
#This is the numeric simulation used in Section 6.1 of the paper
#"Evolution Heritable Risk, and Skewness Loving"
#(2020, Yuval Heller & Arthur Robson).
#The code was written by Renana Heller in Python 3.7.
#The updated code can be found at:
#https://sites.google.com/site/yuval26/numeric-simulation-heller-robson.py
#The updated paper can be found at
#https://sites.google.com/site/yuval26/local-risk.pdf

from random import choices
from collections import Counter
import matplotlib.pyplot as plt
import math
import csv
import time
import winsound

#Time string that is used in the exported file names.
timestr = time.strftime("%Y%m%d-%H%M%S")

for rowindex in range(1,11):
 for colindex in range(1,16):
 #Initial population size
 _numOfPeople = 3000

 #Maximal number of years (=iterations) in each simulation run.
 _numIterations = 20000

 #Number of different dynasties
 #(also called, islands or sub-populations in the simulations)
 _numOfIslands = 300

 #Distribution of heritable birth rate component
 #(denoted by X and q_x in the paper)
 islandPossibleProbs = [0, 0.02]
 islandProbWeights = [0.5, 0.5]

 #Probability of an offspring being born in the same dynasty
 #as the parent (rather than in a random dynasty)
 inheritProb=1

 #Distribution of idiosyncratic birth rate component
 #(denoted by Y and q_y in the paper; in the 150 simulation runs
 #presented in the paper there is no idiosincratic risk)
 ownProbs = [0, 0.02]
 ownWeights = [1, 0]

 #distribution of aggregate birth rate component
 #(denoted by Z and q_z in the paper; in the 150 simulation runs in the
 #paper there is no aggregate risk)
 genPossibleProbs = [0, 0.02]
 genProbsWeights = [1,0]

 deathProb=0.014
 #ImmProb describes the probability in which each agent migrates to a
 #random dynasty in each year (denoted by \lambda_m in the paper)
 #Each of the following values was tested in 15 simulation runs.
 if rowindex==1:
 immProb=0.0002
 if rowindex==2:
 immProb=0.0004
 if rowindex==3:
 immProb=0.001
 if rowindex==4:
 immProb=0.002

 if rowindex==5:
 immProb=0.004
 if rowindex==6:
 immProb=0.007
 if rowindex==7:
 immProb=0.01
 if rowindex==8:
 immProb=0.013
 if rowindex==9:
 immProb=0.016
 if rowindex==10:
 immProb=0.018

 #islandChgProb describes the probability in which each dynasty redraws
 #a new value for its hertiable birth rate in each year (denoted by
 #\lambda_x in the paper)
 islandChgProb = 0.02-immProb

 #probabilty of redrawing the value of the aggregate birth rate
 #(not used in the 150 simulation runs)
 genChgProb = 0

 #Initializing arrays
 islandList = [];
 islandProbList = [];
 populationGrowth = []
 PopulationGrowthRate = []
 PopulationMaxProb = []
 islandPopulation = []
 maxIslandPopulation = []
 iterationIndex=0

 #Randomly choosing the initial aggregate birth rate
 genProb=choices(genPossibleProbs,genProbsWeights)[0]

 countHighIsl=0;
 # Randomly choosing the hertiable birth rate of each dynasty
 for index in range(0, _numOfIslands):
 islandProbList += choices(islandPossibleProbs,islandProbWeights)
 islandList += [index]

 #Keeping a copy of the initial population size.
 initialNumOfPeople = _numOfPeople

 #Randomly assiging a dyansty to each person in the initial population
 islandIndexPerPerson = choices(islandList, k=_numOfPeople)

 #Rabdomly assigining an idiosincratic birth rate to each person
 ownProbPerPerson = choices(ownProbs, ownWeights, k=_numOfPeople)
 #End of setup of the simulation.

 #Starting the run of a single simualtion run.

