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Equilibrium in misspecified Markov decision processes
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We provide an equilibrium framework for modeling the behavior of an agent who
holds a simplified view of a dynamic optimization problem. The agent faces a
Markov decision process, where a transition probability function determines the
evolution of a state variable as a function of the previous state and the agent’s ac-
tion. The agent is uncertain about the true transition function and has a prior
over a set of possible transition functions; this set reflects the agent’s (possibly
simplified) view of her environment and may not contain the true function. We
define an equilibrium concept and provide conditions under which it character-
izes steady-state behavior when the agent updates her beliefs using Bayes’ rule.
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1. Introduction

Early interest in studying the behavior of agents who hold misspecified views of the
world (e.g., Arrow and Green 1973, Kirman 1975, Sobel 1984, Kagel and Levin 1986,
Nyarko 1991, Sargent 1999) has recently been renewed by the work of Piccione and
Rubinstein (2003), Jehiel (2005), Eyster and Rabin (2005), Jehiel and Koessler (2008),
Esponda (2008), Esponda and Pouzo (2016, 2017, 2019), Eyster and Piccione (2013),
Spiegler (2013, 2016, 2017), Fudenberg et al. (2017), Heidhues et al. (2018, 2021) and Eliaz
and Spiegler (2020), among others. There are least two reasons for this interest. First, it
is natural for agents to be uncertain about their complex environment and to represent
this uncertainty with parsimonious parametric models that are likely to be misspeci-
fied. Second, endowing agents with misspecified models can explain how certain biases
in behavior arise endogenously as a function of the primitives.

The previously cited papers focus on problems that are intrinsically “static” in the
sense that they can be viewed as repetitions of static problems where the only link be-
tween periods arises because the agent is learning the parameters of the model. Yet dy-
namic decision problems, where an agent chooses an action that affects a state variable
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(other than a belief), are ubiquitous in economics. The goal of this paper is to provide a
tractable framework to study dynamic settings where the agent has a possibly misspec-
ified model.

We study a Markov decision process where a single agent chooses actions at discrete
time intervals. A transition probability function describes how the agent’s action and the
current state affects the next period’s state. The current payoff is a function of states and
actions. As is well known, this problem can be represented recursively via the Bellman
equation

V (s) = max
x∈�(s)

π(s�x)+ δ

∫
S

V
(
s′

)
Q

(
ds′ | s�x)

� (1)

where s is the current state, x is the agent’s choice variable from a feasible set �(s), π is
the payoff function, Q is the transition probability function, and δ is the discount factor.

In realistic environments, the agent often has to deal with two difficult issues: a po-
tentially large state space (i.e., the curse of dimensionality) and uncertainty about the
transition probability function. For example, (1) may represent a dynamic savings prob-
lem where the agent decides every period what fraction x of her wealth to save. The
state variable s is a vector that includes wealth as well as any variable that helps predict
returns to savings, such as previous interest rates and other macroeconomic indicators.
The function Q represents the return function, and, naturally, the agent may not even
be sure which indicators are relevant in predicting returns. In such a complex environ-
ment, it is reasonable to expect the agent to simplify the problem and focus only on
certain variables by solving a version of (1) where Q is replaced by a “simpler” transition
function.

The main objective of this paper is to provide a framework for modeling the behav-
ior of an agent who holds a simplified view of the dynamic optimization problem rep-
resented by (1). Our approach is to postulate that the agent is endowed with a family
of transition probability functions, {Qθ : θ ∈ �}, indexed by a parameter space �. This
family captures both the uncertainty of the agent as well as the way in which she sim-
plifies the problem. In particular, the agent’s model is misspecified whenever the true
model Q is not in {Qθ : θ ∈ �}. For example, the agent may incorrectly believe that cer-
tain macroeconomic indicators are irrelevant for predicting returns, but she may still be
uncertain as to the predictive value of the remaining indicators. Each period, the agent
observes the current state, chooses an action, and then updates her belief using Bayes’
rule when the new state is realized.

Our main contribution is to introduce an equilibrium concept to describe the steady
states of the agent’s learning dynamics when the agent is a Bayesian learner with a mis-
specified model. To characterize the agent’s steady-state behavior, the modeler simply
solves problem (1), except that the true transition function Q is replaced by the agent’s
perception of this transition, Q̄μ∗ = ∫

�Qθμ
∗(dθ), where μ∗ is interpreted as the agent’s

equilibrium belief over all models in �. As any other equilibrium object, the equilib-
rium belief μ∗ is determined endogenously. In addition to gaining tractability, we focus
on equilibrium behavior because it is standard in economics and allows us to relate our
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findings to previous work, and also because we are interested in the long-run implica-
tions of model misspecification and not necessarily on mistakes that arise from limited
opportunities to learn.

We say that a probability distribution over state–action pairs is a Berk–Nash equilib-
rium if it satisfies two requirements. First, there exists a belief over � such that, for any
state–action pair in the support of the equilibrium distribution, the agent’s action given
the state is optimal given the belief, and, moreover, the belief puts probability 1 on the
set of parameter values that are “closest” to the true transition probability function over
state–action pairs. The notion of closest is formalized by a weighted version of Kullback–
Leibler divergence, where the weights in turn depend on the equilibrium distribution.
Second, the agent’s equilibrium behavior gives rise to a particular Markov process over
states and actions, and we require the equilibrium distribution to be a stationary distri-
bution of this process.

We then illustrate how our equilibrium concept can help analyze environments that
seemed previously intractable using three examples. First, we consider the problem of
an agent facing a dynamic effort task who fails to take into account that his performance
today is affected by his performance yesterday. Second, we consider a stochastic growth
model where the agent incorrectly assumes that productivity and preference shocks are
independent. Finally, we consider a production problem with Markov shocks and un-
certain cost, where the decision maker has an incorrect parametric specification of the
cost function.

We conclude by investigating one possible foundation for our equilibrium concept.
Consider the case where the agent has a prior belief μ over � that is updated using Bayes’
rule based on the current state, the agent’s decision, and the state observed next pe-
riod, μ′ = B(s�x� s′�μ), where B denotes the Bayesian operator and μ′ is the posterior
belief. One convenience of Bayesian updating is that we can represent this problem re-
cursively via the following Bellman equation, where the state variable now also includes
the agent’s belief:

W (s�μ) = max
x∈�(s)

π(s�x)+ δ

∫ ∫
W

(
s′�μ′)Qθ

(
ds′ | s�x)

μ(dθ)� (2)

where μ′ = B(s�x� s′�μ) is the updated belief.
In this environment, a natural question is whether the limiting distribution of state–

action pairs corresponds to a Berk–Nash equilibrium. In the static case, where there
is no state variable s, the answer has been shown to be yes under fairly mild assump-
tions (see Esponda and Pouzo 2016). A remarkable feature of this result, which is shared
by other equilibrium foundations, such as the foundation for Nash and self-confirming
equilibrium (e.g., Fudenberg and Kreps 1993, 1995), is that the modeler does not need to
tackle the problem of belief updating so as to characterize limiting behavior, but rather
applies a fixed equilibrium belief.

In the dynamic environments that we study in this paper, the answer to our ques-
tion is more nuanced. We show that the answer is positive if one of three conditions is
satisfied. The first condition is that the environment is subjectively static, in the sense
that the the agent believes (possibly incorrectly) that the current state does not affect
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the future state. The second condition is that the environment is identified, a condition
that essentially requires that the agent’s belief is uniquely determined irrespective of the
agent’s action.1 The third condition is that all states are visited with positive probability
in the steady state. At least one of these three conditions is typically satisfied in appli-
cations. We show by example that if neither of these conditions is satisfied, then steady
states cannot generally be characterized by an equilibrium approach where the agent
holds a fixed, equilibrium belief, and this is true even if the agent’s model is correctly
specified. In contrast, the modeler is forced to consider the more complicated problem
with belief updating, as represented by (2). As we explain in Section 5, the difference in
results between the static and the dynamic settings arises from the fact that updating a
belief can never decrease the agent’s continuation value in the static case (because of a
nonnegative value of experimentation), but it may decrease it when both the belief and
another state variable change.

A few other people have also studied the problem of misspecified learning by eco-
nomic agents outside the traditional static setting where one agent repeatedly faces the
same problem every period. Blume and Easley (1998, Section 5) study a competitive
economy. Bohren and Hauser (2017) and Frick et al. (2020b) study social learning en-
vironments. Rabin and Vayanos (2010) and Ortoleva and Snowberg (2015) study envi-
ronments with misspecification in nonindependent and nonidentically distributed set-
tings where own actions do not affect beliefs (i.e., passive learning). He (2018) studies
misspecification in an optimal stopping problem. Molavi (2019) considers a recursive
general-equilibrium framework that nests a class of macroeconomics models in which
agents learn with misspecified models.2 With the exception of some stochastic growth
problems (e.g., Koulovatianos et al. 2009), there are very few applications of the types of
misspecified, active learning Markovian decision environments we consider in this pa-
per. By proposing a tractable equilibrium approach, we hope to stimulate applications
in this area.

More generally, the paper is related to the literature that provides learning founda-
tions for equilibrium concepts, such as Nash or self-confirming equilibrium (see Fu-
denberg and Levine 1998 for a survey). In contrast to this literature, we consider Markov
decision problems and allow for misspecified models. Particular types of misspecifi-
cations have been studied in extensive form games. Jéhiel (1995) considers the class
of repeated alternating-move games and assumes that players forecast only a limited
number of time periods into the future; see Jéhiel (1998) for a learning foundation.3 We
share the feature that the learning process takes place within the play of the game and
that beliefs are those that provide the best fit given the data. As with much of this lit-
erature, our learning foundation for the equilibrium concept does not guarantee that

1Identification rules out situations where beliefs are incorrect due to lack of experimentation, which
is a hallmark of the bandit (e.g., Rothschild 1974, McLennan 1984, Easley and Kiefer 1988) and the self-
confirming equilibrium (e.g., Battigalli 1987, Fudenberg and Levine 1993, Dekel et al. 2004, Fershtman and
Pakes 2012) literatures.

2In macroeconomics, there are several models where agents make forecasts using statistical models that
are misspecified (e.g., Evans and Honkapohja 2001, Chapter 13, Sargent 1999, Chapter 6).

3Jehiel and Samet (2007) consider the general class of extensive form games with perfect information
and assume that players simplify the game by partitioning the nodes into similarity classes.
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behavior converges to the equilibrium, but only that if it converges, it must converge to
an equilibrium; see Section 5.2 for further discussion.

Finally, a particular class of examples that fit our framework involve a typical coarse-
ness misspecification or a type of correlation neglect that has been studied in previ-
ous frameworks, such as analogy-based expectation equilibrium (Jehiel 2005, Jehiel and
Koessler 2008) and Bayesian networks (Spiegler 2016, 2017).

The framework and equilibrium notion are presented in Sections 2 and 3. In Sec-
tion 4, we work through several examples, and in Section 5 we provide a foundation for
the equilibrium notion.

2. Markov decision processes

We begin by describing the environment faced by the agent.

Definition 1. A Markov decision process (MDP) is a tuple 〈S�X� q0�Q�π�δ〉, where

• S is a nonempty and finite set of states

• X is a nonempty and finite set of actions

• q0 ∈ �(S) is a probability distribution on the initial state

• Q : S×X→ �(S) is a transition probability function

• π : S×X× S → R is a per-period payoff function

• δ ∈ [0�1) is a discount factor.

We sometimes use MDP(Q) to denote an MDP with transition probability function
Q and exclude the remaining primitives.

The timing is as follows. At the beginning of each period t = 0�1�2� 	 	 	 , the agent
observes state st ∈ S and chooses an action xt ∈X. (It is straightforward to incorporate a
feasible set of actions that depends on the state.) Then a new state st+1 is drawn accord-
ing to the probability distribution Q(· | st� xt) and the agent receives payoff π(st�xt� st+1)

in period t. The initial state s0 is drawn according to the probability distribution q0. As
usual, the objective of the agent is to choose a feasible policy rule to maximize expected
discounted utility,

∑∞
t=0 δ

tπ(st� xt� st+1).
By the principle of optimality, the agent’s problem can be cast recursively as

V (s) = max
x∈X

∫
S

{
π

(
s�x� s′

) + δV
(
s′

)}
Q

(
ds′|s�x)

� (3)

where V : S →R is the (unique) solution to the Bellman equation (3).

Definition 2. An action x is optimal given s in the MDP(Q) if

x ∈ arg max
x̂∈X

∫
S

{
π

(
s� x̂� s′

) + δV
(
s′

)}
Q

(
ds′|s� x̂)
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3. Subjective Markov decision processes

Our main objective is to study the behavior of an agent who faces an MDP but is un-
certain about the transition probability function. We begin by introducing a new object
to model the problem with uncertainty, which we call the subjective Markov decision
process (SMDP). We then define the notion of a Berk–Nash equilibrium of an SMDP.

3.1 Setup

Definition 3. A subjective Markov decision process (SMDP) is an MDP, 〈S�X� q0�Q�

π�δ〉, and a nonempty family of transition probability functions, Q� = {Qθ : θ ∈ �},
where each transition probability function Qθ : S×X → �(S) is indexed by a parameter
value θ ∈�.

