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We consider general asset market environments in which agents with quasilinear
payoffs are endowed with objects and have demands for other agents’ objects. We
show that if all agents have a maximum demand of one object and are endowed
with at most one object, the VCG transfer of each agent is equal to the largest net
Walrasian price of this agent. Consequently, the VCG deficit is equal to the sum
of the largest net Walrasian prices over all agents. Generally, whenever Walrasian
prices exist, the sum of the largest net Walrasian prices is a nonnegative lower
bound for the deficit, implying that no dominant-strategy mechanism runs a bud-
get surplus while respecting agents’ ex post individual rationality constraints.

Keywords. Asset markets, efficient trade, VCG deficit, largest net Walrasian
prices.
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1. Introduction

The prices set by a Walrasian auctioneer, who by assumption knows the demand and
supply functions, are the same for the buyer and the seller of any given object traded.
They balance supply and demand by ensuring that the agents’ optimal trades lead to
an efficient allocation. In other words, Walrasian prices satisfy complete-information
incentive compatibility and individual rationality constraints for all agents while always
balancing both supply and demand, as well as the budget. However, as they rest on the
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assumption that the market maker knows the agents’ supply and demand functions, a
long standing criticism has been that they fail to provide the agents with the incentives
to reveal the information about values that is required to set market clearing prices in
the first place.1

The Vickrey–Clarke–Groves (VCG) mechanism achieves this feat by endowing all
agents with dominant strategies to report their valuations truthfully. In general, VCG
transfers are nonuniform and do not balance across agents that trade objects with each
other. Moreover, for a large domain of problems, the VCG mechanism, while inducing
an efficient allocation, also generates a deficit for the market maker. These fundamental
differences between Walrasian and VCG prices are not surprising, given that they solve
fundamentally different problems—market clearing under complete information about
values and truthful revelation of values under private information, respectively.

In this paper, we show that there is a deep and tight connection between Walrasian
prices and VCG transfers. We study general trading environments in which agents with
quasilinear payoffs may be endowed with objects that they value and have demands
for other agents’ objects; hence, each agent may sell some objects and buy other ones.
Define the net price of an agent in any Walrasian price vector as the sum of prices of the
objects he sells minus the sum of prices of the objects he buys. If all agents are single-
object traders, that is, have a maximum demand of one object and are endowed with at
most one object, our first main result—Theorem 1—states that the largest net price that
an agent receives in any Walrasian price vector is equal to the VCG transfer he receives.
As a consequence, the sum of the largest net Walrasian prices over all agents equals the
VCG deficit. Intuitively, for each agent, the largest net Walrasian price corresponds to
the best terms of trade offered by any Walrasian price vector. With single-object traders,
each agent’s largest net Walrasian price is equal to his externality on the other agents,
which by definition is his VCG transfer.

Unless all agents have additive payoffs, Theorem 1 does not extend to environments
with multiobject traders because Walrasian prices are individual to each object and, un-
like VCG transfers, do not necessarily represent the social value of a bundle of objects.
However, our second main result—Theorem 2—states that, as long as a Walrasian equi-
librium exists, the relationship remains as a lower bound: each agent’s VCG transfer is
weakly greater than his largest net Walrasian price; hence, the sum of largest net Wal-
rasian prices over all agents constitutes a nonnegative lower bound for the VCG deficit.

These general results have several insightful corollaries in more specialized settings.
Consider first what, following Shapley and Shubik (1972), may be called two-sided al-
location problems. These are problems in which every agent’s trading position is inde-
pendent of types and determined a priori: agents without endowments either buy or do
not trade and agents with endowments either sell or do not trade. Two-sided allocation
problems include the problems that motivated the papers by Vickrey (1961) and My-
erson and Satterthwaite (1983).2 The bilateral trade problem of Myerson and Satterth-
waite is the simplest possible setting in this domain. Assuming the buyer’s value and

1See, for example, Arrow (1959).
2Shapley and Shubik (1972) call these problems two-sided market games, but as the term “two-sided mar-

ket” now has a very specific and different meaning in the Industrial Organization literature, our terminology
seems preferable.
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the seller’s value are elements of the same compact interval, the deficit under the VCG
mechanism is equal to the difference between the buyer’s and the seller’s value when-
ever trade is ex post efficient.3 Any price between the seller’s and the buyer’s value is a
Walrasian price; hence, the deficit is equal to the difference between the largest and the
smallest Walrasian prices. With a homogeneous good market (in which every agent sees
all objects as identical) and multiple single-object buyers and sellers, this result general-
izes; the deficit under the VCG mechanism is equal to the Walrasian price gap times the
quantity traded.4

An implication of Theorem 1 is that these insights generalize beyond the narrow
confines of homogeneous good markets. Specifically, for two-sided allocation problems
with single-object traders, the result implies that the deficit under the VCG mechanism
is equal to the sum of the Walrasian gaps over the objects that are traded under effi-
ciency. The reason is that in two-sided allocation problems the largest net Walrasian
price of every buyer (seller) is equal to the lowest (highest) Walrasian price for the object
he trades. Put differently, for these two-sided environments with single-object traders,
the—extremal—Walrasian prices provide the traders with precisely the right incentives
to reveal their valuations. The subtle but important twist is that incentive compatible
information revelation requires the use of two different Walrasian prices for every ob-
ject that is traded, one on each side of the market, thereby generating a deficit on every
object that is traded. If we still assume two-sided allocation problems but allow for buy-
ers to have demand for multiple objects and for sellers to be endowed with more than
one object, Theorem 2 implies that the sum of the Walrasian price gaps over the objects
traded under efficiency is a lower bound for the deficit under VCG.

The remainder of this paper is organized as follows. Section 2 provides an illustra-
tive example. Section 3 presents the general setup and basic concepts such as asset
markets and the deficit under the VCG mechanism. Section 4 introduces the concept
of largest net Walrasian prices. Sections 5 and 6 contain the main results for single-
object and multi-object traders, respectively. Section 7 analyzes in detail two important
special cases, namely two-sided allocation problems and homogeneous good markets.
Section 8 provides a comprehensive discussion of the related literature. Section 9 con-
cludes the paper. Proofs are in Appendix A and additional background material is in
Appendix B.

2. An illustrative example

An example is useful to illustrate how largest net Walrasian prices are calculated and
how they relate to VCG transfers. Suppose there are two agents, Leon and William. Leon
owns a rare book and William is endowed with a collection of stamps. Leon’s value for
the book is 5 and his value for the stamp collection is 7 while William’s value for the book

3See, for example, Krishna (2002) for a proof along these lines. Myerson and Satterthwaite (1983) implic-
itly noted an implication of this result when they observed that, with identical supports, the subsidy that
would be required for efficiency is equal to the ex ante expected welfare under efficiency.

4Our results on homogeneous good markets in Section 7 generalize those of Tatur (2005) and Loertscher
and Mezzetti (2019).
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is 3 and his value for the stamp collection is 2. Neither of them gets additional value
from a second object. Welfare is therefore maximized when the book is allocated to
William and the stamp collection to Leon, which generates a welfare of 10. The situation
is summarized in the following matrix. The endowment is shown in bold face and the
efficient allocation is shown with square boxes.

The VCG transfer made to Leon is the difference between the welfare and his value for
the good he obtains under the efficient allocation, which is 10 minus 7, and the maxi-
mum welfare without him and his endowment, which is 2. Thus, the VCG transfer Leon
obtains is 1. Applying the same logic, William receives a VCG transfer of 2. Hence, the
resulting deficit is 3.

Consider now the set of Walrasian prices. It is not hard to see that it takes the form
depicted in Figure 1, where p1 is the price of the book and p2 is the price of the stamp
collection.5 Leon’s largest net Walrasian price is the largest difference, among all the
Walrasian price vectors, between the price of the book he sells (p1) and the price of the
stamp collection he acquires (p2). In Figure 1, it is equal to the vertical (or equivalently
the horizontal) distance between the lowest line of slope 1 that touches the set of Wal-
rasian prices (displayed in red) and the 45-degree line, which is equal to 1.

Likewise, William’s largest net Walrasian price is the largest difference between the
price for the stamp collection William sells and the book he acquires. In Figure 1,

Figure 1. Panel (a): The set of Walrasian price vectors (shaded). Panel (b): The largest net
Walrasian prices (indicated by arrows).

5We generalize this in Section 5 (Example 1) and provide full details in Appendix B.1. As we show there,
p= (p1, p2 ) is a Walrasian price if and only if 0 ≤ p1 ≤ 3 and max{0, p1 − 1} ≤ p2 ≤ p1 + 2.



Theoretical Economics 17 (2022) When Walras meets Vickrey 1807

William’s largest net Walrasian price is equal to the horizontal or vertical distance be-
tween the highest line of slope 1 that touches the set of Walrasian prices, which is dis-
played in blue, and the 45-degree line. This difference is 2. It follows that each agent’s
largest net Walrasian price is equal to his VCG transfer, and consequently, the sum of the
largest net Walrasian prices is equal to the deficit under VCG.

3. Preliminaries

We consider an asset market with a finite set of agents A with typical element a and
a finite set of objects O with typical element o. An allocation X = (Xa )a∈A assigns to
each agent a ∈ A a bundle Xa ⊆ O. An allocation X is feasible if

⋃
a∈AXa ⊆ O and

Xa ∩ Xa′ = ∅ for any a, a′ ∈ A with a �= a′. We denote by X the set of all feasible alloca-
tions. Each object, or asset, is indivisible and is initially owned by an agent. Formally, an
endowment E = (Ea )a∈A is a feasible allocation such that, for every a ∈ A, Ea is the bun-
dle endowed to agent a with E satisfying

⋃
a∈A Ea = O. That is, under E every object is

allocated to exactly one agent. Being endowed with Ea means that a has complete prop-
erty rights over the objects in Ea, so that a can exclude all other agents from consuming
these objects.

For every agent a ∈ A, let �a, with typical element θa, be agent a’s type space. De-
note the type space by � = ×a∈A�a, with typical element θ. The valuation (or willing-
ness to pay) of agent a with type θa for any bundle of objects Y ⊆ O is denoted by

va(Y , θa ).

We normalize the value of the empty bundle to zero, that is, va(∅, θa ) = 0 for every a ∈ A
and every θa ∈ �a, and assume that for each type θa valuations are monotone; that is,
for every a ∈ A, any Y , Z ⊆ O with Y ⊆ Z, and any θa ∈�a,

va(Y , θa ) ≤ va(Z, θa ).

This assumption is often referred to as “free-disposal,” as it captures the idea that agents
can freely dispose of any unwanted objects. Because valuations are monotone, without
loss of generality we can restrict, as do Gul and Stacchetti (1999), the set of feasible al-
locations X to allocations X in which each object is assigned to exactly one agent, that
is,

⋃
a∈AXa = O.6 As each agent a has complete property rights over the objects in Ea, it

follows that va(Ea, θa ) is the value of a’s outside option when a’s type is θa.
We also assume that each agent a ∈ A has a sufficiently large amount of money, say

more than maxθa∈�a va(O, θa ), and that payoffs are quasilinear in money: if a is allocated
a bundle Y ⊆ O and receives an additional money transfer t ∈ R, then his payoff is7

va(Y , θa ) + t.

