ =
(
h1 h2 h3

d2 d1 ∅

)
�

It is easy to verify that this matching is not floor respecting stable (although Pareto ef-
ficient). The only blocking coalition is A = {d1� d2�h1�h3}, and it proposes a matching
that leaves hospital h2 worse off than under μ′′. The example illustrates that to verify
whether a matching is floor respecting stable, it is necessary to consider blocking coali-
tions of size larger than 2, and these coalitions may leave some hospitals worse off. ♦

5. Implementation

In this section, we propose a strategy-proof (for doctors) mechanism that produces a
floor respecting stable matching and discuss its properties.
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5.1 Preliminary definitions

A mechanism ϕ is a function that maps preference profiles to matchings. We assume
that every doctor must report a full ranking of hospitals.14 Throughout this section, we
use � and �̃ to refer to the true preference profile and a reported preference profile,
respectively. Given a preference profile �̃, we denote doctor d’s assignment by ϕ(�̃)(d).

A mechanism ϕ is strategy-proof for doctors if there do not exist a preference profile
�, a doctor d ∈D, and a preference �̃d of doctor d such that

ϕ(�̃d��−d)(d)�d ϕ(�d��−d)(d)�

In other words, doctor d never profits from reporting a preference different from her true
preference.

We now describe the (doctor-proposing) deferred acceptance algorithm.

Algorithm 1: Deferred acceptance
Step 1. Each doctor applies to her most preferred hospital. Each hospital rejects

any unacceptable doctor and the lowest ranked doctors in excess of its capacity, while it
holds the rest of the doctors temporarily.

Step k. Each doctor who was rejected in step k − 1 applies to her most preferred
hospital that has not yet rejected her. Each hospital considers these new doctors and all
the doctors who were temporarily held in step k− 1, rejects the lowest ranked doctors in
excess of its capacity and all unacceptable doctors, and temporarily holds the rest of the
doctors.

The DA stops at the step in which no rejection occurs and assigns hospitals to the
doctors that they still hold.

We denote by DA(�̃|Y�H) the outcome of the DA when the reported preference pro-
file is �̃ and only the subset of doctors Y ⊆ D is present in the market. The assignment
of doctor d ∈ Y is denoted by DA(�̃|Y�H)(d).

5.2 Description of the mechanism

In this section, we introduce a mechanism that is strategy-proof for doctors and imple-
ments a floor respecting stable matching.

To run mechanism ϕ, we label doctors from 1 to N , i.e., D = {1� � � � �N}, which is in-
terpreted as doctors’ priority numbers. Lower labels indicate higher priorities (e.g., d = 1
is the highest priority doctor). Given the priority order and preference profile �̃, mecha-
nism ϕ first determines a cutoff priority number ν̃ and then runs a two-stage algorithm.

Before we continue, we make the following preliminary definitions. Suppose that
the reported preference profile is �̃. To simplify the notation, we define

μ̃� ϕ(�̃)�

14If a doctor declares some hospital unacceptable, then she would obviously be misreporting and the
mechanism would leave her unmatched.



Theoretical Economics 16 (2021) Matching with floor constraints 925

That is, μ̃ is the outcome of mechanism ϕ when the reported preference profile is �̃. We
also define, for any d ≤ n,

m̃(d;n)� DA
(�̃|{1� � � � � n}�H)

(d)� (2)

That is, m̃(d;n) is the assignment of doctor d under the DA when only the subset of
doctors {1� � � � � n} ⊆ D is present in the market and the reported preference profile is �̃.

We first explain the two stages for a given cutoff ν̃ and then define the cutoff priority.

Stage 1 Mechanism ϕ assigns the subsets of doctors with priority number weakly lower
than the cutoff ν̃ (i.e., {1� � � � � ν̃}) using the DA. In the first stage, the DA is run only on
doctors in {1� � � � � ν̃} and all hospitals in H. Formally, for all d ∈ {1� � � � � ν̃},

μ̃(d) = m̃(d; ν̃)� (3)

This concludes the mechanism’s first stage.

Stage 2 To determine the assignment of doctors in {ν̃ + 1� � � � �N}, we use a variant of
the SD. Doctors in {ν̃ + 1� � � � �N} are sequentially assigned according to their priority
numbers. Each doctor in {ν̃ + 1� � � � �N} is matched to her most preferred hospital in
H̃(d)⊆ H. The set H̃(d) is constructed inductively as

H̃(d)�
{
h ∈H : ∃μ ∈M such that for all d′ < d�μ

(
d′) = μ̃

(
d′) and μ(d) = h

}
� (4)

In other words, for every doctor d ∈ {ν̃ + 1� � � � �N}, to evaluate whether a hospital h ∈
H̃(d), we verify whether there exists a feasible matching when doctor d is matched to h

and all doctors d′ < d are matched according to μ̃.

Cutoff ν̃ We now define the cutoff priority ν̃ as

ν̃ = min

{
n ∈ {0� � � � �N − 1} :

�μ ∈M such that for all d ≤ n�

μ(d) = m̃(d;n) and μ(n+ 1) =∅

}
� (5)

If there is no number ν̃ that satisfies the expression in (5), we let ν̃ = N . That is, ν̃ is
the minimum number such that when doctors {1� � � � � ν̃} are assigned by the DA, every
doctor in {ν̃ + 1� � � � �N} is needed to find a feasible matching. Assuming that doctors in
{1� � � � � ν̃} are assigned via the DA, doctor ν̃ + 1 becomes critical in the sense that if she
were to remain unassigned, one could not find a way to assign the rest of the doctors
(i.e., {ν̃ + 2� � � � �N}) that leads to a feasible outcome.

5.3 Description of the mechanism in disjoint regions

As an illustration, we provide explicit expressions for ν̃ and H̃(·) when the regions are
disjoint, i.e., each hospital belongs to only one region.

We first explain how to find the cutoff ν̃. The cutoff ν̃ is the smallest number n of
doctors such that when doctors in {1� � � � � n} are assigned by the DA in the first stage, the
number of the rest of the doctors, which is N −n, is just enough to satisfy all the regional
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floor constraints. When regions are disjoint, the number of doctors that is necessary to
meet the floor constraints at the end of the first stage is the difference between regions’
floor constraints and the number of doctors that are assigned to the regions by the DA.
Thus, we can write the cutoff ν̃ formally as

ν̃ = min
{
n ∈ {0�1�2� � � � �N} :

∑
r∈R

{
q
r
−

∑
h∈Hr

∣∣m̃(h;n)∣∣}+
≥N − n

}
� (6)

The number of doctors assigned to hospital h through the DA is |m̃(h;n)| and, hence,
the (positive part of the) difference between the floor constraint q

r
of region r and∑

h∈H(r) |m̃(h;n)| yields the number of doctors that region r lacks at the end of the first
stage. For any number n < ν̃, the inequality in (6) fails to hold under responsive hospital
preferences, and at n = ν̃, it is satisfied by equality. Thus, the expression in (6) provides
the smallest number of doctors that can be assigned by the DA such that the floor con-
straints can be satisfied (at the end of the algorithm).