We interpret the set Q� as the different transition probability functions (or models
of the world) that the agent considers possible. We sometimes use SMDP(Q�Q�) to
denote an SMDP with true transition probability function Q and a family of transition
probability functions Q�.

Definition 4. An SMDP(Q�Q�) is misspecified if Q /∈ Q�; otherwise, it is correctly spec-
ified. It is subjectively static if π and all elements in Q� do not depend on the current
state. It is static if, in addition to being subjectively static, the true transition probability
function Q does not depend on the current state.

An SMDP describes the agent’s subjective perception of the environment. In particu-
lar, the agent has a correct perception of the state space, the action space, and the payoff
function, but she is uncertain about the transition probability function. The static case
was previously studied by Esponda and Pouzo (2016). An SMDP is subjectively static if
the agent believes it is static, even though it might not actually be a static environment.
This property plays an important role in one of our main results.

Definition 5. A regular subjective Markov decision process (regular-SMDP) is an SMDP
that satisfies the following conditions:

• The set � is a compact subset of an Euclidean space.

• The function Qθ(s
′ | s�x) is continuous as a function of θ ∈ � for all (s�x� s′) ∈ S ×

X× S.

• There is a dense set �̂ ⊆ � such that, for all θ ∈ �̂, Qθ(s
′ | s�x) > 0 for all (s�x� s′) ∈

S×X× S such that Q(s′ | s�x) > 0.

The first two conditions in Definition 5 place parametric and continuity assump-
tions on the subjective models.4 The last condition plays two roles. First, it rules out

4Without the assumption of a finite-dimensional parameter space, Bayesian updating need not converge
to the truth for most priors and parameter values even in correctly specified statistical settings (Freedman
1963, Diaconis and Freedman 1986). Note that the parametric assumption is only a restriction if the set of
states or actions is nonfinite, a case we consider in some of the examples.
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a stark form of misspecification by guaranteeing that there exists at least one param-
eter value that can rationalize every feasible observation. Second, it implies that the
correspondence of parameters that are a closest fit to the true model, to be defined in
the next section, is upper hemicontinuous, which, in particular, implies the existence of
equilibrium.

3.2 Equilibrium

The goal of this section is to ne the notion of Berk–Nash equilibrium of an SMDP. The
goal of the solution concept is to predict a distribution over outcomes (meaning state–
action pairs), m ∈ �(S × X), as a function of the primitives of the environment. In Sec-
tion 5, we interpret an equilibrium distribution over state–action pairs as the limiting
frequency of state–action pairs in an environment where the agent is Bayesian and up-
dates her belief about the transition probability function in each period.

Notation. For a given probability distribution over state–action pairs, m ∈ �(S×X), we
denote the marginal over S by mS, the marginal over X by mX, and the two conditional
probability distributions by mX|S and mS|X. We sometimes abuse notation and eliminate
the subscripts when referring to marginals and conditional distributions if there is no
room for confusion.

The next definition is used to place constraints on the agent’s equilibrium belief μ ∈
�(�) when the equilibrium distribution over state–action pairs is m.

Definition 6. The weighted Kullback–Leibler divergence (wKLD) is a mapping
KQ : �(S×X)×� → R̄+ such that for any m ∈ �(S×X) and θ ∈�,5

KQ(m�θ) =
∑

(s�x)∈S×X

EQ(·|s�x)
[

ln
(

Q
(
S′|s�x)

Qθ
(
S′|s�x))]

m(s�x)	

The set of closest parameter values given m ∈ �(S×X) is the set

�Q(m) ≡ arg min
θ∈�

KQ(m�θ)	

The set �Q(m) can be interpreted as the set of parameter values that constitute the
best fit with the true transition probability function Q when outcomes are drawn from
the distribution m.

Lemma 1. (i) For every m ∈ �(S × X) and θ ∈ �, KQ(m�θ) ≥ 0, with equality holding if
and only if Qθ(· | s�x) = Q(· | s�x) for all (s�x) such that m(s�x) > 0. (ii) For any regular
SMDP(Q�Q�), m �→ �Q(m) is nonempty, compact-valued, and upper hemicontinuous
(uhc).

5We follow the standard convention that ln(0) · 0 = 0.
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Most proofs are provided in the Appendix.
We now define equilibrium.

Definition 7. A probability distribution over state–action pairs, m ∈ �(S×X), is a Berk–
Nash equilibrium of the SMDP(Q�Q�) if there exists a belief μ ∈ �(�) such that (i) and
(ii) below hold.

(i) Optimality. For all (s�x) ∈ S × X such that m(s�x) > 0, x is optimal given s in the
MDP(Q̄μ), where Q̄μ = ∫

�Qθμ(dθ).

(ii) Belief Restriction. We have μ ∈ �(�Q(m)).

Moreover, the following condition holds:

(iii) Stationarity. For all s′ ∈ S, mS(s
′) = ∑

(s�x)∈S×X
Q(s′ | s�x)m(s�x).

Condition (i) in the definition of Berk–Nash equilibrium requires actions to be op-
timal in the MDP where the transition probability function is

∫
�Qθμ(dθ). Condition

(ii) requires that the agent puts positive probability only on the set of closest parame-
ter values given m, �Q(m). Finally, to interpret condition (iii), note that, for states that
occur with positive probability, we can replace m(s�x) with mX|S(x | s)mS(s) in the right-
hand side of the expression. In particular, we can think of the agent as following the
strategy of choosing actions according to the probability distribution mX|S(· | s) ∈ �(X)

in state s. Thus, the equilibrium transition probability function over states is given by
s �→ Q(·|s�x)mX|S(x | s), and condition (iii) simply says that mS is an invariant distribu-
tion for this equilibrium transition probability function. In the special case of a static en-
vironment, our definition collapses to the single-agent definition in Esponda and Pouzo
(2016).

The next result establishes the existence of equilibrium in any regular SMDP.

Theorem 1. For any regular SMDP, a Berk–Nash equilibrium exists.

3.3 Identification

Identification plays an important role in the results that follow. In statistics, identifica-
tion refers to the capacity to infer a unique data generating process from the observed,
exogenous data. In our environment, the notion of identification is a bit more nuanced,
because the data observed by the agent are endogenous, in the sense that they depend
on the agent’s actions. Thus, following Esponda and Pouzo (2016), it is natural to con-
sider two notions of identification. These notions distinguish between outcomes on and
off the equilibrium path.

Definition 8. An SMDP is weakly identified given m ∈ �(S×X) if θ�θ′ ∈�Q(m) implies
that Qθ(· | s�x) = Qθ′(· | s�x) for all (s�x) ∈ S × X such that m(s�x) > 0; if the condition
is satisfied for all (s�x) ∈ S × X, we say that the SMDP is identified given m. An SMDP is
(weakly) identified if it is (weakly) identified for all m ∈ �(S×X).
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Weak identification implies that, for any equilibrium distribution m, the agent has a
unique belief along the equilibrium path, i.e., for states and actions that occur with posi-
tive probability. But there could be many beliefs consistent with what happens for those
state–action pairs that have zero probability. Thus, weak identification allows one to
capture bandit situations, where the agent settles for an action, but may have incorrect
beliefs about the benefits she would have obtained with a different action. Weak identi-
fication is a fairly weak condition and its failure is often associated with knife-edge cases
(see, for example, the coin example by Berk (1966)).

Identification strengthens the definition of weak identification by requiring that be-
liefs are also unique off the equilibrium path. Under identification, it is as if the agent
can eventually learn (possibly incorrectly) the primitives of the environment irrespective
of her choice of actions.

Proposition 1. Consider a correctly specified and identified SMDP with corresponding
MDP(Q). If m is a Berk–Nash equilibrium of the SMDP, then, for all (s�x) in the support
of m, x is optimal given s in the MDP(Q).

Proof. Suppose m is a Berk–Nash equilibrium. Then there exists μ ∈ �(�Q(m)) such
that, for all (s�x) in the support of m, x is optimal given s. Because the SMDP is
correctly specified, there exists θ∗ such that Qθ∗ = Q and, therefore, by Lemma 1(i),
θ∗ ∈ �(�Q(m)). Then, by identification, any θ̂ ∈ �Q(m) satisfies Qθ̂ = Qθ∗ = Q, implying
that, for all (s�x) in the support of m, x is also optimal given s in the MDP(Q).

Proposition 1 says that in environments where the agent is uncertain about the tran-
sition probability function but her subjective model is both correctly specified and iden-
tified, then Berk–Nash equilibrium corresponds to the solution of the MDP under cor-
rect beliefs about the transition probability function.

4. Examples

Applications in the literature on agents with misspecified models have for the most part
concentrated on static environments. We hope that the equilibrium concept developed
in this paper encourages researchers to explore misspecification in the types of dynamic
environments that are central to many economic applications. For this purpose, we pick
three standard dynamic environments, and, for each case, introduce a novel misspeci-
fication and show how the equilibrium concept can be used to derive concrete predic-
tions. Overall, we hope to convey that Berk–Nash equilibrium can help expand the scope
of the classical dynamic programming approach in economics.

Some of the examples in this section assume, for convenience, a nonfinite set of ac-
tions and states. While the equilibrium concept extends in a straightforward manner to
nonfinite settings, the proofs of the results we provide in the next section rely on finite-
ness assumptions; we leave the extension to nonfinite settings for further work.
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4.1 Dynamic effort task

We use the following stylized version of a dynamic effort task to illustrate the steps re-
quired to find a Berk–Nash equilibrium.

MDP. In each period t, the agent chooses whether to put high or low effort in a task,
xt ∈ X = {H�L}, where H represents high effort and L represents low effort. The task
then fails or succeeds, st+1 ∈ S = {0�1}, where 0 denotes failure and 1 denotes success.
The payoff is π(L� st+1) = st+1 under low effort and π(H� st+1) = st+1 − c under high ef-
fort, where c is the cost of high effort. The probability of a success is 1 if the agent puts
high effort: Q(1 | s�H) = 1 for all s ∈ {0�1}. The probability of success if the agent puts
low effort depends on the state: The probability of success is q0 ≡ Q(1 | 0�L) if the last
task resulted in a failure and is q1 ≡ Q(1 | 1�L) if it resulted in a success. This simple
setup captures several problems where the agent’s success depends not only on her ac-
tion, but also on a previous success or failure. For example, a firm that sells a product
today may increase its chances of selling a product tomorrow due to word-of-mouth ad-
vertising. Alternatively, an agent who succeeds on a task today may feel motivated and
find it easier to succeed on the task tomorrow for the same level of effort.

For concreteness, we assume that

0 < q0 < 1 − c < q1 < 1	 (4)

In particular, the probability of a success under low effort is higher if the past task was
a success compared to a failure. A myopic agent who knows the primitives will find it
optimal to choose H in state s = 0 (because q0, the expected payoff from L, is lower than
1 − c, the payoff from H) and choose L in state s = 1 (because 1 − c < q1). It is also
relatively easy to see that this strategy is optimal irrespective of the discount factor of
the agent.

SMDP. The agent believes, incorrectly, that the effort task is not dynamic. Formally,
Q� = {Qθ : θ ∈�}, where � = [0�1], and, for all θ ∈�, Qθ(1 | s�H)= 1 and Qθ(1 | s�L)= θ

for all s ∈ {0�1}. In particular, the agent knows that the probability of success is 1 if she
puts high effort, but the agent does not know the probability of success if she puts low
effort. Moreover, the agent believes that the probability of success under low effort is
independent of the current state. For example, the firm might be unaware that word-
of-mouth advertising is important or the agent may fail to take into account how perfor-
mance today affects her motivation tomorrow. This is an example of a subjectively static
SMDP because the contemporaneous payoff function π and the perceived transitions
do not depend on the current state.

Equilibrium. For simplicity, we restrict attention to equilibria satisfying the natural
refinement that the agent’s action does not depend on the state: mL ≡ mX|S(L | 0) =
mX|S(L | 1) and 1 −mL =mX|S(H | 0) =mX|S(H | 1). This is a natural refinement because
the agent does not think the current state matters, but it potentially leaves out mixed-
strategy equilibria where the agent is indifferent between the two actions and for some
reason decides to use a tie-breaking rule that depends on the state.
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Stationarity. Condition (iii) in the definition of Berk–Nash equilibrium requires

mS(1) =
∑

(s�x)∈S×X

Q(1 | s�x)mX|S(x | s)mS(s)

= (1 −mL)+mL

(
q0mS(0)+ q1mS(1)

)
	

Solving this equation for mS(1), we obtain the stationary probability of s = 1 as a func-
tion of the agent’s behavior, mL:

mS(1) = 1 −mL(1 − q0)

1 −mL(q1 − q0)
	 (5)

Beliefs. The wKLD is given by

KQ(m�θ)=
∑

(s�x)∈S×X

mX|S(x | s)mS(s)
∑
s′∈S

Q
(
s′ | s�x)

ln
Q

(
s′ | s�x)

Qθ
(
s′ | s�x)

= −mL

{
mS(0)

(
q0 lnθ+ (1 − q0) ln(1 − θ)

)
+mS(1)

(
q1 lnθ+ (1 − q1) ln(1 − θ)

)} + Const�

where Const is a term that does not depend on θ.
If mL > 0, then

θQ(m) = (
1 −mS(1)

)
q0 +mS(1)q1 (6)

is the unique parameter value that minimizes the wKLD function. Intuitively, (6) is a
weighted average of the probabilities that low effort yields a success in each state, q0 and
q1, where the weights are given by the stationary probabilities of each state. If, however,
mL = 0, the wKLD is constant in the parameter and any θ ∈� minimizes wKLD.