6All of our results would go through if we assumed instead, like Bikhchandani and Mamer (1997), that
some objects may not be allocated. In a nutshell, the reason is that any object that is not allocated in a
Walrasian equilibrium must have a zero Walrasian price, and by the monotonicity of valuations, must also
have a zero Walrasian price if it has to be allocated to some agent.

7The assumption that each agent has a sufficiently large money endowment is standard; see, for exam-
ple, Gul and Stacchetti (1999) and Bikhchandani and Mamer (1997). The latter observed that it guarantees
that the initial endowment of objects to the agents is “irrelevant for the existence of market clearing prices.”
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Fixing a type vector θ ∈�, the welfare created by the allocation X ∈ X is

W (X , θ) =
∑
a∈A

va(Xa, θa ).

We denote by

X ∗(θ) = arg max
X∈X

W (X , θ)

the set of efficient allocations. As X is finite, the existence of an efficient allocation is
guaranteed; however, it may not be unique. We denote a typical efficient allocation by
X∗(θ) ∈ X ∗(θ). If X ∗(θ) contains multiple elements, then X∗(θ) may be chosen arbi-
trarily among them. We denote by

W ∗(θ) =W
(
X∗(θ), θ

)
the efficient level of welfare. When there is no risk of confusion, we drop the depen-
dency on types and write va(Y ) for the value that agent a assigns to bundle Y , X∗ ∈ X ∗
for a typical efficient allocation, and W ∗ for the efficient level of welfare.

For any I ⊆ A and any K ⊆ O, let W ∗
−I ,−K denote the level of welfare achieved among

the agents in A \ I when the objects in O \ K are efficiently allocated to these agents.
Then

W ∗ −W ∗
−I ,−K

represents the joint marginal contribution of the agents in I and the objects in K.
A mechanism is a pair (χ, t), where χ : �→ X is the allocation rule and t : �→ R

|A|

is the payment rule. Thus, given reports θ, χ(θ) is the allocation and each agent a ∈ A
receives ta(θ), which may be positive or negative. The social planner incurs a deficit
from mechanism (χ, t) equal to the sum of the transfers that the social planner makes
to the agents, that is, the deficit is 8

D(χ,t)(θ) =
∑
a∈A

ta(θ).

A mechanism (χ, t) is efficient if it always selects an efficient allocation, that is, if
χ(θ) is efficient for every θ ∈ �, and ex post individually rational (EIR) if every agent
has an incentive to participate, that is, if for all θ ∈� and all a ∈ A,

va
(
χa(θ), θa

) + ta(θ) ≥ va(Ea, θa )

holds. A mechanism (χ, t) is dominant strategy incentive compatible (DIC) if every
agent has a dominant strategy to report his true type; that is, for every agent a ∈ A with
true type θa ∈�a, every report θ̂a ∈�a, and every vector of reports θ−a ∈�−a from other
agents,

va
(
χa(θa, θ−a ), θa

) + ta(θa, θ−a ) ≥ va
(
χa(θ̂a, θ−a ), θa

) + ta(θ̂a, θ−a ).

8The revenue to the social planner from the mechanism is then −D(χ,t)(θ). As the paper focuses on
settings in which the deficit is positive (hence, the revenue is negative), we refer throughout to the deficit
(rather than the revenue) for simplicity.
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Fixing a type vector θ, the VCG mechanism (χVCG, tVCG ) selects an efficient allo-
cation χVCG ∈ X ∗ and makes a transfer to each agent equal to his externality on other
agents, that is, for all a ∈ A,

tVCG
a

(
χVCG
a

) =W ∗
−a,−χVCG

a
−W ∗

−a,−Ea .

When a is present, he is efficiently assigned the bundle of objects χVCG
a and the remain-

ing objects in O \ χVCG
a are efficiently allocated among the remaining agents in A \ {a}.

Therefore, the first term W ∗
−a,−χVCG

a
represents the level of welfare that agents other than

a achieve when a is present. When agent a is absent, so are the objects in his endow-
ment, and the remaining objects in O \ Ea are efficiently allocated among the remaining
agents in A \ {a}. Therefore, the second term W ∗

−a,−Ea represents the level of welfare that
agents other than a achieve when a and his endowment are absent. The difference be-
tween the two is a’s externality on other agents. In the VCG mechanism, the payoff of
agent a is equal to his marginal contribution: va(χVCG

a ) + tVCG
a (χVCG

a ) =W ∗ −W ∗
−a,−Ea .

Note that in the VCG mechanism, if a does not trade, then χVCG
a = Ea so W ∗

−a,−χVCG
a

=
W ∗

−a,−Ea and a receives a transfer of 0. If a only sells, then χVCG
a ⊂ Ea so W ∗

−a,−χVCG
a

≥
W ∗

−a,−Ea and a receives a weakly positive transfer. If a only buys, then Ea ⊂ χVCG
a so

W ∗
−a,−χVCG

a
≤W ∗

−a,−Ea and a receives a weakly negative transfer. Otherwise, the sign of the

VCG transfer that a receives depends on whether the bundle that a sells or the bundle
that a buys has the larger value to other agents.

It follows that the deficit under the VCG mechanism is∑
a∈A

tVCG
a

(
χVCG
a

) =
∑
a∈A

[
W ∗

−a,−χVCG
a

−W ∗
−a,−Ea

]
.

We make two assumptions, which guarantee that the type space is “sufficiently
rich.” First, for each agent a, all θa, θ′

a ∈ �a, and all λ ∈ [0, 1], there exists θ′′
a such that

va(Y , θ′′
a ) = λva(Y , θa ) + (1 − λ)va(Y , θ′

a ) for all Y ⊆ O. This implies that the set of val-
uations Va = {va(·, θa )|θa ∈ �a}, and hence, V = ×a∈AVa, is convex so that we can apply
Theorem 2 in Holmström (1979), which states that a mechanism is efficient and DIC if
and only if it belongs to the class of Groves mechanisms (which includes the VCG mech-
anism).

The second “richness” assumption we impose on the type space implies that the
VCG mechanism is not only efficient and DIC, but also EIR and has the lowest lump-
sum transfer to each agent compatible with efficiency, DIC and EIR: For every a and
every θ−a ∈�−a, there exists a type θa(θ−a ) ∈�a such that X∗

a(θa(θ−a ), θ−a ) = Ea.
The vector of VCG transfers depends on which efficient allocation the mechanism

picks because the transfer that a receives depends on the bundle he is allocated, opening
the possibility that the VCG deficit depends on the efficient allocation chosen. However,
our next result shows that this is not the case, and hence, we may denote the deficit by
DVCG without reference to the efficient allocation selected.
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Claim 1. For any two efficient allocations X∗, X� ∈ X ∗,∑
a∈A

[
W ∗

−a,−X∗
a
−W ∗

−a,−Ea
] =

∑
a∈A

[
W ∗

−a,−X
�
a
−W ∗

−a,−Ea
] =DVCG.

Claim 1 is a simple consequence of the fact that the deficit can be written as the sum
of the marginal values, which are independent of the allocation.

4. Largest net Walrasian prices

In this section, we introduce the concept of the largest net Walrasian price for an agent
a, which will play a fundamental role in the main results of this paper.

A price vector p = (po )o∈O is a |O|-dimensional vector that assigns a price to each
object. The price vector p = (po )o∈O is a Walrasian price vector if there is an allocation
X = (Xa )a∈A such that, for all a ∈ A and for all Y ⊆ O:

va(Xa ) −
∑
o∈Xa

po ≥ va(Y ) −
∑
o∈Y

po.

If this condition is satisfied, then X is a Walrasian allocation, supported by the Wal-
rasian price vector p = (po )o∈O . In other words, a Walrasian price vector is such that
every agent finds it optimal to purchase the bundle that the agent is assigned under the
Walrasian allocation.

As shown in Proposition 1 of Bikhchandani and Mamer (1997), if Walrasian prices
exist, then the Walrasian allocation is efficient. Thus, the Walrasian price vector p =
(po )o∈O supports an efficient allocation X∗ ∈ X ∗. We verify next that, should there be
multiple efficient allocations, Walrasian prices do not depend on which one is chosen.

Claim 2. If a price vector p supports an efficient allocation, then p supports all efficient
allocations.

To the best of our knowledge, Claim 2 was first derived by Bikhchandani and Mamer
(1997) as Corollary 1 of their main result. For the purpose of keeping the paper self-
contained, we provide a direct proof in Appendix A. Claim 2 implies that a Walrasian
price vector can be equivalently defined to be a price vector that supports all efficient
allocations. Given a type vector θ ∈ �, we denote by PW (θ) the set of Walrasian price
vectors. Note also that the initial ownership of the objects plays no role in determining
the set of Walrasian price vectors, nor does it affect the efficient allocation(s) and welfare.
However, the initial ownership will matter in the VCG mechanism because tVCG

a (χVCG
a ) =

W ∗
−a,−χVCG

a
−W ∗

−a,−Ea depends on Ea.

Given a price vector p = (po )o∈O , the net price received by agent a ∈ A is∑
o∈Ea\X∗

a

po −
∑

o∈X∗
a\Ea

po.

That is, agent a is paid for the objects he sells and pays for the objects he buys; the net
price he receives is the difference between the two (which may be positive or negative).
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At an efficient allocation X∗ ∈ X ∗, the largest net Walrasian price received by agent
a ∈ A, denoted qa(X∗ ), is the largest net price that agent a can receive under any Wal-
rasian price vector. Formally,

qa
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Ea\X∗

a

po −
∑

o∈X∗
a\Ea

po

]
.

We denote by q(X∗ ) = (qa(X∗ ))a∈A the vector of largest net Walrasian prices. Clearly,
the largest net Walrasian prices are defined if and only if the set of Walrasian prices is
nonempty.

An agent’s largest net Walrasian price may depend on which efficient allocation is
chosen because this affects which objects the agent buys and sells. However, these dif-
ferences cancel out when summing over all agents; hence, the sum of the largest net
Walrasian prices is the same no matter what efficient allocation is picked.

Claim 3. For any X∗, X� ∈ X ∗,
∑

a∈A qa(X∗ ) = ∑
a∈A qa(X� ).

Consequently, we can simply denote the sum of the largest net Walrasian prices by
Q = ∑

a∈A qa(X∗ ).

5. Single-object traders

We now consider an asset market where every agent is a single-object trader and derive
our first main result, Theorem 1.

An agent is a single-object trader if he is endowed with at most one object and is
interested in consuming at most one object. The formal definition follows.

Definition 1. Agent a ∈ A is a single-object trader if:

(i) |Ea| ≤ 1, and

(ii) va(Y , θa ) = maxo∈Y va({o}, θa ) for all nonempty Y ⊆ O and all θa ∈�a.

With single-object traders, the set of Walrasian price vectors is nonempty (see De-
mange, 1982, Leonard, 1983, Gul and Stacchetti, 1999); hence, largest net Walrasian
prices are well-defined.

