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Robust sequential search
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We study sequential search without priors. Our interest lies in decision rules that
are close to being optimal under each prior and after each history. We call these
rules robust. The search literature employs optimal rules based on cutoff strate-
gies, and these rules are not robust. We derive robust rules and show that their
performance exceeds 1/2 of the optimum against binary independent and identi-
cally distributed (i.i.d.) environments and 1/4 of the optimum against all i.i.d. en-
vironments. This performance improves substantially with the outside option
value; for instance, it exceeds 2/3 of the optimum if the outside option exceeds
1/6 of the highest possible alternative.

Keywords. Sequential search, search without priors, robustness, dynamic con-
sistency, competitive ratio.

JEL classification. C44, D81, D83.

1. Introduction

Suppose that you check stores one by one in search of the cheapest place to buy some
good. Your decision of when to stop searching depends on the distribution of prices you
expect to encounter in unvisited stores. The methodology of Bayesian decision making
proposes to turn this into an optimization problem. The input is your prior belief about
possible environments, mathematically formulated as a distribution over distributions.
This is a complex and usually intractable intertemporal decision problem. Special cases
can be solvable, but solutions are fragile as they depend on your beliefs about what you
do not know (see Gastwirth (1976)).

We are interested in a robust approach to this problem that does not depend on spe-
cific prior beliefs of a decision maker. So instead of focusing on the optimal performance
for a specific prior, we aim to perform relatively close to the optimum in each environ-
ment, and, hence, under each prior over environments. Furthermore, we are interested
in maintaining this property over time, not just at the outset. We formalize a perfor-
mance criterion that fulfills these desiderata. Decision rules that are optimal under this
criterion are called robust. We present robust rules and show how well they perform.
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The practical relevance of robust decision making is apparent. How can a shopper
know the distribution of prices offered in the next store? How does she form a prior
about such distributions? Even if a prior is formed, will the shopper be able to overcome
the complexity of Bayesian optimization? Will the decision rule still be good if the prior
puts little or no weight on the environment that is realized? How will the shopper ar-
gue about the optimality of a particular decision rule in front of her peers if they do not
have the same prior as she does? These questions can be addressed by a decision rule
that performs relatively well for any prior. Such a rule can be proposed as a compromise
among Bayesian decision makers who have different priors. It is a shortcut to avoid the
cumbersome calculations involved when computing the Bayesian optimal rule. More-
over, as a single rule that does not depend on individual (unobservable) beliefs, it is a
useful benchmark for empirical studies.

The setting we consider in this paper is as follows. Alternatives arrive according
to some independent and identically distributed (i.i.d.) process. We refer to this pro-
cess as an environment. An individual knows what alternatives can arrive, but does not
know the environment she faces. She has to decide after each draw whether to stop the
search or to draw another alternative. There is free recall: when the individual stops, she
chooses the best alternative found so far. Values are discounted over time; thus, waiting
for better alternatives is costly.

We measure the performance of a given decision rule as follows. For each environ-
ment and each history, we compute the ratio of the rule’s payoff to the maximal possible
payoff. We then find the smallest ratio among all environments and all histories. We call
this the performance ratio of the rule. The performance ratio describes what fraction
of the maximal payoff can be guaranteed, regardless of the environment and regardless
of which alternatives have realized over time. A rule that achieves the largest possible
performance ratio is called robust. It is as if we are looking for an epsilon optimal rule
with the smallest possible epsilon. To choose a robust decision rule is our recommenda-
tion to an individual who does not know the environment and wishes to avoid forming
a prior and optimizing against this prior.

In this paper, we first consider binary environments and then general environments.
An environment is called binary if it can generate at most one alternative whose value
is above the outside option. This alternative is called the high alternative. Consider an
individual who knows she is facing a binary environment. So she stops searching once
she sees the high alternative. The only question is when to stop if the high alternative
has not yet arrived. We find a robust decision rule for such environments. The corre-
sponding performance ratio is larger than 1/2, so the individual can always guarantee
at least half of the maximal payoff. Moreover, if there is an upper bound on the possible
values of the high alternative, then the robust performance ratio is strictly increasing in
the outside option, attaining 2/3 and 3/4 when the outside option is 1/6 and 1/3 of that
upper bound, respectively.

Next, we consider general environments. Here we allow for any i.i.d. distribution
over a given set of alternatives. We show that the robust performance ratio is always at
least 1/4. Surprisingly, this ratio is the same in general environments as it is in binary
environments, provided that there is an upper bound on possible alternatives and the
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outside option is not too small. The decision rule that supports these findings prescribes
to stop after any given history with a probability that is increasing in the value of the best
realized alternative.

An important feature of robust rules is that they randomize whenever it is worth
waiting for a higher alternative. This stands in contrast to Bayesian rules that optimize
against a given prior. These rule are generically deterministic. We show that no deter-
ministic rule can perform better than the rule that does not search at all.

Related literature

A popular criterion for decision making under multiple priors is maximin utility (Wald
(1950), Gilboa and Schmeidler (1989)). Unlike our approach, under this criterion there
is no concern for being close to the optimum irrespective of the prior. Maximin utility
aims to do best for a specific prior where payoffs are lowest. In our search setting, the
maxmin utility rule prescribes not to search at all.

Our method of evaluating and comparing decision rules is closely related to the min-
imax regret criterion. In this literature, the degree of suboptimality (referred to as regret)
is measured either in terms of differences (Savage (1951)) or, as popular in the computer
science literature, in terms of ratios (Sleator and Tarjan (1985); see also the axiomatiza-
tion of Terlizzese (2008)), which can also be found in the robust contract literature (e.g.,
Chassang (2013)). We prefer ratios to obtain a scale-free measure and, thus, to be able
to compare the performance across different specifications of the environment.

However, our evaluation method differs conceptually from that used in the minimax
regret literature. We evaluate the performance not only ex ante, but also after each addi-
tional piece of information has been gathered. This is also done in a follow-up paper by
Schlag and Sobolev (2020) that studies finite-horizon search in a more specific setting.
This method stands in contrast to the traditional approaches. One of these approaches
evaluates strategies retrospectively, after all uncertainty is resolved. This tradition goes
back to Savage (1951). Search models that follow this tradition appear in Bergemann
and Schlag (2011b) and Parakhonyak and Sobolev (2015). An alternative approach is
to evaluate strategies ex ante, by the present value of their expected payoffs, where the
searcher is able to commit to her strategy. This approach is adopted in the secretary
problem (Fox and Marnie (1960)) that studies sequential search within a nonrandom
set of exchangeable alternatives (for a review, see Ferguson (1989)). An analysis of ro-
bust search with ex ante commitment in the setting of this paper is difficult and remains
unsolved. Bergemann and Schlag (2011b) and Parakhonyak and Sobolev (2015) study a
special case with two periods, and Babaioff et al. (2009) study asymptotic performance
of approximately optimal algorithms in a related problem with no recall, so these results
are not comparable to our paper.

The term robustness goes back to Huber (1964, 1965). It is defined as a statistical
procedure whose “performance is insensitive to small deviations of the actual situation
from the idealized theoretical model” (Huber (1965)). Prasad (2003) and Bergemann
and Schlag (2011a) formalize this notion for decision making. They measure insensitiv-
ity under small deviations as performance being close to that of the optimal policy. The
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same approach has been applied to large deviations, where the performance is evalu-
ated under a large class of distributions, as in statistical treatment choice (Manski (2004),
Schlag (2006), and Stoye (2009)), auctions (Kasberger and Schlag (2017)), and search in
markets (Bergemann and Schlag (2011b) and Parakhonyak and Sobolev (2015)). The
term “robustness” has been used in the same spirit, to achieve an objective indepen-
dently of modeling details, in robust mechanism design (Bergemann and Morris (2005)),
and in the field of control theory (Zhou et al. (1995)).

The term “robustness” has been used in a different spirit to describe optimal de-
cisions under maximin utility, as in Hansen et al. (2001), Ben-Tal et al. (2009), Chas-
sang (2013), Carroll (2015), and Carrasco et al. (2018). It also appears in Kajii and Mor-
ris (1997), where the concept of robustness is related to closeness in the strategy space
rather than in the payoff space.

We proceed as follows. In Section 2, we introduce our model and focus on stationary
decision rules. In Section 3, we consider binary environments, while in Section 4, we
consider general environments. In Section 5, we study general decision rules. Section 6
concludes. The proofs are provided in the Appendix.

2. Model

2.1 Setting

An individual chooses among alternatives that arrive sequentially. Each alternative is
identified with its value to the individual. The individual starts with an outside option
x0 that is given and is strictly positive, so x0 > 0. Alternatives x1, x2, � � � are realizations of
an infinite sequence of i.i.d. random variables. In each round t = 0, 1, 2, � � �, after having
observed xt , the individual decides whether to stop the search or to wait for another
alternative. There is free recall: when the individual decides to stop, she chooses the
highest alternative she has seen so far. The highest alternative up to t is referred to as
best-so-far alternative and is denoted by yt , so

yt = max{x0, x1, � � � , xt }.

Payoffs are discounted over time with a discount factor δ ∈ (0, 1). From the perspective
of round 0, the payoff of stopping after t rounds is δtyt . The discount factor incorporates
various multiplicative costs of search, such as the individual’s impatience and a decay of
values that have not been accepted.

Alternatives belong to a given set X with X ⊂ R+, 0 ∈ X , and x̄ = supX > x0. For
instance, this set can be R+, N0, [0, x̄], or {0, x̄}. We refer to X as the set of feasible
alternatives. Inclusion of 0 in X is for notational convenience. Nothing changes if we
replace 0 by some ¯x as long as the outside option satisfies x0 ≥ ¯x. Inclusion of 0 is natural
in applications where search may not generate a new alternative in each round. Here,
the absence of a new alternative is modeled as the zero-valued alternative.

The ratio x0/x̄ plays an important role in our analysis; 1 −x0/x̄ can be considered as
a measure of potential relative gains from search. If X is unbounded, so x̄= ∞, then it
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is understood that x0/x̄= 0. We assume for clarity of exposition that

x0

x̄
≤ δ2

2 − δ . (A1)

This means that x0/x̄ is not too large or the discount factor is not too small. For example,
if x0/x̄= 1/2 or x0/x̄= 1/6, then δ should exceed approximately 0.8 or 0.5, respectively.
Clearly, assumption (A1) is vacuous if x̄ = ∞. Though we focus on the case when (A1)
holds, we also provide insights for the case when (A1) does not hold.

Alternatives are independently drawn fromX according to a probability distribution
F with finite support. We refer to F as an environment. Let FX be the set of all such
environments. The assumption of finite support is made to simplify the definition of
histories that can occur with positive probability. The main results extend to arbitrary
distributions with finite mean.

The decision making of the individual is formally captured by a decision rule that
specifies the probability of stopping in every round t = 0, 1, 2, � � � and after every possible
history of alternatives in that round. A decision rule is called stationary if the stopping
probability depends only on the best-so-far alternative, but not on the history that has
generated this best-so-far alternative. So a stationary decision rule is a mapping p that
specifies the stopping probability p(y ) for each best-so-far alternative y ∈X ∪ {x0} such
that y ≥ x0.

To simplify exposition, in the following discussion we restrict attention to stationary
decision rules. Later, in Section 5, we show that our results continue to hold for general
decision rules.

2.2 Performance criterion

We consider an individual who knows all of the above except for the distribution F ac-
cording to which alternatives are drawn. What she knows about F is that it is contained
in a given set of feasible environments F , where F ⊂ FX . In this paper, we pay special
attention to two types of feasible environments. In Section 3, we consider so-called bi-
nary environments that can have at most one value above x0, and in Section 4, we allow
for all environments in FX .

Our individual can rule out environments that do not belong to F , but she does not
assess likelihoods of environments that belong to F . Instead this individual searches for
a decision rule that performs well regardless of which environment in F she faces. We
introduce a performance criterion according to which she chooses her decision rule.