We make a second refinement and restrict attention to equilibria where (6) is the
unique minimizer even if L is chosen with probability 0: mL = 0. One rationale is that
the agent has a small but vanishing probability of trembling and, consistent with the
first restriction, this probability does not depend on the state.

Optimality. Because the agent believes that the problem is static, the optimal strat-
egy is to choose the action that maximizes the current period’s payoff. Let

D(θ) ≡ θ− (1 − c) (7)

denote the perceived expected payoff difference of choosing L versus H under the belief
that the parameter value is θ with probability 1. If D(θ) > 0, then L is the unique opti-
mal strategy: mL = 1. If, alternatively, D(θ) < 0, then H is the unique optimal strategy:
mL = 0. Finally, if D(θ) = 0, there is no restriction on mL.

Equilibrium. By (5) and assumption (4), mS(1) is continuous and decreasing as a
function of mL. Intuitively, the higher is the probability of low effort, the lower is the
stationary probability of being in the state s = 1, where the task is successful. Also by (6)
and assumption (4), θQ(m) is continuous and increasing as a function of mS(1). Thus,
we can combine (5) and (6) to produce a mapping that, in a slight abuse of notation,
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we denote by mL �→ θQ(mL) that is continuous and decreasing: As mL increases, the
probability of state s = 1, mS(1), decreases, which in turn yields a decrease in θQ.

Finally, we take the mapping mL �→ θQ(mL) together with (7) to form the mapping
that, in a slight abuse of notation, we denote by mL �→D(mL), where D(mL)= θQ(mL)−
(1 − c) is the agent’s perceived expected payoff difference of choosing L versus H under
the belief that minimizes KLD when the agent chooses no effort with probability mL.
Simple algebra (combining (5), (6), and (7)) shows that

D(mL) = (
q1 −mL(q1 − q0)

)
/
(
1 −mL(q1 − q0)

) − (1 − c)	 (8)

The mapping mL �→ D(mL) is decreasing because, as explained earlier, mL �→
θQ(mL) is decreasing. To find the equilibria, it is convenient first to compute D(0) and
D(1). Simple algebra yields D(0) = q1 − (1 − c) > 0. Intuitively, if mL = 0, then the agent
is spending all the time in state s = 1, and so a small tremble resulting in action L oc-
curs in a state where the probability of success is q1. Thus, a small tremble leads the
agent to believe that the probability of success under L is q1. Since q1 > 1 − c, the agent
would then like to deviate and choose L with positive probability. As mL increases, how-
ever, state s = 0 becomes more likely and the agent becomes more pessimistic about the
probability of a success under L.

The most pessimistic belief for the agent is at mL = 1. Simple algebra yields D(1) =
q0/(1 − (q1 − q0))− (1 − c). If the primitives (q0� c�q1) are such that D(1) ≥ 0, then there
is a unique equilibrium where m∗

L = 1. If, however, D(1) < 0, then there is a unique
equilibrium and it given by the mixed action m∗

L ∈ (0�1) that solves D(m∗
L) = 0. Using

the expression in (8), it is easy to see that the mixed equilibrium action is given by m∗
L =

(q1 − (1 − c))/(c(q1 − q0)).
Figure 1 shows an example where the equilibrium action is mixed. In addition to

demonstrating the mechanics underlying the equilibrium concept, this example illus-
trates the importance of allowing the agent to take mixed actions, a feature that is not
needed in standard dynamic optimization settings.

4.2 Stochastic growth with correlated shocks

Stochastic growth models have been central to studying optimal intertemporal alloca-
tion of capital and consumption since the work of Brock and Mirman (1972). Freixas
(1981) and Koulovatianos et al. (2009) assume that agents learn the distribution over
productivity shocks with correctly specified models. We follow Hall (1997) and subse-
quent literature in incorporating shocks to both preferences and productivity. We show
that there is underinvestment in equilibrium whenever shocks are positively correlated
but agents fail to account for this correlation.

MDP. In each period t, an agent observes st = (yt� zt) ∈ S = R+ × {L�H}, where yt
is wealth and zt is an independent and identically distributed (i.i.d.) utility shock, and
chooses how much wealth to save, xt ∈ [0� yt] ⊆ X = R+, consuming the rest. Current
period utility is π(yt� zt� xt) = zt ln(yt − xt). Wealth the next period, yt+1, is given by

ln yt+1 = α∗ +β∗ lnxt + εt�
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Figure 1. Equilibrium of the dynamic effort environment.

where εt = γ∗zt + ξt is an unobserved i.i.d. productivity shock, ξt ∼ N(0�1), and 0 <

δβ∗ < 1, where δ ∈ [0�1) is the discount factor. The utility shock can be interpreted as a
shock to home or nonmarket production technologies (e.g., Bencivenga 1992). We as-
sume that γ∗ > 0, so that the utility and productivity shocks are positively correlated.
For example, technological advances increase productivity of both market and nonmar-
ket activities. Let 0 < L < H and let q ∈ (0�1) be the probability that the shock is H.
Formally, Q(y ′� z′ | y� z�x) is such that y ′ and z′ are independent, y ′ has a log-normal dis-
tribution with mean α∗ +β∗ lnx+ γ∗z and unit variance, and z′ =H with probability q.

SMDP. The agent believes that

ln yt+1 = α+β lnxt + εt� (9)

where εt ∼ N(0�1) and is independent of the utility shock. For simplicity, we assume that
the agent knows the distribution of the utility shock and is uncertain about θ = (α�β) ∈
� = R

2. The subjective transition probability function Qθ(y
′� z′ | y� z�x) is such that y ′

and z′ are independent, y ′ has a log-normal distribution with mean α + β lnx and unit
variance, and z′ = H with probability q. The agent has a misspecified model because she
believes that the productivity and utility shocks are independent, when in fact γ∗ �= 0.

Equilibrium. Optimality. The Bellman equation for the agent is

V (y� z)= max
0≤x≤y

z ln(y − x)+ δE
[
V

(
Y ′�Z′) | x]

�

and it is straightforward to verify that the optimal strategy is to invest a fraction of wealth
that depends on the utility shock and the unknown parameter β, i.e., x = Az(β) · y,
where AL(β) = δβ((1−q)L+qH)

(1−δβ(1−q))H+δβ(1−q)L and AH(β) = δβ((1−q)L+qH)
δβqH+(1−δβq)L < AL(β), provided

that βδ < 1, which will be true in equilibrium. For the agent who knows the primi-
tives, the optimal strategy is to invest fractions AL(β

∗) and AH(β∗) in the low and high
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state, respectively. Since β �→Az(β) is increasing, the equilibrium strategy of a misspec-
ified agent can be compared to the optimal strategy by comparing the equilibrium belief
about β with the true β∗.

Beliefs and stationarity. Let A = (AL�AH), with AH < AL, represent a strategy,
where Az is the proportion of wealth invested given utility shock z. Because the agent
believes that εt is independent of the utility shock and normally distributed, the min-
imizers of the wKLD function are the estimands of a linear regression model, which
are unique, and, therefore, this SMDP is identified provided the agent invests more
than zero with positive probability.6 In particular, for a strategy represented by A =
(AL�AH), the parameter value β̂(A) that minimizes wKLD is

β̂(A) = Cov
(
lnY ′� lnX

)
Var(lnX)

= Cov
(
lnY ′� ln(AZY)

)
Var

(
ln(AZY)

)
= β∗ + γ∗ Cov(Z� lnAZ)

Var(lnAZ)+ Var(lnY)
�

where Cov and Var are taken with respect to the (true) distribution of (Y�Z). Since AH <

AL, then Cov(Z� lnAZ) < 0. Therefore, the assumption that γ∗ > 0 implies that the bias
β̂(A)−β∗ is negative and its magnitude depends on the strategy A. Intuitively, the agent
invests a larger fraction of wealth when z is low, which happens to be during times when
ε is also low.

Equilibrium. We establish that there exists at least one equilibrium with pos-
itive investment by showing that there is at least one fixed point of the mapping
β �→ β̂(AL(β)�AH(β)). This mapping is continuous and satisfies β̂(AL(0)�AH(0)) =
β̂(AL(1/δ)�AH(1/δ)) = β∗ and β̂(AL(β)�AH(β)) < β∗ for all β ∈ (0�1/δ). Then, since
δβ∗ < 1, there is at least one fixed point βM , and any fixed point satisfies βM ∈ (0�β∗).
Thus, the misspecified agent underinvests in equilibrium compared to the optimal strat-
egy.7 The conclusion is reversed if γ∗ < 0, illustrating how the framework provides pre-
dictions about beliefs and behavior that depend on the primitives (as opposed to simply
postulating that the agent is over- or underconfident about productivity).

4.3 Production with uncertain cost

Finally, we consider an agent who produces with uncertain costs. This example illus-
trates two features of the framework. First, unlike the previous examples, the agent

6From (9) and Gaussianity of the residuals, the wKLD is proportional to the expected (under the true
measure) square of the residual in expression (9). Thus, the minimizers of the wKLD coincide with the
values of (α�β) that provide the best fit under this loss when the data are distributed according to the true
probability measure.

7It is also an equilibrium not to invest, A = (0�0), supported by the belief β∗ = 0, which cannot be dis-
confirmed since investment does not take place. But this equilibrium is not robust to experimentation (e.g.,
it does not survive a refinement where the belief when not investing is required to be the limit of the belief
as the fraction invested goes to zero).
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knows the dynamics governing the state variable. Instead, the agent has uncertainty
about the per-period payoff. The example shows how to incorporate this kind of un-
certainty into the framework. Second, in contrast to the previous examples, where the
agent directly omitted a variable or neglected a correlation, we consider a case where the
agent incorporates all relevant variables into her model but uses an incorrect functional
form.

MDP. Each period t, an agent observes a productivity shock z ∈ Z = {z1� 	 	 	 � zK} ⊂
R+ and chooses an input x ∈ X ⊂ R+. As a result, the agent obtains a payoff of z lnx −
c(x) in that period, where c(x) = φ(x)ε is the cost of choosing x, and ε is a random,
independent cost shock distributed according to the distribution p∗, which has support
equal to [0�∞). Let Q(z′ | z) be the probability that tomorrow’s productivity shock is z′

given the current shock z. We assume that there is a unique stationary distribution over
these productivity shocks, denoted by q = (q1� 	 	 	 � qK).

SMDP. The agent knows all the primitives except the cost function c(·). The agent
believes that cθ(x) = xε and ε∼ pθ, where pθ has support equal to [0�∞). For concrete-
ness, we assume that ε follows an exponential distribution, pθ(ε) = (1/θ)e−(1/θ)ε. In
particular, the agent’s model is misspecified if either cost is nonlinear, i.e., φ(·) is non-
linear, or the true distribution over cost shocks, p∗, does not belong to the exponential
family.

The framework presented in this paper assumes that the agent knows the per-period
payoff function and may be uncertain about the transition function. To fit this example
into the framework, we simply let the cost c be part of the state as follows:

V (z� c) = max
x

∫ (
zf (x)− c′ + δV

(
z′� c′))Q(

dz′ | z)QC
(
dc′ | x)

	

The variable c′ is the unknown cost of production at the time the agent has to choose x.
Its distribution is given by QC(dc′ | x), which is the distribution of c′ = c(x) as described
above. The agent knows Q, but does not know QC . In particular, the agent has a para-
metric family of transitions, where QC

θ (dc
′ | x) is the distribution of c′ = cθ(x).

Equilibrium. Optimality. Suppose the agent has a degenerate belief on some θ. Be-
cause the transition of c′ does not depend on c and the transition of z′ does not depend
on x, the agent’s optimization problem reduces to the simple static optimization prob-
lem maxx z lnx − xEθ[ε]. Noting that Eθ[ε] = θ, it follows that the optimal input choice
in state zj is

xj = zj/θ (10)

for j ∈ {1� 	 	 	 �K}.
Stationarity. The stationarity condition implies that the marginal of m over Z is equal

to the stationary distribution over z, which is given by q = (q1� 	 	 	 � qK). Therefore, the
stationary distribution over X, denoted by mX, is given by mX(xj) = qj , where xj satisfies
(10), and it is equal to zero otherwise.
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Beliefs. The part of the wKLD function that depends on θ is given by∑
x

EQ(·|x)
[
logQC

θ

(
c′ | x)]

mX(x) =
∑
j

EQ(·|xj)
[
logpθ

(
c′/xj

)]
qj

=
∑
j

EQ(·|xj)
[
−1
θ

(
c′/xj

) − lnθ
]
qj

= −1
θ
Ep∗ [ε]

∑
j

(
φ(xj)/xj

)
qj − lnθ	

There is a unique parameter value θ that maximizes this expression, and so this SMDP
is identified. This unique minimizer is given by

θ = Ep∗ [ε]
∑
j

(
φ(xj)/xj

)
qj	 (11)

The right-hand side of this expression is a weighted average of the expected average
costs. This expression depends on the assumption that ε follows an exponential dis-
tribution, and it would differ for different families of distributions. For example, for the
case of the log-normal distribution, the average cost should be replaced by the logarithm
of the average cost.