Theorem 1. Suppose that all agents are single-object traders. Then, for every efficient
allocation X∗ ∈ X ∗,

tVCG(
X∗) = q

(
X∗) and DVCG = Q ≥ 0.

Theorem 1 states that, when all agents are single-object traders, the VCG mechanism
pays each agent his largest net Walrasian price. Therefore, the social planner sustains a
deficit equal to the sum of the largest net Walrasian prices. While each individual largest
net Walrasian price may be positive or negative, their sum is always weakly positive;
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therefore, the social planner nets a weakly positive deficit in any market with single-
object traders.

To illustrate Theorem 1 and to provide some intuition for why it holds, we generalize
the example from Section 2.

Example 1. There are two single-object traders a1 and a2 and two objects o1 and o2.
Neither agent gets additional value from a second object, and the valuations for each
object are ⎛⎝ va1

(
{o1}

)
va1

(
{o2}

)
va2

(
{o1}

)
va2

(
{o2}

)

⎞⎠ .

The endowment (shown in boldface) is o1 endowed to a1 and o2 endowed to a2. The
unique efficient allocation (shown in square boxes) is o1 allocated to a2 and o2 allocated
to a1. ♦

As agents must prefer consuming the efficient allocation to consuming their en-
dowments, Walrasian prices po1 and po2 satisfy va1 ({o2}) − po2 ≥ va1 ({o1}) − po1 and
va2 ({o1}) −po1 ≥ va2 ({o2}) −po2 , which is equivalent to

po2 −po1 ≤ va1

(
{o2}

) − va1

(
{o1}

)
and po1 −po2 ≤ va2

(
{o1}

) − va2

(
{o2}

)
.

The first inequality provides an upper bound for the difference po2 − po1 , which is the
net Walrasian price of agent a2. That upper bound is then the largest net Walrasian price
qa2

(X∗ ) of agent a2. It is entirely pinned down by the requirement that agent a1 pick o2

over o1, and it is equal to a2’s externality on a1: a1 consumes o2 if a2 is there and o1 oth-
erwise. Similarly, the second inequality provides an upper bound for po1 − po2 , the net
Walrasian price of agent a1. That upper bound is the largest net Walrasian price qa1

(X∗ )
of agent a1 and is equal to a1’s externality on a2. It follows that each agent’s largest net
Walrasian price is equal to his externality on the other agent, which by definition is his
VCG transfer.

This intuition extends to an arbitrary number of single-object traders, the only dif-
ference being that the largest difference between two prices may be pinned down by a
series of binding constraints rather than just one. Suppose, for example, that there is a
third agent a3 who is endowed with o3 and that the efficient allocation has o2 allocated
to a1, o3 to a2, and o1 to a3. The largest net Walrasian price of a1 is the largest differ-
ence between po1 (the price of the object he sells) and po2 (the price of the object he
buys). That difference may now be pinned down by two binding constraints (instead of
one as in Example 1): a3 is indifferent between acquiring o1 or keeping o3 while a2 is
indifferent between acquiring o3 or keeping o2. That is, va3 ({o1}) −po1 = va3 ({o3}) −po3

and va2 ({o3}) − po3 = va2 ({o2}) − po2 and, therefore, the maximum difference between
po1 and po2 is va3 ({o1}) + va2 ({o3}) − va3 ({o3}) − va2 ({o2}). The two binding constraints
pin down the chain of reallocations that occur when a1 leaves, taking o1 with him but
making o2 available to other agents: o2 will efficiently go to a2 and o3 will efficiently go
to a3. Thus, va3 ({o1}) + va2 ({o3}) − va3 ({o3}) − va2 ({o2}) is also a1’s externality on other
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agents, which is his VCG transfer. In general, the largest net Walrasian price of an agent
is a boundary point of the set of Walrasian prices, defined by up to |A| − 1 binding con-
straints. The constraints that bind are those that prevent agents from choosing the next
best allocation.

By Theorem 1, with single-object traders the VCG transfer of each agent coincides
with the highest net payment the agent would receive if trade took place at Walrasian
prices. This suggest the following two-stage Walrasian price choice mechanism. In the
first stage, agents report their types. Based on the reports, the planner determines the set
of Walrasian prices and chooses an efficient allocation. In the second stage, the planner
requires the agents to trade so as to implement the chosen allocation, but allows each of
them to choose the Walrasian price vector at which his trades occur.

As the largest net Walrasian price is equal to the VCG transfers associated with the
efficient allocation based on reports, truthfully reporting the type and choosing the price
vector that yields the largest net Walrasian price is a dominant strategy for each agent.
Hence, we have the following corollary of Theorem 1.

Corollary 1. Suppose that all agents are single-object traders. Then every efficient allo-
cation X∗ ∈ X ∗ and its associated VCG transfers tVCG(X∗ ) = q(X∗ ) can be implemented
by the Walrasian price choice mechanism.

It is well known that the VCG mechanism has a two-stage implementation in which
the planner determines the transfers for every allocation based on the agents’ reports
in the first stage, and in the second stage each agent chooses his preferred allocation.
The Walrasian price choice mechanism reverses what the planner does in the first and
second stage and has the agents choose prices rather than an allocation. In that sense,
it is the “dual” of the two-stage VCG mechanism.

6. Multiobject traders

We now drop the assumption that agents are single-object traders and return to the
model of a general asset market.

We begin by showing that Theorem 1 extends when payoffs are additive. Formally,
the valuation of agent a ∈ A is additively separable if, for every type θa ∈ �a and every
bundle Y ⊆O, we have that

va(Y , θa ) =
∑
o∈Y

va
(
{o}, θa

)
.

Proposition 1. Suppose that all agents have additively separable valuations. Then, for
every efficient allocation X∗ ∈ X ∗,

tVCG(
X∗) = q

(
X∗) and DVCG = Q ≥ 0.

When all agents have additively separable valuations, each object is efficiently allo-
cated to whichever agent has the highest value for that object, irrespective of how other
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objects are allocated. Beyond this special case, largest net Walrasian prices constitute
a nonnegative lower bound (as shown in Theorem 2 below) for the VCG transfers but
may not be equal to them. The intuition behind the discrepancy is that Walrasian prices
are individual to each object while VCG transfers are based on bundles. If all agents
are single-object traders, the bundles are irrelevant since agents are efficiently allocated
at most one object while if all agents have additively separable valuations, they value
bundles just like they value individual objects. However, in general, an agent may be
allocated a bundle that he values differently to the individual objects in it, and this may
create a difference between largest net Walrasian prices and VCG transfers.

Example 2. There are two agents a1 and a2 and two objects o1 and o2. The valuations
are

The endowment (shown in boldface) is both objects endowed to a2. The (unique) effi-
cient allocation (shown in square boxes) is both objects allocated to a1. ♦

In Example 2, a2’s valuation is submodular: his value for the bundle {o1, o2} is less
than the sum of his standalone values for o1 and o2. As we now show, this creates a differ-
ence between a1’s largest net Walrasian prices and VCG transfer.9 The set of Walrasian
price vectors—displayed in Figure 2, which we also use for Examples 3 and 4 below—
contains all price vectors (po1 , po2 ) such that po1 ∈ [3, 5] and po2 ∈ [2, 7]; as a1 buys

Figure 2. Set of Walrasian price vectors and largest net Walrasian prices in Examples 2–4.

9We provide detailed derivations of the net Walrasian prices and VCG transfers for all our examples in
Appendix B.1.
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both objects from a2, it follows that the largest net Walrasian prices are

qa1
= max

(po1 ,po2 )∈PW
[−po1 −po2 ] = −5 and qa2

= max
(po1 ,po2 )∈PW

[po1 +po2 ] = 12.

As both objects are efficiently allocated to a1, the VCG transfers are

tVCG
a1

= W ∗
−a1,−{o1,o2} −W ∗−a1, · = 0 − 4 = −4 and

tVCG
a2

= W ∗−a2, · −W ∗
−a2,−{o1,o2} = 12 − 0 = 12.

So the VCG deficit is

DVCG = tVCG
a1

+ tVCG
a2

= −4 + 12 = 8.

Therefore, a1’s largest net Walrasian price is strictly smaller than his VCG transfer and,
as a result, the sum of the largest net Walrasian prices (−5 + 12 = 7) is strictly smaller
than the VCG deficit (−4 + 12 = 8).

Example 2 shows that VCG transfers may exceed largest net Walrasian prices when
an agent’s valuation is submodular. The next example shows this can also occur when
an agent’s valuation is supermodular.

Example 3. There are two agents a1 and a2 and two objects o1 and o2. The valuations
are

The endowment (shown in boldface) is: object o1 endowed to a1 and object o2 endowed
to a2. The (unique) efficient allocation (shown in square boxes) is object o2 allocated to
a1 and object o1 allocated to a2. ♦

In Example 3, a2’s valuation is supermodular: his value for the bundle {o1, o2} is
greater than the sum of his values for o1 and o2.

The set of Walrasian price vectors contains all price vectors (po1 , po2 ) such that po1 ∈
[3, 4] and po2 ∈ [5, 9]; as a1 buys o2 from a2 and a2 buys o1 from a1, it follows that the
largest net Walrasian prices are

qa1
= max

(po1 ,po2 )∈PW
[po1 −po2 ] = −1 and qa2

= max
(po1 ,po2 )∈PW

[po2 −po1 ] = 6.

The VCG transfers are

tVCG
a1

= W ∗−a1,−o2
−W ∗−a1,−o1

= 4 − 4 = 0 and

tVCG
a2

= W ∗−a2,−o1
−W ∗−a2,−o2

= 9 − 3 = 6.

Therefore, the VCG deficit is 6 (= 0 + 6) and exceeds the sum of the largest net Walrasian
prices, which is 5 (= −1 + 6).

As is well known, an agent’s VCG transfer does not depend on his own valuation;
hence, the same is true of an agent’s largest net Walrasian price when the two are equal
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to each other. Examples 2 and 3 might suggest that largest net Walrasian prices conserve
this property when they are different from VCG transfers since a1’s largest net Walrasian
price is smaller than his VCG transfer but only depends on a2’s valuation. However, our
last example shows that an agent’s largest net Walrasian price may depend on his own
valuation.

Example 4. There are two agents a1 and a2 and two objects o1 and o2. Let ε ∈ (0, 1).
The valuations are

The endowment (shown in boldface) is objects o1 and o2 endowed to a1. The two effi-
cient allocations are o1 allocated to a1 and o2 allocated to a2 as well as o2 allocated to a1

and o1 allocated to a2 (shown in square boxes). ♦

The set of Walrasian price vectors contains all price vectors (po1 , po2 ) such that
po1 = po2 ∈ [2 + ε, 3]. As a2 buys an object from a1, the largest net Walrasian prices
are

qa1
= max

(po1 ,po2 )∈PW
po1 = 3 and qa2

= max
(po1 ,po2 )∈PW

−po1 = −2 − ε.

It follows that a2’s largest net Walrasian price depends on his valuation for the bundle
containing both objects.