The basic idea is as follows. The individual evaluates payoffs when facing a given
environment F as in the standard expected utility model. However, unlike the standard
model, she has no prior over the different environments belonging F . Instead, she eval-
uates a decision rule in a given environment according to how far it is from the best rule
for this environment. She then chooses the rule that minimizes the maximum “distance”
across all environments in F . We now introduce the criterion formally.

Let us connect an environment to the best-so-far alternatives it can realize. We say
that a best-so-far alternative y is consistent with environment F if it can be obtained
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under F with a positive probability in some round. Let Y (F ) be the set of best-so-far
alternatives consistent with F . Note that y ∈ Y (F ) if either y = x0 or y > x0 that can
occur under F with positive probability, so Y (F ) = {x0} ∪ (supp(F ) ∩ (x0, ∞)).

Next we introduce payoffs. For a given environment F ∈ F and a given best-so-far
alternative y ∈ Y (F ), let Up(F , y ) be the expected payoff of a decision rule p under F
when the best-so-far alternative is y. According to rule p, the individual stops and gets y
with probabilityp(y ), and draws a new alternative with probability 1−p(y ). In the latter
case, the new best-so-far alternative becomes max{y, x}, where x is the value of the new
alternative, so

Up(F , y ) = p(y )y + (
1 −p(y )

)
δ

∫
X
Up

(
F , max{y, x}

)
dF(x). (1)

Let V (F , y ) be the highest possible expected payoff that can be achieved under F when
the best-so-far alternative is y, so

V (F , y ) = sup
p
Up(F , y ).

We also refer to V (F , y ) as the optimal payoff. Note that the optimal payoff is always
strictly positive, as V (F , y ) ≥ y ≥ x0 > 0. By Weitzman (1979), the rule that attains
V (F , y ) under F is a cutoff rule. It prescribes to stop whenever the best-so-far alternative
y exceeds a reservation value cF implicitly given as the unique solution of the equation

cF = δ
(∫ cF

0
cF dF(x) +

∫ ∞

cF

xdF(x)

)
. (2)

It follows that

V (F , y ) = max{y, cF }. (3)

We measure the performance of a decision rule p by the smallest fraction of the op-
timal payoff attained by p across all environments F ∈ F and all best-so-far alternatives
y ∈ Y (F ). We call this fraction the performance ratio and denote it by Rp(F ), so

Rp(F ) = inf
F∈F

inf
y∈Y (F )

Up(F , y )
V (F , y )

.

Note that this performance ratio is guaranteed in each round of search and after each
history of alternatives that can be generated with positive probability. Note also that the
value of the performance ratio would be the same if we included not only all environ-
ments in F , but also all distributions (priors) over environments in F .

The highest possible performance ratio is called robust and is denoted by R∗(F ), so

R∗(F ) = sup
p
Rp(F ).

A decision rule p∗ is called robust if it attains the robust performance ratio, so

Rp∗(F ) =R∗(F ).
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Note that R∗(F ) depends only on the information available from the start—the set of
feasible environments F—and, implicitly, on the set of feasible alternatives X and the
discount factor δ.

2.3 Randomization

We point out the importance of randomization for the design of robust rules. Intuitively
it makes sense to randomize whenever feasible environments are sufficiently diverse, as
this is how the individual can mitigate the trade-off between stopping the search when
it is optimal to continue and continuing the search when it is optimal to stop.

Specifically, we now bound the performance ratio of deterministic rules and con-
clude that no deterministic rule can outperform the rule that does not search. Consider
a deterministic rule p, so p(x0 ) ∈ {0, 1}. If p(x0 ) = 1, then p takes the outside option in
round 0 in all environments, so it does not search. In this case, the performance ratio
is Rp(F ) = x0/ supF∈F V (F , x0 ). Alternatively, if p(x0 ) = 0, then p keeps searching in-
definitely and yields the payoff ratio equal to 0 when facing an environment that never
generates alternatives better than x0. In this case, Rp(F ) = 0.

So by using deterministic rules, one cannot guarantee more than x0/ supF∈F V (F ,
x0 ). This is the performance ratio of the rule p1 that does not search, so p1(y ) = 1 for
all y. This ratio can be arbitrarily small if the outside option x0 is small or if there are
feasible environments that can generate very high alternatives.

3. Binary environments

Suppose that the individual faces an environment that is known to generate at most one
alternative above the outside option. The individual knows what she is looking for, she
just does not know whether she will find it and, if so, how valuable it will be. We call such
environments binary.

Note that any alternative that lies below the outside option can be treated as if it had
value 0 as such alternatives would never be chosen. Hence, we can act as if a binary
environment generates only two different alternatives, 0 and some value z above x0. An
environment is called binary, denoted by F(z,σ ), if it is a lottery over two values, 0 and z,
with probabilities 1 −σ and σ , respectively, where z ∈X such that z > x0, and σ ∈ [0, 1].
Let BX be the set of all binary environments overX , so

BX = {
F(z,σ ) : z ∈X s.t. z > x0, σ ∈ [0, 1]

}
.

In this section, we assume that the set of feasible environments F is equal to BX . So
the individual knows that alternatives are drawn from X and that she faces a binary
environment in BX . Note that X may contain more than one nonzero alternative. So
the individual who faces some environment in BX may not know the value of the high
alternative z, although she knows that there is at most one such alternative. Only in the
special case whenX = {0, z} does the individual knows the value of the high alternative.

How should the individual behave when facing an unknown binary environment?
Suppose that she sees an alternative z that lies above x0. Then her best-so-far alternative
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is z and she knows that this is the highest possible alternative. Thus, she stops searching
and sets p(z) = 1. So in the following discussion we can assume that

p(z) = 1 for all z > x0. (4)

We investigate only how optimally to choose p(x0 ), which is the probability of stopping
in each round when the high alternative has not arrived yet.

We present a robust rule for binary environments. We use the notation

η(x) = 1
2

+ 1
8

(
x+

√
x(x+ 8)

)
. (5)

Theorem 1. Let 0< x0 < x̄≤ ∞ and let (A1) hold. Then the robust performance ratio is

R∗(BX ) = η(x0/x̄).

It is attained by the robust decision rule p∗
b given by

p∗
b(y ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − δ

2 − δ+ 1
2

(
y

x̄
−

√
y

x̄

(
y

x̄
+ 8

)) if y = x0,

1 if y > x0.

Most proofs are provided in the Appendix.
Intuitively, the robust decision rule is derived is as follows. Consider bounded en-

vironments, so x̄ <∞. There are two worst-case environments. One never generates
alternatives above x0, and, hence, it is optimal to stop. The other randomizes between
0 and the highest feasible alternative x̄ in such a way that it is optimal to continue. The
stopping probability p∗

b(x0 ) equalizes the payoff ratios in these environments.
Note that the robust performance ratio as shown in Theorem 1 depends only on

x0/x̄. It does not depend on how many feasible alternatives there are above x0. In par-
ticular, this ratio remains unchanged if there is only one feasible alternative above x0,
so X = {0, x̄}. Moreover, the robust performance ratio does not depend on the discount
factor δ. This comes from the fact that both the payoff Up of the rule and the optimal
payoff V are evaluated using the same discount factor. When δ is larger, the impact from
the additional search of the robust rule cancels out with that of the optimal rule in the
worst case.

Observe that the robust performance ratio is at least 1/2, so one can guarantee a
half of the optimal payoff without having any information about the value of the high
alternative. This performance bound is tight when the value of the high alternative is
unbounded, so x̄= ∞.

Consider the case where the set of feasible alternatives is unbounded, so x̄ = ∞.
Then (A1) holds for all δ and the performance ratio is η(0) = 1/2. The robust rule p∗

b

prescribes to stop with probability (1−δ)/(2−δ) as long as y = x0, independently of the
value of the outside option x0.
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Table 1. Illustrative robust performance ratio.

x0/x̄ 1/50 1/20 1/10 1/6 1/5 1/4 1/3 1/2

η(x0/x̄) 0.552 0.585 0.625 0.666 0.685 0.71 0.75 0.82

Now consider the case where the set of feasible alternatives is bounded, so x̄ <∞.
Assume that (A1) holds. The robust performance ratio is increasing in the ratio of the
outside option x0 to the highest feasible alternative x̄. For example, one can guarantee at
least 2/3 and 3/4 of the optimal payoff if x0/x̄ exceeds 1/6 and 1/3, respectively. Table 1
shows the performance ratio η(x0/x̄) for a few values of x0/x̄, provided the discount
factor is not small, so x0/x̄≤ δ2/(2 − δ).

Finally, consider the case where (A1) does not hold, so x0/x̄ > δ
2/(2 − δ). Here, de-

cision rule p∗
b has a performance ratio larger than η(x0/x̄). This is because the rule p∗

b

attains the performance ratio η(x0/x̄) when treating the probability σ of the high alter-
native as a real-valued parameter. When (A1) is true, then we verify that σ ∈ [0, 1] holds
in the worst-case environment. However, when (A1) is false, then σ > 1, which is not
feasible. In this case, the worst-case payoff ratio has to be computed by including the
constraint σ ≤ 1. Including an additional constraint means that the performance ratio
of p∗

b can only get larger.

4. General environments

4.1 Setting

Suppose now that the individual faces an environment that is known to generate alter-
natives that belong to X . The individual knows what alternatives can or cannot appear,
but she does not know the likelihood of any of the alternatives. We refer to such envi-
ronments as general.

In the following discussion, we assume that the set of feasible environments F is not
restricted to binary environments, but can contain any environments in FX . We assume
that X contains at least two elements that are strictly greater than x0; in particular, x̄ >
x0.

How should the individual behave when she sees an alternative z that lies above the
outside option x0? If z ≥ δx̄, then it is best to stop, as no feasible alternative is worth
waiting for. However, if z < δx̄, then the individual faces a trade-off between stopping
when a better alternative may still come and continuing to search when it is optimal to
stop. This stands in contrast to the behavior in binary environments where one should
always stop after seeing any alternative above x0.

4.2 Simple lower bound

We start by presenting a lower bound on the robust performance ratio in any environ-
ments. An interesting property of this result is the simplicity of the rule that attains this
bound. It has the stopping probability that is independent of the best-so-far alternative.
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Theorem 2. Let F ⊂ FX . The robust performance ratio satisfies

R∗(F ) ≥ 1
4

.

The lower bound 1/4 is attained by the decision rule pg given by

pg(y ) = 1 − δ
2 − δ for all y ≥ x0.

Remark 1. The lower bound 1/4 on the robust performance ratio is tight. The robust
performance ratio is equal to 1/4 (thus, rule pg is robust) when the setX is unbounded,
so x̄= ∞.

The robust performance ratio is clearly the lowest when x̄ is the highest. We sketch
the argument regarding why the robust performance ratio of 1/4 is attained when x̄= ∞.
In this setting, regardless of how large the best-so-far alternative already is, an infinitely
larger alternative can still appear. Hence, the value of the best-so-far alternative plays no
role when designing a robust decision rule. We can thus limit attention to rules that have
a constant probability of stopping q for some q ∈ [0, 1]. The worst-case environment
generates a high alternative z that occurs with extremely small probability σ , but that is
sufficiently large so that it is worth waiting for. A greater qmeans a greater probability of
stopping before z realizes, but also a shorter delay before stopping and obtaining z after
it has realized. The performance ratio is attained as z → ∞ and σ → 0 such that the
optimal payoff of waiting for the first realization of z goes to infinity. Because y/z→ 0,
the individual essentially cares only about getting z. The performance ratio takes the
form

q

1 − δ(1 − q)

(
1 − q

1 − δ(1 − q)

)
. (6)

To understand (6), it is useful to think of 1 − δ as the exogenous probability that the
search stops in the current round and yields zero payoff. Then the expression

q

1 − δ(1 − q)
= q+ δ(1 − q)q+ δ2(1 − q)2q+ · · ·

can be seen as the expected probability of getting z after it has been realized. To interpret
the second factor in (6), consider the following expressions. First,

δσ
(
1 + δ(1 − σ ) + δ2(1 − σ )2 + · · · ) = δσ

1 − δ(1 − σ )

is the expected probability of not stopping before z realizes under the optimal rule,
where the probability of stopping in each round is 1 − δ. Second,

(1 − q)δσ
(
1 + (1 − q)δ(1 − σ ) + (1 − q)2δ2(1 − σ )2 + · · · ) = (1 − q)δσ

1 − (1 − q)δ(1 − σ )
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is the expected probability of not stopping before z realizes under the rule q, where the
probability of stopping in each round is (1 − δ)q. As σ tends to 0, the ratio of the latter
to the former is

(1 − q)δσ
1 − (1 − q)δ(1 − σ )

· 1 − δ(1 − σ )
δσ

σ→0−−−→ (1 − q)(1 − δ)
1 − δ(1 − q)

= 1 − q

1 − δ(1 − q)
.