 #As long as we haven't reached the maximal number of years.
 while iterationIndex < _numIterations:

 #countMaxProb counts the number of people with the maximal
 #heritable birth rate
 countMaxProb = 0

 #Initating arrays for new agents that will be born in this year
 newPersonIslandIndex = []
 newPersonOwnProb = []
 numNewPerson = 0
 index = 0

 #The simulation run stops if the population size become to small

 #(less than 10)
 #or too large (more than 1,000,000)
 if (_numOfPeople < 10) or (_numOfPeople>1000000):
 _numIterations = iterationIndex
 break

 #This loop goes on all agents in the population.
 while index < _numOfPeople:
 #percanet is the total birth rate of the current person
 percent = islandProbList[islandIndexPerPerson[index]] + ownProbPerPerson[index] + genProb

 # Doing a lottery to decide if the agent has a new offspring,
 #according to the agent's birth rate
 shouldRep = choices ([True , False], [percent, 1-percent])

 #Adding a new person in the same dynasty as the parent
 if shouldRep[0]:
 #counting the number of new agents born in each dyansty.
 newPersonIslandIndex += [islandIndexPerPerson[index]]

 #randomly choosing a new idioisncratic birthrate to the new agent
 newPersonOwnProb += choices(ownProbs, ownWeights)
 #Counting the number of new agents born in this year.
 numNewPerson += 1;
 #Doing a lottery if the offspring migrates iimdeitaly when being born
 #(set to 0% in the simulation runs descriebd in the manuscript.)
 newbornimmigrates=choices ([True,False], [1-inheritProb,inheritProb,])

 #Implementing the offspring's migration.
 if newbornimmigrates[0]:
 newIsland = choices(islandList)[0]
 islandIndexPerPerson[index] = newIsland

 #Checking if the agent has to migrate to a new rnadom dynasty.
 shouldImmegrate = choices ([True , False], [immProb, 1-immProb])
 #Implementng the agent's migration.
 if shouldImmegrate[0]:
 #Assiginign a new location to the agent
 newIsland = choices(islandList)[0]
 islandIndexPerPerson[index] = newIsland

 #Checking if the current agent has the maximal local birth rate
 if islandProbList[islandIndexPerPerson[index]] == max (islandPossibleProbs):
 #Counting how many agents have the maximal local birth rate.
 countMaxProb +=1;

 #Checking if agent should die
 shouldDie = choices ([True , False], [deathProb, 1-deathProb])
 #Implementing the agent's death
 if shouldDie[0]:
 # delete the Person from all lists
 del islandIndexPerPerson[index]
 del ownProbPerPerson[index]
 #print (islandIndexPerPerson)
 #decreasing index due to removing the i-th person, and him
 #being replaced with the i+1th person
 index -= 1
 _numOfPeople -= 1

 index += 1

 #adding the new agents from the temporary arary to the regular array
 islandIndexPerPerson += newPersonIslandIndex
 ownProbPerPerson += newPersonOwnProb
 _numOfPeople += numNewPerson

 #Gatherng information for the graphs and the exported CSV file from
 #the current iteration
 PopulationMaxProb += [countMaxProb/_numOfPeople]
 populationGrowth += [_numOfPeople]
 #Starting calculating the growth rate after 100 periods.
 if iterationIndex>100:
 growthRate=math.log(_numOfPeople/initialNumOfPeople)/(iterationIndex+1)
 else: growthRate=0
 PopulationGrowthRate +=[growthRate]
 iterationIndex += 1

 #Prinitng a point every 250 periods, so that the user will see a signal
 #about the simulation's progress
 if iterationIndex % 250 == 0:
 print (". ", end="")

 #Counting how many agents are in each dynasty ("island")
 islandCounter = Counter(islandIndexPerPerson)
 islandCounterArray = []
 maxPopulation = 0
 #Calculating the size of the most populous dyansty ("island")
 for index in range(0, _numOfIslands):
 if islandCounter[index] :
 islandCounterArray += [islandCounter[index]]
 if islandCounter[index] > maxPopulation:
 maxPopulation = islandCounter[index]
 else:
 islandCounterArray += [0]