In Examples 2–4, each agent’s largest net Walrasian price is weakly smaller than his
VCG transfer. Our second main result shows that this is not a coincidence: As long as
the set of Walrasian prices is nonempty, the relationship between largest net Walrasian
prices and VCG transfers holds as an inequality.

Theorem 2. Suppose that PW �= ∅. Then, for every efficient allocation X∗ ∈ X ∗,

tVCG(
X∗) ≥ q

(
X∗) and DVCG ≥ Q ≥ 0.

The formal proof of Theorem 2 is in Appendix A. In the following, we provide an
intuitive sketch of it. The sum of the agents’ net prices at a given Walrasian price vector
p is equal to zero, because each object is bought and sold at the same price. That Q ≥
0 follows from the largest net Walrasian price of each agent being at least as large as
the net price at a given p; summing the largest net Walrasian prices of all agents gives∑

a∈A qa ≥ 0. The second to last inequality, that is, DVCG ≥ Q, follows from the first by
summing up. To complete the argument, it remains to explain the first inequality. Recall
that X∗ is an efficient allocation with agent a and his endowment present and let X� be
an efficient allocation without a and Ea. If p is a Walrasian price with a and Ea present,
it supports X∗. This means that every agent a′ �= a weakly prefers X∗

a′ to X
�
a′ at p, which

is equivalent to

va′
(
X∗

a′
) − va′

(
X

�
a′

) ≥
∑
o∈X∗

a′

po −
∑
o∈X�

a′

po.
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Summing up over all agents a′ �= a, the left-hand side becomes the VCG transfer
W ∗

−a,−X∗
a

− W ∗
−a,−Ea , while the right-hand side becomes agent a’s net price at the Wal-

rasian price vector p. Because the inequality holds for all Walrasian price vectors, it
holds for the one that maximizes the right-hand side. Thus, we have tVCG

a ≥ qa.
Theorem 2 provides a lower bound for each agent’s VCG transfer (hence, on the

deficit) based on Walrasian prices, which holds as long as Walrasian prices exist, and
thus applies to a wide range of settings. Gul and Stacchetti (1999) showed that the gross
substitutes condition (a formal definition of which is provided in Appendix B.2) implies
that the set of Walrasian price vectors is nonempty (in fact, it forms a nonempty com-
plete lattice). In more general settings, whether the set of Walrasian prices is nonempty
(hence, whether Theorem 2 applies) depends on the realization of types; that is, the
gross substitutes condition is sufficient but not necessary for the existence of a Walrasian
price vector. In Example 3, the valuation of a2 does not satisfy the gross substitutes con-
dition;10 yet, the set of Walrasian prices is nonempty.11

7. Two-sided allocations and homogeneous good markets

In this section, we consider two popular special cases of an asset market: two-sided
allocations and homogeneous good markets. We will define these formally after defining
ex post buyers and sellers and showing how the largest net Walrasian price simplifies for
them.

Given an efficient allocation X∗ ∈ X ∗, an object is traded if it is efficiently assigned
to an agent different from the one who is endowed with it, that is, object o ∈ O is traded
if o ∈ Ea ∩X∗

a′ for some a, a′ ∈ A with a �= a′. We denote by

T
(
X∗) = {

o ∈ O : o ∈ Ea ∩X∗
a′ for some a, a′ ∈ A with a �= a′}

the set of objects that are traded under the efficient allocation X∗. For any traded object
o ∈ Ea ∩X∗

a′ (a, a′ ∈ A, a �= a′), we say that a sells o and a′ buys o. For any agent a ∈ A, we
say that a trades if he sells or buys at least one object, that is, if Ea �=X∗

a .
Consider an object o ∈ T (X∗ ) that is sold by a ∈ A and bought by a′ ∈ A, that is,

o ∈ Ea ∩ X∗
a′ . We say that object o ∈ O is traded vacuously if o’s marginal value to a′ is

zero, that is, if va′(X∗
a′ ) = va′(X∗

a′ \ {o}), in which case we also say that a sells o vacuously
and a′ buys o vacuously. The term captures the idea that trading o does not contribute
to welfare. We denote the set of objects that are traded nonvacuously under the efficient
allocation X∗ by

T̃
(
X∗) = {

o ∈ O : o ∈ Ea ∩X∗
a′ for some a, a′ ∈ A with a �= a′ and va′

(
X∗

a′
)
> va′

(
X∗

a′ \ {o}
)}

.

For every agent a ∈ A, we say that a trades nonvacuously if he either buys or sells at
least one object nonvacuously; formally, the set of agents who trade nonvacuously is

Ã
(
X∗) = {

a ∈ A :
(
Ea ∪X∗

a

) ∩ T̃
(
X∗) �= ∅}

.

10As va2 ({o1, o2}) > va2 ({o1}) + va2 ({o2}), a2’s valuation violates the submodularity condition, which is
satisfied by all gross substitutes valuations (Gul and Stacchetti, 1999, Lemma 5).

11See Baldwin and Klemperer’s (2019) unimodularity theorem for a necessary and sufficient condition
for the existence of an equilibrium in a discrete economy.
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We say that a is an ex post buyer if he buys at least one object nonvacuously and either
does not sell, or only sells objects vacuously. Analogously, we say that a is an ex post
seller if he sells at least one object nonvacuously and either does not buy, or only buys
objects vacuously. Formally, the sets of ex post buyers and ex post sellers are, respec-
tively,

B̃
(
X∗) = {

a ∈ A : Ea ∩ T̃
(
X∗) = ∅, X∗

a ∩ T̃
(
X∗) �= ∅}

and

S̃
(
X∗) = {

a ∈ A : Ea ∩ T̃
(
X∗) �= ∅, X∗

a ∩ T̃
(
X∗) = ∅}

.

Given a type vector θ ∈�, for every object o ∈ O, denote by

p
o

(θ) = min
(pô )ô∈O∈PW (θ)

po and po(θ) = max
(pô )ô∈O∈PW (θ)

po

the smallest and largest prices of object o in any Walrasian price vector. We call the
difference po(θ) − p

o
(θ) the Walrasian price gap of object o. The price vectors p(θ) =

(p
o

(θ))o∈O and p(θ) = (po(θ))o∈O constitute a lower and an upper bound for the set

of Walrasian price vectors in the sense that, for any Walrasian price vector p ∈ PW (θ),
p(θ) ≤ p ≤ p(θ). If p(θ) is a Walrasian price vector (i.e., p(θ) ∈ PW (θ)), we call p(θ)
the smallest Walrasian price vector. Similarly, we call p(θ) the largest Walrasian price
vector if p(θ) ∈ PW (θ). A sufficient condition for p(θ) and p(θ) to be Walrasian price
vectors is that all valuations satisfy the gross substitutes condition.12 We again drop the
dependencies on types whenever there is no risk of confusion.

We now present two results that focus on the largest net Walrasian prices of ex post
buyers and sellers.

Claim 4. If p ∈ PW then, for every efficient allocation X∗ ∈ X ∗ and every ex post buyer
b ∈ B̃, qb(X∗ ) = −∑

o∈X∗
b\Eb po

.

Claim 5. If p ∈ PW then, for every efficient allocation X∗ ∈ X ∗ and every ex post seller
s ∈ S̃ , qs(X

∗ ) = ∑
o∈Es\X∗

s
po.

An ex post seller only buys objects vacuously (if he buys at all). As the price of a vac-
uously traded object is zero in all Walrasian price vectors (see Lemma A.2 in Appendix A
for a formal statement), an ex post seller’s net price is the sum of the prices of the objects
he sells. If a largest Walrasian price vector exists, that sum is maximized by individually
maximizing the price of each object. An analogous reasoning holds for buyers; how-
ever, the sum is negative and is maximized by individually minimizing the price of each
object.

12See Appendix B.2 for a formal definition. As Gul and Stacchetti (1999, Corollary 1) show, if all valuations
satisfy the gross substitutes condition, then the set of Walrasian price vectors forms a nonempty complete
lattice, which implies that it contains extremal elements.
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Two-sided allocations

We say that an efficient allocation X∗ ∈ X ∗ is a two-sided efficient allocation if, under
X∗, every agent who trades nonvacuously is either an ex post buyer or an ex post seller;
formally, the set of two-sided efficient allocations is

X̃ ∗ = {
X∗ ∈ X ∗ : B̃

(
X∗) ∪ S̃

(
X∗) = Ã

(
X∗)}.

In general, whether or not an efficient allocation is two-sided depends on the real-
ization of types. In fact, it may also depend on which efficient allocation is picked as
some may be two-sided while others are not. Define a two-sided allocation problem as
an asset market in which every agent is exogenously either a buyer, as he has an empty
endowment, or a seller, as he derives zero value from any object that is not in his endow-
ment. Clearly, in a two-sided allocation problem every efficient allocation X∗ ∈ X ∗ is a
two-sided efficient allocation and all results in this subsection apply. The next proposi-
tion follows from Claims 4 and 5 and Theorem 2.

Proposition 2. Suppose that p, p ∈ PW . Then, for every two-sided efficient allocation
X∗ ∈ X̃ ∗,

DVCG ≥ Q =
∑

o∈T (X∗ )

(po −p
o

).

Since a sufficient condition for the existence of a smallest and largest Walrasian price
vector (i.e., for p, p ∈ PW ) is that the valuation of every agent satisfies the gross substi-
tutes condition, Proposition 2 applies to all gross substitutes environments.13 Single-
object traders satisfy the gross substitutes condition.14 The following proposition shows
that if all traders are single-object traders and the efficient allocation is two-sided, then
the social planner can charge the buyer of any nonvacuously traded object his smallest
Walrasian price, but has to pay the seller of that object his largest Walrasian price. Thus,
on each traded object the social planner makes a deficit equal to that object’s Walrasian
price gap.

Proposition 3. Suppose that all agents are single-object traders. Then, for every two-
sided efficient allocation X∗ ∈ X̃ ∗ and every object o ∈ T̃ (X∗ ) that is nonvacuously sold
by an agent s ∈ A and nonvacuously bought by an agent b ∈ A,

tVCG
s

(
X∗) = po, tVCG

b

(
X∗) = −p

o
and DVCG = Q =

∑
o∈T (X∗ )

(po −p
o

).

13As the sum of the largest net Walrasian prices Q is the same under every efficient allocation (by
Claim 3), Proposition 2 implies that the sum of the Walrasian gaps over all objects traded is the same for
every two-sided efficient allocation.

14The valuation of a single-object trader satisfies the unit demand condition. As noted by Gul and Stac-
chetti (1999), the unit demand condition is a special case of the strong no complementarities condition,
which implies the gross substitutes condition.
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In the example in Section 2, the sum of the Walrasian gaps over all traded objects
is (po1

− p
o1

) + (po2
− p

o2
) = (3 − 0) + (5 − 0) = 8 and exceeds the VCG deficit, which

is 3. The reason for the discrepancy is that the efficient allocation is not two-sided: each
agent sells an object and buys the other. In Example 2, the efficient allocation is two-
sided: a1 is a buyer and a2 is a seller. Furthermore, agents’ valuations satisfy the gross
substitutes condition and so a smallest and a largest Walrasian price vector exist: p =
(3, 2) and p = (5, 7). Therefore, in line with Proposition 2,

DVCG = 8 ≥ 7 = qa1
+ qa2

= (po1
−p

o1
) + (po2

−p
o2

).