Mechanism ϕ assigns doctors in {1� � � � � ν̃} by the DA. That is, for every d ≤ ν̃,

μ̃(d) = m̃(d; ν̃)�
The assignments of doctors in {ν̃ + 1� � � � �N} are determined by applying the SD for

a restricted subset of hospitals. To ensure the feasibility of the final matching, doctors
in {ν̃ + 1� � � � �N} should be assigned to the hospitals that (i) have a remaining vacant
position and (ii) are in an underserved region (i.e., a region with a floor constraint strictly
larger than the total number of doctors that have already been assigned to its hospitals).
Formally, the subset of hospitals that are available to doctor d, H̃(d), can be written
formally, for all d ∈ {ν̃ + 1� � � � �N}, as

H̃(d)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
h ∈H :

∣∣m̃(h; ν̃)∣∣ +
d−1∑

j=ν̃+1

1
{
μ̃(j) = h

}
< qh�

∑
h′∈Hr(h)

(∣∣m̃(
h′; ν̃)∣∣ +

d−1∑
j=ν̃+1

1
{
μ̃(j) = h′}) < q

r(h)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
� (7)

Note that H̃(d) is constructed inductively using μ̃(j), with ν + 1 ≤ j ≤ d − 1, which de-
notes the assignment of doctor j who is assigned via the SD before doctor d. The two
inequalities in (7) formally express the two criteria that determine whether h ∈ H̃(d).
Doctor d is assigned to her most preferred hospital in H̃(d); that is, μ̃(d) �d h, for every
h ∈ H̃(d).

5.4 Main elements of the mechanism

Our mechanism has two stages. The first stage consists of the DA. This is a natural start-
ing point because the floor respecting stability notion reduces to the classic stability no-
tion of Gale and Lloyd (1962) when there are no floor constraints. Hence, if we are to look
for a mechanism that is strategy-proof and produces a floor respecting stable matching,
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then it should coincide with the DA when the floor constraints are not present. In fact,
in the following section, we show that our mechanism coincides with the DA when the
floor constraints are slack.

We then have a second stage in which we assign doctors via the SD. The reason why
we use the SD is less obvious. The SD satisfies two important properties: (a) it produces a
doctor Pareto optimal matching and (b) is strategy-proof. The first property means that
there is no other feasible matching that can improve the assignments of every doctor.
This property is important to guarantee that the matching produced by the mechanism
is floor respecting stable. The second property is important to guarantee that the mech-
anism is strategy-proof. We explain the role of each of these properties in the following
sections when we discuss the properties of the mechanism.

The cutoff ν̃ plays an important role in ensuring that the mechanism produces a
floor respecting stable matching. If we assign too many doctors through the DA, we may
not be able to ensure the feasibility of the final matching. Alternatively, if we assign too
few (e.g., zero) doctors through the DA, then the resulting matching may not be stable
because the SD does not produce a stable matching. Thus, the cutoff ν̃ must be chosen
such that the number of doctors assigned in the second stage is just enough to meet the
floor constraints.

The cutoff ν̃ also plays a crucial role in guaranteeing that the mechanism is strategy-
proof. Although our mechanism consists of two strategy-proof mechanisms, it is not
evident that the combination of the two will be strategy-proof, because the number of
doctors assigned through the DA in the first stage depends on doctors’ reported prefer-
ences. Thus, it is conceivable that doctors can change the cutoff priority in their favor by
submitting different reports. Nevertheless, as we show in Section 7.1, mechanism ϕ is
strategy-proof. We provide intuition for how we achieve this result and explain the role
of ν̃ in Sections 7.1 and 7.2.

5.5 When the mechanism coincides with the DA

Our mechanism coincides with the DA (runs on all doctors and hospitals) when the floor
constraints are slack. Specifically, if the matching implemented by the DA runs on all
doctors except doctor N is feasible, then our mechanism implements the same match-
ing as the DA. The floor constraints are slack in the sense that we can exclude a doctor
and still implement a feasible matching. We now state the result formally.

Proposition 3 (Mechanism Coincides With the DA When Constraints Do Not Bind).
Suppose that matching μ̂ defined as

μ̂(d) =
{
m̃(d;N − 1) if d �=N

∅ if d =N
(8)

is feasible (i.e., μ̂ ∈ M). Then mechanism ϕ described by (3)–(5) implements the same
matching as the DA (that is, DA(� |D�H)= ϕ(�)).



928 Sumeyra Akin Theoretical Economics 16 (2021)

This proposition states that if the DA implements a feasible matching without con-
sidering doctor N , then the outcome of mechanism ϕ will be the same as the outcome of
the DA. In most markets under distributional constraints, the main reason for departing
from the DA is that its outcome may not satisfy the constraints. Thus, we believe that
the property stated in Proposition 3 is desirable.

We note that our mechanism may implement a different matching than the DA even
though the DA may implement a feasible matching. This situation arises when doctor N
is needed to implement a feasible matching by running the DA. Nevertheless, we expect
that this nuance is unlikely to arise in markets with large numbers of participants be-
cause whether the DA would produce a feasible matching is independent of the assign-
ment of any specific doctor (and, in particular, of doctor N). In other words, the event
that the DA produces a feasible matching and the DA runs with doctors {1� � � � �N − 1}
does not produce a feasible matching is unlikely when the number of participants is
large. Thus, our mechanism departs from the DA only when necessary.

6. Floor respecting stability

6.1 Mechanism produces a floor respecting matching

We now state that mechanism ϕ implements a floor respecting stable matching.

Proposition 4 (Floor respecting stable outcome). Mechanism ϕ described by (3)–(5)
produces a floor respecting stable matching.

An important implication of Proposition 4 is that a floor respecting stable matching
exists. We formally state this as a corollary.

Corollary 1 (Existence of Floor Respecting Stable Matchings). Floor respecting stable
matchings exist.

We note that the result stated in Corollary 1 is not trivial. As shown in Section 4.2,
condition (iv) of Definition 1 is crucial in guaranteeing the existence of floor respecting
stable matchings.15

6.2 Discussion on stability

In this section, we provide intuition for the stability of the matching μ̃ produced by
mechanism ϕ. This discussion also aids a better understanding of why we chose the
SD for the second stage of the mechanism.