Equilibrium. To solve for equilibrium, we first combine (10) and (11) to obtain

θ∗ = Ep∗ [ε]
∑
j

(
θ∗φ

(
zj/θ

∗)/zj)qj	 (12)

A solution θ∗ to (12) corresponds to an equilibrium belief. To find the equilibrium action
as a function of the shock, we simply replace the equilibrium belief θ∗ into the optimal-
ity condition (10). To illustrate, suppose that the true cost function is quadratic, i.e.,
φ(x) = x2. Then there is a unique solution to (12), and, therefore, a unique equilibrium
belief θ∗ = (Ep∗ [ε]Eq[z])1/2 and action

x∗
j = zj/

(
Ep∗ [ε]Eq[z]

)1/2
	 (13)

We can contrast this expression with the optimal action of an agent who knows the cor-
rect primitives and solves maxx z lnx− x2Ep∗ [ε], thus obtaining the optimal action

x
opt
j = (

zj/
(
2Ep∗ [ε]))1/2

	 (14)

The optimal action depends on the productivity shock, while the optimal action for
the misspecified agent depends on both the shock and the average shock. The reason is
that the agent incorrectly believes the marginal cost is constant and learns this marginal
cost by averaging over the marginal costs experienced in equilibrium, and the distribu-
tion over these experienced costs depends on the stationary distribution over all shocks.
Comparing (13) and (14), we also observe that the misspecified agent chooses actions
lower than optimal if zj ≤ Eq[z]/2 and higher than optimal if zj ≥ Eq[z]/2. Intuitively,
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the agent overestimates the marginal cost of low actions, and these low actions are taken
when the shock is low. Similarly, the agent underestimates the marginal cost of high ac-
tions, and these actions are taken when the shock is high.

5. Equilibrium foundation

Following the tradition of providing learning foundations for equilibrium concepts, in
this section we study the problem of an agent who faces a regular SMDP, starts with a
prior μ0 ∈ �(�) over the set of models of the world �, and updates the prior in each
period as a result of observing the current state, her action, and the new state. Our main
objective is to understand under which conditions the agent’s steady-state behavior can
be represented by a Berk–Nash equilibrium.

5.1 Bayesian learning in SMDPs

Consider an agent who faces a regular SMDP and has a prior μ0 ∈ �(�), which is as-
sumed to have full support. The prior is updated in each period using Bayes’ rule, where
μ′ = B(s�x� s′�μ) is the posterior for any prior μ, current state s, action x, and real-
ized future state s′, and for any (s�x� s′) ∈ S × X × S, the Bayesian operator B(s�x� s′� ·) :
Ds�x�s′ → �(�) is defined as follows: For all A ⊆ � Borel, B(s�x� s′�μ)(A) = ∫

AQθ(s
′ |

s�x)μ(dθ)/
∫
�Qθ(s

′ | s�x)μ(dθ) for any μ ∈ Ds�x�s′ , where Ds�x�s′ = {p ∈ �(�) : ∫
�Qθ(s

′ |
s�x)p(dθ) > 0}.

By the principle of optimality, the agent’s problem can be cast recursively as

W (s�μ) = max
x∈X

∫
S

{
π

(
s�x� s′

) + δW
(
s′�μ′)}Q̄μ

(
ds′|s�x)

� (15)

where Q̄μ = ∫
�Qθμ(dθ), μ′ = B(s�x� s′�μ) is the next period’s belief, updated using

Bayes’ rule, and W : S×�(�) → R is the (unique) solution to the Bellman equation (15).
Compared to the case where the agent knows the transition probability function, the
agent’s belief about � is now part of the state space.

Definition 9. A policy function is a function f : S × �(�) → �(X), where f (x | s�μ)
denotes the probability that the agent chooses x if she is in state s and her belief is μ.
A policy function f is optimal if, for all s ∈ S, μ ∈ �(�), and x ∈X such that f (x | s�μ) > 0,

x ∈ arg max
x̂∈X

∫
S

{
π

(
s� x̂� s′

) + δW
(
s′�B

(
s� x̂� s′�μ

))}
Q̄μ

(
ds′|s� x̂)

	

Let h= (s0�x0� 	 	 	 � st� xt� 	 	 	) represent an infinite history of state–action pairs and let
H ≡ (S×X)∞ represent the space of infinite histories. For every t, let μt : H → �(�) de-
note the agent’s belief at time t, defined recursively by μt(h) = B(st−1�xt−1� st�μt−1(h))

whenever B is the Bayesian operator and arbitrary otherwise. Henceforth, we drop the
history h from the notation.
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In each period t, there is a state st and a belief μt , and the agent chooses a (possibly
mixed) action f (· | st�μt) ∈ �(X).8 After an action xt is realized, the state st+1 is drawn
from the true transition probability. The agent observes the realized action and the new
state and updates her belief to μt+1 using Bayes’ rule. The primitives of the problem
(including the initial distribution over states, q0, and the prior, μ0 ∈ �(�)) and a policy
function f induce a probability distribution over H that is defined in a standard way; let
P f denote this probability distribution over H.

We now define outcomes as random variables. For every t, we define the frequency
of state–action pairs at time t to be a function mt : H → �(S ×X) such that for all h and
(s�x) ∈ S×X,

mt(h)(s�x) = 1
t

t∑
τ=0

1(s�x)(sτ�xτ)

is the frequency of times that the outcome (s�x) occurs up to time t. One reasonable
criterion to claim that the agent has reached a steady state is that the time average of
outcomes converges.

The next result establishes that if the frequency of state–action pairs converges to m,
then beliefs become increasingly concentrated on �Q(m).

Lemma 2. Let Q denote the true transition probability function and let f denote the policy
function. Suppose that (mt)t converges to m for all histories in a set H ⊆ H such that
Pf (H) > 0. Then, for all open sets U ⊇�Q(m), limt→∞μt(U) = 1 Pf -a.s. in H.

The proof adapts the proof of Lemma 2 by Esponda and Pouzo (2016) to dynamic
environments, and the reader is referred to that paper for an intuitive explanation of the
result.9

The following result provides a learning foundation for the notion of Berk–Nash
equilibrium of an SMDP.

Theorem 2. Let f be an optimal policy function. Suppose that (mt)t converges to m with
Pf -positive probability and that the SMDP is weakly identified given m. Suppose also that
one of the following conditions holds:

(i) The SMDP is subjectively static.

(ii) The SMDP is identified given m.

Then m is a Berk–Nash equilibrium of the SMDP.

Theorem 2 provides a learning justification for Berk–Nash equilibrium. The main
idea behind the proof is as follows. For each state–action pair (s�x) in the support of m,

8In particular, it would be straightforward to introduce payoff perturbations to our environment so that
the agent’s behavior at time t would be given by a nondegenerate distribution over actions.

9The seminal result that provides asymptotic characterization of Bayesian beliefs when the data generat-
ing process is exogenous (i.e., absent any actions) is due to Berk (1966); see also Bunke and Milhaud (1998)
and Shalizi (2009) for extensions.
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there exists a subsequence of state–action pairs and beliefs such that (s�x) is played
along the entire subsequence. Moreover, we can find a sub-subsequence where the
belief converges; let μs�x ∈ �(�) denote this limiting belief under which (s�x) realizes.
Since (mt)t converges to m, we can apply Lemma 2 to conclude that μs�x ∈ �(�Q(m)).
Thus, by optimality of f and the upper hemicontinuity of the correspondence of opti-
mal actions, it follows that for any state s and any action x in the support of m(· | s), x is
optimal in the dynamic optimization problem with current belief μs�x, i.e.,

x ∈ arg max
x̂∈X

∫
S

{
π

(
s� x̂� s′

) + δW
(
s′�μ′)}Q̄μs�x

(
ds′|s� x̂)

	 (16)

Consider first the case where the SMDP is subjectively static. In this case, the value
function W depends only on the agent’s belief and, by slightly abusing notation, (16)
implies that

EQ̄μs�x (·|x)
[
π

(
x�S′) + δW

(
B

(
x�S′�μs�x

))]
≥EQ̄μs�x (·|y)

[
π

(
y�S′) + δW

(
B

(
y�S′�μs�x

))]
(17)

for any other action y. By weak identification, B(x� s′�μs�x) = μs�x for all s′ that occur
with positive probability according to μs�x, and so the left-hand side of (17) becomes
EQ̄μs�x (·|x)[π(x�S′)+δW (μs�x))]. Next, we add and subtract δW (μs�x) from the right-hand

side of (17) to obtain

EQ̄μs�x (·|y)
[
π

(
y�S′) + δW (μs�x)

] + δEQ̄μs�x (·|y)
[
W

(
B

(
y�S′�μs�x

)) −W (μs�x)
]
	 (18)

The second term in (18) is what is known in the literature as the value of experimen-
tation: It is the difference in net present value between starting the next period with
updated belief B(y�S′�μs�x), which depends on the action y and the random realization
of S′, and starting the period with the current belief μs�x. By the Martingale property
of Bayesian updating and the convexity of the value function, it follows that the value
of experimentation is nonnegative; formally, EQ̄μs�x (·|y)[W (B(y�S′�μs�x)) − W (μs�x)] ≥
W (EQ̄μs�x (·|y)[B(y�S′�μs�x)]) − W (μs�x) = 0. It then follows that EQ̄μs�x (·|x)[π(x�S′)] ≥
EQ̄μs�x (·|y)[π(y�S′)]. Thus, for any (s�x) in the support of m, there exists a belief μs�x such

that x is optimal when the belief is fixed at μs�x. Finally, weak identification implies that
all the beliefs in {μs�x : m(s�x) > 0} yield the same probability distribution over the next
period’s state conditional on an action in the support of mX. Therefore, we can replace
all these beliefs with a single belief that belongs to �(�Q(m)), so that conditions (i) and
(ii) in the definition of Berk–Nash equilibrium (Definition 7) are satisfied for the special
case of subjectively static SMDPs.

More generally, we can prove the same result by assuming identification. If the
SMDP is identified, we can essentially think of �(�Q(m)) as being a degenerate belief
on a specific parameter value, which in turn implies two properties. First, μs�x does
not depend on s, x; denote it by μ. Second, since the belief μ is degenerate, it forever
remains fixed, and so (16) implies that x is optimal given s in the MDP(Q̄μ), where the
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belief is fixed at μ. Thus, once again, conditions (i) and (ii) in the definition of Berk–Nash
equilibrium are satisfied.

Finally, the reason why condition (iii) in the definition of Berk–Nash equilibrium
holds can be described as follows. If the agent were using strategy mt to make de-
cisions, then the probability distribution over states next period would be given by
Q[mt](·) ≡ ∑

(s�x)∈S×X
Q(· | s�x)mt(s�x). Since mt converges to m and the operator Q[·] is

continuous, the asymptotic evolution of the state is given by the probability distribution
Q[m](·). Since mt converges, then it must converge to a stationary distribution of the
Markov process over states defined by this operator.

In the remainder of this section, we investigate the extent to which we can extend
the previous arguments to cases where identification fails or the SMDP is not subjec-
tively static. We begin by noting that the definition of steady state used in Section 5.1
(the convergence of time averages) is different from the definition used elsewhere. In
previous work (e.g., Fudenberg and Kreps 1993, Esponda and Pouzo 2016), it is common
to define a steady state as a situation where the agent’s intended behavior converges. In
Theorem 2, all we need is that the time average converges, but because of the dynamic
nature of the environment, we need the convergence of the frequency of state–action
pairs, not just of the actions. In particular, this type of convergence does not guaran-
tee that the agent’s intended behavior converges, but only that its frequency does. We
now show that if we strengthen the notion of steady state to require that both intended
behavior and time averages converge, then a steady state corresponds to a Berk–Nash
equilibrium provided that all states are visited with positive probability.10

We define a strategy σ : S → �(X) to be a mapping between states and probability
distribution over actions. Let � denote the set of all strategies. For a fixed policy func-
tion f and for every t, let σt : H → � denote the (time-t intended) strategy of the agent,
defined by setting

σt(h) = f
(· | ·�μt(h)

) ∈ �	

Theorem 3. Let f be an optimal policy function. Suppose that (σt)t converges and (mt)t
converges to m with Pf -positive probability. Suppose also that the SMDP is weakly iden-
tified given m and that m(s) > 0 for all s ∈ S. Then m is a Berk–Nash equilibrium of the
SMDP.

The main idea behind the proof is as follows. We can always find a subsequence
of posteriors that converges to some μ∗ and, by Lemma 2 and the fact that the agent’s
intended strategy (σt)t converges to some σ , it follows that σ must solve the dynamic
optimization problem for beliefs converging to μ∗ ∈ �(�Q(m)). A key difference with
the proof of Theorem 3 is that we can use the fact that the agent’s intended behavior
converges to conclude that the same belief μ∗ justifies all of the agent’s limiting actions.
Next, it is not difficult to show that the limiting behavior of the agent in state s must
correspond to the conditional distribution of the limiting time average, i.e., σ(· | s) =
m(· | s). Since all states are visited with positive probability according to m, it follows

10We are unable to show whether this result is also true when intended behavior does not converge.
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that there exists a belief μ∗ such that for every (s�x) with m(s�x) > 0, x is optimal in the
dynamic optimization problem with current belief μ∗. The final step is to show that this
type of optimality implies optimality in the dynamic optimization problem where the
belief is fixed at μ∗.