Homogeneous good markets

We now specialize the model to one with a homogeneous good. Although in principle
agents can simultaneously buy and sell, with a homogeneous good there is always an ef-
ficient allocation in which each agent either only buys, only sells, or does not trade; that
is, at least one two-sided efficient allocation exists. An asset market is a homogeneous
good market if, for every agent a ∈A, every type θa ∈�a, and any two bundles Y , Z ⊆O
with |Y | = |Z|, va(Y , θa ) = va(Z, θa ). In other words, in a homogeneous good market,
agents care about the number of objects they are allocated but not about the identity of
those objects.

Given an efficient allocation X∗ ∈ X ∗, we say that agent a ∈ A is a net buyer if |X∗
a| >

|Ea| and a net seller if |X∗
a| < |Ea|. We denote by BN (X∗ ) ⊆ A the set of net buyers and

by SN (X∗ ) ⊆ A the set of net sellers. For every net buyer b ∈ BN (X∗ ), we say that b buys
|X∗

b | − |Eb| units. Similarly, for every net seller s ∈ SN (X∗ ), we say that s sells |Es| − |X∗
s |

units. We call every agent a ∈ A \ (BN (X∗ ) ∪SN (X∗ )) a neutral agent; by definition, a is
a neutral agent if |X∗

a| = |Ea|. As the number of objects allocated is the same under both
X∗ and E , the number of units bought by net buyers equals the number of units sold by
net sellers. We denote that number by #(X∗ ):

#
(
X∗) =

∑
b∈BN (X∗ )

(∣∣X∗
b

∣∣ − |Eb|
) =

∑
s∈SN (X∗ )

(|Es| − ∣∣X∗
s

∣∣).

In a homogeneous good market, because agents do not care about the identity of the
objects they are allocated, the smallest and largest price that an object can have in any
Walrasian price vector must be the same across all objects. Therefore, the price vectors
p and p are uniform in that each assigns the same price p and p to every object, that is,
p
o

= p and po = p for all o ∈ O. A direct consequence of this uniformity is that, when-
ever Walrasian prices exist, each agent’s largest net Walrasian price can be expressed in
terms of the net number of units of the homogeneous good that he buys or sells.

Proposition 4. Consider a homogeneous good market in which p, p ∈ PW and any effi-
cient allocation X∗ ∈ X ∗. Then, for every net buyer b ∈ BN (X∗ ), qb(X∗ ) = −(|X∗

b | − |Eb|)p;

for every net seller s ∈ SN (X∗ ), qs(X
∗ ) = (|Es| − |X∗

s |)p; and for every neutral agent
a ∈ A \ (BN (X∗ ) ∪ SN (X∗ )), qa(X∗ ) = 0. The sum of the largest net Walrasian prices
is

Q = #
(
X∗)(p−p).
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There is a clear intuition behind Proposition 4: the net price of a net buyer is maxi-
mized by setting the price as low as possible and the net price of a net seller is maximized
by setting the price as high as possible.15

To appreciate how generally Proposition 4 applies, it is useful to consider conditions
under which a smallest and largest Walrasian price vector exist. Recall that the existence
of a smallest and largest Walrasian price vector is guaranteed as long as every agent’s val-
uation satisfies the gross substitutes condition. We show in Appendix B.2 that in a homo-
geneous good market an equivalent condition is that all agents have decreasing marginal
values, that is, the marginal value of their nth unit is no smaller than the marginal value
of their n + 1-st unit.16 Therefore, Proposition 4 applies to every homogeneous good
market with decreasing marginal values. Beyond decreasing marginal values, the set of
Walrasian prices may be empty. However, provided it is nonempty, Proposition 4 ap-
plies unless all objects are allocated to the same agent. Suppose that, under at least one
efficient allocation, no agent is allocated all objects (i.e., there exists X∗ ∈ X ∗ such that
X∗

a �= O for all a ∈ A). Any Walrasian price vector p supports X∗ (by Claim 2); hence, as
we formally show in Appendix A (Lemma A.4), p is uniform for otherwise an agent has
an incentive to swap one of his objects for a cheaper one. Consequently, the order p ≤ p̂

is complete, that is, for any p, p̂ ∈ PW , either p ≥ p̂ or p ≤ p̂ holds. Thus, as long as the
set of Walrasian price vectors is nonempty, there exists a smallest Walrasian price vector
p and a largest Walrasian price vector p, and both of them are uniform.

Proposition 5. Consider a homogeneous good market and suppose that either (i) all
agents have decreasing marginal values or (ii) PW �= ∅ and there exists X∗ ∈ X ∗ such that
X∗

a �= O for all a ∈ A. Then p, p ∈ PW .

Proposition 5 means that Proposition 4 applies to “almost all” homogeneous good
markets in which the set of Walrasian prices is nonempty. The only exception occurs
when some marginal values are increasing and, under every efficient allocation, all ob-
jects are allocated to the same agent.17 The following example illustrates how Proposi-
tion 4 may fail in this specific case. There are two agents, each of whom is endowed with
one object and has the following valuations:

15As Q does not depend on which efficient allocation is chosen (by Claim 3), Proposition 4 implies that,
as long as there exist multiple Walrasian prices, #(X∗ ) = #(X� ) for any X∗, X� ∈ X ∗. This need not be the
case in the presence of a unique Walrasian price vector. For example, suppose there are two agents and
one object for which each agent has a value of 1. The unique Walrasian price is 1. One efficient allocation
leaves the object with the agent to whom it is endowed (hence, no units are traded in this allocation) while
the other efficient allocation gives the object to the other agent (hence, one unit is traded).

16Formally (see Definition B.2 in Appendix B.2), for every agent a ∈ A and any bundles Y1, Y2, Y3 ⊆ O
with |Y1| + 2 = |Y2| + 1 = |Y3|, we have that va(Y2 ) − va(Y1 ) ≥ va(Y3 ) − va(Y2 ).

17We thank an anonymous referee for pointing out this special case to us.
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The unique efficient allocation has both objects allocated to a2 and the set of Walrasian
price vectors contains all price vectors whose sum lies between 1 and 2; hence, there
are no smallest and largest Walrasian price vectors. The net price of a1 is po1 , which is
maximized by the vector (2, 0) so qa1

= 2. Similarly, the net price of a2 is −po1 , which is
maximized by the vector (0, 2) so qa2

= 0.
As single-object traders have decreasing marginal values, Proposition 4 applies to

this setting and can be combined with Theorem 1 to obtain the following corollary.

Corollary 2. Consider a homogeneous good market and suppose that all agents are
single-object traders. Then, for every efficient allocation X∗ ∈ X ∗, the VCG deficit on each
unit traded is p−p, and hence, the VCG deficit is DVCG = #(X∗ )(p−p).

Corollary 2 is a known result for two-sided allocation problems; see, for example,
Tatur (2005). When all agents are single-object traders, each net buyer pays a transfer
equal to the smallest Walrasian price for the unit he buys and every net seller receives
a transfer equal to the largest Walrasian price for the unit he sells. Therefore, the social
planner incurs a deficit on each unit traded equal to the Walrasian price gap.

Combining Proposition 4 with Theorem 2, we obtain the following corollary.

Corollary 3. Consider a homogeneous good market in which p, p ∈ PW . Then, for every

efficient allocation X∗ ∈ X ∗, the VCG deficit is DVCG ≥ #(X∗ )(p−p).

Corollary 3 generalizes Theorem 1 in Loertscher and Mezzetti (2019) in two ways.
First, in our environment whether an agent is a net buyer or a net seller depends on
the types whereas in Loertscher and Mezzetti (2019) agents’ trading positions are ex-
ogenously given. Second, Loertscher and Mezzetti assume that agents have decreasing
marginal values, while Corollary 3 applies beyond decreasing marginal values, as long
as the set of Walrasian prices is nonempty and there exists an efficient allocation under
which no agent is allocated all objects.

A further implication of Theorem 2 and Corollary 3 is that if the deficit under VCG
is zero in a homogeneous good market in which extremal Walrasian price vectors exist,
then the Walrasian price gap has to be zero as well, that is, p = p has to hold. Note that
the condition p = p, which is nongeneric in two-sided allocation problems with finitely
many agents and, say, continuously distributed types, can naturally be satisfied in asset
markets because the Walrasian price may need to make a single agent indifferent be-
tween buying and selling. This occurs, for example, if all agents have constant marginal
values up to some maximum demands and if, under efficiency, one agent with a pos-
itive endowment less than his maximum demand consumes exactly the amount he is
endowed.18 As noted by Loertscher and Marx (2020), in this case the VCG mechanism
has a deficit of zero. However, the question under what more general conditions p = p

implies a VCG deficit of zero remains open and is best left for future research. Related,
one may wonder whether the VCG mechanism runs a budget surplus when Walrasian

18Perhaps the simplest environment has an odd number of agents, each agent with an endowment of
one and a maximum demand of two. Then the Walrasian price is equal to the value of the median agent.
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prices fail to exist. While a comprehensive answer is beyond the scope of this paper, the
following example shows that at least in some cases the answer is affirmative.19 Con-
sider a homogeneous good market with three agents. Each agent ai, i = 1, 2, 3, has an
endowment of one, a value of zero for a single unit, and a value of vai > 0 for two or
three units (i.e., the marginal value of a second unit is vai and the marginal value of a
third unit is 0). Assuming va1 > va2 > va3 , efficiency requires that agent a1 be allocated
two units and the last unit be allocated to any of the three agents. The VCG mechanism
runs a budget surplus as the transfer of agent a1 is −va2 and the transfer of the other two
agents is 0. As Theorem 2 implies, if the VCG mechanism runs a budget surplus, the set
of Walrasian prices has to be empty. To see that this is indeed the case, note that if all
three units are allocated to agent a1, their marginal value to him is zero; therefore, their
price must also be zero. If one object is allocated to one of the other agents, by analogous
reasoning the price of that unit must be zero. Then the price of the other two units must
also be zero as otherwise agent a1 would want to swap one of his units for the cheaper
one. It follows that the only candidate for a Walrasian price vector is (0, 0, 0); however,
this price vector creates excess demand as all agents want to keep their endowment and
purchase a second unit.

8. Related literature

This paper brings together different strands of the literature. The first strand uncovers a
connection between Walrasian prices and the equilibrium prices in the Vickrey auction.
Demange (1982) and Leonard (1983) study a one-sided assignment problem in which
each agent must be assigned to a single object, or position. Positions can be viewed as
“dummy agents” who do not need to be provided incentives for value revelation, and
hence, play no role in the deficit calculation. By postulating that each dummy agent is
endowed with an object, that actual agents are not endowed with any objects and adding
the assumption that each dummy agent d has no value for any good (i.e., vd(Y , θd ) = 0
for all Y ⊆ O, all θd , and all d), the assignment problem can be viewed as a special case
of an asset market with single-object traders. Demange (1982) and Leonard (1983) show
that in their setting the smallest Walrasian price vector coincides with the prices in the
Vickrey auction and, as a consequence, the aggregate payment of buyers in a Walrasian
equilibrium coincides with the revenue in a VCG auction. Their results can be viewed
as an extension of the observation that, with a single seller and a single object, the price
in a second-price auction coincides with the lowest Walrasian price (any price between
the second highest and highest bidder’s value is a Walrasian price).