The first stage of the mechanism is the DA run on doctors {1� � � � � ν̃} and hospitals H.
Since the DA produces a stable matching in the absence of floor constraints, there is
no blocking coalition that contains only doctors from {1� � � � � ν̃}. Thus, any potential
blocking coalition must include a doctor in {ν̃ + 1� � � � �N}.

15In an earlier version of this paper (Akin 2020), assuming disjoint regions, we show the existence of
floor respecting stable matchings under less stringent assumptions on the preferences. This result extends
Corollary 1 to markets where doctors and hospitals may have outside options.
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We now remark that the distributional constraints are binding in matching μ̃ in the
following sense. By the definition of ν̃, all the doctors {ν̃ + 1� � � � �N} are necessary to
meet the distributional constraints when doctors {1� � � � � ν̃} are assigned by the DA. That
is, if a doctor d ≥ ν̃+ 1 were unassigned, then the distributional constraints could not be
satisfied. For the same reason, if a doctor d ≥ ν̃ + 1 wants to be reassigned to a hospital
not in H̃(d), she must find another doctor who is willing to fill a vacancy at some hospital
in H̃(d).

At this point, the fact that the SD produces a (constrained) doctor-optimal matching
is important to guarantee stability. This feature of the SD implies that a doctor in {ν̃ +
1� � � � �N} joins a blocking coalition only if her assignment is not in H̃(d). However, such
a reassignment would require finding a doctor d′ < d who is willing to fill a vacancy
at some hospital in H̃(d). Ultimately, the coalition would have to assign some doctor in
{1� � � � � ν̃} to a hospital in H̃(ν̃+1). However, since every doctor d ≤ ν̃ is assigned through
the DA, they find every hospital in H̃(ν̃ + 1) worse than their own assignment. It follows
that no doctor d ≤ ν̃ would be willing to be reassigned to a hospital in H̃(ν̃ + 1). We
conclude that there is no blocking coalition to matching μ̃.

7. Strategy-proofness

7.1 The mechanism is strategy-proof

We now state the strategy-proofness of the mechanism.

Proposition 5 (Strategy-proofness). Mechanism ϕ described by (3)–(5) is strategy-proof
for doctors.

We now provide intuition for why mechanism ϕ is strategy-proof. The DA and the
SD are strategy-proof mechanisms (see Dubins and Freedman 1981). Hence, if the set of
doctors assigned in each mechanism were determined independently of the reported
preferences, then it would be straightforward that our mechanism is strategy-proof.
However, in our mechanism, the number of doctors assigned through the DA in the first
stage is given by ν̃ in (5), which is determined by the reported preference profile.

We first remark that ν̃ is determined by the preferences of doctors d ≤ ν̃, so no doc-
tor d > ν̃ can manipulate the cutoff priority. Furthermore, reporting true preferences is
a weakly dominant strategy in the SD. Therefore, no doctor d > ν̃ can obtain a more pre-
ferred assignment by misreporting her preferences. Thus, if a doctor finds a profitable
misreporting, then she has a priority number d ≤ ν̃.

We now note that no profitable misreporting by doctors d ≤ ν̃ can increase the num-
ber of doctors who are assigned through the DA. This is because the outcome of the DA
is less preferred by a doctor when the set of doctors in the market expands (see Crawford
1991). Hence, increasing the cutoff priority results in a weakly less preferred assignment
for each doctor d ≤ ν̃. Thus, we conclude that only doctors d ≤ ν̃ may have incentives to
misreport, and any profitable misreporting involves a decrease in the cutoff ν̃.

The intuition for the rest of the proof is as follows. Suppose that by misreporting,
doctor d receives a more preferred assignment, hospital h̃. We now consider a hypothet-
ical cutoff priority found as follows. We consider the maximum of numbers n̂ such that
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doctor d receives an assignment weakly more preferred than h̃ when the number of doc-
tors assigned via the DA is fixed at n̂ (and she reports truthfully). We now compare the
outcome of the DA run on the first n̂ doctors with their true preferences to the outcome
of the DA with the misreport. The proof is by contradiction and consists of showing
two statements. We first show that every hospital must receive a weakly larger number
of doctors when we run the DA on doctors {1� � � � � n̂}. Intuitively, a profitable misreport
should reduce the competition in the first stage. Thus, if we were to set the cutoff priority
exogenously (and, thus, doctors report truthfully), hospitals should receive more appli-
cations. At this point, we use this result and recall the definition of ν̃ in (5) to conclude
that there cannot be any feasible matching such that doctors {1� � � � � n̂} are assigned via
the DA (and doctor n̂+ 1 remains unassigned). This observation implies that the cutoff
priority under truthful reporting should be smaller than n̂, leading to a contradiction to
the assumption of profitable misreporting. We conclude that doctor d should receive a
weakly more preferred outcome under truthful reporting.

The intuition for the strategy-proofness of our mechanism echoes that found in the
literature. For example, Goto et al. (2017) and Fragiadakis and Troyan (2017) propose it-
erated versions of the DA for markets under ceiling constraints. Although they study dif-
ferent models, the idea behind maintaining the strategy-proofness of these mechanisms
is similar. The general idea is that whenever a doctor can manipulate the mechanism to
change the updated constraints in her favor, the designer ensures that she will receive a
(weakly) less preferred outcome. While the general ideas behind the strategy-proofness
results resemble each other, we cannot apply any of their findings or methodologies to
our setting.

7.2 Discussion of strategy-proofness

The definition of ν̃ in (5) is crucial for maintaining the strategy-proofness of mecha-
nism ϕ. To better understand the role of ν̃, we provide an alternative definition of ν̃ that
would result in a mechanism that produces a floor respecting stable matching but is not
strategy-proof.

Consider the alternative definition of ν̃:

κ̃� max

{
n ∈ {0�1� � � � �N} :

∃μ ∈M such that for all d ≤ n�

μ(d) = m̃(d;n)

}
�

That is, κ̃ is defined as the maximum number of doctors that can be assigned via the
DA such that the floor constraints can be satisfied with the remaining subset of doctors.
We analyze the mechanism by which doctors {1� � � � � κ̃} are assigned via the DA, while
doctors {κ̃+ 1� � � � �N} are assigned via the SD.