We can now interpret (6). The first factor in (6) is the expected probability of obtaining z
after it has realized. The second factor in (6) is the expected probability of not stopping
before z realizes for the first time. Setting q/(1−δ(1−q)) equal to 1/2, so q= (1−δ)(2−
δ), maximizes (6), leading to the performance ratio 1/4.

4.3 Bounded environments

In the following discussion, we present the robust performance ratio for the case where
the outside option x0 is not too small in general environments in which alternatives are
bounded, so x̄ <∞. We call these environments bounded. Recall the definition of η
given by (5) in Section 3 and define

f (x, t ) =

⎧⎪⎨
⎪⎩

(1 − δ)(1 − t )
(1 − δ)(1 − t ) + (

√
t − √

x)2
if x < t,

1 if x≥ t.

Theorem 3. Let x̄ <∞ and let (A1) hold. There exists a constant λ ∈ (1/90, 7/100) such
that if

x0

x̄
≥ λ,

then the robust performance ratio is

R∗(FX ) = η
(
x0

x̄

)
.

It is attained by the robust decision rule p∗
g given by

p∗
g(y ) = f

(
y

x̄
, η

(
x0

x̄

))
for y ∈ [x0, x̄].

Theorem 3 shows that if the outside option is not too small relative to the highest
possible alternative, in the sense that x0/x̄ ≥ λ, then the robust performance ratio in
general environments is the same as it is in binary environments. Remarkably, the con-
stant λ is very small. We prove that λ < 7/100. Moreover, we numerically (up to precision
10−8) find that

λ≈ 0.01120000,

where 1/90 < 0.0112 < 1/89 (see Remark 3 in Appendix A.5). Thus, as x0/x̄ increases
from 0 to a mere 1/89, the robust performance ratio climbs from at least 1/4 (by Theo-
rem 2) to at least 1/2 (by Theorem 3). In particular, one can guarantee at least 2/3 and
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Figure 1. The black line shows the robust performance ratio in binary and general environ-
ments with x0/x̄ ≥ λ (see Theorem 3). The grey line shows the robust performance ratio in bi-
nary environments with x0/x̄ < λ (see Theorem 1). The dotted line shows the hypothetical robust
performance ratio in general environments with x0/x̄ < λ (as conjectured from Theorem 2 and
Remark 1).

3/4 of the optimum if the outside option exceeds 1/6 and 1/3 of the highest feasible
alternative, respectively. Figure 1 illustrates the robust performance ratio in different
settings.

Notice that the rule p∗
b that attains the robust performance ratio in binary environ-

ments no longer has this property in general environments. This is because it stops
immediately when an alternative above the outside option arrives. In contrast, the ro-
bust rule p∗

g randomizes whenever it is worth waiting for a higher alternative. Of course,
as binary environments belong to the set of general environments, p∗

g is also robust in
binary environments as long as x0/x̄≥ λ.

Why is the robust performance ratio in general environments the same as it is in
binary environments when x0/x̄≥ λ? When using rule p∗

g, the worst-case general envi-
ronments are binary environments that randomize between 0 and x̄. These are the same
worst-case environments we found in the binary environment setting. We verify that the
performance ratio of p∗

g is equal to η(x0/x̄), which is the robust performance ratio in bi-
nary environments. This means that p∗

g is robust in general environments because the
performance ratio can only become worse if one adds more environments. However,
when x0/x̄ < λ, then the performance ratio of p∗

g is strictly smaller in general environ-
ments than it is in binary environments. This is because the worst-case environment
now randomizes between 0 and an alternative strictly below x̄.

On a final note, we comment on re-optimization. When the individual draws an
alternative z that lies above the outside option x0, then the future looks like the original
problem except it is as if now the outside option is larger, namely, equal to z. One might
be tempted to switch to a decision rule that is designed for this outside option. However,
such re-optimization is not allowed in our model. This is investigated in a follow-up
paper by Schlag and Sobolev (2020).
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5. Nonstationary decision rules

5.1 Setting

So far we have restricted attention to stationary decision rules. The behavior prescribed
by these rules does not depend on time or history. It depends only on the highest alter-
native drawn so far. We now demonstrate that our results remain unchanged if we allow
for nonstationary decision rules.

We update our definitions introduced in Section 2 to incorporate the dependence of
decision rules on histories.

Let ht = (x0, x1, � � � , xt ) be a history of alternatives up to round t for t = 0, 1, 2, � � � .
A decision rule p prescribes for each history ht a probability p(ht ) of stopping after that
history. A decision rule p is stationary if p(x0, x1, � � � , xt ) = p(x0, x′

1, � � � , x′
t ′ ) whenever

max{x0, x1, � � � , xt } = max{x0, x′
1, � � � , x′

t ′ }. Let P be the set of all decision rules and let Pst
be the set of stationary decision rules.

We say that a history ht is consistent with an environment F if it has a strictly positive
probability under F . Let F ⊂ FX be a set of feasible environments. For an environment
F ∈ F , letH(F ) be the set of all finite histories consistent with F .

Consider an environment F ∈ F and a history ht ∈H(F ). With abuse of notation let
ht+1 = (ht , xt+1 ). LetUp(F , ht ) be the expected payoff of a decision rulep under F when
the history is ht , so

Up(F , ht ) = p(ht ) max{x0, x1, � � � , xt } + (
1 −p(ht )

)
δ

∫
X
Up

(
F , (ht , xt+1 )

)
dF(xt+1 ).

Let V (F , ht ) be the optimal payoff under F when the history is ht , so

V (F , ht ) = sup
p∈P

Up(F , ht ).

Note that V (F , ht ) ≥ max{x0, x1, � � � , xt } ≥ x0 > 0.
The performance ratioRp(F ) of a decision rulep is defined as the lowest payoff ratio

over all feasible environments and all histories that are consistent with each of those
environments:

Rp(F ) = inf
F∈F

inf
ht∈H(F )

Up(F , ht )
V (F , ht )

.

So the performance ratio is the largest fraction of the optimal payoff that a decision
rule guarantees no matter what environment in F the individual faces, in each round
of search and after each history of alternatives that can be generated with a positive
probability. As in Section 2, the highest possible performance ratio is called robust, and
is given by

R∗(F ) = sup
p∈P

Rp(F ).

A decision rule p∗ is called robust if it attains the robust performance ratio, so Rp∗(F ) =
R∗(F ).
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5.2 Randomization

Before describing the results, let us show that randomization is essential for robust
search. In other words, deterministic rules are not robust, provided there is an alter-
native worth waiting for. This insight appeared informally in Section 2.3. Here we prove
it formally.

A decision rule p is called deterministic if for each history, the individual either stops
searching or continues to search with certainty. Formally, this means that p(ht ) ∈ {0, 1}
for every possible history ht . Let p1 be the deterministic rule that stops searching after
each history, so p1(ht ) = 1 for all ht .

Let F ⊂ FX be the set of feasible environments. Let F0 and Fx̄ be the environments
that generate alternative 0 and alternative x̄ with certainty, respectively. We show that
deterministic decision rules are not robust when these two environments are feasible
and x̄ is worth waiting for, in the sense that δx̄ > x0.

Proposition 1. Let F0, Fx̄ ∈ F and let δx̄ > x0. Then

Rp(F ) ≤Rp1 (F ) = x0

δx̄
< R∗(F ).

We explain the above result. The rule p1 that does not search has a performance ra-
tio equal to x0/(δx̄). This is because the worst-case environment for this rule is Fx̄. This
ratio can be arbitrarily small if the outside option x0 is close to 0 or if the highest alter-
native x̄ is very large. The first inequality in Proposition 1 shows that no deterministic
rule can outperform the rule p1 that does not search. The second inequality shows that
deterministic rules are not robust.

Remark 2. Proposition 1 sheds light on the performance of Bayesian rules. These are
the rules used by Bayesian decision makers who maximize their expected payoffs for
some prior. Any such rule prescribes to stop the search if the best-so-far alternative is
better than the expected continuation payoff under the given prior and to continue the
search otherwise. Indifference between stopping and continuing under a given prior is
nongeneric in the sense that it does not hold under an open set of priors in the neigh-
borhood of that prior. Hence, Bayesian rules are generically deterministic. So by Propo-
sition 1, Bayesian rules are generically not robust.

5.3 Binary environments

Here we show that that there is no loss of generality to restrict attention to stationary
rules when investigating robust performance in binary environments. In other words,
any rule can be outperformed by an appropriately chosen stationary rule.

Proposition 2. For each p ∈ P there exists p̃ ∈ Pst such that Rp(BX ) ≤Rp̃(BX ).

By Proposition 2, it is immediate that Theorem 1 extends to nonstationary decision
rules.

Corollary 1. Theorem 1 holds when the set of decision rules is P .
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5.4 General environments

Let us now consider the performance of nonstationary rules in general environments as
defined in Section 4.

Theorem 2 clearly continues to hold as it identifies a lower bound that remains valid
if the set of decision rules becomes richer.

Corollary 2. Theorem 2 holds when the set of decision rules is P .

We apply Corollary 1 to prove the next result.

Corollary 3. Theorem 3 holds when the set of decision rules is P .

Proof. By Corollary 1, the robust performance ratio in binary environments isη(x0/x̄).
So the robust performance ratio in general environments can only be smaller than
η(x0/x̄). However, by Theorem 3, the stationary decision rule p∗

g attains η(x0/x̄) in
general environments. Hence, the rule p∗

g is robust in general environments, with or
without the restriction to stationary rules.

Finally, we hasten to point out that we do not extend Remark 1 to nonstationary
rules in this paper. Whether the performance ratio of 1/4 is robust when the set X of
alternatives is unbounded remains an open question.

6. Conclusion

It is difficult to search under the classic objectives of expected utility maximization when
the distribution of alternatives is not known. In fact, the literature has not produced
satisfactory insights into how to search in this setting. In this paper, we identify that
this difficulty is due to the desire to achieve the very highest payoff for the given beliefs.
Namely, we find that it is easier to search if one reduces the target and replaces “very
highest” by “relatively high.” The ease refers to the ability to derive a solution for a very
general setting, the simplicity of our algorithm, and the minimality of assumptions one
needs to impose on the environment.

Many interesting topics remain that have not been addressed in this paper. Are there
good rules that allow the individual to reoptimize after each new alternative arrives?
How do we search if costs are additive? What is the robust performance ratio when there
is no free recall? What if alternatives do not arrive according to an i.i.d. process?

The methodology developed in this paper is applicable to a spectrum of dynamic
decision making problems and should spark future research.

Appendix: Proofs

A.1 Auxiliary definitions and results

Let rp(y ) be given by

rp(y ) = inf
F∈BX

Up(F , y )
V (F , y )

= inf
z∈X ,z>x0,σ∈[0,1]

Up(F(z,σ ), y )
V (F(z,σ ), y )

for y ≥ x0. (7)
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So rp(y ) is the smallest payoff ratio of a stationary rule p under binary environments
when the best-so-far alternative is y. Observe that in the model with binary environ-
ments, the performance ratio of a decision rule p is given by

Rp(BX ) = rp(x0 ). (8)

This is because whenever a best-so-far alternative is y > x0, the individual knows that
no better alternative will ever arrive and, thus, stops immediately. The payoff ratio is 1
in this case. So the performance ratio Rp(BX ) is determined by the smallest payoff ratio
when the best-so-far alternative is x0.