For this final step, we rely on the assumption that all states are visited with positive
probability; the argument is as follows. For each s̃, let xs̃ denote an action that is played
in the limit when the state is s̃, i.e., m(s̃�xs̃) > 0. Consider the strategy where the agent
plays xs̃ in each state s̃. By weak identification, the belief never changes and the value
of following this strategy does not depend on the specific belief in �(�Q(m)), since, by
weak identification, all parameter values in �Q(m) give rise to the same distribution over
the next period’s states. By the previous optimality argument, we know that action xs is
optimal in state s given belief μ∗. This means that xs maximizes the sum of today’s payoff
and the continuation value, where the continuation value is the value of playing xs̃ in
each state s̃ in the future. Consider an alternative action y. This alternative action yields
some payoff today and then a continuation value where it is possible that the agent’s
belief changes. This possibly new belief, call it μ′, must still have support in �Q(m),
since the original belief μ∗ has support in �Q(m). Consider the continuation value of
this action y with a new belief μ′ and a new state. The agent can still, from that moment
on, follow the strategy of playing xs̃ in each state s̃ in the future. Thus, the continuation
value from playing y is at least the same or higher as the continuation value from xs .
Therefore, the fact that xs is optimal when the nonnegative value of information from
playing a different action y is taken into account implies that xs must also be optimal
when the belief is fixed at μ∗ and there is no further value from learning.

The argument in the proof of Theorem 3 relies on the assumption that all states are
visited with positive probability. This assumption allows us to construct a strategy (to
play xs̃ in each state s̃) that provides a lower bound to the payoff that the agent could
obtain from choosing an action that could potentially lead to an updated belief. We
conclude with an example that illustrates that this assumption is important. In particu-
lar, the following example shows a case where only one state is reached in steady state,
and even though the agent’s behavior and the time average converge, this steady state is
not a Berk–Nash equilibrium.

Example. There are five states: sI , s0, s1, sk, and sopt. In states s0 and s1, the agent
gets utility 0 and 1, respectively, and then returns to the initial state sI . In state sk, the
agent gets utility k and then returns to the initial state sI . In the initial state sI , the agent
has four possible actions: A, B, S, and O. Irrespective of her action, she gets utility
2/3 in state sI . If she chooses A, she goes to state s0 with probability θ and to s1 with
probability 1 − θ, while if she chooses B, she goes to s0 with probability 1 − θ and to s1

with probability θ. If she chooses S, she remains in state sI . In other words, A and B

are risky alternatives that yield utility 0 or 1 tomorrow, and S is a safe action that yields
2/3 tomorrow. Moreover, the agent eventually returns to sI . Formally, the payoffs are
π(sI�x) = 2/3 and π(sj�x) = j for all x, and the transitions are Qθ(s0 | sI�A) = Qθ(s1 |
sI�B) = θ, Qθ(s1 | sI�A) = Qθ(s0 | sI�B) = Qθ(s0 | sI�O) = 1 − θ, and Qθ(s

I | sj� x) = 1 for
all j ∈ {0�1�k} and all x.



738 Esponda and Pouzo Theoretical Economics 16 (2021)

The agent can also take action O in state sI , which potentially generates the option to
make a risky but more profitable investment that yields k in the future. Taking action O

in state sI leads the agent to state sopt with probability θ and to state s0 with probability
1 − θ. In state sopt, the agent gets a utility cost (loses) 1/3 irrespective of her action. If
she chooses to make a risky investment (R, which we can associate with actions A, B,
and O so as to have the same set of actions for all states), with probability 1 − θ she goes
to state sk and, therefore, gets utility k, and with probability θ, she goes to state s0 and,
therefore, gets utility 0. If she chooses the safe option (S), then she goes to state sI next
period. In any case, she always ends up returning to state sI . Formally, the payoffs are
π(sopt�x) = −1/3 for all x, and the transitions are Qθ(s

opt | sI�O) = Qθ(s0 | sopt�R) = θ,
Qθ(sk | sopt�R) = 1 − θ, and Qθ(s

I | sopt� S) = 1. Figure 2 depicts all the states, actions,
and transitions for this example.

Suppose that the agent knows all the primitives except the value of θ. Moreover,
suppose that the true value of θ is either 0 or 1, and that the SMDP is correctly specified,
i.e., � = {0�1}, thus, highlighting that the new issue present in dynamic environments
is not due to misspecification. We also assume that the agent is patient, but not too
patient, δ ∈ (0�

√
1/3), and that the return from the risky investment in state sopt is high

enough relative to the rate of impatience, k > 2 + 4/δ.
This problem is simple enough that we can directly characterize the steady state and

then check if it is a Berk–Nash equilibrium. Consider a (Bayesian) agent who starts with

Figure 2. Example: Steady state is not a Berk–Nash equilibrium. States are depicted with circles
and actions are depicted with squares. For each state, dashed lines indicate the actions that can
be taken in the state. Arrows indicate transition probabilities given each state–action pair.
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a prior μ = Pr(θ = 1) ∈ (0�1) in state sI . If she chooses action O, then, beginning next
period (recall that all actions yield the same current payoff of 2/3 in state sI ), she will get

μW
(
sopt�1

) + (1 −μ)W (s0�0)	 (19)

Crucially, if action O takes her to state sopt, then she learns that θ = 1, so that μ′ = 1. In
this case, it is optimal to take the safe action and return to sI next period, since taking the
risky action would lead to a zero payoff with probability 1 and a delay of one period in
getting back to sI . Therefore, W (sopt�1) = −1/3 + δW (sI�1). Also, if she ends up in state
s0, she gets 0 and then goes on to state sI , i.e., W (s0�0) = 0 + δW (sI�0). Moreover, if the
agent is in state sI and has certainty about the state, i.e., μ′ = 0 or 1, then it is optimal for
her to choose either action A or B, respectively, and her payoff alternates between 2/3
and 1 forever, i.e., W (sI�1) = W (sI�0) =: W ∗ = (2/3 + δ)/(1 − δ2). Therefore, expression
(19) becomes

−(1/3)μ+ δW ∗	 (20)

Consider instead the case where the agent chooses action A in state sI . Then next
period she gets

(1 −μ)W (s1�0)+μW (s0�1)� (21)

where W (s1�0) = 1 + δW (sI�0) = 1 + δW ∗ and W (s0�1) = 0 + δW (sI�1) = δW ∗. Thus,
expression (21) becomes

(1 −μ)+ δW ∗	 (22)

Similarly, if the agent chooses action B, then next period she will get

μ+ δW ∗	 (23)

Finally, choosing action S in state sI keeps the agent in state sI and results in no
information about θ being revealed. If S is optimal at sI , then it is optimal to choose
it in every period, in which case the agent earns a payoff of 2/3 in each period and her
discounted payoff beginning next period is

2/3
1 − δ

	 (24)

Comparing (20) and (22), it follows that action A is better than action O for any belief
μ, implying that the agent never picks O in state sI . Intuitively, the agent realizes that
if she picks O and ends up in state sopt, then she will infer that the risky alternative will
deliver a zero payoff for sure and so there is no point in picking O to begin with. Also, by
comparing (22), (23), and (24), it follows that if the agent starts in state sI with a prior μ
that satisfies

1/3

1 − δ2 ≤ μ ≤ 2/3 − δ2

1 − δ2 �

then it is optimal for her to choose S and stay at sI forever. (Such a set of priors is
nonempty because δ ∈ (0�

√
1/3)). Therefore, repeatedly choosing S and staying at sI is a



740 Esponda and Pouzo Theoretical Economics 16 (2021)

steady-state outcome. Note, however, that Theorem 2 does not apply to this steady state
because (i) the SMDP is not subjectively static, and (ii) identification does not hold, be-
cause the agent learns nothing about θ by playing S at sI . Theorem 3 also does not apply
here, because in this steady-state outcome, only state sI is visited. In fact, we now show
that this steady-state outcome cannot arise in a Berk–Nash equilibrium, suggesting a
limitation of equilibrium analysis in dynamic settings.

To analyze Berk–Nash equilibria, let μ denote the agent’s equilibrium belief and con-
sider the agent’s choice in state sI . Let us first find the set of μs such that action S is pre-
ferred to both A and B, ignoring action O. If the agent takes action S, then, beginning
next period (recall that all actions yield the same current payoff), she goes back to sI and
obtains

W
(
sI�μ

)
	

Action A, alternatively, yields

μW (s0�μ)+ (1 −μ)W (s1�μ)� (25)

where, importantly, the agent does not update her equilibrium belief upon moving to
state s0 or s1, as the definition of equilibrium requires optimization with respect to
a single, fixed equilibrium belief. As before, we have W (s0�μ) = 0 + δW (sI�μ) and
W (s1�μ)= 1 + δW (sI�μ). Therefore, expression (25) becomes

(1 −μ)+ δW
(
sI�μ

)
	 (26)

Similarly, action B yields

μ+ δW
(
sI�μ

)
	 (27)

Finally, note that if S is optimal, then the agent stays always in sI and earns 2/3 in every
period; therefore, W (sI�μ) = (2/3)/(1 − δ). It then follows from (25), (26), and (27) that
S can be optimal only if 1/3 ≤ μ ≤ 2/3. We show, however, that under any such μ, the
agent prefers action O to action S. Therefore, S cannot arise as a Berk–Nash equilibrium
outcome. To establish this claim, let us assume that S is optimal. A deviation to action
O yields

μW
(
sopt�μ

) + (1 −μ)W (s0�μ)� (28)

where W (sopt�μ) = −1/3 + δ(μW (s0�μ) + (1 − μ)W (sk�μ)). Note that we use the fact
that, in deviating to O, the agent would pick the risky alternative in state sopt; otherwise,
it could never be optimal to chooseO. By also using the fact that W (sj�μ)= j+δW (sI�μ)

for j ∈ {0�k}, expression (28) becomes

−(1/3)μ+ δμ(1 −μ)k+ (
μδ+ (1 −μ)

)
δW

(
sI�μ

)
	 (29)

Using the fact that W (sI�μ) = (2/3)/(1 − δ) if S is optimal, we can compare W (sI�μ)

with (29) and use algebra to conclude that it is strictly lower (hence, the agent prefers to
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deviate from S to O) for all values of μ between 1/3 and 2/3 given the assumption that
k> 2 + 4/δ.11 ♦

5.2 Discussion

We conclude with additional remarks about the above results.

Guidance for using the equilibrium concept Theorems 2 and 3 suggest that the equi-
librium approach is valid in SMDPs that are not subjectively static provided that either
identification holds or all states are visited with positive probability (the latter is the
case, for example, if every state can be reached from any other state, irrespective of the
agent’s actions). Alternatively, if either of these conditions fails, the modeler can add
small perturbations that either guarantee that identification holds (as we did, for exam-
ple, in Section 4.1) or small perturbations that guarantee that all states can be reached
with positive probability. Of course, there are environments where these perturbations
are not justifiable, such as in bandit problems, where the only way to learn about the
consequence of an action is to take that action. To the extent to which those environ-
ments are not subjectively static, then our results suggest that the equilibrium approach
is of limited use in those cases.

Convergence Theorems 2 and 3 do not imply that behavior necessarily stabilizes in an
SMDP. In fact, it is well known from the theory of Markov chains that even if no decisions
affect the relevant transitions, outcomes need not stabilize without further assumptions;
this is also true, for example, in the related context of learning to play Nash equilibrium
in games.12 Thus, the question of convergence remains open at this level of generality.
Recently there has been progress tackling convergence, but all in the context of static
environments where the only relevant state variable is the agent’s belief (Fudenberg et al.
2017, Heidhues et al. 2018, 2021, Esponda et al. 2019, Frick et al. 2020a, and Fudenberg
et al. 2020).

Mixed strategies Theorem 3 also suggests that we can interpret a mixed strategy as the
limit of the frequency of actions. In particular, even if the agent’s action may not settle
down, the frequency of actions may; see Esponda et al. (2019) for a formalization of this
idea. Alternatively, we can interpret a mixed strategy following the approach of Fuden-
berg and Kreps (1993), who show that adding small payoff perturbations à la Harsanyi
(1973) can provide a learning foundation for mixed-strategy Nash equilibria: Agents do
not actually mix; instead, every period their payoffs are subject to small perturbations,
and what we call the mixed strategy is simply the probability distribution generated by
playing pure strategies and integrating over the payoff perturbations. We also followed
this approach in the paper that introduced Berk–Nash equilibrium in static contexts

11The term W (sI�μ) is less than expression (29) whenever 2/3 + μ((2/3)δ + 1/3) − δμ(1 − μ)k < 0. For
1/3 ≤ μ ≤ 2/3, the left-hand side of this last expression is largest when μ = 2/3, and replacing this value in
the expression, we obtain k> 2 + 4/δ.

12For example, in the game-theory literature, general global convergence results have been obtained only
in special classes of games, e.g., zero-sum, potential, and supermodular games (Hofbauer and Sandholm
2002).
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(Esponda and Pouzo 2016). The same idea applies here at the expense of additional
notational burden.13

Appendix

A.1 Proving Lemma 1

The proof of Lemma 1 relies on the following claim.