We first note a crucial difference between ν̃ and κ̃. A doctor d satisfies d ≤ ν̃ only if
the floor constraints can be satisfied when doctors d′ < d are assigned via the DA and
she remains unassigned. In contrast, a doctor d satisfies d ≤ κ̃ if the floor constraints
can be satisfied when she and doctors d′ < d are assigned via the DA. For this reason,
d ≤ ν̃ implies that d ≤ κ̃. Therefore, we also have that ν̃ ≤ κ̃.
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The mechanism with cutoff κ̃ implements a floor respecting stable matching. The
proof of Proposition 4 goes through line-by-line when we use κ̃ instead of ν̃. As we ar-
gued in Section 6.2, a key part of the proof uses the fact that a doctor d > ν̃ cannot join a
blocking coalition without finding another doctor d′ < d who is willing to be reassigned
to some hospital in H̃(d). This feature is still satisfied when we change the cutoff priority
to κ̃ because ν̃ ≤ κ̃.

We now explain why the two-stage mechanism with cutoff κ̃ is not strategy-proof.
The mechanism determines d ≤ κ̃ by verifying that the floor constraints can be satisfied
by running the DA with the reported preferences of doctors in {1� � � � � d}. Only if the
floor constraints cannot be satisfied, d > κ̃ and doctor d is assigned in the second stage.
For this reason, the mechanism is prone to two types of manipulations. A doctor may
increase κ̃ by submitting a different report, thereby assigned via the DA instead of the SD.
Alternatively, a doctor may want to misreport her preferences to decrease κ̃ so that some
other doctor is assigned via the SD instead of the DA (i.e., she reduces the competition
in the first stage). We illustrate this point in the following example.

Example 3. There are two doctors and three hospitals. The hospitals’ capacities are
given by qhi = 1 for i = 1�2�3. The preference profile is

�d1 : h3�h1�h2� �hi : d2� d1 for i = 1�2�3

�d2 : h2�h3�h1�

There are three regions with floor constraints given by q
r1

= 1 and q
ri

= 0 for i = 2�3.

The hospitals are located across regions as r(hi) = {ri} for i = 1�2�3. Suppose that doctor
d1 has a higher priority, i.e., d1 < d2.

Under our mechanism, ν̃ = 1. The total number of floor constraints is 1, so if doctor
d1 were to remain unassigned, there is a feasible matching (which assigns doctor d2 to
hospital h1). Thus, ν̃ > 0. When only doctor d1 is assigned via the DA, she would be as-
signed to hospital h3. In this case, region r1 lacks one doctor to satisfy its floor constraint,
and if doctor d2 were to remain unassigned, there would not be any feasible matching.
Thus, ν̃ = 1.

Suppose that we have adopted the definition of κ̃ to determine the number of doc-
tors in the first stage. Under truthful reporting, κ̃ = 1. If all the doctors were assigned
via the DA, doctor d1 would be assigned to hospital h3 and doctor d2 would be assigned
to hospital h2. This matching is not feasible and, thus, κ̃ < 2. When only doctor d1 is
assigned via the DA, doctor d1 is assigned to hospital h3 and doctor d2 is assigned to
hospital h1. Such matching is feasible and, thus, κ̃= 1.

If doctor d1 reports �d1 , doctor d2 profits from reporting �′
d2

: h3 � h2 � h1. Under the
preference profile (�d1��′

d2
), κ̃= 2. When all the doctors are assigned via the DA, doctor

d1 is assigned to hospital h1 and doctor d2 is assigned to hospital h3. This matching is
feasible and, thus, κ̃ = 2. In this case, doctor d2 profits from misreporting by increasing
the cutoff κ̃, thereby being assigned via the DA instead of the SD.
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We note that if doctor d2 reports preference �′
d2

, then doctor d1 profits from report-
ing �′

d1
: h3 � h2 � h1. Under the preference profile (�′

d1
��′

d2
), κ̃ = 1. When all the doc-

tors are assigned via the DA, doctor d1 is assigned to hospital h2 and doctor d2 is as-
signed to hospital h3. This matching is not feasible and, thus, κ̃ < 2. When only doctor
d1 is assigned via the DA, doctor d1 is assigned to hospital h3 and doctor d2 is assigned
to hospital h1. This matching is feasible and, thus, κ̃ = 1. In this case, doctor d1 profits
from misreporting by lowering the cutoff κ̃, thereby reducing the competition in the first
stage of the mechanism. ♦

7.3 Strategy-proofness and outside options

If doctors find some hospitals unacceptable, then a strategy-proof (for doctors) mecha-
nism that produces a floor respecting stable matching may not exist. Intuitively, a mech-
anism is required to produce a feasible individually rational matching given a reported
preference profile. To do so, the mechanism fills the hospitals that reside in a region with
positive floor constraints with doctors who find these hospitals acceptable. In response,
a doctor may have an incentive to declare some of these hospitals unacceptable so that
she is not assigned to one of them. The following example illustrates this point.

Example 4. Consider the market described in Example 1. The floor respecting stable
matchings are μ2 and μ4. If a mechanism chooses matching μ2 (resp. μ4) with positive
probability, then doctor d2 (resp. d1) profits from declaring hospital h3 unacceptable. In
this way, doctor d2 (resp. d1) guarantees being assigned to hospital h1 (resp. h2). Hence,
there is no mechanism that is strategy-proof for doctors and produces a floor respecting
stable matching. ♦

8. Conclusion

One foundational issue in the study of matching markets under floor constraints is to
define an appropriate stability notion. The present paper addresses this challenge. We
defined a stability notion—floor respecting stability—which accommodates hard floor
constraints. We provided a mechanism that implements a floor respecting stable match-
ing and is strategy-proof (for doctors). A natural direction for future work is the study of
hard floor constraints when doctors have types.

Appendix

Proof of Proposition 1

Suppose that a matching μ ∈ M is not Pareto efficient. Then there exists a matching
μ′ ∈M such that every doctor and hospital is weakly better off, with some of them being
strictly better off. Hence, the grand coalition can block matching μ with matching μ′.
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Proof of Proposition 2

Suppose that there exists a blocking coalition A′ that blocks matching μ with matching
μ′. If there is only one doctor in coalition A′, then (without loss) coalition A′ is a block-
ing pair and we obtain the result. Hence, we assume that coalition A′ has at least two
doctors.