The ratio rp(x0 ) is our main instrument for finding the performance ratio of p not
only in binary environments BX , but also in general environments FX .

We now find rp(y ) for a given decision rulep. To simplify the exposition of the proofs,
we introduce some notation. For x0 ≤ y < z and s ∈ [0, 1), let κp andmp be given by

κp(y ) = p(y )
1 − δ+ δp(y )

(9)

and

mp(y, z, s) = (1 − s)κp(y )y + (
1 − κp(y )

)
κp(z)sz

1 − sκp(y )
. (10)

Note that 1 − sκp(y )> 0, because κp(y ) ∈ [0, 1] and s < 1. For σ ∈ [0, 1], let

sσ = δσ

1 − δ+ δσ . (11)

The next lemma shows that κp(y )y and mp(y, z, sσ ) are the payoffs of rule p when the
environment is F(z,σ ) for the cases of z ≤ y and z > y, respectively.

Lemma 1. We have

Up(F(z,σ ), y ) =
{
κp(y )y if z ≤ y,

mp(y, z, sσ ) if z > y.
(12)

Proof. Let z ≤ y. By (1), the payoff of decision rule p in a binary environment F(z,σ )

is given by Up(F(z,σ ), y ) = p(y )y + (1 − p(y ))δUp(F(z,σ ), y ). Solving this equation for
Up(F(z,σ ), y ) and using (9) yields

Up(F(z,σ ), y ) = p(y )y
1 − δ+ δp(y )

= κp(y )y if z ≤ y. (13)

Next, let z > y. By (1),

Up(F(z,σ ), y ) = p(y )y + (
1 −p(y )

)
δ
(
σUp(F(z,σ ), z) + (1 − σ )Up(F(z,σ ), y )

)
. (14)
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Inserting y = z into (13) yieldsUp(F(z,σ ), z) = κp(z)z. Inserting this into (14) and solving
for Up(F(z,σ ), y ) yields

Up(F(z,σ ), y ) = p(y )y + (
1 −p(y )

)
δσκp(z)z

1 − δ(1 − σ )
(
1 −p(y )

) .

Finally, we use (9) to replacep(y ) by (1−δ)κp(y )/(1−δκp(y )) and we use (11) to replace
σ by (1−δ)sσ

δ(1−sσ ) . Note that sσ ≤ δ < 1, so δ(1 − sσ )> 0 and κp(y ) ≥ 0, so 1 −δκp(y )> 0. After
simplification, we obtain

Up(F(z,σ ), y ) = (1 − sσ )κp(y )y + (
1 − κp(y )

)
κp(z)sσz

1 − sσκp(y )
=mp(y, z, sσ ) if z > y.

We now characterize rp(y ). Below we repeatedly use the infimum operator. When-
ever the infimum is taken over an empty set, we follow the convention that inf(∅) = +∞.

Proposition 3. Let y ∈X ∪ {x0} and z ∈X such that x0 ≤ y < z. For each rule p,

rp(y ) ≤ inf
s∈( yz ,δ]

mp(y, z, s)
sz

. (15)

Moreover, if p(y ) is weakly increasing in y, then

rp(y ) = min
{
κp(y ), inf

z∈X ,z>x0,s∈( yz ,δ]

mp(y, z, s)
sz

}
. (16)

Proof. Let p be a decision rule, let y ∈ [x0, x̄], and let F(z,σ ) ∈ BX . First, we find
V (F(z,σ ), y ). Solving (2) for cF(z,σ ) and using (11), we obtain

cF(z,σ ) = δσz

1 − δ+ δσ = sσz.

By (3),

V (F(z,σ ), y ) = max{y, cF(z,σ ) } = max{y, sσz}. (17)

Next,

rp(y ) = inf
z∈X ,z>x0,σ∈[0,1]

Up(F(z,σ ), y )
V (F(z,σ ), y )

= min
{

inf
z∈X ,σ∈[0,1]
s.t. x0<z≤y

Up(F(z,σ ), y )
V (F(z,σ ), y )

, inf
z∈X ,σ∈[0,1]

s.t. cF(z,σ )
≤y<z

Up(F(z,σ ), y )
V (F(z,σ ), y )

,

inf
z∈X ,σ∈[0,1]

s.t. y<cF(z,σ )
<z

Up(F(z,σ ), y )
V (F(z,σ ), y )

}

= min
{

inf
z∈X ,s∈[0,δ]
s.t. x0<z≤y

κp(y )y

y
, inf
z∈X ,s∈[0,δ]
s.t. sz≤y<z

mp(y, z, s)
y

,
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inf
z∈X ,s∈[0,δ]

s.t. y<sz

mp(y, z, s)
sz

}
. (18)

The first equality is by (7), the second equality is by partitioning the set {(z, σ ) : z ∈
X , z > x0, σ ∈ [0, 1]} into three subsets, and the third equality is by (17), Lemma 1, and
the property that for each s ∈ [0, δ], there is a unique σ ∈ [0, 1] such that s = sσ . The
inequality (15) follows from (18).

To prove (16), consider sz ≤ y < z. By (10), we have

mp(y, z, s) ≥ (1 − s)κp(y )y + (
1 − κp(y )

)
κp(y )sy

1 − sκp(y )
= κp(y )y,

where the inequality is because p(z) is increasing by assumption and, hence, κp(z)z ≥
κp(y )y, and the equality is by the simplification of the expression. Moreover, by (10), we
havemp(y, z, 0) = κp(y )y. Therefore,

inf
z∈X ,s∈[0,δ]
s.t. sz≤y<z

mp(y, z, s)
y

= κp(y )y

y
= κp(y ). (19)

So (16) follows from (18) and (19).

We now aim to compute rp(x0 ) using Proposition 3. It is apparent from Proposition 3
that the difficulty in finding rp(x0 ) is the minimization of mp(x0, z, s)/(sz) with respect
to (z, s). For our proofs, we minimizemp(x0, z, s)/(sz) with respect to s for s ∈ (0, 1). We
then show that the solution is feasible, so it attains rp(y ), provided (A1) holds.

Lemma 2. Let z ∈X with z > x0. Suppose that x0 ≤ y < z ≤ x̄. Then

inf
s∈(0,1]

mp(y, z, s)
sz

=
⎧⎨
⎩

1
z

(
κp(y )

√
y +

√(
1 − κp(y )

)(
κp(z)z− κp(y )y

))2
if y < κp(z)z,

κp(z) if y ≥ κp(z)z.

Moreover, the value of s that minimizesmp(y, z, s)/(sz) is given by

s∗(y, z) =

⎧⎪⎨
⎪⎩

(
κp(y ) +

√(
1 − κp(y )

)(κp(z)z

y
− κp(y )

))−1

if y < κp(z)z,

1 if y ≥ κp(z)z.

(20)

Proof. Assume x0 ≤ y < z ≤ x̄. Let us find a solution s∗(y, z) to the problem

inf
s∈(0,1]

mp(y, z, s)
sz

= inf
s∈(0,1]

(1 − s)κp(y )y + (
1 − κp(y )

)
κp(z)sz(

1 − sκp(y )
)
sz

.

We have

∂

∂s

(
mp(y, z, s)

sz

)
= κp(y )(

1 − sκp(y )
)2
s2z

G(s), (21)
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where

G(s) = (
κp(z)z

(
1 − κp(y )

) − κp(y )y
)
s2 + 2κp(y )ys− y.

The expression κp(y )/((1 − sκp(y ))2s2z) is positive when s ∈ (0, 1] and z > y ≥ x0 > 0.
So the sign of (21) is determined by G(s). Observe that G(s) is increasing for s ∈ (0, 1],
because

dG(s)
ds

= 2κp(z)z
(
1 − κp(y )

)
s+ 2κp(y )y(1 − s) ≥ 0.

Also observe thatG(0) = −y andG(1) = (1 − κp(y ))(κp(z)z− y ).
Suppose that κp(z)z − y ≤ 0, so G(1) ≤ 0. It follows that G(s) ≤ 0 for all s ∈ [0, 1].

Thus, s∗(y, z) = 1 is a solution.
Alternatively, suppose that κp(z)z − y > 0, so G(1) ≥ 0. Then there exists a solution

ofG(s) = 0 on (0, 1]. The quadratic equationG(s) = 0 has two solutions,

s1 = 1

kp(y ) + √
D

and s2 = 1

kp(y ) − √
D

,

where

D= (
1 − κp(y )

)(κp(z)z

y
− κp(y )

)
.

Because 1 ≥ κp(z)z > y, we have
√
D > 1 − κp(y ) > 0, so s1 ∈ (0, 1) and s2 /∈ [0, 1]. It

follows that s∗(y, z) = s1 is a solution.
Thus, we have shown (20). It remains to substitute s = s∗(y, z) into mp(y, z, s)/(sz).

For the case of κp(z)z− y ≤ 0, we obtain

inf
s∈(0,1]

mp(y, z, s)
sz

= mp(y, z, 1)
z

= κp(z).

For the case of κp(z)z− y > 0, we obtain, after simplification,

inf
s∈(0,1]

mp(y, z, s)
sz

= mp(y, z, s1 )
z

= 1
z

(
κp(y )

√
y +

√(
1 − κp(y )

)(
κp(z)z− κp(y )y

))2
.

A.2 Proof of Theorem 1

Let q ∈ [0, 1], and let pq be a decision rule given by pq(x0 ) = q and pq(y ) = 1 for all
y > x0. To prove Theorem 1, we use the notation and results from Appendix A.1. We
show that under assumption (A1), the rule pq∗ with

q∗ = 1 − δ

2 − δ+ 1
2

(
x0

x̄
−

√
x0

x̄

(
x0

x̄
+ 8

)) (22)

maximizes Rpq (BX ) among all q ∈ [0, 1]. So this rule is robust. We then verify that
Rpq∗ (BX ) = η(x0/x̄).
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Recall the notation rp, κp, andmp for a rule p introduced in Appendix A.1 by (7), (9),
and (10), respectively. By (8) and Proposition 3,

Rpq (BX ) = rpq (x0 ) = min
{
κpq (x0 ), inf

z∈X ,z>x0,s∈(
x0
z ,δ]

mpq (x0, z, s)

sz

}
.

Let z ∈X with z > x0 and let s ∈ (0, 1]. Note that κpq(z) = 1. Let

k= κpq (x0 ) = q

1 − δ+ δq . (23)

By (10), we have

mpq (x0, z, s) = (1 − s)κpq (x0 )x0 + (
1 − κpq (x0 )

)
κpq (z)sz

1 − sκpq (x0 )
= (1 − s)kx0 + (1 − k)sz

1 − sk .

Observe thatmpq (x0, z, s)/(sz) is decreasing in z, because

d
dz

(
mpq (x0, z, s)

sz

)
= d

dz

(
(1 − s)kx0 + (1 − k)sz

(1 − sk)sz

)
= − (1 − s)kx0

(1 − sk)sz2 ≤ 0,

sompq (x0, z, s)/(sz) attains its infimum as z→ x̄. We thus obtain

Rpq (BX ) = min
{
k, inf

s∈(
x0
x̄ ,δ]

(1 − s)k
x0

x̄
+ (1 − k)s

(1 − sk)s

}
.

Note that each k ∈ [0, 1] corresponds to a unique q ∈ [0, 1], so

R∗(BX ) = sup
q∈[0,1]

Rpq (BX ) = sup
k∈[0,1]

min
{
k, inf

s∈(
x0
x̄ ,δ]

(1 − s)k
x0

x̄
+ (1 − k)s

(1 − sk)s

}
. (24)

Consider the case of x̄= ∞, so x0/x̄= 0. By (24), we obtain

R∗(BX ) = sup
k∈[0,1]

min
{
k, inf

s∈(0,δ]

(1 − k)s

(1 − sk)s

}
= sup
k∈[0,1]

min{k, 1 − k} = 1
2

.