Gul and Stacchetti (1999) study a more general setting in which buyers demand (i.e.,
have value for) multiple objects. They focus on the structural properties of the set of
Walrasian equilibria when buyers’ preferences satisfy the gross substitutes condition.
A by-product of their analysis (their Theorem 8) shows that the aggregate payment of
buyers at the smallest Walrasian prices is an upper bound for the total revenue raised
by the VCG mechanism; with multiunit demand, equality need not hold. In contrast to

19We are thankful to an anonymous referee for having proposed this example.
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the present paper, Demange (1982), Leonard (1983), and Gul and Stacchetti (1999) do
not consider the issue of incentive compatibility for sellers, and thus provide no direct
connection between Walrasian prices and the VCG deficit.

The second strand of the literature focuses on a game-theoretic, mechanism-design
conceptualization, and characterization of perfect competition. Makowski and Ostroy
(1987) define an exchange economy with quasilinear preferences as perfectly competi-
tive if no agent has price impact: with or without him, the Walrasian prices are the same.
More precisely, an exchange economy is perfectly competitive if for any possible valua-
tion of agents, there exists a Walrasian price vector that remains a Walrasian price vector
if the valuation of a single agent changes.20 Under standard technical conditions, they
show that an exchange economy is perfectly competitive if and only if the total money
transfer each agent receives in a Walrasian equilibrium (i.e., using a Walrasian price vec-
tor) coincides with his transfer in the VCG mechanism.21 Thus, in a perfectly competi-
tive economy the VCG mechanism is budget balanced. Section 2 of Gretsky, Ostroy, and
Zame (1999) studies a generalization of the finite assignment model analyzed by De-
mange (1982) and Leonard (1983); besides buyers who value only one object and have
no endowment, there are sellers. Each seller is endowed with an object and only has a
positive value for the object he owns. Gretsky, Ostroy, and Zame (1999) provide neces-
sary and sufficient conditions for the assignment economy to be perfectly competitive
in the sense of Makowski and Ostroy (1987), and argue that while “most finite economies
are imperfectly competitive, . . . most continuum economies are perfectly competitive”
(p. 60). In contrast, our paper focuses on imperfectly competitive economies and pro-
vides a connection between Walrasian prices in such economies and the VCG deficit.
Furthermore, even with single-object traders our model is more general than the as-
signment model.

In the assignment model, each buyer is matched with a seller and the largest net
Walrasian price is a single price (for a buyer it is the lowest price of the object he buys
and for a seller it is the largest Walrasian price of the object he sells). In our model,
even with single-object traders, there could be trading chains of arbitrary length and the
largest net Walrasian price can be the difference between two Walrasian prices.

The payoff of each agent a in a VCG mechanism is equal to his social marginal prod-
uct, defined as W ∗ − W ∗

−a,−Ea . Makowski and Ostroy (1995) define the private marginal
benefit of an agent in a Walrasian equilibrium as his equilibrium payoff, which is equal
to the allocation valuation plus the net trade revenue (or, equivalently and as they write
it, minus the net trade expenditure); in our notation and indivisible objects setting:
va(X∗

a , θa ) − (
∑

o∈X∗
a
po − ∑

o∈Ea po ). Makowski and Ostroy (1995) are interested in de-
riving and understanding the conceptual significance of the first welfare theorem for
their notion of a perfectly competitive economy. Without being particularly interested
in the VCG mechanism per se, or in finding a bound in the deficit it generates, their
Theorem 1 is closely connected to our Theorem 2. It shows that for all Walrasian price

20They do not assume indivisible objects; an exchange economy with indivisible objects is what we call
an asset market.

21Makowski and Ostroy (1987) call it the “full appropriation mechanism” to distinguish it from a VCG
mechanism with added lump-sum transfers.
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vectors the social marginal product of an individual is at least as large as his private
marginal product. Given that our setting is substantively different from theirs (e.g., we
have indivisible goods and we do not have agents choosing occupations before trading),
we provide a simple independent proof in Appendix A (see the paragraph immediately
after Theorem 2 for a sketch). That said, Theorem 2 could also be proven in the set-
ting of Makowski and Ostroy (1995) along the following lines: (i) one could choose for
each agent a the Walrasian price vector that generates the largest net trade revenue; (ii)
this net revenue would correspond to our largest net Walrasian price for agent a; (iii)
by rearranging terms, the inequality in their Theorem 1, that the social marginal prod-
uct exceeds the private marginal product, could then be stated as saying that the largest
net Walrasian price for each agent is less than or equal to his VCG transfer, which is our
Theorem 2.

It is also worth mentioning that Theorem 2 could also be proven by adapting the ar-
gument in the proof of Theorem 8 in Gul and Stacchetti (1999). To that end, consider an
efficient allocation X∗, and a Walrasian price vector p supporting it. Pick any agent a and
change his valuation to va(Y , θa ) = ∑

o∈Y po for all Y ⊆ O. As a is indifferent among all
packages, the allocation X∗ is still supported by p and so remains efficient with an asso-
ciated welfare of

∑
o∈X∗

a
po +W ∗

−a,−X∗
a

. An alternative is to allocate a his endowment and
efficiently allocate the remaining objects to the other agents, with an associated welfare
of

∑
o∈Ea po+W ∗

−a,−Ea . As X∗ is efficient, we have that
∑

o∈X∗
a
po+W ∗

−a,−X∗
a

≥ ∑
o∈Ea po+

W ∗
−a,−Ea , which can be rearranged as W ∗

−a,−X∗
a
−W ∗

−a,−Ea ≥ ∑
o∈Ea po − ∑

o∈X∗
a
po. Then,

as p is an arbitrary Walrasian price vector, tVCG
a (X∗ ) ≥ qa(X∗ ).22

Third, dating back to the seminal contributions of Vickrey (1961) and Myerson and
Satterthwaite (1983), there is a large literature on the (im)possibility of efficient, incen-
tive compatible, and individually rational trade. General results that do not necessar-
ily relate to markets (i.e., private goods) are in Makowski and Mezzetti (1993, 1994),
Williams (1999), and Segal and Whinston (2016). For a recent contribution in mar-
ket settings and additional references see, for example, Delacrétaz, Loertscher, Marx,
and Wilkening (2019). With the exceptions of Tatur (2005) and Loertscher and Mezzetti
(2019), which study homogeneous good settings, this literature makes no explicit con-
nection between Walrasian prices and the deficit under the VCG mechanism. Our pa-
per’s contribution to this literature is an impossibility result for general private goods
providing a link between the VCG deficit and Walrasian prices.

22Yet another way to derive our Theorem 2 would be along the lines of Segal and Whinston (2016) by
recognizing that Walrasian equilibria are in the core. Hence, given an agent a, an efficient allocation X∗,
and a Walrasian price vector p, it must be that

W ∗ −
(
va

(
X∗

a

) +
∑

o∈Ea\X∗
a

po −
∑

o∈X∗
a\Ea

po

)
≥W ∗−a,−Ea

.

Rearranging and recalling that an agent’s payoff under the VCG mechanism is his marginal contribution,
we obtain that

va
(
X∗

a

) + tVCG
a

(
X∗) = W ∗ −W ∗−a,−Ea

≥ va
(
X∗

a

) +
∑

o∈Ea\X∗
a

po −
∑

o∈X∗
a\Ea

po.

As p is an arbitrary Walrasian price vector, it follows that tVCG
a (X∗ ) ≥ qa(X∗ ).
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Fourth and last, there is a small but growing literature in which agents’ trading po-
sitions in a homogeneous good market are endogenously determined as a function of
their own values and the values of all other traders. Extending the setup of Cramton,
Gibbons, and Klemperer (1987) to account for limited capacities (or demands) by the
agents, Lu and Robert (2001) derive the profit-maximizing market mechanism, while
Loertscher and Marx (2020) provide a trade sacrifice mechanism that either allocates
efficiently or close to efficiently and never runs a deficit.23 In Bayesian settings with
a homogeneous good such as those of Lu and Robert (2001) and Cramton, Gibbons,
and Klemperer (1987), the allocation problem is always ex post two-sided because every
trading agent either only sells or only buys. In the general asset markets that we study in
this paper, this is not the case as an agent may simultaneously buy some objects while
selling others.

9. Conclusions

For an asset market with quasilinear utilities, we show there is a tight connection be-
tween Walrasian prices and VCG transfers. We define an agent’s largest net Walrasian
price to be the largest difference between the sum of the prices of the objects he sells
and the sum of the prices of the objects he buys in any Walrasian price vector. When ev-
ery agent is a single-object trader—that is, every agent has a maximum demand of one
object and is endowed with at most one object—we show that each agent’s largest net
Walrasian price is equal to his VCG transfer; hence, the deficit of the VCG mechanism is
equal to the sum of the largest net Walrasian prices of all agents. Beyond single-object
traders, we show that, whenever the set of Walrasian prices is nonempty, each agent’s
largest net Walrasian price constitutes a lower bound for his VCG transfer; therefore,
the sum of the largest net Walrasian prices constitutes a (nonnegative) lower bound
for the deficit of the VCG mechanism (and any efficient, ex post individually rational,
and dominant strategy incentive compatible mechanism). Because these results only
require the existence of Walrasian prices, they are as general within this domain as pos-
sible.

An interesting avenue for future research is to explore whether these results can be
generalized to environments in which the set of Walrasian prices is empty. One could
consider a divisible version of the market in which agents may be assigned fractions of
bundles. Market clearing prices in this divisible market always exist and are sometimes
called pseudo-equilibrium prices.24 To the best of our knowledge, it is an open question
whether the VCG transfers are bounded below or connected in some way with some
elements of this set of pseudo-equilibrium prices.

23See also Chen and Li (2018) for an analysis of dominant strategy foundations in the settings of Cramton,
Gibbons, and Klemperer (1987) and Lu and Robert (2001).

24Bikhchandani and Mamer (1997) proved that the set of such market clearing prices is nonempty and
coincides with the set of Walrasian prices if the latter set is also nonempty. The properties of these pseudo-
equilibrium prices were further investigated by Milgrom and Strulovici (2009).
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Appendix A: Proofs

We begin with two lemmas.

Lemma A.1. Let (X∗
a′ )a′∈A be an efficient allocation. If agent a and X∗

a are removed from
the environment, then (X∗

a′ )a′∈A\{a} is an efficient allocation and W ∗ −W ∗
−a,−X∗

a
= va(X∗

a ).