Suppose that there is a doctor d′ who is fired under matching μ′ (i.e., μ′(d′) = ∅ and
μ(d′) �= ∅). Without loss of generality, there exists a doctor d′′ who is in the coalition
and is assigned to μ(d′) (i.e., μ′(d′′) �= μ(d′′) and μ′(d′′) = μ(d′)) (otherwise, one can
construct a new blocking coalition that does not fire doctor d′). As a shorthand notation,
we denote

h′ = μ
(
d′) and h′′ = μ

(
d′′)�

Note that μ′(d′′) = h′. Suppose that d′ is the most preferred doctor among all doctors
who are fired by hospital h′, and that d′′ is the least preferred doctor among all doctors
who are in the coalition and assigned to h′. Furthermore, without loss of generality,
suppose that |μ′(h′)| = qh′ ; that is, doctor d′ is fired from μ′ because h′ is at capacity
(otherwise, one can construct a new blocking coalition that does not fire doctor d′).

Now, consider blocking coalition A′′ = A′\{d′′} with matching μ′′, which is con-
structed as follows. If h′′ /∈A′, then

μ′′(d)=

⎧⎪⎪⎨
⎪⎪⎩
μ′(d) if d /∈ {

d′� d′′}
μ(d) if d = d′′

μ(d) if d = d′�

If h′′ ∈A′, then

μ′′(d)=

⎧⎪⎪⎨
⎪⎪⎩
μ′(d) if d /∈ {

d′� d′′}
∅ if d = d′′

μ(d) if d = d′�

In other words, every doctor except d′ and d′′ is assigned the same way as in blocking
matching μ′. The fired doctor d′ is reassigned back to her original hospital h′. Depend-
ing on whether hospital h′′ is in coalition A′, doctor d′′ is either reassigned back to her
original hospital h′′ or fired.

Matching μ′′ is feasible since all hospitals are assigned weakly more doctors than
under matching μ′ and, by construction, matching μ′′ respects hospital capacity con-
straints. We note that if h′′ is not in coalition A′, then h′′ does not admit another doctor
under μ′, and so the hospital can hire back doctor d′′ without violating its capacity.

We now show that matching μ′′ improves the outcome of every agent in coalition
A′′. Every doctor d ∈ A′′ is assigned to the same hospital under matching μ′′ and μ′,
so every doctor d ∈ A′′ is weakly better off under matching μ′′ than μ. Every hospital
h ∈ H \ {h′′�h′} is assigned to the same subset of doctors under matchings μ′′ and μ′.
Therefore, every hospital h ∈ A′′ \ {h′′�h′} is weakly better off under matching μ′′ than μ.

We now show that hospital h′′ is better off under matching μ′′ than μ whenever h′′ ∈
A′′ (otherwise, Definition 1 does not require that hospital h′′ is better off). If h′′ ∈ A′′,
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then h′′ ∈A′ and this hospital is assigned to the same subset of doctors under matchings
μ′ and μ′′. Since h′′ ∈A′, it must be that this hospital is better off under matching μ′ than
matching μ.

Finally, we show that hospital h′ is weakly better off under matching μ′′ than μ. Since
hospital h′ hires a new doctor under matching μ′, conditions (i) and (iv) of Definition 1
imply that h′ ∈A′. Then we have

μ′(h′) �h′ μ
(
h′)�

We also note that

μ′′(h′) = μ′(h′)\{d′′} ∪ {
d′}�

Now suppose that d′ �h′ d′′; then, from responsive hospital preferences, it follows that

μ′′(h′) = μ′(h′)\{d′′} ∪ {
d′} �h′ μ′(h′) �h′ μ

(
h′)�

Hence, we obtain the result.
If d′′ �h′ d′, then hospital h′ prefers every doctor who is reassigned to it under

matching μ′ to doctor d′. Suppose that μ′′(h′) \ μ(h′) �= ∅. We have that if d′′ �h′ d′,
then for all d ∈ μ′′(h′) \ μ(h′) and d̂ ∈ μ(h′) \ μ′′(h′), d �h′ d̂. Since |μ′(h′)| = qh′ , we
have |μ′′(h′)| = qh′ . This implies that under matching μ′′, the number of doctors re-
assigned to hospital h′ is weakly larger than that of doctors fired by hospital h′, i.e.,
|μ′′(h′) \ μ(h′)| ≥ |μ(h′) \ μ′′(h′)|. Then, from responsive hospital preferences, we have
that μ′′(h′) �h′ μ(h′). If μ′′(h′) \ μ(h′) = ∅, then μ′′(h′) = μ(h′). We conclude that the
assignment of hospital h′ weakly improves under matching μ′′. Thus, every hospital
h ∈ A′′ is weakly better off under matching μ′′ than μ. This implies that coalition A′′
with matching μ′′ blocks matching μ.

To summarize, either A′ has only one doctor (in which case the result is trivially sat-
isfied) or we can construct a coalition A′′ with one fewer doctor than coalition A′ that
blocks matching μ. If no doctor is fired under μ′′, then condition (iv) of Definition 1
implies that coalition A′′ proposes a matching that is a Pareto improvement for doctors.
If A′′ has only one doctor, we also obtain the result because this would be a blocking
pair. Otherwise, we can repeat the same argument as before to obtain a new blocking
coalition A′′′ with one fewer doctor than coalition A′′. Repeating inductively, we ob-
tain a blocking coalition that consists of one doctor and one hospital or that proposes a
matching that is a Pareto improvement for doctors.

Proof of Proposition 3

Suppose that μ̂ defined in (8) is feasible. Given any n ≤ N − 1, suppose that doctors in
{1� � � � � n} are assigned by the DA. Since hospitals have responsive preferences, for every
n ≤N − 1, the number of doctors assigned to each hospital in matching m̃(·;n) is weakly
lower than in matching m̃(·;N−1) (recall that m̃ is defined in (2)). This means that given
any n ≤ N − 1 and assuming that the assignment of doctors d ≤ n is determined by the
DA, it is possible to assign doctors {n + 2� � � � �N} (leaving doctor n + 1 unassigned) in
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such a way that the number of doctors in each hospital is equal to that in matching μ̂.
Furthermore, by assumption, matching μ̂ is feasible. Then, for every n ≤ N − 1, there is
a feasible matching in which doctors d ≤ n are assigned through the DA and doctor n+1
is unassigned. Thus, we conclude that ν̃ = N , i.e., ϕ(�) = DA(� |D�H).

Proof of Proposition 4

Let μ̃ be the matching produced by mechanism ϕ. We first prove that μ̃ is a feasible
matching and then show that there is no coalition blocking it.