The maximum is attained at k∗ = 1/2. By (23), k∗ = 1/2 corresponds to q∗ = (1 −δ)/(2 −
δ). We have thus shown (22) for the case of x0/x̄= 0.

Next, to address the case of x̄ <∞, we first find

ρ∗(x0, x̄) = sup
k∈[0,1]

min
{
k, inf
s∈(0,1]

mpq (x0, x̄, s)

sx̄

}
.

We later show that R∗(BX ) = ρ∗(x0, x̄). By Lemma 2 with y = x0 and z = x̄, we have

inf
s∈(0,1]

mpq (x0, x̄, s)

sx̄
= (
k
√
x+

√
(1 − k)(1 − kx)

)2
,
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where we denote

x= x0

x̄
.

Thus, we obtain

ρ∗(x0, x̄) = sup
k∈[0,1]

min
{
k,

(
k
√
x+

√
(1 − k)(1 − kx)

)2}
. (25)

Observe that

d
dk

(
k
√
x+

√
(1 − k)(1 − kx)

) = −
(√

(1 − k)x−
√

1 − kx)2

2
√

(1 − k)(1 − kx)
≤ 0. (26)

So the term (k
√
x + √

(1 − k)(1 − kx))2 is decreasing in k. We thus conclude that the
solution of (25) is the solution to the equation

k= (
k
√
x+

√
(1 − k)(1 − kx)

)2
. (27)

Because the left-hand side of (27) is strictly increasing and the right-hand side of (27) is
decreasing in k for k ∈ [0, 1], the solution of (27) is unique. By substituting

k∗ = 1
2

+ 1
8

(
x+

√
x(x+ 8)

)
(28)

into (27), we verify that k∗ is the solution of (27). By (23), k∗ corresponds to q∗ as given
by (22). Finally, by (5) and (25),

ρ∗(x0, x̄) = k∗ = η(x).

It remains to show that thatR∗(BX ) = ρ∗(x0, x̄). Observe that by (24), we haveR∗(BX ) =
ρ∗(x0, x̄) if s∗(k∗ ) is feasible in (24); specifically, if s∗(k∗ ) ∈ (x0/x̄, δ]. By Lemma 2, for
k ∈ [0, 1],

s∗(k) =
(
k+

√
(1 − k)

(
x̄

x0
− k

))−1

=
√
x

k
√
x+

√
(1 − k)(1 − kx)

. (29)

To verify that s∗(k∗ )> x0/x̄= x, observe that s∗(k) is increasing in k, so

s∗
(
k∗) ≥ s∗(0) = √

x > x.

Finally, we verify that s∗(k∗ ) ≤ δ, provided (A1) holds, so x≤ δ2/(2 − δ). It is easy to see
from (29) that s∗(k) is increasing in both k and x. Moreover, by (28), k∗ is increasing in x.
Consequently, s∗(k∗ ) is increasing in x. So to verify that s∗(k∗ ) ≤ δ for all x≤ δ2/(2 − δ),
it suffices to verify it for x= δ2/(2 − δ). Substituting x= δ2/(2 − δ) into (28) yields k∗ =
1/(2 − δ). Next, substituting both x = δ2/(2 − δ) and k∗ = 1/(2 − δ) into (29) yields
s∗(k∗ ) = δ. We, thus, have verified that s∗(k∗ ) is in (x0/x̄, δ] whenever (A1) holds.
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A.3 Connecting general and binary environments

As a preliminary step before proving Theorems 2 and 3, we show that the performance
ratio of a regular decision rule p is equal to rp(x0 ), where rp is defined in Appendix A.1.

Definition 1. Rule p is regular if it satisfies two conditions:

(i) p(y ) is weakly increasing in y

(ii) rp(y ) is weakly increasing in y.

Regularity is an intuitive condition. Condition (i) means that the individual is more
likely to accept a greater best-so-far alternative. Condition (ii) is a “free-disposal” prop-
erty. If this property does not hold, so a better best-so-far alternative leads to a lower
guaranteed payoff ratio, then the individual could be better off by destroying some part
of the value of the best-so-far alternative.

The next proposition shows that when determining the performance ratio of any
regular decision rule in general environments, we can restrict attention to binary envi-
ronments and to a single best-so-far alternative y = x0. This is a dramatic simplification
of the problem, because binary environments are easy to deal with and we do not need
to worry about a multitude of possible values of best-so-far alternatives.

Proposition 4. Suppose that p is regular. Then Rp(FX ) = rp(x0 ).

We hasten to point out that by Proposition 4, the restriction to binary environments
is without loss of generality only when dealing with regular rules. The rule p∗

b identified
in Theorem 1 is not regular, so Proposition 4 does not apply to this rule. In fact, it is easy
to verify that p∗

b is not robust in general environments.

Proof of Proposition 4. The proof relies on two lemmas. We first present the state-
ments of these two lemmas and show how they prove Proposition 4. Then we prove the
two lemmas.

Let Y0 be the set of all possible best-so-far alternatives:

Y0 =
⋃
F∈FX

Y (F ) = {
y ∈X ∪ {x0} : y ≥ x0

}
.

Lemma 3 shows that the smallest payoff ratio does not change if we expand the set Y (F )
for each F ∈ FX to Y0.

Lemma 3. We have infF∈FX ,y∈Y (F )
Up(F ,y )
V (F ,y ) = infF∈FX ,y∈Y0

Up(F ,y )
V (F ,y ) .

The proof is deferred to the end of this subsection.
Lemma 4 proves that when determining the worst-case payoff ratio of a regular de-

cision rule in general environments, we can restrict attention to binary environments.
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Lemma 4. Suppose that p is regular. Then, for each y ∈ Y0,

inf
F∈FX

Up(F , y )
V (F , y )

= rp(y ). (30)

The proof is deferred to the end of this subsection.
From Lemmas 3 and 4, we obtain

Rp(FX ) = inf
F∈FX

(
inf

y∈Y (F )

Up(F , y )
V (F , y )

)
= inf
y∈Y0

(
inf
F∈FX

Up(F , y )
V (F , y )

)
= inf
y∈Y0

rp(y ) = rp(x0 ),

where the first equality is by the definition of Rp(FX ), the second equality is by
Lemma 3, the third equality is by Lemma 4, and the fourth equality is because rp is reg-
ular. This completes the proof of Proposition 4.

We now prove Lemmas 3 and 4.

Proof of Lemma 3. For each y ∈ Y0, let F̂X(y ) be the set of all environments in which
y is a feasible best-so-far alternative:

F̂X(y ) = {
F ∈ FX : y ∈ Y (F )

}
.

Using this notation, we can equivalently express Rp(FX ) as

Rp(FX ) = inf
y∈Y0

(
inf

F∈F̂X (y )

Up(F , y )
V (F , y )

)
= inf
y∈Y0

(
inf

F∈Closure(F̂X (y ))

Up(F , y )
V (F , y )

)
. (31)

It remains to show that Closure(F̂X(y )) = FX for each y ∈ Y0. Intuitively, if there is a
distribution F /∈ F̂X(y ), so y is not in the support of F , then there is another distribution
that is arbitrarily close to F and yet places a positive, albeit arbitrarily small, probability
on y.

Since x0 ∈ Y (F ) for all F ∈ FX , we have F̂X(x0 ) = FX . Now consider y ∈ Y0\{x0}. Let
F ∈ FX . Let Dy be the Dirac distribution that assigns probability 1 on y. Let (Fk )∞k=1 be
a sequence of distributions given by

Fk = 1
k
Dy +

(
1 − 1

k

)
F , k ∈N,

so limk→∞ Fk = F . Notice that Fk ∈ FX for all k ∈ N. By construction, we have {y} ⊂
Y (Dy ) ⊂ Y (Fk ) and, thus, Fk ∈ F̂X(y ) for all k ∈ N, so F ∈ Closure(F̂X(y )). Since the
above statement is true for all F ∈ FX , it follows that Closure(F̂X(y )) = FX . The state-
ment of the lemma is then immediate by (31).

Proof of Lemma 4. Let p be a regular rule. Fix any best-so-far alternative y ∈ Y0 and
any environment F ∈ FX . We show that there exist a probability σ ∈ [0, 1] and alterna-
tives w, z ∈ Y (F ) with y ≤w≤ z ≤ x̄ such that

Up(F , y )
V (F , y )

≥ Up(F , w)
V (F , w)

≥ Up(F(z,σ ), w)
V (F(z,σ ), w)

. (32)
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Then, by (32), the definition of rp, and the regularity of rule p, we obtain

Up(F , y )
V (F , y )

≥ Up(F(z,σ ), w)
V (F(z,σ ), w)

≥ rp(w) ≥ rp(y ).

This implies (30), because BX ⊂ FX and F is an arbitrary environment in FX . To com-
plete the proof, it remains to show (32).

Let w be an alternative that satisfies

Up(F , w) = min
x∈Y (F ),x≥y

Up(F , x). (33)

By assumption, F has a finite support, so Y (F ) is finite. Therefore, w is well defined.
Because Up(F , w) ≤ Up(F , y ) by (33), and V (F , w) ≥ V (F , y ) by (3) and the constraint
w≥ y, we obtain the first inequality in (32).

Let us show the second inequality in (32). Recall that by (1),

Up(F , w) = p(w)w+ (
1 −p(w)

)
δ

∫ x̄

0
Up

(
F , max{w, x}

)
dF(x). (34)

Let cF be the reservation value of F as given by (2). Subsequently, we omit the subscript,
so c = cF . As δ < 1, it is easy the verify that

0 ≤ c/δ < x̄. (35)

Suppose that w ≥ c. Then, by (3), V (F , w) =w. Moreover, V (F(w,1), w) =w. Also, by
(33) and (34),

Up(F , w) ≥ p(w)w+ (
1 −p(w)

)
δUp(F , w).

Solving this inequality yields

Up(F , w) ≥ p(w)w
1 − δ(1 −p(w)

= κp(w)w=Up(F(w,1), w),

where the first equality is by (9) and the second equality is by Lemma 1 (see Ap-
pendix A.1). Thus, we have obtained the second inequality in (32) with F(z,σ ) = F(w,1).

Next suppose that w < c. To show the second inequality in (32), we first bound the
expression

∫ x̄
0 Up(F , max{w, x}) dF(x) from below. For each x ∈ Y (F ), let

u(x) =
{
Up(F , w), x≤ c,

Up(F , x), x > c.
(36)

Since w< c, by (33) and (36), we have

Up
(
F , max{w, x}

) ≥ u(x) for all x ∈ [0, x̄]. (37)
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Figure 2. Two cases that arise when solving (38) and (39). The dotted lines show the values of
u(x) for x in the discrete support of F . The solid lines show uconv(x).

Let us find alternatives w′ and z in Y (F ) with w ≤ w′ ≤ c/δ ≤ z ≤ x̄ and a probability
σ ∈ [0, 1] such that ∫ x̄

0
u(x) dF(x) ≥ (1 − σ )u

(
w′) + σu(z), (38)

(1 − σ )w′ + σz = c

δ
. (39)

We apply the convexification method as in Kamenica and Gentzkow (2011). Con-
sider the greatest convex function uconv : [0, x̄] → R such that uconv(x) ≤ u(x) for all
x ∈ Y (F ), as shown in Figure 2. This is known as the convex closure of u. Clearly, to
satisfy (38) and (39), the alternatives w′ and z must be the closest values in Y (F ) to the
left and to the right of c/δ, respectively, such that u(w′ ) = uconv(w′ ) and u(z) = uconv(z).
Then σ is derived from (39). In particular, if u(c/δ) = uconv(c/δ), then w′ = z = c/δ and
σ is arbitrary.