Claim A. (i) For any regular SMDP, there exists θ∗ ∈ � and K < ∞ such that, for all
m ∈ �(S × X), KQ(m�θ∗) ≤ K. (ii) Fix any θ ∈ � and a sequence (mn)n in �(S × X)

such that Qθ(s
′ | s�x) > 0 for all (s′� s�x) ∈ S × S × X such that Q(s′ | s�x) > 0 and

limn→∞ mn = m. Then limn→∞ KQ(mn�θ) = KQ(m�θ). (iii) KQ is (jointly) lower semi-
continuous: Fix any (mn)n and (θn)n such that limn→∞ mn = m and limn→∞ θn = θ. Then
lim infn→∞ KQ(mn�θn) ≥KQ(m�θ). (iv) For all m ∈ �(S×X), θ �→KQ(m�θ) is continuous
at every θ ∈� such that KQ(m�θ) < ∞.

Proof. The proof is very similar to the proof of Claim A in Esponda and Pouzo
(2016), so we present only a sketch. Part (i) follows from the third condition in
the definition of regular SMDP. Part (ii) follows standard continuity arguments. For
part (iii), observe that KQ(mn�θn) = ∑

s�x EQ(·|s�x)[log Q(S′|s�x)
Qθn(S

′|s�x) ]mn(s�x). It follows that∑
s�x EQ(·|s�x)[logQ(S′|s�x)]mn(s�x) → ∑

s�x EQ(·|s�x)[logQ(S′|s�x)]m(s�x), so it remains
to study lim infn→∞ −∑

s�x EQ(·|s�x)[logQθn(S
′|s�x)]mn(s�x). Suppose the liminf is finite

(if not, the result holds trivially). As θ �→ Qθ is continuous, then if m(s�x) > 0, it follows
that EQ(·|s�x)[logQθn(S

′|s�x)]mn(s�x) → EQ(·|s�x)[logQθ(S
′|s�x)]m(s�x). If m(s�x) = 0, it

follows that EQ(·|s�x)[logQθn(S
′|s�x)]mn(s�x) → 0 ≥ −EQ(·|s�x)[logQθ(S

′|s�x)]m(s�x) (by
convention 0 log 0 = 0). Thus, the desired result holds.

Part (iv). Since
∑

s�x EQ(·|s�x)[log Q(S′|s�x)
Qθ(S′|s�x) ]m(s�x) <∞, continuity follows from conti-

nuity of θ �→ log Q(s′|s�x)
Qθ(s′|s�x)Q(s′|s�x)m(s�x) and the fact that S×X is finite.

Proof of Lemma 1. (i) By Jensen’s inequality and strict concavity of ln(·), KQ(m�

θ) ≥ −∑
(s�x)∈S×X

ln(EQ(·|s�x)[Qθ(S
′|s�x)

Q(S′|s�x) ])m(s�x) = 0, with equality if and only if
Qθ(· | s�x) =Qθ(· | s�x) for all (s�x) such that m(s�x) > 0.

(ii) The term �Q(m) is nonempty. By Claim A(i), there exists K < ∞ such that the
minimizers are in the constraint set {θ ∈ � : KQ(m�θ) ≤ K}. Because KQ(m� ·) is
continuous over a compact set, a minimum exists.

The term �Q(·) is uhc and compact-valued. Fix any (mn)n and (θn)n such that
limn→∞ mn = m, limn→∞ θn = θ, and θn ∈ �Q(mn) for all n. We establish that θ ∈ �Q(m)

(so that �Q(·) has a closed graph and, by compactness of �, it is uhc). Suppose, to
obtain a contradiction, that θ /∈ �Q(m). Then, by Claim A(i), there exists θ̂ ∈ � and
ε > 0 such that KQ(m� θ̂) ≤ KQ(m�θ) − 3ε and KQ(m� θ̂) < ∞. By regularity, there ex-
ists (θ̂j)j with limj→∞ θ̂j = θ̂ and, for all j, Qθ̂j

(s′ | s�x) > 0 for all (s′� s�x) ∈ S
2 × X such

13Doraszelski and Escobar (2010) incorporate payoff perturbations in a dynamic environment.
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that Q(s′ | s�x) > 0. We show that there is an integer J such that θ̂J “does better” than θn
given mn, which is a contradiction. Because KQ(m� θ̂) < ∞, continuity of KQ(m� ·) im-
plies that there exists J large enough such that |KQ(m� θ̂J)−KQ(m� θ̂)| ≤ ε/2. Moreover,
Claim A(ii) applied to θ = θ̂J implies that there exists Nε�J such that, for all n ≥ Nε�J ,
|KQ(mn� θ̂J) − KQ(m� θ̂J)| ≤ ε/2. Thus, for all n ≥ Nε�J , |KQ(mn� θ̂J) − KQ(m� θ̂)| ≤
|KQ(mn� θ̂J)−KQ(m� θ̂J)| + |KQ(m� θ̂J)−KQ(m� θ̂)| ≤ ε and, therefore,

KQ(mn� θ̂J)≤KQ(m� θ̂)+ ε ≤KQ(m�θ)− 2ε	 (30)

Suppose KQ(m�θ) < ∞. By Claim A(iii), there exists nε ≥ Nε�J such that KQ(mnε�

θnε) ≥ KQ(m�θ) − ε. This result, together with (30), implies that KQ(mnε� θ̂J) ≤
KQ(mnε�θnε) − ε. But this contradicts θnε ∈ �Q(mnε). Finally, if KQ(m�θ) = ∞,
Claim A(iii) implies that there exists nε ≥ Nε�J such that KQ(mnε�θnε) ≥ 2K, where K

is the bound defined in Claim A(i). But this also contradicts θnε ∈ �Q(mnε). Thus, �Q(·)
has a closed graph and so �Q(m) is a closed set. Compactness of �Q(m) follows from
compactness of �. Therefore, �Q(·) is upper hemicontinuous (see Aliprantis and Border
2006, Theorem 17.11).

A.2 Proof of Theorem 1

Let W= �(S×X)×�(�) and endow it with the product topology (given by the Euclidean
topology for �(S×X) and the weak topology for �(�)). Clearly, W �= {∅}. Since � is com-
pact, �(�) is compact under the weak topology; � and �(S×X) are also compact. Thus,
W is compact under the product topology and is also convex. Finally, W ⊆ M × rca(�),
where M is the space of |S| × |X| real-valued matrices and rca(�) is the space of regular
Borel signed measures endowed with the weak topology. The space M× rca(�) is locally
convex with a family of seminorms {(m�μ) �→ pf (m�μ) = ‖m‖ + | ∫� f(x)μ(dx)| : f ∈
C(�)} (C(�) is the space of real-valued continuous and bounded functions, and ‖	‖
is understood as the spectral norm). Also, we observe that (m�μ) = 0 if and only if
pf (m�μ) = 0 for all f ∈C(�); thus, M× rca(�) is also Hausdorff.

Let T :W → 2W be such that T (m�μ) = M(m�μ)×�(�Q(m)), where

(m�μ) �→ M(m�μ) ≡ {
m′ ∈ �(S×X) : m′ ∈ O(μ) and m′

S
= Q[m]}�

where for any μ ∈ �(�), O(μ) is the set of all m′ ∈ �(S × X) that satisfy optimality (i.e.,
for all (s�x) ∈ S × X such that m(s�x) > 0, x is optimal given s in the MDP(Q̄μ), where
Q̄μ = ∫

�Qθμ(dθ)) and m �→Q[m](·)= ∑
(s�x)∈S×X

Q(· | s�x)m(s�x) ∈ �(S).
Hence, to show the existence of an equilibrium, it is sufficient to show that T has a

fixed point. Since W is a nonempty, compact, convex subset of a locally Hausdorff space,
there exists a fixed point of T by the Kakutani–Fan–Glicksberg theorem (see Aliprantis
and Border 2006, Corollary 17.55) if T is nonempty, convex-valued, compact-valued,
and upper hemicontinuous under the product topology (and, hence, it has a closed
graph (see Aliprantis and Border 2006, Theorem 17.11)).
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Nonempty We show that, for every (m�μ) ∈ W, M(m�μ) and �Q(m) are nonempty
and, thus, so is T (m�μ). Nonemptiness of �Q(m) follows from Lemma 1. For nonempti-
ness of M(m�μ), note that, for each s, the argmax of the MDP(Q̄μ) is nonempty; in par-
ticular, there exists m′

X|S such that, for each s, any action in the support of m′
X|S(· | s) is

optimal. Then m′ =m′
X|SQ[m] ∈ �(S×X) is an element of M(m�μ).

Convex-valued It suffices to show that for every (m�μ) ∈ W, both �(�Q(m)) and
M(m�μ) are convex. Convexity of the former is obvious. To show convexity of M(m�μ),
take any m1 and m2 in M(m�μ). For any λ ∈ [0�1], it is clear that λmS�1 + (1 − λ)mS�2 =
Q[m]. Also, any (s�x) in the support of λm1 + (1 −λ)m2 has to be in the support of either
m1 or m2, and, thus, x is optimal given s in the MDP(Q̄μ). Therefore, λm1 + (1 − λ)m2 ∈
M(m�μ).

Compact-valued For every (m�μ) ∈ W, �(�Q(m)) is compact (under the weak topol-
ogy) because �Q(m) is compact (see Aliprantis and Border 2006, Theorem 15.11). The
set �(S × X) is compact, so to show compactness of M(m�μ), it suffices to show that it
is closed. Take any convergent (to some m′) sequence (m′

n)n in M(m�μ). It is clear that
m′ = Q[m]. Taking any (s�x) in the support of m′, it follows that for sufficiently large n,
(s�x) are in the support of m′

n and so x is optimal given s in the MDP(Q̄μ). Thus, T is
compact-valued under the product topology.

Upper hemicontinuity By Aliprantis and Border (2006, Theorem 17.28), to show up-
per hemicontinuity of T under the product topology, it suffices to show that both m �→
�(�Q(m)) and M are uhc. The correspondence �Q(·) is upper hemicontinuous; hence,
the correspondence �(�Q(·)) is too (see Aliprantis and Border 2006, Theorem 17.13).
To show upper hemicontinuity of M, take a sequence (m′

n�mn�μn)n in Graph(M) that
converges to (m′�m�μ). It is clear that m′

S
=Q[m], so we need to show only that O is uch.

Claim B. The action O is uhc.

Proof. Take any sequence (m′
n�μn)n in Graph(O) that converges to (m′�μ). Take any

(s�x) in the support of m′. Then, for sufficiently large n, (s�x) are in the support of
m′

n and, therefore, x is optimal given s in the MDP(Q̄μn ). By standard arguments,
(s�Q) �→ M(s�Q) ≡ arg maxx̂∈X

∫
S
{π(s� x̂� s′) + δV (s′)}Q(ds′|s� x̂) is uhc (since S × X are

finite, Q belongs to the space of real-valued matrices with its natural topology). Since
θ �→ Qθ is bounded and continuous, μ �→ Q̄μ is continuous under the weak topology.
Thus, (s�μ) �→ M(s� Q̄μ) is uhc. Since x ∈ M(s� Q̄μn) for all n, it follows that x ∈M(s� Q̄μ);
therefore, x is optimal given s in the MDP(Q̄μ), as desired.

A.3 Proof of Lemma 2

For the proof of Lemma 2, we rely on the following definitions and the claim below.
Define K∗

Q(m) ≡ infθ∈�KQ(m�θ) and let �̂ ⊆ � be a dense set such that, for all θ ∈ �̂,
Qθ(s

′ | s�x) > 0 for all (s�x� s′) ∈ S × X × S such that Q(s′ | s�x) > 0. Existence of such a
set �̂ follows from the regularity assumption.
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Claim C. Suppose limt→∞ ‖mt −m‖ = 0 a.s.-Pf . Then (i) for all θ ∈ �̂,

lim
t→∞ t−1

t∑
τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
=

∑
(s�x)∈S×X

EQ(·|s�x)
[

log
Q

(
S′|s�x)

Qθ
(
S′|s�x)]

m(s�x)

a.s.-Pf ; (ii) for Pf -almost all h ∈ H, and for any ε > 0 and α = (inf� : dm(θ)≥ε KQ(m�θ) −
K∗

Q(m))/3, there exists T such that, for all t ≥ T ,

t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
≥K∗

Q(m)+ 3
2
α

for all θ ∈ {� : dm(θ) ≥ ε}, where dm(θ)= infθ̃∈�Q(m) ‖θ− θ̃‖.