Feasibility We first prove that there exists a feasible matching in which doctors
{1� � � � � ν̃} are assigned through the DA. The case ν̃ = 0 is trivial because we assume that
feasible matchings exist (i.e., M �= ∅). If ν̃ > 0, then there exists a feasible matching
μ′ ∈M such that doctors {1� � � � � ν̃−1} are assigned through the DA and doctor ν̃ remains
unassigned (if such a matching μ′ did not exist, then we would have that ν̃ − 1 is the
minimum number satisfying the condition in (5)). We now observe that when doctors
{1� � � � � ν̃} are assigned through the DA, the number of doctors at each hospital is weakly
larger than when doctors {1� � � � � ν̃ − 1} are assigned through the DA, and it is strictly
larger for one hospital. This observation follows from the fact that hospitals have re-
sponsive preferences and that there are no individual rationality constraints. Let h̃ be
the hospital for which the number of doctors strictly increases when doctors {1� � � � � ν̃}
are assigned through the DA.

We now construct a matching μ′′ that is feasible, and doctors {1� � � � � ν̃} are assigned
through the DA. This step ensures that H̃(ν̃ + 1) �= ∅. Let μ′′ be the resulting match-
ing when doctors {1� � � � � ν̃} are assigned through the DA and doctors {ν̃ + 1� � � � �N} are
assigned as follows:

(a) If there exists a doctor d̂ > ν̃ such that μ′(d̂) = h̃, then doctors {ν̃ + 1� � � � �N} are
assigned in the same way as in matching μ′ (i.e., μ′′(d)= μ′(d)), except for doctor
d̂, who remains unassigned (i.e., μ′′(d̂) = ∅). In this case, by construction, μ′′ is
feasible because |μ′′(h)| = |μ′(h)| for all h ∈ H.

(b) If there does not exist a doctor d̂ > ν̃ such that μ′(d̂) = h̃, then doctors {ν̃ +
1� � � � �N} are assigned in the same way as in matching μ′. First, note that the hos-
pital capacities are satisfied because every hospital receives the same number of
doctors as in μ′, except for hospital h̃. However, hospital h̃’s capacity constraint is
also respected because all of its doctors are assigned through the DA. Additionally,
|μ′′(h)| ≥ |μ′(h)| for all h ∈H and μ′ is feasible, so μ′′ is feasible.

Thus, we can construct a matching μ′′ that is feasible, and doctors {1� � � � � ν̃} are as-
signed through the DA. We conclude that H̃(ν̃ + 1) �= ∅. The rest of the proof follows
from the definition of H̃(·).

No blocking coalitions We now prove that there is no blocking coalition. Suppose that
there exists a blocking coalition A proposing matching μ′ that blocks matching μ̃ (im-
plemented by mechanism ϕ).
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Step 1 We show that for every h ∈ H, |μ′(h) ∩ {1� � � � � ν̃}| ≤ |μ̃(h) ∩ {1� � � � � ν̃}|. That is,
every hospital is assigned to fewer doctors from set {1� � � � � ν̃} in matching μ′.

As a shorthand notation, we denote by F the set of hospitals that are at capacity in
matching μ̃ only with doctors in {1� � � � � ν̃}:

F �
{
h ∈H : ∣∣μ̃(h)∩ {1� � � � � ν̃}∣∣ = qh

}
�

That is, F is the subset of hospitals that are at capacity at the end of the first stage of the
mechanism.

Since there are no individual rationality constraints and doctors d ≤ ν̃ are assigned
via the DA, doctors d ≤ ν̃ find every hospital with a vacancy less preferred than their
assignments. In other words, for every doctor d ≤ ν̃ and every hospital h /∈ F , μ̃(d) �d h.
By condition (iv) of Definition 1, if μ′(d) �= μ̃(d), then either μ′(d) �d μ̃(d) or μ′(d) = ∅.
Hence, there is no doctor d ≤ ν̃ who is reassigned to one of the hospitals with vacant
positions. In other words, for every doctor d ≤ ν̃ such that μ′(d) �= μ̃(d), either μ′(d) ∈ F

or μ′(d) = ∅. Therefore, for every h ∈ H, |μ′(h) ∩ {1� � � � � ν̃}| ≤ |μ̃(h) ∩ {1� � � � � ν̃}|. This
concludes Step 1.

Step 2 We now show that for every doctor d > ν̃, μ′(d)= μ̃(d). In other words, for every
doctor d > ν̃, d /∈ A. We begin by proving that μ′(ν̃ + 1) = μ̃(ν̃ + 1) and do so by contra-
diction. That is, we assume that μ′(ν̃ + 1) �= μ̃(ν̃ + 1). By condition (iv) of Definition 1,
if μ′(ν̃ + 1) �= μ̃(ν̃ + 1), then μ′(ν̃ + 1) �ν̃+1 μ̃(ν̃ + 1) or μ′(ν̃ + 1) = ∅, which implies that
μ′(ν̃ + 1) /∈ H̃(ν̃ + 1) or μ′(ν̃ + 1)= ∅. We now reach a contradiction.

Consider matching μ̃′ constructed inductively as

μ̃′(d) =

⎧⎪⎪⎨
⎪⎪⎩
μ̃(d) if d ≤ ν̃

μ′(h) if d > ν̃ and
∣∣μ̃′(h)∩ {1� � � � � d − 1}∣∣ < qh for h= μ′(d)

∅ otherwise�

In other words, μ̃′ is constructed such that doctors d ≤ ν̃ are assigned in the same way
as in matching μ̃ and doctors d > ν̃ are assigned sequentially in the same way as in μ′
as long as this does not violate hospital capacities. By construction, matching μ̃′ re-
spects hospital capacities. In Step 1, we showed that for every h ∈H, |μ′(h)∩{1� � � � � ν̃}| ≤
|μ̃(h)∩ {1� � � � � ν̃}|. So, for every h ∈ H, |μ′(h)∩ {1� � � � � ν̃}| ≤ |μ̃′(h)∩ {1� � � � � ν̃}| as well. Fi-
nally, doctors d > ν̃ are assigned sequentially in the same way as in μ′ as long as doing so
would not violate hospital capacities. Hence, |μ′(h)| ≤ |μ̃′(h)| for every h ∈ H. Further-
more, since μ′ ∈ M and |μ′(h)| ≤ |μ̃′(h)| for every h ∈ H (and μ̃′ respects hospital capac-
ities), we have that μ̃′ ∈ M. We now observe that μ̃′(ν̃ + 1) = μ′(ν̃ + 1) or μ̃′(ν̃ + 1) = ∅,
which implies that μ̃′(ν̃+1) /∈ H̃(ν̃+1) or μ̃′(ν̃+1) =∅. However, H̃(ν̃+1) is constructed
such that if μ̃′(d) = m̃(d; ν̃) for all doctors d ≤ ν̃ and μ̃′(ν̃ + 1) /∈ H̃(ν̃ + 1), then μ̃′ /∈ M.
If μ̃′(ν̃ + 1) = ∅, then from definition of ν̃, we have that μ̃′ /∈ M. Therefore, we reach a
contradiction and conclude that μ′(ν̃ + 1) = μ̃(ν̃ + 1).