Proof. Consider the allocation problem in which a and X∗
a have been removed and,

toward a contradiction, suppose that there exists an allocation (Ya′ )a′∈A\{a} such that∑
a′∈A\{a}

va′(Ya′ ) >
∑

a′∈A\{a}

va′
(
X∗

a′
)
.

Adding va(X∗
a ) on both sides, we obtain that

va
(
X∗

a

) +
∑

a′∈A\{a}

va′(Ya′ ) >
∑
a′∈A

va′
(
X∗

a′
)
,

which contradicts the assumption that X∗ is an efficient allocation when all agents and
objects are present and, therefore, proves the first part of the statement. We then have
that

W ∗
−a,−X∗

a
=

∑
a′∈A\{a}

va′
(
X∗

a′
) =W ∗ − va

(
X∗

a

)
,

which proves the second part of the statement.

Lemma A.2. For any efficient allocation X∗ ∈ X ∗, any vacuously traded object o ∈
T (X∗ ) \ T̃ (X∗ ), and any Walrasian price vector p= (pô )ô∈O ∈ PW , we have that po = 0.

Proof. Let a be the agent vacuously buying o. By Claim 2 (which we prove below),
p = (pô )ô∈O supports X∗. Hence,

va
(
X∗

a

) −
∑
ô∈X∗

a

pô ≥ va
(
X∗

a \ {o}
) −

∑
ô∈X∗

a\{o}

pô

⇔ va
(
X∗

a

) −po ≥ va
(
X∗

a \ {o}
)
.

As o is traded vacuously, by definition va(X∗
a ) = va(X∗

a \ {o}); therefore, po ≤ 0. By our
monotonicity assumption, Walrasian prices cannot be negative; therefore, we conclude
that po = 0.

Proof of Claim 1. By Lemma A.1, for every a ∈ A, W ∗
−a,−X∗

a
= W ∗ − va(X∗

a ); therefore,
we have that ∑

a∈A

[
W ∗

−a,−X∗
a
−W ∗

−a,−Ea
] =

∑
a∈A

[
W ∗ − va

(
X∗

a

) −W ∗
−a,−Ea

]
=

∑
a∈A

[
W ∗ −W ∗

−a,−Ea
] −

∑
a∈A

va
(
X∗

a

)
=

∑
a∈A

[
W ∗ −W ∗

−a,−Ea
] −W ∗.
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As an analogous reasoning holds for X�, we conclude that∑
a∈A

[
W ∗

−a,−X
�
a
−W ∗

−a,−Ea
] =

∑
a∈A

[
W ∗ −W ∗

−a,−Ea
] −W ∗;

hence, ∑
a∈A

[
W ∗

−a,−X∗
a
−W ∗

−a,−Ea
] =

∑
a∈A

[
W ∗

−a,−X
�
a
−W ∗

−a,−Ea
]
,

as required.

Proof of Claim 2 (adapted from Lemma 6 of Gul and Stacchetti (1999). Toward
a contradiction, suppose X∗, X� ∈ X ∗ are efficient allocations and p = (po )o∈O supports
X∗ but not X�. Recall that objects are indivisible and each object o has an individual
price po; agents compare sets of objects and, for each set, each object is either in the set
or not in the set.

As p does not support X�, there exist a′ ∈ A and Y ⊆ O such that

va′
(
X�

a′
) −

∑
o∈X�

a′

po < va′(Y ) −
∑
o∈Y

po.

As p supports X∗, it is optimal for a′ to pick X∗
a′ when facing p; hence,

va′
(
X∗

a′
) −

∑
o∈X∗

a′

po ≥ va′(Y ) −
∑
o∈Y

po.

Combining the two inequalities yields

va′
(
X∗

a′
) −

∑
o∈X∗

a′

po > va′
(
X

�
a′

) −
∑
o∈X�

a′

po.

Again, because p supports X∗, for every a ∈ A, we have that

va
(
X∗

a

) −
∑
o∈X∗

a

po ≥ va
(
X�

a

) −
∑
o∈X�

a

po.

Combining the last two equations, we obtain

∑
a∈A

[
va

(
X∗

a

) −
∑
o∈X∗

a

po

]
>

∑
a∈A

[
va

(
X�

a

) −
∑
o∈X�

a

po

]

⇔
∑
a∈A

va
(
X∗

a

)
>

∑
a∈A

va
(
X�

a

)
,

a contradiction since X� is an efficient allocation.25

25Note that
∑

a∈A
∑

o∈X∗
a
po = ∑

a∈A
∑

o∈X�
a
po, because any allocation (Xa )a∈A must assign all objects

to the agents, that is,
⋃

a∈AXa = O.
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Proof of Claim 3. Let (po )o∈O be any Walrasian price vector and consider any agent
a ∈ A. By Claim 2, (po )o∈O supports both X∗ and X�; therefore, we have that

va
(
X∗

a

) −
∑
o∈X∗

a

po = va
(
X�

a

) −
∑
o∈X�

a

po,

which is equivalent to ∑
o∈X�

a

po −
∑
o∈X∗

a

po = va
(
X�

a

) − va
(
X∗

a

)
. (1)

Using the definition of a largest net Walrasian price and rearranging, we obtain that

qa
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Ea\X∗

a

po −
∑

o∈X∗
a\Ea

po

]

= max
(po )o∈O∈PW

[ ∑
o∈Ea

po −
∑
o∈X∗

a

po

]

= max
(po )o∈O∈PW

[ ∑
o∈Ea

po −
∑
o∈X�

a

po +
∑
o∈X�

a

po −
∑
o∈X∗

a

po

]
.

As every Walrasian price vector satisfies (1), the maximization only occurs over the first
two sums; therefore, we have that

qa
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Ea

po −
∑
o∈X�

a

po

]
+ va

(
X�

a

) − va
(
X∗

a

)
= qa

(
X�

) + va
(
X�

a

) − va
(
X∗

a

)
.

It follows that qa(X∗ ) − qa(X� ) = va(X�
a ) − va(X∗

a ). Summing over all agents, we obtain
that ∑

a∈A

[
qa

(
X∗) − qa

(
X�

)] =
∑
a∈A

[
va

(
X�

a

) − va
(
X∗

a

)]
=

∑
a∈A

va
(
X�

a

) −
∑
a∈A

va
(
X∗

a

)
= W ∗ −W ∗ = 0.

We conclude that
∑

a∈A qa(X∗ ) = ∑
a∈A qa(X� ), as required.

Proof of Claim 4. By definition, we have that

qb
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Eb\X∗

b

po −
∑

o∈X∗
b\Eb

po

]
.
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As b is an ex post buyer, every object he sells (if any) is traded vacuously. By
Lemma A.2, the price of all vacuously-traded objects is zero. Hence, the first term on
the right-hand side is zero and

qb
(
X∗) = max

(po )o∈O∈PW
−

∑
o∈X∗

b\Eb
po = − min

(po )o∈O∈PW

∑
o∈X∗

b\Eb
po = −

∑
o∈X∗

b\Eb
p
o

,

where the last equality holds because the minimum of the sum is equal to the sum of
the minima of each term, as p ∈ PW .

Proof of Claim 5. By definition, we have that

qs
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Es\X∗

s

po −
∑

o∈X∗
s \Es

po

]
.

As s is an ex post seller, all the objects he buys (if any) are traded vacuously, and thus
must have a zero price by Lemma A.2. Hence, the second sum on the right-hand side is
zero and

qs
(
X∗) = max

(po )o∈O∈PW

∑
o∈Es\X∗

s

po =
∑

o∈Es\X∗
s

po,

where the last equality holds because the maximum of the sum is equal to the sum of
the maxima of each term, as p ∈ PW .

It is convenient to prove Theorem 2 before proving Theorem 1.

Proof of Theorem 2.

• tVCG(X∗ ) ≥ q(X∗ ): Consider any agent a ∈ A. We need to show that tVCG
a (X∗ ) ≥

qa(X∗ ). By definition, tVCG
a (X∗ ) =W ∗

−a,−X∗
a
−W ∗

−a,−Ea . Let p = (po )o∈O ∈ PW be any

Walrasian price vector (PW is nonempty by assumption). We need to show that

W ∗
−a,−X∗

a
−W ∗

−a,−Ea ≥
∑

o∈Ea\X∗
a

po −
∑

o∈X∗
a\Ea

po. (2)

By Lemma A.1, (X∗
a′ )a′∈A\{a} is an efficient allocation after a and X∗

a have been re-

moved. Let (X�
a′ )a′∈A\{a} be an efficient allocation after a and Ea have been removed.

Then

W ∗
−a,−X∗

a
−W ∗

−a,−Ea =
∑

a′∈A\{a}

[
va′

(
X∗

a′
) − va′

(
X�

a′
)]

. (3)

As p = (po )o∈O is a Walrasian price vector, it supports X∗ in the problem with all
agents and objects present. In particular, all a′ ∈ A \ {a} weakly prefer X∗

a′ over X�
a′ ; that

is, for all a′ ∈ A \ {a},

va′
(
X∗

a′
) −

∑
o∈X∗

a′

po ≥ va′
(
X

�
a′

) −
∑
o∈X�

a′

po.
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Rearranging, we obtain that

va′
(
X∗

a′
) − va′

(
X�

a′
) ≥

∑
o∈X∗

a′

po −
∑
o∈X�

a′

pofor all a′ ∈ A \ {a}.

Summing up over all agents yields

∑
a′∈A\{a}

[
va′

(
X∗

a′
) − va′

(
X

�
a′

)] ≥
∑

a′∈A\{a}

[ ∑
o∈X∗

a′

po −
∑
o∈X�

a′

po

]

=
∑

a′∈A\{a}

∑
o∈X∗

a′

po −
∑

a′∈A\{a}

∑
o∈X�

a′

po.

Using (3) and the fact that
⋃

a′∈A\{a} X
∗
a′ = O \X∗

a and
⋃

a′∈A\{a} X
�
a′ = O \ Ea, we obtain

W ∗
−a,−X∗

a
−W ∗

−a,−Ea ≥
∑

o∈O\X∗
a

po −
∑

o∈O\Ea
po

=
∑
o∈Ea

po −
∑
o∈X∗

a

po

=
∑

o∈Ea\X∗
a

po −
∑

o∈X∗
a\Ea

po,

which is inequality (2).

• DVCG ≥ Q: By definition, DVCG = ∑
a∈A tVCG

a (X∗ ) and Q = ∑
a∈A qa(X∗ ) so our re-

sult that tVCG(X∗ ) ≥ q(X∗ ) implies DVCG ≥ Q.

• Q ≥ 0: Consider an efficient allocation X∗ ∈ X ∗ and a Walrasian price vector
(p̂o )o∈O ∈ PW . For every agent a ∈ A, we have that

qa
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Ea\X∗

a

po −
∑

o∈X∗
a\Ea

po

]
≥

∑
o∈Ea\X∗

a

p̂o −
∑

o∈X∗
a\Ea

p̂o.