Proof. (The proof is similar to the proof of Claim B in Esponda and Pouzo 2016.) We
first show that for Pf -almost all histories and any ε > 0, there exists a Mε such that

|t−1
t∑

τ=1

logQ(sτ|sτ−1�xτ−1) =
∑

(s�x)∈S×X

EQ(·|s�x)
[
logQ

(
S′|s�x)]

m(s�x)| < ε

for all t ≥ Mε. To do this, for any τ ∈ {1�2� 	 	 	}, let lτ ≡ logQ(sτ|sτ−1�xτ−1) −
EQ(·|sτ−1�xτ−1)[logQ(S′|sτ−1�xτ−1)]. Observe that for all z ∈ S

2 × X, EPf (·|ht)[lt+1] = 0 a.s.-

Pf , where Pf (·|ht) denotes the conditional probability induced by Pf given the partial
history ht . Moreover, supt EPf [l2t ] ≤ supt

∑t
τ=1 τ

−2E[∑s′∈S(logQ(s′|S�X))2Q(s′ | S�X)] <
∞ because x �→ (logx)2x is bounded and

∑
τ τ

−2 < ∞. Thus, an application of the the
Martingale Convergence Theorem and Kronecker’s lemma imply that

lim
t→∞ t−1

t∑
τ=1

(
logQ(sτ|sτ−1�xτ−1)−EQ(·|sτ−1�xτ−1)

[
logQ

(
S′|sτ−1�xτ−1

)]) = 0

a.s.-Pf . Therefore, to establish the desired result, it suffices to show that

lim
t→∞ t−1

t∑
τ=1

EQ(·|sτ−1�xτ−1)

[
logQ

(
S′|sτ−1�xτ−1

)]

−
∑

(s�x)∈S×X

EQ(·|s�x)
[
logQ

(
S′|s�x)]

m(s�x) = 0 (31)

a.s.-Pf . Observe that

t−1
t∑

τ=1

EQ(·|sτ−1�xτ−1)

[
logQ

(
S′|sτ−1�xτ−1

)]

=
∑

s�x∈S×X

t−1
t∑

τ=1

1(s�x)(sτ−1�xτ−1)EQ(·|s�x)
[
logQ

(
S′|s�x)]

=
∑

s�x∈S×X

mt(s�x)EQ(·|s�x)
[
logQ

(
S′|s�x)]
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Equation (31) follows because limt→∞ ‖mt −m‖ = 0 a.s.-Pf and EQ(·|s�x)[logQ(S′|s�x)] =∑
s′∈S logQ(s′|s�x)Q(s′|s�x) is bounded for all (s�x) ∈ S×X. So, to establish parts (i) and

(ii), it remains to control only the expression

− lim
t→∞ t−1

t∑
τ=1

(
logQθ(sτ|sτ−1�xτ−1)−EQ(·|sτ−1�xτ−1)

[
logQθ

(
S′|sτ−1�xτ−1

)])
	

Part (i). Pointwise over �̂,

lim
t→∞ t−1

t∑
τ=1

(
logQθ(sτ|sτ−1�xτ−1)−EQ(·|sτ−1�xτ−1)

[
logQθ

(
S′|sτ−1�xτ−1

)]) = 0

a.s.-Pf by essentially the same arguments used in the first part of the proof.
Part (ii). For any ξ > 0, let �ξ ⊆� such that θ ∈�ξ if and only if Qθ(s

′|s�x)≥ ξ for all
(s′� s�x) such that Pm(s

′� s�x) > 0. Also, observe that

lim
t→∞ t−1

t∑
τ=1

logQθ(sτ|sτ−1�xτ−1) =
∑

s′�s�x∈S2×X

freqt

(
s′� s�x

)
logQθ

(
s′|s�x)

�

where z �→ freqt (z) ≡ t−1 ∑t
τ=1 1z(sτ� sτ−1�xτ−1). Let (s′� s�x) �→ Pm(s

′� s�x) ≡
Q(s′|s�x)m(s�x). By essentially the same argument used in the first part of the
proof, it follows that for any ζ > 0 and Pf -almost any h, there exists a Tζ such that
maxz∈S2×X

| freqt (z)− Pm(z)| < ζ for all t ≥ Tζ .
Hence, for any θ ∈ {� \�ξ} ∩ {� : dm(θ)≥ ε},∑

(s′�s�x)∈S2×X

freqt

(
s′� s�x

)
logQθ

(
s′|s�x)

≤
∑

(s′�s�x) : Pm(s′�s�x)>0

(
Pm

(
s′� s�x

) − ζ
)

logQθ
(
s′|s�x)

≤
∑

s�x∈S×X

EQ(·|s�x)
[
logQθ

(
s′|s�x)]

m(s�x)

− ζ
∑

(s′�s�x) : Pm(s′�s�x)>0

logQθ
(
s′|s�x)

for all t ≥ Tζ . Therefore,

t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
≥KQ(m�θ)+ ζ

∑
(s′�s�x) : Pm(s′�s�x)>0

logQθ
(
s′|s�x)

for any t ≥ max{Tζ�Mα}. By definition of {� : dm(θ) ≥ ε}, it follows that

t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
≥K∗

Q(m)+ 2α+ ζ
∑

(s′�s�x) : Pm(s′�s�x)>0

logQθ
(
s′|s�x)
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for any t ≥ Tζ . Since θ ∈ {� \ �ξ} ∩ {� : dm(θ) ≥ ε}, let zθ = (s′θ� sθ�xθ) be such that

Qθ(s
′
θ|sθ�xθ) < ξ and Pm(zθ) > 0, and note that ζ

∑
(s′�s�x) : Pm(s′�s�x)>0 logQθ(s

′|s�x) ≤
ζ logξpL, where pL ≡ min{Pm(z) : Pn(z) > 0}. This implies that there exists a ζ∗ such

that ζ∗ logξpL ≤ −0	5α and so

t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
≥K∗

Q(m)+ 3
2
α

for any t ≥ max{Tζ∗�Mα}.

For any θ ∈ �ξ ∩ {� : dm(θ) ≥ ε}, it follows that
∑

(s′�s�x)∈S2×X
freqt (s

′� s�x) logQθ(s
′|s�

x) ≤ lnξ,

t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
≥ − lnξ+

∑
(s�x)∈S×X

EQ(·|s�x)
[
logQ

(
S′|s�x)]

m(s�x)− 1

for any t ≥ M1. Since
∑

(s�x)∈S×X
EQ(·|s�x)[logQ(S′|s�x)]m(s�x) is finite, we can choose ξ

such that the right-hand side is greater than or equal to K∗
Q(m)+ 3

2α.

We thus showed that for Pf -almost all h ∈ H and for any ε > 0, there exists T such

that, for all t ≥ T ,

t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)
≥K∗

Q(m)+ 3
2
α

for all θ ∈ {� : dm(θ) ≥ ε}, as desired.

Proof of Lemma 2. It suffices to show that limt→∞
∫
� dm(θ)μt(dθ) = 0 a.s.-Pf over H.

For any η > 0, let �η(m) = {θ ∈ � : dm(θ) < η} and �̂η(m) = �̂ ∩ �η(m) (the set �̂

is defined in the third condition of Definition 5, i.e., regularity). We now show that

μ0(�̂η(m)) > 0. By Lemma 1, �Q(m) is nonempty. By denseness of �̂, �̂η(m) is

nonempty. Nonemptiness and continuity of θ �→Qθ, imply that there exists a nonempty

open set U ⊆ �̂η(m). By full support, μ0(�̂η(m)) > 0. Also, observe that for any ε > 0,

{� : dm(θ) ≥ ε} is compact. This follows from compactness of � and continuity of

θ �→ dm(θ) (which follows by Lemma 1 and an application of the theorem of the max-

imum). Compactness of {� : dm(θ) ≥ ε} and lower semicontinuity of θ �→ KQ(m�θ)

(see Claim A(iii)) imply that inf� : dm(θ)≥ε KQ(m�θ) = min� : dm(θ)≥ε KQ(m�θ) > K∗
Q(m).

Let α ≡ (min� : dm(θ)≥ε KQ(m�θ) − K∗
Q(m))/3 > 0. Also, let η > 0 be chosen such that

KQ(m�θ) ≤ K∗
Q(m) + 0	25α for all θ ∈ �η(m) (such η always exists by continuity of

θ �→KQ(m�θ)).

Let H1 be the subset of H for which the statements in Claim C hold; note that Pf (H \
H1) = 0. Henceforth, fix h ∈ H1; we omit h from the notation to ease the notational

burden. By simple algebra and the fact that dm is bounded in �, it follows that, for all
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ε > 0 and some finite C > 0,

∫
�
dm(θ)μt(dθ)=

∫
�
dm(θ)Qθ(st | st−1�xt−1)μt−1(dθ)∫
�
Qθ(st | st−1�xt−1)μt−1(dθ)

=

∫
�
dm(θ)Zt(θ)μ0(dθ)∫
�
Zt(θ)μ0(dθ)

≤ ε+C

∫
{� : dm(θ)≥ε}

Zt(θ)μ0(dθ)∫
�̂η(m)

Zt(θ)μ0(dθ)

≡ ε+C
At(ε)

Bt(η)
�

where

Zt(θ) ≡
t∏

τ=1

Qθ(sτ|sτ−1�xτ−1)

Q(sτ|sτ−1�xτ−1)
= exp

{
−

t∑
τ=1

log
(

Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)

)}
	

Hence, it suffices to show that

lim sup
t→∞

{
exp

{
t
(
K∗(m)+ 0	5α

)}
At(ε)

} = 0 (32)

and

lim inf
t→∞

{
exp

{
t
(
K∗

Q(m)+ 0	5α
)}
Bt(η)

} = ∞	 (33)

Regarding (32), we first show that

lim
t→∞ sup

{� : dm(θ)≥ε}

{(
K∗

Q(m)+ 0	5α
) − t−1

t∑
τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)

}
≤ const < 0	

To show this, note that, by Claim C(ii) there exists a T , such that for all t ≥ T ,
t−1 ∑t

τ=1 log(Q(sτ|sτ−1�xτ−1)/Qθ(sτ|sτ−1�xτ−1)) ≥K∗
Q(m)+ 3

2α for all θ ∈ {� : dm(θ)≥ ε}.
Thus,

lim
t→∞ sup

{� : dm(θ)≥ε}

{
K∗

Q(m)+ α

2
− t−1

t∑
τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)

}
≤ −α	

Therefore,

lim sup
t→∞

{
exp

{
t
(
K∗

Q(m)+ 0	5α
)}
At(ε)

}

≤ lim sup
t→∞

sup
{� : dm(θ)≥ε}

exp

{
t

((
K∗

Q(m)+ 0	5α
) − t−1

t∑
τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)

)}

= 0	

Regarding (33), by Fatou’s lemma and some algebra, it suffices to show that

lim inf
t→∞ exp

{
t
(
K∗

Q(m)+ 0	5α
)}
Zt(θ)= ∞ > 0
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(pointwise on θ ∈ �̂η(m)) or, equivalently,

lim inf
t→∞

(
K∗

Q(m)+ 0	5α− t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)

)
> 0	

By Claim C(i),

lim inf
t→∞

(
K∗

Q(m)+ 0	5α− t−1
t∑

τ=1

log
Q(sτ|sτ−1�xτ−1)

Qθ(sτ|sτ−1�xτ−1)

)
=K∗

Q(m)+ 0	5α−KQ(m�θ)

(pointwise on θ ∈ �̂η(m)). By our choice of η, the right-hand side is greater than 0	25α
and our desired result follows.

A.4 Proof of Theorem 2

Let H be the set of histories such that (mt)t converges to m. By hypothesis, Pf (H) > 0.
By Lemma 2, there exists a set H′ with Pf (H′) = Pf (H) > 0 such that every history in H′
satisfies the result stated in Lemma 2. Throughout, we fix a history h ∈ H′. Henceforth,
we omit the history from the notation.

Also, let (μ� s) �→ M(s�μ) ≡ arg maxx∈X
∫
S
{π(s�x� s′) + δW (s′�B(s�x� s′�μ))}Q̄μ(ds

′|s�
x), which by standard arguments is uhc.

We first establish conditions (i) and (ii) in the definition of Berk–Nash equilibrium
(Definition 7). Let (s�x) be such that m(s�x) > 0. Since (mt)t converges to m, (s�x) oc-
curs infinitely often along the history, so we can find a subsequence along which (s�x)

occurs along the entire subsequence: (st(j)� xt(j)) = (s�x) for all j. By compactness of
�(�), we can take a further subsequence such that μs�x = limk→∞ μt(j(k)) exists. By
our choice of history (see the beginning of the proof) and Lemma 2, μs�x ∈ �(�Q(m)).
Also, since x ∈ M(s�μt(j(k))) for all k and limk→∞ μt(j(k)) = μs�x, upper hemicontinuity
of M(s� ·) implies that x ∈ M(s�μs�x). Thus, we have shown that, for any (s�x) such that
m(s�x) > 0, there exists μs�x ∈ �(�Q(m)) such that

x ∈ arg max
x̂∈X

∫
S

{
π

(
s� x̂� s′

) + δW
(
s′�B

(
s� x̂� s′�μs�x

))}
Q̄μs�x

(
ds′|s� x̂)

	 (34)

We now consider each case in Theorem 2 separately. Consider first the case where
identification holds. Identification implies that there exists Q∗

m such that, for all μ ∈
�(�Q(m)), Q̄μ = Q∗

m. Note also that the posterior given μ ∈ �(�Q(m)) must also be
in �(�Q(m)), and so expression (34) implies that x is optimal in the MDP(Q∗

m). Thus,
picking any μ ∈ �(�Q(m)), we have shown that, for all (s�x) in the support of m(s�x),
condition (i) is satisfied. Because μ ∈ �(�Q(m)), condition (ii) is also satisfied.