Since μ′(ν̃ + 1) = μ̃(ν̃ + 1), we can now repeat the same arguments for doctor ν̃ + 2
and continue inductively to prove that for all d > ν̃, μ′(d) = μ̃(d). This concludes the
second step of the proof.
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The rest of the proof We now note that mechanism ϕ determines the assignment of
doctors d ≤ ν̃ by running the DA without including the rest of the doctors. Since the
DA produces (unconstrained) stable matchings, there is no coalition that satisfies the
first three conditions in Definition 1. Hence, there does not exist a blocking coalition
A ⊆ {1� � � � � ν̃} ∪ H. Then there exists a doctor d ∈ {ν̃ + 1� � � � �N} such that d ∈ A. We
reach a contradiction because in Step 2, we proved that d /∈ A. We conclude that there is
no coalition blocking matching μ̃.

Proof of Proposition 5

Fix an ordering of doctors D = {1� � � � �N}. Suppose that mechanism ϕ is not strategy-
proof for doctors. Then there is a preference profile � and a doctor d∗ ∈ D who can
profitably misreport. Throughout the proof, �̃d∗ refers to the profitable misreport and
�d∗ refers to the true preferences of doctor d∗. By definition, �̃d∗ is a profitable misreport
if

ϕ(�̃d∗��−d∗)
(
d∗) �d∗ ϕ(�D)

(
d∗)�

We denote by �̃ the preference profile when doctor d∗ reports �̃d∗ and others report
their true preferences, i.e.,

�̃� (�̃d∗��−d∗)�

Let ν (resp. ν̃) be the number of doctors assigned in the first stage when the submit-
ted preference profile is � (resp. �̃). We note that the assignments of the doctors in the
first stage do not change with the preferences reported by doctors d > ν, and doctors
d > ν are assigned by the SD, which is strategy-proof. Thus, d∗ ≤ ν. We now show that
d∗ ≤ ν̃. From the definition of ν, it follows that for any n < d∗, there is a feasible match-
ing in which the assignments of doctors {1� � � � � n} are determined via the DA (and doctor
n+ 1 remains unassigned). Thus, such a feasible matching exists for every n < d∗ when
doctor d∗ misreports as well. Thus, ν̃ ≥ d∗.

We now note that ν̃ < ν. By responsive hospital preferences, doctor d∗ is worse off
when the DA is run with more doctors (see Crawford 1991) and she cannot profitably
misreport if the number of doctors assigned by DA is fixed to be ν (see Dubins and Freed-
man 1981). Thus, a profitable misreporting by doctor d∗ implies that ν̃ < ν.

Throughout the proof, to keep the notation compact, we let

DA(�;n)� DA
(� |{1� � � � � n}�H)

�

We now denote by n̂ the maximum number of doctors such that doctor d∗ prefers
the matching produced by the DA when she reports �d∗ to the matching produced by
the DA when she reports �̃d∗ . That is,

n̂ = max
{
n ∈ {1� � � � �N − 1} : DA(�;n)(d∗) �d∗ DA(�̃; ν̃)(d∗) �d∗ DA(�;n+ 1)

(
d∗)}� (9)

The existence of n̂ is proved as follows. Since the DA is strategy-proof and we assume
that �̃d∗ is a profitable misreporting, it follows that

DA(�; ν̃)(d∗) �d∗ DA(�̃; ν̃)(d∗) �d∗ DA(�� ν)
(
d∗)�
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In other words, reporting truthfully yields a more preferred hospital than reporting �̃d∗
when the number of doctors in the first stage is fixed to be ν̃ (see Dubins and Freedman
1981). Since �̃d∗ is a profitable misreport, DA(�̃; ν̃)(d∗) �d∗ DA(�;ν)(d∗). Thus, the
largest number n ∈ {ν̃� � � � � ν − 1} such that DA(�̃; ν̃)(d∗) �d∗ DA(�� n + 1)(d∗) satisfies
the condition in (9), which implies the existence of n̂. Moreover, it is clear that

ν̃ ≤ n̂ < ν�

We now reach a contradiction by proving the following two claims.

Claim 1. There exists h ∈H such that |DA(�; n̂)(h)| < |DA(�̃; ν̃)(h)|.
Claim 2. For all h ∈H, |DA(�; n̂)(h)| ≥ |DA(�̃; ν̃)(h)|.
Proof of Claim 1. We denote by μ̃ the matching implemented by mechanism ϕ under
preference profile �̃. We prove the result by contradiction, so we suppose that ∀h ∈ H,
|DA(�; n̂)(h)| ≥ |DA(�̃; ν̃)(h)|. We reach a contradiction by showing that there does
not exist μ ∈ M such that μ(d) = DA(�; n̂)(d) for all d ≤ n̂ and μ(n̂+ 1) = ∅. Since there
does not exist μ ∈ M such that for all d ≤ n̂, μ(d) = DA(�; n̂)(h) and μ(n̂ + 1) = ∅, this
implies that ν ≤ n̂. Therefore, we reach a contradiction and conclude that ∃h ∈ H such
that |DA(�; n̂)(h)| < |DA(�̃; ν̃)(h)|.

Suppose that there exists μ ∈M such that μ(d)= DA(�; n̂)(d) for all d ≤ n̂ and μ(n̂+
1) = ∅. Let μ′ be defined as follows: (a) for all d ≤ ν̃, μ′(d) = μ̃(d), (b) for d = ν̃ + 1,
μ′(d)= ∅, (c) for all doctors d > n̂+1, μ′(d) = μ(d), and (d) all doctors d ∈ {ν̃+2� � � � � n̂+
1} are assigned such that |μ′(h)∩ {1� � � � � n̂+ 1}| ≥ |μ(h)∩ {1� � � � � n̂+ 1}| for all h ∈H, and
μ′ respects hospital capacities.16 In other words, μ′ is the same as μ̃ for doctors d ≤ ν̃,
doctor ν̃ + 1 remains unassigned (as opposed to doctor n̂ + 1), doctors d > n̂ + 1 are
assigned in the same way as in μ, and doctors d ∈ {ν̃+2� � � � � n̂+1} are assigned such that
all hospitals have weakly more doctors from subset {1� � � � � n̂+ 1} under μ′ than under μ.