 #Ranodmly check if each dynasty has to get a new draw of its heritable birth rate.
 shouldIslandChgProb = choices ([True , False], [islandChgProb, 1-islandChgProb])
 if shouldIslandChgProb[0]:
 newIslandProb = choices(islandPossibleProbs,islandProbWeights)[0]
 islandProbList[index] = newIslandProb
 #Updaing the size of each dynasty due to the births, deaths and
 #migrations in the current round.
 islandPopulation += [islandCounterArray]
 maxIslandPopulation += [maxPopulation]

 #checking if there should be a new lottery for the aggregate birth rate
 shouldGenChgProb = choices ([True , False], [genChgProb, 1-genChgProb]);
 #Implementing a lottery for the aggregate birth rate.

 if shouldGenChgProb[0] :
 genProb=choices(genPossibleProbs,genProbsWeights)[0]

 #finished all calculations of the simulation tun.

 #Printing summary statistics of the simulation run
 print("Row: ",rowindex," Col: ",colindex," #islands=",_numOfIslands," ImmProb=",immProb, " deathprob=", deathProb,"
islChgProb",islandChgProb, " inheritProb",inheritProb)
 print ("Iter.:", iterationIndex, "population:", populationGrowth[iterationIndex-1],"max L birth:
",int(100*PopulationMaxProb[iterationIndex-1]),"% LR growth: ",int(PopulationGrowthRate[iterationIndex-1]*100000)/1000, "%
max island ", maxIslandPopulation[iterationIndex-2])

#The following command lines allow to print graphs of the population size, population growth rate,
#the share of agents with high hertiable birth rate, and the share of agents in the most populated dynasty
 if colindex==0:
 plt.plot(populationGrowth)
 plt.ylabel('Population')
 plt.show()

 plt.plot(PopulationGrowthRate)
 plt.ylabel('Growth Rate')
 plt.show()

 plt.plot(PopulationMaxProb)
 plt.ylabel('Population with Max Prob')
 plt.show()

 plt.plot(maxIslandPopulation)
 plt.ylabel('Maximal Population in Island')
 plt.show()

 #Time string used for the file names.
 timestr = time.strftime("%Y%m%d-%H%M%S")

 #Creating a detailed CSV file describing the detailed results of the simulation run.
 #One should change the directory based on the local computer in which the simulation runs!
 #Yuval's laptop:'C:\\Users\\heller\\Dropbox\\Local-Risk-Shared\\simulation\\population/sim-results'
 #Yuval's office computer: 'C:/Users/user/Dropbox/risk-persistance/simulation/sim-results/'
 #Renana's laptop: '/Users/heller/Documents/population'
 with open('C:/Users/User/Dropbox/risk-persistance/simulation/sim-results/'+timestr+ '.csv', mode='w',newline='') as
population_file:
 population_file = csv.writer(population_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
 population_file.writerow(['Row Index', rowindex])
 population_file.writerow(['Col Index', colindex])
 population_file.writerow(['Number Of Islands', _numOfIslands])
 population_file.writerow(['Island Probs'] + islandPossibleProbs)
 population_file.writerow(['Island Weights'] + islandProbWeights)
 population_file.writerow(['Own Probs'] + ownProbs)
 population_file.writerow(['Own Weights'] + ownWeights)
 population_file.writerow(['General Probs'] + genPossibleProbs)
 population_file.writerow(['General Weights'] + genProbsWeights)
 population_file.writerow(['Immegaration Prob', immProb])
 population_file.writerow(['Island Change Probability', islandChgProb])
 population_file.writerow(['General Change Probability', genChgProb])
 population_file.writerow(['Death Probabilty', deathProb])
 population_file.writerow(['Iteration index', 'Population', 'Growth Rate',
 'Population with max Probabilty', ' Maximal Island Population'])
 index=0
 while index<_numIterations:
 population_file.writerow([index, populationGrowth[index], PopulationGrowthRate[index], PopulationMaxProb[index],
maxIslandPopulation[index]])
 index+=100