Let (w′, z, σ ) satisfy (38) and -(39). Observe that the straight line through points
(w′, u(w′ )) and (z, u(z)) is weakly below the graph of u. Moreover, this straight line has
a nonnegative slope, because by (33), we have u(w) ≤ u(x) for all x ≥ w. So we can
conclude that

u
(
w′) ≤ u(x) for all x≥w′,

u(z) ≤ u(x) for all x≥ z.
(40)

We consider two cases illustrated by Figure 2(a) and (b), withw′ > c andw′ = c. It is clear
that w′ < c cannot occur, because u(x) is constant for x≤ c (see Figure 2).

Case 1. Suppose that w′ > c. We have

u(z) = p(z)z+ (
1 −p(z)

)
δ

∫ x̄

0
u
(
max{z, x}

)
dF(x) ≥ p(z)z+ (

1 −p(z)
)
δu(z),
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where the equality is by (34) and (36), and the inequality is by (40). Solving the above
inequality for u(z) yields

u(z) ≥ p(z)z

1 − δ(1 −p(z)
) = κp(z)z =Up(F(z,1), z), (41)

where the first equality is by (9) and the second equality is by Lemma 1 (see Ap-
pendix A.1). We analogously prove that

u(w) ≥Up(F(w,1), w). (42)

We thus obtain

Up(F , w) = p(w)w+ (
1 −p(w)

)
δ

∫ x̄

0
Up

(
F , max

{
x, x′})dF

(
x′)

≥ p(w)w+ (
1 −p(w)

)
δ

∫ x̄

0
u(x) dF(x)

≥ p(w)w+ (
1 −p(w)

)
δ
(
(1 − σ )u

(
w′) + σu(z)

)
≥ p(w)w+ (

1 −p(w)
)
δ
(
(1 − σ )Up

(
F(w′,1), w′) + σUp(F(z,1), z)

)
= (1 − σ )Up(F(w′,1), w) + σUp(F(z,1), w), (43)

where the first line is by (34), the second line is by (37), the third line is by (38), the
fourth line is by (41) and (42), and the last line is again by (34). Alternatively, by (3), the
assumption that w< c <w′ ≤ z, and (39),

V (F , w) = c = (1 − σ )δw′ + σδz = (1 − σ )V (F(w′,1), w) + σV (F(z,1), w). (44)

It follows from (43) and (44) that

Up(F , w)
V (F , w)

≥ (1 − σ )Up(F(w′,1), w) + σUp(F(z,1), w)

(1 − σ )V (F(w′,1), w) + σV (F(z,1), w)

≥ min
{
Up(F(w′,1), w)
V (F(w′,1), w)

,
Up(F(z,1), w)
V (F(z,1), w)

}
.

Thus, we have obtained (32) with F(z,σ ) equal to either F(w′,1) or F(z,1).
Case 2. Suppose that w′ = c. By (39), we have z > c/δ > c. As in Case 1, we obtain the

inequality (41), so

u(z) ≥ κp(z)z.

Also, by (36), we have u(w′ ) =Up(F , w). So by (38),

∫ x̄

0
u(x) dF(x) ≥ (1 − σ )u

(
w′) + σu(z) ≥ (1 − σ )Up(F , w) + σκp(z)z. (45)

Therefore, by (34), (36), and (45),

Up(F , w) ≥ p(w)w+ (
1 −p(w)

)
δ
(
(1 − σ )Up(F , w) + σκp(z)z

)
.
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Solving the inequality for Up(F , w) yields

Up(F , w) ≥ p(w)w+ (
1 −p(w)

)
δσκp(z)z

1 − δ(1 − σ )
(
1 −p(w)

)
= (1 − s)κp(w)w+ (

1 − κp(w)
)
κp(z)sz

1 − sκp(w)

=mp(w, z, s) =Up(F(z,σ ), w), (46)

where the first equality is by substituting σ = (1−δ)s
δ(1−s) and using the definition of κp in

(9), the second equality is by the definition of mp in (10), and the third equality is by
Lemma 1 (see Appendix A.1). Alternatively, by (3), the assumption that w ≤ w′ = c < z,
and (39),

V (F , w) = c = V (F(z,σ ), w). (47)

Hence, the second inequality in (32) follows from (46) and (47) with the specified F(z,σ ).
This completes the proof.

A.4 Proving Theorem 2 and Remark 1

Proof of Theorem 2. We need to show that the decision rule pg given by the constant
stopping probability

pg(y ) = 1 − δ
2 − δ for all y ≥ x0

always yields a performance ratio of at least 1/4.
Using (9), we obtain κpg (x) = 1/2 for all x. Inserting this into (10), we obtain for all

z > y ≥ x,

mpg (y, z, s)

sz
=

(1 − s)
1
2
y + 1

4
sz(

1 − 1
2
s

)
sz

= 2(1 − s)y + sz
2(2 − s)sz

≥ 1
2(2 − s)

≥ 1
4

. (48)

Then, by Proposition 3, κpg (y ) = 1/2, and (48) we obtain

rpg (y ) ≥ min
{

1
2

,
1
4

}
= 1

4
. (49)

Observe from (48) that the ratio mpg (y, z, s)/(sz) is increasing in y for each (z, σ ) such
that z ∈X , z > x0, and s ∈ ( yz , δ]. It follows that rpg (y ) is increasing, so pg is regular. So
Rpg (FX ) = rpg (x0 ) by Proposition 4 and rpg (x0 ) ≥ 1/4 by (49).

Proof of Remark 1. Let x̄ = supX = ∞. As shown above, the rule pg yields at least
1/4. We now show that no rule can achieve more than 1/4, thus proving that pg is robust
and yields Rpg (FX ) = 1/4.
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Consider an arbitrary rule p and let κp be given by (9). Consider an increasing se-
quence (zn )n∈N such that z1 > x0 and zn ∈ X for all n ∈ N, and limn→∞ zn = ∞. Let
Kp = lim supn→∞ κp(zn ). First, by Lemma 3 and the definitions of Rp and rp, we have
Rp(FX ) ≤ rp(zn ) for all n ∈ N, so

Rp(FX ) ≤ lim sup
n→∞

rp(zn ).

Next, for each y ≥ x0 we have

rp(y ) ≤ inf
n∈N

(
inf

s∈( y
zn

,δ]

mpg (y, zn, s)

szn

)

= inf
n∈N

(
inf

s∈( y
zn

,δ]

(1 − s)κp(y )
y

zn
+ (

1 − κp(y )
)
κp(zn )s(

1 − sκp(y )
)
s

)

≤ inf
s∈(0,δ]

(
1 − κp(y )

)
Kp

1 − sκp(y )
≤ (

1 − κp(y )
)
Kp,

where the first inequality is by Proposition 3, the equality is by (10), the second inequality
is by taking n→ ∞, and the third inequality is by taking s→ 0.

Finally, using the fact that κp(y ) ∈ [0, 1] for all y and, thus,Kp ∈ [0, 1], we obtain

lim
n→∞ rp(zn ) ≤ lim

n→∞
(
1 − κp(zn )

)
Kp = (1 −Kp )Kp ≤ 1

4
.

We thus obtain that Rp(FX ) ≤ 1/4.

A.5 Proof of Theorem 3

Let T1 be a constant given by

T1 =
(

(773 + 9
√

1290)1/3

18
+ 79

18(773 + 9
√

1290)1/3
− 2

9

)2

≈ 0.6026. (50)

Let λ1 be a constant in [0, 1] that satisfies the equation T1 = η(λ1 ), so

λ1 = (2T1 − 1)2

T1
≈ 0.0699< 7/100. (51)

Let x̄ = supX <∞. By rescaling the values, we assume without loss of generality that
x̄= 1. Fix x0 that satisfies assumption (A1) and, in addition, x0 ≥ λ1. So

0< λ1 ≤ x0 ≤ δ2

2 − δ < 1. (52)

Let

t = η(x0 ) = 1
2

+ 1
8

(
x0 +

√
x0(x0 + 8)

)
. (53)
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We interpret t as the target performance ratio for outside option x0. Consider the deci-
sion rule p∗

g given for each y ≥ x0 by

p∗
g(y ) = f (y, t ) =

⎧⎪⎨
⎪⎩

(1 − δ)(1 − t )
(1 − δ)(1 − t ) + (

√
t − √

y )2
if y < t,

1 if y ≥ t.

Because R∗(BX ) = η(x0 ) by Theorem 1 and BX ⊂ FX , we have

Rp∗
g
(FX ) ≤R∗(FX ) ≤R∗(BX ) = η(x0 ).

So to prove Theorem 3, it suffices to show that Rp∗
g
(FX ) ≥ η(x0 ) whenever x0 ≥ λ1. For

this purpose, we show that p∗
g is regular, and that rp∗

g
(x0 ) ≥ η(x0 ). Then we apply Propo-

sition 4 to obtain that Rp∗
g
(FX ) = rp∗

g
(x0 ) ≥ η(x0 ).

Because the rule p∗
g is fixed, we omit the subscript referring to p∗

g in some notation.
In particular, we write r(y ) for rp∗

g
(y ) and κ(y ) for κp∗

g
(y ). By (9) we have

κ(y ) = p∗
g(y )

1 − δ+ δp∗
g(y )

=

⎧⎪⎨
⎪⎩

1 − t
1 − t + (

√
t − √

y )2
if y < t,

1 if y ≥ t.
(54)

Let us introduce the notation

M(y, z) = inf
s∈(0,1]

mp∗
g
(y, z, s)

sz
= inf
s∈(0,1]

(1 − s)κ(y )y + s(1 − κ(y )
)
κ(z)z(

1 − sκ(y )
)
sz

.

By Lemma 2,

M(y, z) =
⎧⎨
⎩

1
z

(
κ(y )

√
y +

√(
1 − κ(y )

)(
κ(z)z− κ(y )y

))2
if y < κ(z)z,

κ(z) if y ≥ κ(z)z.
(55)

The rest of the proof is divided into four steps:
Step (i) We show that r(y ) = infz∈(y,1]M(y, z).
Step (ii) The termM(y, z) is increasing in y for each z ∈ (y, 1].
Step (iii) If x0 ≥ λ1, thenM(x0, z) ≥ η(x0 ) for each z ∈ (x0, 1].
Step (iv) If x0 = 1/90, thenM(x0, z)<η(x0 ) for some z ∈ (x0, 1].
Steps (i) and (ii) imply that r(y ) is increasing in y, so rule p∗

g is regular. Steps (i) and
(iii) imply that r(x0 ) ≥ η(x0 ) whenever x0 ≥ λ1. Step (iv) implies that the tight lower
bound λ for the result r(x0 ) ≥ η(x0 ) whenever x0 ≥ λ must satisfy 1/90 < λ ≤ λ1. We
now prove Steps (i)–(iv).

Proof of Step (i). By Proposition 3,

r(y ) = min
{
κ(y ), inf

z∈X ,s∈( yz ,1]

mp∗
g
(y, z, s)

sz

}
≥ min

{
κ(y ), inf

z∈(y,1]
M(y, z)

}
.
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However, by (55), we have

lim
z→y

M(y, z) = κ(y ).

We thus obtain r(y ) = infz∈(y,1]M(y, z).
Proof of Step (ii). We now show that M(y, z) is weakly increasing in y for x0 ≤ y ≤ z.

If t ≤ y ≤ z, then by (54), we have κ(y ) = κ(z) = 1, so M(y, z) = y/z is increasing in y. If
κ(z)z ≤ y ≤ z, then M(y, z) = κ(z) is constant in y. It remains to show that M(y, z) is
increasing in y for x0 ≤ y <min{t, κ(z)z}. As follows from (55), it suffices to show that


(y ) = κ(y )
√
y +

√(
1 − κ(y )

)(
κ(z)z− κ(y )y

)
(56)

is increasing in y. Because y < t, by (54), we have

κ(y ) = 1 − t
1 − t + (

√
t − √

y )2
= 1 − t

1 + y − 2
√
yt

. (57)

Substituting κ(y ) into (56) and simplifying the expression yields


(y ) = (
√
y − √

t )ψ(y, L) − (1 − t )√y
1 + y − 2

√
yt

,

where

L= κ(z)z and ψ(y, L) =
√

(1 + y − 2
√
yt )L− (1 − t )y.