We show that doctors in {ν̃ + 2� � � � � n̂ + 1} can be assigned in a way that matching
μ′ satisfies condition (d) stated above. Since ∀h ∈H, |DA(�; n̂)(h)| ≥ |DA(�̃; ν̃)(h)| and
doctor n̂+ 1 remains unassigned under μ, it follows that∑

h∈H

∣∣μ(h)∩ {1� � � � � n̂+ 1}∣∣ − ∣∣μ̃(h)∩ {1� � � � � ν̃}∣∣ ≤ n̂− ν̃�

In other words, doctors {ν̃ + 2� � � � � n̂ + 1} are sufficient to fill in the necessary positions
such that |μ′(h) ∩ {1� � � � � n̂+ 1}| ≥ |μ(h) ∩ {1� � � � � n̂+ 1}| for all h ∈ H. Moreover, we can
do the assignment of these doctors such that hospital capacities are respected as well,
because matching μ respects hospital capacities.

We note that μ′ ∈ M. This follows from the fact that μ ∈ M and qh ≥ |μ′(h)| ≥ |μ(h)|
for every h ∈ H. Moreover, μ′(ν̃ + 1) = ∅ and μ′(d) = μ̃(d) for all d ≤ ν̃. However, the
definition of ν̃ implies that there does not exist μ′ ∈ M such that for all d ≤ ν̃, μ′(d) =
μ̃(d) and μ′(ν̃ + 1) = ∅. Hence, we reach a contradiction. We conclude that there does
not exist μ ∈M such that μ(d)= DA(�; n̂)(d) for all d ≤ n̂ and μ(n̂+ 1) =∅.

16We note that when n̂= ν̃, {ν̃+ 2� � � � � n̂+ 1} = ∅. However, in this case, we have ∀h ∈ H, |DA(�; n̂)(h)| =
|DA(�̃; ν̃)(h)| and, thus, |μ′(h)∩ {1� � � � � n̂+ 1}| = |μ(h)∩ {1� � � � � n̂+ 1}| for all h ∈ H.
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Proof of Claim 2. Let h̃= DA(�̃; ν̃)(d∗) and �̃′
d∗ be the preference that is equal to �̃d∗

truncated at hospital h̃. In other words, h̃ is the hospital assigned to doctor d∗ under
preference profile �̃, and every hospital less preferred than h̃ becomes unacceptable
under �̃′

d∗ . We also denote �̃′ = (�̃′
d∗��−d∗). Let �′

d∗ be doctor d∗’s true preference
truncated at hospital DA(�; n̂)(d∗). That is, every hospital less preferred than DA(�
; n̂)(d∗) under �d∗ becomes unacceptable under �′

d∗ . We denote �′= (�′
d∗��−d∗).

We now note that for every h ∈H,∣∣DA(�; n̂)(h)∣∣ = ∣∣DA
(�′; n̂)

(h)
∣∣ = ∣∣DA

(�′; n̂+ 1
)
(h)

∣∣� (10)

The first equality follows from the fact that �′
d∗ is equal to �d∗ truncated at DA(�; n̂)(d∗),

so the truncation will not change the matching produced by the DA. To see why the sec-
ond equality holds, note that DA(�; n̂)(d∗) �= DA(�; n̂+ 1)(d∗) (which follows from the
construction of n̂), and matching DA(�′; n̂+ 1) can be obtained by considering match-
ing DA(�′; n̂) and adding doctor n̂+1 (see McVitie and Wilson 1971). Adding doctor n̂+1
to matching DA(�′; n̂) creates a rejection chain that ends when d∗ is rejected by hos-
pital DA(�′; n̂)(d) and remains unassigned because she finds (according to �′

d∗ ) every
remaining hospital unacceptable. This proves that the total number of doctors assigned
in matching DA(�′; n̂ + 1) is the same as in matching DA(�′; n̂). By responsive hospi-
tal preferences, for every h ∈ H, |DA(�′; n̂ + 1)(h)| ≥ |DA(�′; n̂)(h)|; thus, the second
equality follows.

We now prove that for every h ∈H,∣∣DA
(�′; n̂+ 1

)
(h)

∣∣ = ∣∣DA
(�̃′; n̂+ 1

)
(h)

∣∣� (11)

To prove (11), we first show that DA(�̃′; n̂+ 1)(d∗) = {∅}. By construction of n̂,

DA(�̃; ν̃)(d∗) �d∗ DA(�; n̂+ 1)
(
d∗)�

Therefore, hospital h̃ is not available to d∗ when there are n̂+ 1 doctors in the first stage
of the mechanism and she reports �d∗ . Since DA is strategy-proof for markets with a
fixed number of doctors, hospital h̃ is not available to doctor d∗ as well when she re-
ports �̃′

d∗ and there are n̂ + 1 doctors, and, thus, she remains unassigned. This proves
that DA(�̃′; n̂ + 1)(d∗) = ∅. Recall that we previously showed that DA(�′; n̂ + 1)(d∗) =
∅. Thus, the total number of doctors assigned in both matchings DA(�′; n̂ + 1) and
DA(�̃′� n̂+ 1) is n̂.

Last, we note that matchings DA(�′; {1� � � � � n̂+ 1} \ {d∗}) and DA(�̃′; {1� � � � � n̂+ 1} \
{d∗}) are the same and the total number of doctors assigned is n̂. When we add doctor
d∗ to both of these markets, the number of doctors assigned to each hospital weakly
increases by responsive hospital preferences. Since the total number of doctors as-
signed in both markets remains at n̂ when we add doctor d∗, we conclude that the num-
ber of doctors assigned to each hospital remains the same, i.e., |DA(�′; n̂ + 1)(h)| =
|DA(�̃′; n̂+ 1)(h)| for every h ∈H. This concludes the proof of (11).

We now note that for every h ∈H,∣∣DA
(�̃′; n̂+ 1

)
(h)

∣∣ ≥ ∣∣DA
(�̃′; ν̃)(h)∣∣ = ∣∣DA(�̃; ν̃)(h)∣∣� (12)
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The first inequality follows from the fact that ν̃ < n̂ + 1 and hospital preferences are re-
sponsive. The last equality follows from the fact that doctor d∗ is assigned to h̃ in match-
ing DA(�̃; ν̃) (by the definition of h̃). In matching DA(�̃′; ν̃), she will also be assigned to
h̃ because doctor d∗’s preference for hospitals preferred less than h̃ does not affect the
outcome of the DA. Thus, matchings DA(�̃′; ν̃) and DA(�̃′; ν̃) are the same.

By combining (10), (11), and (12), we obtain the desired result.

Claim 1 and Claim 2 are clearly a contradiction, which implies that doctor d∗ does
not have profitable misreporting. This concludes the proof for the strategy-proofness of
mechanism ϕ.
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