Consider next the case where the SMDP is subjectively static. In this case, the payoff
function, the value function, the Bayesian operator, and the subjective transition prob-
ability function do not depend on s, and so, in a slight abuse of notation, we drop s from
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subsequent expressions. For any x′ ∈X,∫
S

{
π

(
x� s′

) + δW
(
B

(
x� s′�μs�x

))}
Q̄μs�x

(
ds′|x)

=
∫
S

π
(
x� s′

)
Q̄μs�x

(
ds′|x) + δW (μs�x)

≥
∫
S

{
π

(
x′� s′

) + δW
(
B

(
x′� s′�μs�x

))}
Q̄μs�x

(
ds′|x′)

≥
∫
S

π
(
x′� s′

)
Q̄μs�x

(
ds′|x′) + δW (μs�x)�

where the first line follows from weak identification (since (s�x) is in the support of m,
weak identification implies B(x� s′�μs�x) = μs�x for all s′ in the support of Q̄μs�x(ds

′|x)),
the second line follows from (34), and the third line follows from the convexity of
the value function μ �→ W (μ) (which we prove at the end of this proof) and the
Martingale property of Bayesian updating (which imply, using Jensen’s inequality,∫
S
W (B(x′� s′�μs�x)Q̄μs�x(ds

′|x′) ≥ W (
∫
S
B(x′� s′�μs�x)Q̄μs�x(ds

′|x′)) = W (μs�x).) There-
fore,

x ∈ arg max
x̂∈X

∫
S

π
(
x̂� s′

)
Q̄μs�x

(
ds′|x̂)

	 (35)

Thus, for the subjectively static SMDP, we have shown that, for any (s�x) in the sup-
port of m, there exists a belief μs�x ∈ �(�Q(m)) such that (35) is satisfied (which, for this
special case, means that x is optimal given s in the MDP(Q̄μs�x)).

It remains to establish that we can pick μs�x to be the same for all (s�x) in the support
of m. We use the assumption of weak identification to establish this claim. Let (s∗�x∗)
be any other element in the support of m. By repeating the argument above, there exists
μs∗�x∗ ∈ �(�Q(m)) such that

x∗ ∈ arg max
x̂∈X

∫
S

π
(
x̂� s′

)
Q̄μs∗�x∗

(
ds′|x̂)

	 (36)

By weak identification and the fact that both μs�x and μs∗�x∗ belong to �(�Q(m)), then
Q̄μs∗�x∗ (·|s̃� x̃) = Q̄μs�x(·|s̃� x̃) for all (s̃� x̃) in the support of m. Therefore, for any x′ ∈ X,∫

S

π
(
x∗� s′

)
Q̄μs�x

(
ds′|x∗) =

∫
S

π
(
x∗� s′

)
Q̄μs∗�x∗

(
ds′|x∗)

≥
∫
S

π
(
x� s′

)
Q̄μs∗�x∗

(
ds′|x)

=
∫
S

π
(
x� s′

)
Q̄μs�x

(
ds′|x)

≥
∫
S

π
(
x′� s′

)
Q̄μs�x

(
ds′|x′)�

where the two equalities follow from the implication of weak identification mentioned
above and the two inequalities follow from (36) and (35), respectively. Thus, we can use
the same belief μs�x to support any state–action pair (s∗�x∗) in the support of m.
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We conclude by showing condition (iii) in the definition of Berk–Nash equilibrium.

Let m �→ Q[m](s′) ≡ ∑
(s�x)∈S×X

Q(s′ | s�x)m(s�x) for any s′ ∈ S. We want to show that

mS = Q[m]. By the triangle inequality,

∥∥mS −Q[m]∥∥ ≤
∥∥∥∥mS(·)−

∑
x∈X

mt+1(·�x)
∥∥∥∥ +

∥∥∥∥∑
x∈X

mt+1(·�x)−Q[mt]
∥∥∥∥ + ∥∥Q[mt] −Q[m]∥∥	

As (mt)t converges to m, the first and the third terms in the right-hand side vanish. We

now show that the second term also vanishes and, thus, conclude the verification of

condition (iii). Observe that for any s′ ∈ S,

∑
x∈X

mt+1
(
s′�x

) −Q[mt]
(
s′

)

= (t + 1)−1
t+1∑
τ=1

1s′(sτ)− t−1
t∑

τ=1

Q
(
s′ | sτ�xτ

)

= t−1
t∑

τ=1

{
1s′(sτ+1)−Q

(
s′ | st� xt

)} +
1s′(s1)+ t−1

t∑
τ

1s′(sτ+1)

t + 1
	

The second summand of the right-hand side vanishes as t → ∞. Regarding the first

one, observe that for any t ∈ N, EPf [1s(st+1) | ht] = Q(s′ | st� xt), where EPf [· | ht] is the

conditional expectation under Pf given history ht . Let ζt ≡ ∑t
τ=1 τ

−1{1s′(sτ+1) − Q(s′ |
st� xt)} and note that supt EPf [ζ2

t ] ≤ 2 supt

∑t
τ=1 τ

−2 < ∞. Thus, by the Martingale con-

vergence theorem, the process (ζt)∞t=1 converges Pf -a.s. to ζ. Kronecker’s lemma implies

that limt→∞ t−1 ∑t
τ=1{1s′(sτ+1) − Q(s′ | st� xt)} = 0 Pf -a.s. Without loss of generality, we

assume the history h satisfies this limit and, thus, limt→∞ ‖∑
x∈Xmt+1(·�x)−Q[mt]‖ = 0.

Proof that μ �→ W (μ) is convex: The value function is unique, so it suffices to show

that the Bellman operator maps convex functions into themselves. To do this, let μ1

and μ2 be in �(�); for any λ ∈ (0�1), let μλ ≡ λμ1 + (1 − λ)μ2 and μ �→ G(μ) be convex.

Define

B[G](μλ) ≡ max
x∈X

∫ {
π

(
x� s′

) + δG
(
B

(
x� s′�μλ

))}
Q̄μλ

(
ds′ | x)

	

Note that

(
x� s′

) �→ B
(
x� s′�μλ

)

= λ

∫
Qθ

(
s′ | x)

μ1(dθ)∫
Qθ

(
s′ | x)

μλ(dθ)

B
(
x� s′�μ1

) + (1 − λ)

∫
Qθ

(
s′ | x)

μ2(dθ)∫
Qθ

(
s′ | x)

μλ(dθ)

B
(
x� s′�μ2

)
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By convexity of G,∫
G

(
B

(
x� s′�μλ

))
Q̄μλ

(
ds′ | x)

≤ λ

∫
G

(
B

(
x� s′�μ1

))
Q̄μ1

(
ds′ | x) + (1 − λ)

∫
G

(
B

(
x� s′�μ2

))
Q̄μ2

(
ds′ | x)

	

Therefore,

B[G](μλ) ≤ max
x∈X

λ

∫ {
π

(
x� s′

) + δ

∫
G

(
B

(
x� s′�μ1

))}
Q̄μ1

(
ds′ | x)

+ (1 − λ)

∫ {
π

(
x� s′

) + δ

∫
G

(
B

(
x� s′�μ2

))}
Q̄μ2

(
ds′ | x)

≤ λB[G](μ1)+ (1 − λ)B[G](μ2)

as desired.

A.5 Proof of Theorem 3

Consider the set H′ introduced at the beginning of the proof of Theorem 2, and re-
call that Pf (H′) > 0. Observe that for any history and any t ∈ {0�1� 	 	 	}, Pf (s′�x′ | ht) =
σt(h)(x

′|s′)Q(s′|st� xt). Thus, by the MCT, there exists a set M of histories such that, for
each h ∈ M,

lim
t

∥∥∥∥∥mt(h)− t−1
t∑

τ=1

σt(h)(·|·)Q(·|st� xt)
∥∥∥∥∥ = 0

and Pf (M) = 1. Throughout, we fix a history h ∈ H′ ∩M and note that Pf (H′ ∩M) > 0.
Henceforth, we omit the history from the notation. Also, define M(s�μ) as in the proof
of Theorem 2.

We already proved condition (iii) of the definition of Berk–Nash equilibrium when
we proved Theorem 2, so here we prove conditions (i) and (ii).

We first show σ(·|·) = m(·|·). To do this, observe that t−1 ∑t
τ=1 Q(·|st� xt) =∑

s�x Q(·|s�x)mt(s�x) and so

lim
t→∞

∥∥∥∥∥t−1
t∑

τ=1

σt(h)(·|·)Q(·|st� xt)− σ(·|·)
∑
s�x

Q(·|s�x)m(s�x)

∥∥∥∥∥ = 0	

By our choice of history, this implies that m(s′�x′) = σ(x′|s′)∑
s�x Q(s′|s�x)m(s�x) for

any (s′�x′) ∈ �(S × X). By condition (iii), it follows that m(s′�x′) = σ(x′|s′)m(s′), which
implies that m(·|·)= σ(·|·), as desired.

Next, note that by compactness of �(�), we can find a subsequence of beliefs
(μt(k))k that converges to some μ∗. By our choice of history (see the beginning of the
proof) and Lemma 2, μ∗ ∈ �(�Q(m)). Next consider any (s�x) such that m(s�x) > 0,
which readily implies that σ(x | s) > 0. By convergence of σt(k) to σ , σt(k)(x | s) = f (x |
s�μt(k)) > 0 for all sufficiently large k. By optimality of f , it follows that x ∈ M(s�μt(k))
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for all sufficiently large k. By the upper hemicontinuity of M and convergence of μt(k)

to μ∗, it follows that x ∈ M(s�μ∗). Thus, it follows that there exists μ∗ ∈ �(�Q(m)) such
that, for any (s�x) in the support of m,

x ∈ arg max
x̂∈X

∫
S

{
π

(
s� x̂� s′

) + δW
(
s′�B

(
s� x̂� s′�μ∗))}Q̄μ∗

(
ds′|s� x̂)

	

We conclude by establishing that x is optimal given s in the MDP where the belief is
fixed at μ∗. That is,

x ∈ arg max
x̂∈X

∫
S

{
π

(
s� x̂� s′

) + δVμ∗
(
s′

)}
Q̄μ∗

(
ds′|s� x̂)

�

where s �→ Vμ∗(s) = maxx̂∈X
∫ {π(s� x̂� s′)+ δVμ∗(s′)}Q̄μ∗(ds′|s� x̂).

Since m(s) > 0 for all s, it follows that for any s and for any x such that m(x | s) = σ(x |
s) > 0,

W
(
s�μ∗) =

∫
S

{
π

(
s�x� s′

) + δW
(
s′�B

(
s�x� s′�μ∗))}Q̄μ∗

(
ds′|s�x)

=
∫
S

{
π

(
s�x� s′

) + δW
(
s′�μ∗)}Q̄μ∗

(
ds′|s�x)

�

where the second line follows from μ∗ ∈ �(�Q(m)) and weak identification. Therefore,
by the uniqueness of the value function, s �→W (s�μ∗)= Vμ∗(s).

Hence, it suffices to show that for any x̂ ∈X,∫
S

{
π

(
s�x� s′

) + δVμ∗
(
s′

)}
Q̄μ∗

(
ds′|s�x) ≥

∫
S

{
π

(
s� x̂� s′

) + δVμ∗
(
s′

)}
Q̄μ∗

(
ds′|s� x̂)

	

For this, let s �→ x(s) be such that σ(x(s)|s) > 0 for all s ∈ S. Observe that∫
S

{
π

(
s�x(s)� s′

) + δVμ∗
(
s′

)}
Q̄μ∗

(
ds′|s�x(s))

≥
∫
S

{
π

(
s� x̂� s′

) + δW
(
s′�B

(
s� x̂� s′�μ∗))}Q̄μ∗

(
ds′|s� x̂)

	

By weak identification and the fact that (s′�x(s′)) ∈ supp(m), it follows that

W
(
s′�B

(
s� x̂� s′�μ∗))

≥
∫
S

{
π

(
s′�x

(
s′

)
� s′′

) + δW
(
s′′�B

(
s� x̂� s′�μ∗))}Q̄B(s�x̂�s′�μ∗)

(
ds′′|s′�x(

s′
))

=
∫
S

{
π

(
s′�x

(
s′

)
� s′′

) + δW
(
s′′�B

(
s� x̂� s′�μ∗))}Q̄μ∗

(
ds′′|s′�x(

s′
))
�

where the second line follows because B(s� x̂� s′�μ∗) ∈ �(�Q(m)) and under weak iden-
tification this implies that s �→ Q̄B(s�x̂�s′�μ∗)(·|s�x(s)) = Q̄μ∗(·|s�x(s)) for any (s�x(s)) ∈
supp(m). By applying this inequality over and over to W (·�B(s� x̂� s′�μ∗)), it follows that

W
(
s′�B

(
s� x̂� s′�μ∗)) ≥

∞∑
j=0

δjQ̄j
μ∗

[∫
π

(·�x(·)� s′′)Q̄μ∗
(
ds′′|·�x(·))](

s′
)
�
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where g �→ Q̄μ∗ [g](s) ≡ ∫
g(s′)Q̄μ∗(ds′|s�x(s)) for any s ∈ S. By uniqueness of the value

function, the right-hand side equals Vμ∗(s′) and, thus,

W
(
s′�B

(
s� x̂� s′�μ∗)) ≥ Vμ∗

(
s′

)
for any s′ ∈ S, thereby implying the desired result.
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