Let us take the derivative of 
(y ). After simplification we obtain


′(y ) = (1 − t )((1 − y )ψ(y, L) − (1 + y − 2
√
yt )L+ 2y − (1 + y )

√
yt

)
2ψ(y, L)(1 + y − 2

√
yt )2√y . (58)

To show that 
′(y ) ≥ 0, we fix y and evaluate 
′(y ) for two extreme values of L. By as-
sumption, L= κ(z)z and y < κ(z)z ≤ 1. When L= 1, we have ψ(y, 1) = 1 − √

yt, and it
can be easily verified that
′(g) = 0 in this case. When L= y, we have ψ(y, y ) = √

yt − y,
and it can be easily verified that 
′(g) = 0 in this case as well. Moreover, the denomina-
tor in (58) is strictly positive, as 0< x0 ≤ y < t < 1, so

ψ(y, L) ≥ψ(y, y ) = √
yt − y > 0 and 1 + y − 2

√
yt > 1 + y − 2y = 1 − y > 0.

Finally, becauseψ(y, L) is concave in L, the numerator in (58) is concave in L. It follows
that 
′(y ) ≥ 0 for each L ∈ [y, 1]. We thus conclude that 
(y ) is weakly increasing in y
when x0 ≤ y <min{t, κ(z)z}.

Proof of Step (iii). We now show that M(x0, z) ≥ t for all z ∈ (x0, 1]. First, by (53), t is
increasing in x0 and satisfies η(x0 ) ≥ 1/2, so, solving (53) for x0 yields x0 = (2t − 1)2/t.
We thus obtain

κ(x0 ) = κ
(

(2t − 1)2

t

)
= 1 − t

1 − t +
(√

t − 2t − 1√
t

)2 = 1 − t
1 − t + (1 − t )2

t

= t. (59)
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Substituting y = x0 = (2t − 1)2/t and κ(x0 ) = t into (55), we obtain for each z ∈ (x0, 1]

M(x0, z) =
⎧⎨
⎩

1
z

(
(2t − 1)

√
t +

√
(1 − t )(κ(z)z− (2t − 1)2

))2
if κ(z)z > x0,

κ(z) if κ(z)z ≤ x0.
(60)

Consider first the interval {z ∈ (x0, 1] : κ(z)z ≤ x0}. When z belongs to this interval,
we haveM(x0, z) = κ(z) ≥ κ(x0 ) = t.

Consider now the interval {z ∈ (x0, 1] : κ(z)z > x0}. When z belongs to this interval,
we have, by (60),

M(x0, z) ≥ t ⇐⇒ (
(2t − 1)

√
t +

√
(1 − t )(κ(z)z− (2t − 1)2

))2 ≥ tz

⇐⇒ (2t − 1)
√
t +

√
(1 − t )(κ(z)z− (2t − 1)2

) ≥ √
tz

⇐⇒
√

(1 − t )(κ(z)z− (2t − 1)2
) ≥ √

t
(√
z− (2t − 1)

)
⇐⇒ (1 − t )(κ(z)z− (2t − 1)2) ≥ t(√z− (2t − 1)

)2
.

Let us change variable z = g2 and let

W (g) = (1 − t )(κ(
g2)g2 − (2t − 1)2) − t(g− (2t − 1)

)2
. (61)

SoM(x0, z) ≥ t if and only ifW (g) ≥ 0.
Suppose that κ(g2 )g2 > x0 and g2 ≥ t, so κ(g2 ) = 1. In this case,

W (g) = (1 − t )(g2 − (2t − 1)2) − t(g− (2t − 1)
)2

= (
g− (2t − 1)

)(
(1 − t )(g+ (2t − 1)

) − t(g− (2t − 1)
))

= (
g− (2t − 1)

)
(2t − 1)(1 − g) ≥ 0,

because g− (2t − 1) ≥ g− (2g2 − 1) = (1 + 2g)(1 − g) ≥ 0 and t ≥ 1/2.
Last, suppose that κ(g2 )g2 > x0 and g2 < t. Substituting κ(g2 ) given by (57) into (61)

and collecting the coefficients with respect to variable g, we obtain

W (g) = W̃ (g)κ
(
g2)

1 − t ,

where

W̃ (g) = −tg4 + (
2t

3
2 + 4t2 − 2t

)
g3 + (−8t

5
2 + 4t

3
2 − 3t2 + t)g2

+ (
8t

5
2 − 8t

3
2 + 2t

1
2 + 4t2 − 2t

)
g+ (2t − 1)2.

Note that 1 − t > 0, because t = η(x0 ) and by (52), we have x0 < 1. Also, κ(g2 ) ≥ 1/2> 0.
SoW (g) ≥ 0 if and only if W̃ (g) ≥ 0. We have

d2W̃ (g)

dg2 = −12tg2 + (
12t

3
2 + 24t2 − 12t

)
g− 16t

5
2 + 8t

3
2 − 6t2 + 2t.
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This expression is quadratic and concave in g. So it is globally nonpositive if the dis-
criminant of the quadratic equation is nonpositive:

−48t2
(
15t + 4t

3
2 − 2t

1
2 − 12t2 − 5

) ≤ 0. (62)

Inequality (62) has three roots 0, 1, and T1, where constant T1 is given by (50), T1 ≈
0.6026. Moreover, on the interval of t ∈ [1/2, 1), inequality (62) holds for t ∈ [T1, 1) and
does not hold for t ∈ [1/2, T1 ). Recall that by (50) and (53), t ≥ T1 if and only if x0 ≥ λ1.
We thus conclude that if x0 ≥ λ1, then W̃ (g) is concave on the interval of g that satisfies
κ(g2 )g2 > x0 and g2 < t.

To complete the proof of Step (iii), observe that the concavity of W̃ (g) on the inter-
val of g that satisfies κ(g2 )g2 > x0 and g2 < t implies quasiconcavity of M(x0, z) on the
interval of z that satisfies κ(z)z > x0 and z < t. Also, it is easy to verify that M(x0, z) is
continuous in z. Finally, we have already obtained that M(x0, z) ≥ t at the boundaries,
when z = t and when z satisfies κ(z)z = x0. Consequently, we obtain that M(x0, z) ≥ t
on the interval of z that satisfies κ(z)z > x0 and z < t.

Proof of Step (iv). Let x0 = 1/90 and z = 1/10. Inserting these values into (9) and (53),
we obtain κ(z) and t = η(x0 ). Then inserting these into (60), we obtain that M(x0, z)<
η(x0 ).

This completes the proof of Theorem A.5.

Remark 3. We numerically find the tight lower bound λ for the result r(x0/x̄) ≥ η(x0/x̄)
whenever x0/x̄ ≥ λ. This bound is λ≈ 0.01120000, so 1/90< λ < 1/89. To obtain λ, we
make the following adjustment in Step (iii). We numerically evaluate W̃ (g) with preci-
sion 10−8 to show that W̃ (g) ≥ 0 on the interval of g that satisfies κ(g2 )g2 > x0 and g2 < t

if and only if t ≥ T ≈ 0.53884276. Because t satisfies t = η(x0/x̄), the constraint t ≥ T is
equivalent to x0/x̄≥ λ≈ 0.01120000, where λ is obtained from the equation T = η(λ).

A.6 Proof of Proposition 2

Let p ∈ P . Recall that F(z,σ ) ∈ BX is a lottery over 0 and z with probabilities 1 − σ and σ ,
respectively, where z > x0 and σ ∈ [0, 1]. Because there can be at most one value above
x0, we have Rp(BX ) ≤Rp̄(BX ), where p̄ ∈ P is given by

p̄(ht ) =
{
p(ht ) if x1 = · · · = xt = 0,

1 otherwise.
(63)

In what follows, we consider arbitrary sequences q = (q0, q1, � � �), where qt = p(ht ) for
ht = (x0, 0, � � � , 0).

Let F(z,σ ) ∈ BX . Let Uq(F(z,σ ), t ) be the individual’s expected payoff in round t after
history ht = (x0, 0, � � � , 0), when playing sequence q and facing F(z,σ ). It is given by

Uq(F(z,σ ), t ) = qtx0 + (1 − qt )δ
(
σz+ (1 − σ )Uq(F(z,σ ), t + 1)

)
. (64)



Theoretical Economics 16 (2021) Robust sequential search 1463

LetWq(F(z,σ ) ) be the worst expected payoff across all rounds when facing F(z,σ ), so

Wq(F(z,σ ) ) = inf
t=0,1, ���

Uq(F(z,σ ), t ). (65)

Let q′ be an arbitrary sequence of probabilities. This q′ is called a benchmark and is
fixed for the rest of the proof. Let q̄∞ be a sequence with a constant stopping probability
q̄ ∈ [0, 1], so q̄∞ = (q̄, q̄, � � �). We now show that there exists q̄ ∈ [0, 1] such that the con-
stant sequence q̄∞ has a weakly higher performance ratio in binary environments than
q′. Note that we need to compare only the worst expected payoffs Wq′ and Wq̄∞ , as the
performance ratio is determined by the worst payoff ratio across all histories, and the
optimal payoff V does not depend on the decision rule or history.

Let F0 be the environment that generates 0 with certainty, so F0 = F(z,0) for any z.
Let q̄ be a solution of the equation

Uq′(F0, 0) = q̄x0 + (1 − q̄)δUq′(F0, 0), (66)

so

q̄= (1 − δ)Uq′(F0, 0)

x0 − δUq′(F0, 0)
.

By (64), Uq′(F0, 0) ∈ [0, x0], so q̄ ∈ [0, 1]. Let us show that for all F(z,σ ) ∈ BX , we have

Wq̄∞(F(z,σ ) ) ≥Wq′(F(z,σ ) ). (67)

Let F(z,σ ) ∈ BX . By (64), observe that for any sequence q= (q0, q1, � � �) and any t,

Uq(F(z,σ ), t ) − x0

= (1 − qt )
(
δσz+ δ(1 − σ )Uq(F(z,σ ), t + 1) − x0

)
= (1 − qt )

(
δσz− (

1 − δ(1 − σ )
)
x0 + δ(1 − σ )

(
Uq(F(z,σ ), t + 1) − x0

))
.

Iterating the above expression for t + 1, t + 2, � � �, we obtain

Uq(F(z,σ ), t ) − x0 = (
δσz− (

1 − δ(1 − σ )
)
x0

) ∞∑
k=0

(
δk(1 − σ )k

t+k∏
s=t

(1 − qs )

)
. (68)

Suppose that δσz− (1 − δ(1 − σ ))x0 = 0. Then Uq(F(z,σ ), t ) − x0 = 0 for every q and
every t. In particular,Wq̄∞(F(z,σ ) ) =Wq′(F(z,σ ) ) = x0. So (67) holds in this case.

Next suppose that δσz− (1 − δ(1 − σ ))x0 �= 0. Define

ψσt (q) = Uq(F(z,σ ), t ) − x0

δσz− (
1 − δ(1 − σ )

)
x0

. (69)

So, by (68),

ψσt (q) =
∞∑
k=0

(
δk(1 − σ )k

t+k∏
s=t

(1 − qs )

)
. (70)
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If q is a constant sequence so that q= (q0, q0, � � �), then ψσt (q) is constant in t, so we can
omit the subscript t. It is given by

ψσ (q) =
∞∑
k=0

δk(1 − σ )k(1 − q0 )k+1 = 1 − q0

1 − δ(1 − σ )(1 − q0 )
. (71)

By (65) and (69), when δσz− (1 − δ(1 − σ ))x0 > 0, we have

Wq̄∞(F(z,σ ) ) ≥Wq′(F(z,σ ) ) ⇐⇒ ψσ
(
q̄∞) ≥ inf

t
ψσt

(
q′).

Similarly, when δσz− (1 − δ(1 − σ ))x0 < 0, we have

Wq̄∞(F(z,σ ) ) ≥Wq′(F(z,σ ) ) ⇐⇒ −ψσ(
q̄∞) ≥ inf

t

(−ψσt (
q′)).

Therefore, to prove (67) for all F(z,σ ) ∈ BX , it remains to show that for each σ ∈ [0, 1],

inf
t
ψσt

(
q′) ≤ψσ(

q̄∞) ≤ sup
t
ψσt

(
q′). (72)

Fix σ ∈ [0, 1]. To prove (72), we first find the upper and lower bounds on the values of
ψ0

0(q) achievable by choosing a sequence q subject to the constraint

inf
t
ψσt

(
q′) ≤ψσs (q) ≤ sup

t
ψσt

(
q′) for all s = 0, 1, 2, � � � . (73)

To do this, we solve

min
q
ψ0

0(q) subject to (73), (74)

max
q
ψ0

0(q) subject to (73). (75)

Lemma 5. There exist a solution qσmin of (74) and a solution qσmax of (75) that are constant
sequences.

We postpone the proof of this lemma to the end of this section and first complete
the proof of Proposition 2.

Let qσmin and qσmax be the constant sequences given by Lemma 5. This means that
ψ0(qσmin ) ≤ ψ0

0(q) ≤ ψ0(qσmax ) for any q that satisfies (73). It is easy to see from (66) and
(69) that q̄∞ satisfies (73). We thus obtain

ψ0(qσmin
) ≤ψ0(q̄∞) ≤ψ0(qσmax

)
. (76)

Next, by (71), for any constant sequence q = (q0, q0, � � �), both ψ0(q) and ψσ (q) are
strictly decreasing in q0. This implies qσmin ≥ q̄∞ ≥ qσmax, which in turn impliesψσ (qσmin ) ≤
ψσ (q̄∞ ) ≤ ψσ (qσmax ) for σ > 0. Moreover, because qσmin and qσmax satisfy the constraint
(73), we obtain

inf
t
ψσt

(
q′) ≤ψσ(

qσmin
) ≤ψσ(

q̄∞) ≤ψσ(
qσmax

) ≤ sup
t
ψσt

(
q′).

So (72) holds. This completes the proof of Proposition 2.
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Proof of Lemma 5. We prove that a solution qσmax of the maximization problem (75) is
a constant sequence. The proof that qσmin is a constant sequence is analogous and, thus,
is omitted.

Fix σ ∈ [0, 1]. We use the notation

¯
ψσ

(
q′) = inf

t
ψσt

(
q′) and ψ̄σ

(
q′) = sup

t
ψσt

(
q′).

Let q̃ be the solution of the equation

ψ̄σ
(
q′) = (1 − q̃)

(
1 + δ(1 − σ )ψ̄σ

(
q′)). (77)

We now show that the constant sequence q̃∞ = (q̃, q̃, � � �) is a solution of the maximiza-
tion problem (75). To prove this, we solve a finite-horizon problem described below. We
assume that the individual makes decisions in rounds t = 0, 1, � � � , T , after which the in-
dividual’s behavior is fixed by qt = q̃ for all t > T . Because the maximal value of ψ0

0(q) in
the problem (75) can differ from that in the problem with horizon T by at most δT , we
find the solution to the infinite-horizon problem (75) as the limit of the solutions to the
finite-horizon problem as T → ∞.

Fix T ∈ N and consider the problem

max
q
ψ0

0(q) subject to

¯
ψσ

(
q′) ≤ψσt (q) ≤ ψ̄σ(

q′) for all t = 0, 1, 2, � � �,

qt = q̃ for all t = T + 1, T + 2, � � �.

(78)

We now show that q̃∞ is a solution of (78). We proceed by backward induction, starting
from round k= T , and then continuing to rounds k= T − 1, etc.

Let k ∈ {0, 1, � � � , T } and suppose qt = q̃ for each t > k. Using (70), rewrite ψσk (q) as

ψσk (q) = (1 − qk )
(
1 + δ(1 − σ )ψσk+1(q)

)
. (79)

By (71), for all t > k,

ψ0
t (q) = 1 − q̃

1 − δ(1 − q̃)
and ψσt (q) = 1 − q̃

1 − δ(1 − σ )(1 − q̃)
= ψ̄σ(

q′), (80)

where the last equality is by the definition of q̃ in (77). So, by (79), (80), and the constraint
in (78), we obtain that

ψσk (q) = (1 − qk )
(
1 + δ(1 − σ )ψ̄σ

(
q′)) ≤ ψ̄σ(

q′). (81)

This implies by (77) that

qk ≥ q̃. (82)

So if qk �= q̃, it must be the case that qk > q̃. We now prove that if qk > q̃, then ψ0
0(q) can

be weakly increased by reducing qk.
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Suppose that qk > q̃. First, we deal with the case of k > 0. To show that ψ0
0(q) can be

increased by reducing qk, we keep qt fixed for all t different from k− 1 and k, and vary
qk−1 and qk such that ψσk−1(q) remains constant; that is,

dψσk−1(q) = −(
1 + δ(1 − σ )ψσk (q)

)
dqk−1 + (1 − qk−1 )δ(1 − σ )

∂ψσk (q)

∂qk
dqk = 0. (83)

By (80) and (81), we have

ψσk (q) = (1 − qk )
(
1 + δ(1 − σ )ψ̄σ

(
q′))

= (1 − qk )

(
1 + δ(1 − σ )

1 − q̃
1 − δ(1 − σ )(1 − q̃)

)
= 1 − qk

1 − δ(1 − σ )(1 − q̃)
.

So

∂ψσk (q)

∂qk
= − 1

1 − δ(1 − σ )(1 − q̃)
.

Thus, from (83), we obtain

dqk−1

dqk
= − δ(1 − σ )(1 − qk−1 )

1 − δ(1 − σ )(qk − q̃)
.

Inserting σ = 0 into (70) and (80), by the induction assumption that qk+1 = q̃,

ψ0
k(q) = (1 − qk )

(
1 + δψ0

k+1(q)
) = (1 − qk )

(
1 + δ(1 − q̃)

1 − δ(1 − q̃)

)
= 1 − qk

1 − δ(1 − q̃)

and

ψ0
k−1(q) = (1 − qk−1 )

(
1 + δψ0

k(q)
) = (1 − qk−1 )

1 − δ(qk − q̃)
1 − δ(1 − q̃)

.

Thus, by (70) with σ = 0,

∂ψ0
0(q)
∂qk

= δk
(
k−1∏
s=0

(1 − qs )

)
∂ψ0

k(q)

∂qk
= −δk

(
k−1∏
s=0

(1 − qs )

)
1

1 − δ(1 − q̃)

and

∂ψ0
0(q)

∂qk−1
= δk−1

(
k−2∏
s=0

(1 − qs )

)
∂ψ0

k−1(q)

∂qk−1
= −δk−1

(
k−2∏
s=0

(1 − qs )

)
1 − δ(qk − q̃)
1 − δ(1 − q̃)

= −δk
(
k−1∏
s=0

(1 − qs )

)
1 − δ(qk − q̃)(

1 − δ(1 − q̃)
)
δ(1 − qk−1 )

.

Therefore, if qk−1 < 1, then

dψ0
0(q)
dqk

= ∂ψ0
0(q)
∂qk

+ ∂ψ0
0(q)

∂qk−1

dqk−1

dqk
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= −δk
(
k−1∏
s=0

(1 − qs )

)(
1

1 − δ(1 − q̃)
+ 1 − δ(qk − q̃)(

1 − δ(1 − q̃)
)
δ(1 − qk−1 )

dqk−1

dqk

)

= − δk

1 − δ(1 − q̃)

(
k−1∏
s=0

(1 − qs )

)(
1 −

(
1 − δ(qk − q̃)

)
(1 − σ )

1 − δ(1 − σ )(qk − q̃)

)

= − δk

1 − δ(1 − q̃)

(
k−1∏
s=0

(1 − qs )

)
σ

1 − δ(1 − σ )(qk − q̃)
≤ 0.

Alternatively, if qk−1 = 1, then ψ0
0(q) is independent of qk, so dψ0

0(q)/dqk = 0. Thus, if
qk > q̃, then decreasing qk increases ψ0

0(q) without violating the constraint in (78), as
long as qk ≥ q̃.

Next, we deal with the case of k= 0. By (70) and (80), we have

dψ0
0(q)
dq0

= −1 − δψ0
1(q)< 0.

So again, if q0 > q̃, then decreasing q0 increases ψ0
0(q) without violating the constraint

in (78) as long as q0 ≥ q̃.
We thus proved that if q is a solution of (78) with qk > q̃ and qt = q̃ for all t > k, then

there exists a solution with qt = q̃ for all t ≥ k. As this is true for each k= T , T −1, � � � , 1, 0
by induction, we obtain that q̃∞ is a solution of (78), so qσmax = q̃∞.

A.7 Proof of Proposition 1

The equality Rp1 (F ) = x0/(δx̄) follows from the obvious fact that the worst-case envi-
ronment for the rule p1 is Fx̄, with Up1 (Fx̄, x0 ) = x0 and V (Fx̄, x0 ) = δx̄.

Let p be an arbitrary deterministic rule. Let us show that Rp(F ) ≤Rp1 (F ). Let h0
t be

the history of x0 followed by t zeros, so h0
t = (x0, 0, 0, � � � , 0). Suppose that there exists

t ∈ {0, 1, 2, � � �} such that p stops searching after t zero-valued alternatives, so p(h0
t ) = 1.

In the environment Fx̄, the payoff of rule p in round t is Up(Fx̄, h0
t ) = x0 and the opti-

mal payoff in round t is V (Fx̄, h0
t ) = δx̄. Moreover, by (3), V (F , h0 ) = V (F , h0

t ). Conse-
quently,

Rp(F ) ≤ inf
F∈F

Up
(
Fx̄, h0

t

)
V

(
Fx̄, h0

t

) = x0

δx̄
=Rp1 (F ).

Alternatively, suppose that p never stops searching as long as only 0s occurred in the
past, so p(h0

t ) = 0 for all t. Then, in the environment F0, the payoff of rule p in round 0
is Up(F0, h0 ) = 0 and the optimal payoff in round 0 is V (F0, h0 ) = x0. Consequently,

Rp(F ) ≤ Up(F0, h0 )
V (F0, h0 )

= 0
x0

= 0<Rp1 (F ).

We thus conclude that Rp(F ) ≤Rp1 (F ) for each deterministic rule p.
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Finally, we show that

R∗(F )>
x0

δx̄
. (84)

Suppose that x̄ = ∞, so x0/(δx̄) = 0. Then (84) trivially holds, because R∗(F ) ≥ 1/4 by
Theorem 2.

Next, suppose that x̄ <∞. To simplify notation, let x= x0/x̄. Let δ0(x) be the small-
est δ ∈ (0, 1) that satisfies (A1) for a given x ∈ (0, 1). Hence δ0(x) is the solution of the
equation x= δ2

2−δ , so

δ0(x) =
√
x(x+ 8) − x

2
=

(√
x(x+ 8) − x)(√x(x+ 8) + x)

2
(√
x(x+ 8) + x) = 4

x+
√
x(x+ 8)

.

We thus obtain

x

δ
≤ x

δ0(x)
= x

(
x+

√
x(x+ 8)

)
4

. (85)

Suppose that x < 7/100. Then substituting x = 7/100 into the right-hand side of (85)
yields

x

δ
≤ x

(
x+

√
x(x+ 8)

)
4

<
14√

5649 − 7
<

1
4

.

So (84) holds, because R∗(F ) ≥ 1/4 by Theorem 2.
Suppose now that x≥ 7/100. Recall that x < 1 by (A1). By (85), we have

x

δ
≤ x

(
x+

√
x(x+ 8)

)
4

<
x+

√
x(x+ 8)
4

≤ 1
2

(
1 + x+

√
x(x+ 8)
4

)
= η(x).

So (84) holds, because R∗(F ) ≥ η(x) when x≥ 7/100 by Theorem 3.
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