Summing up over all agents, we obtain that

Q =
∑
a∈A

qa
(
X∗) ≥

∑
a∈A

[ ∑
o∈Ea\X∗

a

p̂o −
∑

o∈X∗
a\Ea

p̂o

]
. (4)

By assumption, every object is assigned to exactly one agent under both E and X∗.
Hence, ∑

a∈A

[ ∑
o∈Ea\X∗

a

p̂o −
∑

o∈X∗
a\Ea

p̂o

]
=

∑
a∈A

∑
o∈Ea

p̂o −
∑
a∈A

∑
o∈X∗

a

p̂o = 0. (5)

Combining (4) and (5) yields Q ≥ 0.
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Proof of Theorem 1. By Theorem 2, we have that tVCG(X∗ ) ≥ q(X∗ ) and DVCG ≥ Q ≥
0; therefore, it remains to show that tVCG(X∗ ) ≤ q(X∗ ), which implies that tVCG(X∗ ) =
q(X∗ ) and DVCG =Q.

Consider any agent a ∈ A. We need to show that

qa
(
X∗) ≥ tVCG

a

(
X∗).

As a is a single-object trader, he sells at most one object and nonvacuously buys at most
one object. Let o ∈ O ∪ {∅} be the object (if any) that a sells and let o′ ∈ O ∪ {∅} be the
object (if any) that a buys nonvacuously.26 We have that qa(X∗ ) = max(p̂õ )õ∈O∈PW [p̂o −
p̂o′ ] and tVCG

a (X∗ ) =W ∗
−a,−o′ −W ∗−a,−o. Therefore, we need to show that

max
(p̂õ )õ∈O∈PW

[p̂o − p̂o′ ] ≥W ∗
−a,−o′ −W ∗−a,−o.

We will need to consider markets in which an agent and/or a copy of an object has
been added. We denote the welfare of such a market with superscripts; for instance,
W ∗(+ã,+o) denotes the efficient welfare in the market in which an additional agent ã and
a copy of object o ∈ O has been added. In that market, all agents see o and its copy as
indistinguishable. We need to use the identity in the following lemma, which we prove
after the proof of Theorem 1.

Lemma A.3.

W ∗
−a,−o′ −W ∗−a,−o = W ∗ −W ∗(·,+o′ )

·,−o .

By Lemma A.3, it remains to show that

max
(p̂ô )ô∈O∈PW

[p̂o − p̂o′ ] ≥W ∗ −W ∗(·,+o′ )
·,−o .

We start with our original problem, which contains the set of agents A and the set of
objects O, and add a copy of object o′ as well as an agent ã′ such that, for every bundle
Y ⊆O,

vã′(Y ) =
{
W ∗(·,+o′ ) −W ∗ if o′ ∈ Y ,

0 if o′ /∈ Y .

That is, ã′ has unit demand and only values object o′. Observe that there are at least two
efficient allocations in this market: one allocates o′ to ã′ and continues to allocate X∗

a to
every a ∈ A while another efficient allocation leaves ã′ with an empty bundle and allo-
cates all objects (including the copy of o′) efficiently to the other agents. By Lemma A.1,
it follows that W ∗(+ã′,+o′ ) =W ∗(·,+o′ ).

26If a does not sell any object, then o = ∅ (hence, W ∗·,−o = W ∗ and po = 0) and our proof essentially
collapses to that of Theorem 4 of Gul and Stacchetti (1999). If a does not buy any object (or only buys objects
vacuously), then o′ = ∅ and our proof essentially collapses to that of Theorem 5 of Gul and Stacchetti (1999).
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We next add an agent ã such that, for every bundle Y ⊆O,

vã(Y ) =
{
W ∗(+ã′,+o′ ) −W ∗(+ã′,+o′ )

·,−o if o ∈ Y ,

0 if o /∈ Y .

Agent ã has unit demand and only values o. Starting with an efficient allocation in the
market in which ã′ and o′ have been added, we can obtain an efficient allocation in the
market where ã has also been added by allocating the same bundle to every a ∈ A and
allocating the empty bundle to ã. Therefore, an efficient allocation in this market is X�

such that X�
ã = ∅, X�

ã′ = {o′}, and X�
a =X∗

a for all a ∈ A.
Let (pô )ô∈O be a Walrasian price vector in the market in which ã, ã′, and the copy of

o′ have been added. (The set of Walrasian price vectors in this market is nonempty since
all agents are single-object traders. Moreover, as o′ and its copy are identical, their price
in any Walrasian price vector is the same;27 therefore, we can define po′ to be the price
of both o′ and its copy.) By Claim 2, (pô )ô∈O supports X�. Moreover, by construction,
(pô )ô∈O supports X∗ in the original market, meaning that (pô )ô∈O is a Walrasian price
vector in the original market. Therefore, it remains to show that po−po′ ≥W ∗−W ∗(·,+o)

·,−o′ .
As (pô )ô∈O supports X�, when facing those prices it is optimal for ã not to acquire

any object—hence, po ≥W ∗(+ã′,+o′ ) −W ∗(+ã′,+o′ )·,−o —and for ã′ to acquire o′—hence, po′ ≤
W ∗(·,+o′ ) −W ∗. Recalling that W ∗(+ã′,+o′ ) =W ∗(·,+o′ ), we conclude that

po −po′ ≥W ∗ −W ∗(+ã′,+o′ )
·,−o .

By Theorem 2 in Shapley (1962), an agent and an object are complements to each other:(
W ∗(+ã′,+o′ )

·,−o −W ∗(·,+o′ )
·,−o

) + (
W ∗(·,+o′ ) −W ∗(·,+o′ )

·,−o

) ≤W ∗(+ã′,+o′ ) −W ∗(·,+o′ )
·,−o .

Therefore, we have

W ∗(+ã′,+o′ )
·,−o −W ∗(·,+o′ )

·,−o ≤W ∗(+ã′,+o′ ) −W ∗(·,+o′ ) = 0.

It follows that W ∗(+ã′,+o′ )
·,−o ≤ W ∗(·,+o′ )

·,−o , and hence, as required: po −po′ ≥ W ∗ −W ∗(·,+o′ )
·,−o .

Proof of Lemma A.3. By Lemma A.1, W ∗ =W ∗
−a,−o′ + va({o′}) so we need to show that

W ∗(·,+o′ )·,−o =W ∗−a,−o + va({o′}).

Let X̂∗ be an efficient allocation in the original problem such that (i) every agent
is allocated at most one object and (ii) a is allocated o′. Such an allocation necessarily
exists since all agents are single-object traders and a buys o′ nonvacuously.28 For every
a′ ∈ A, let ô∗

a′ ∈ O ∪ {∅} be the object (if any) that a′ is allocated under X̂∗. Then W ∗ =∑
a′∈A va′({o∗

a′ }).

27If the prices are different, both ã′ and the agent who is allocated o′ under X� only demand whichever
one of o′ or its copy is cheaper; hence, such a price vector does not support X�.

28X̂∗ can be constructed by starting from X∗ and, for each agent who is allocated multiple objects, real-
locating all but one of them to agents who are allocated the empty bundle.
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Consider now the market in which a copy of o′—which we denote by õ′—is added
and o is removed. Toward a contradiction, suppose that there is no efficient allocation
in this market under which a is allocated o′ = ô∗

a. In this market, consider the efficient
allocations X̂� such that, again, each agent is allocated at most one object. For every
a′ ∈ A, we denote by ô�a′ ∈ O ∪ {∅} the object (if any) that a′ is allocated under X̂�. Then

W ∗(·,+o′ )
·,−o = ∑

a′∈A va′({ô�a′ }).

As every agent is allocated one object, X̂� is defined by: (i) a chain of reallocations

o0 → a1 → o1 → a2 → o2 → ·· · → an → on

such that o0 = õ′, on = o, oi = ô∗
ai

, and oi−1 = ô
�
ai for all i = 1, � � � , n, and (ii) the property

that all agents not in the chain are allocated the same object as in the efficient allocation
X̂∗ of the original problem: ô∗

a′ = ô
�
a′ for all a′ ∈ A \ {a1, � � � , an}.

By assumption, ô�a �= ô∗
a = o′; therefore, there exists m= 1, � � � , n− 1 such that am = a

and om = o′. Consider now the alternative allocation in which ai is allocated oi for all
i = 1, � � � , m, am+1 is allocated o0 = õ′, and every remaining agent a′ ∈ A \ {a1, � � � , am+1}
is allocated ô�a′ . That allocation is not efficient by assumption since it allocates o′ to a;

therefore, the aggregate value it creates is strictly less than that created by X̂�, which
implies that

m+1∑
i=1

vai
(
{oi−1}

)
> vam+1

(
{o0}

) +
m∑
i=1

vai
(
{oi}

)
.

As om = o′ and o0 = õ′, we have that vam+1 ({om}) = vam+1 ({o0}) and va1 ({o0}) = va1 ({om}).
It follows that

va1

(
{om}

) +
m∑
i=2

vai
(
{oi−1}

)
>

m∑
i=1

vai
(
{oi}

)
⇔ va1

(
{om}

) +
m∑
i=2

vai
(
{oi−1}

) +
∑

a′∈A\{a1, ���,am}

va′
({
ô∗
a′

})
>

∑
a′∈A

va′
({
ô∗
a′

})
,

which contradicts the assumption that X̂∗ is an efficient allocation in the original mar-
ket.

We conclude that, in the market in which a copy of o′ has been added and o has
been removed, there exists an efficient allocation under which a is allocated o′. Then,
by Lemma A.1, W ∗(·,+o′ )

·,−o =W ∗−a,−o + va({o′}), as required.

Proof of Proposition 1. For every object o ∈ O and every k = 1, � � � , |A|, let ako ∈ A
be the agent with the kth highest valuation for o; that is, va1

o
({o}) ≥ va2

o
({o}) ≥ · · · ≥

v
a

|A|
o

({o}). Construct an efficient allocation X∗ by assigning each object to the agent

who values it the most. Since valuations are additively separable, the welfare created by
X∗ is W ∗ = W (X∗ ) = ∑

o∈O va1
o
({o}).

Consider now the allocation problem where some agent a ∈ A and his endowment
Ea have been removed. By an analogous reasoning, welfare is maximized by allocating
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each object to the agent who values it the most. Therefore, each object o ∈ O\(X∗
a ∪Ea ) is

allocated to a1
o and each object o ∈X∗

a \ Ea is assigned to a2
o (since a1

o = a is unavailable).
We conclude that

W ∗
−a,−Ea =

∑
o∈O\(X∗

a∪Ea )

va1
o

(
{o}

) +
∑

o∈X∗
a\Ea

va2
o

(
{o}

)
. (6)

By Lemma A.1, the efficient level of welfare when a and his allocation X∗
a are removed is

W ∗
−a,−X∗

a
=

∑
o∈O\X∗

a

va1
o

(
{o}

) =
∑

o∈O\(X∗
a∪Ea )

va1
o

(
{o}

) +
∑

o∈Ea\X∗
a

va1
o

(
{o}

)
. (7)

Using (6) and (7), we find that the VCG transfer of any agent a ∈ A is

tVCG
a

(
X∗) = W ∗

−a,−X∗
a
−W ∗

−a,−Ea =
∑

o∈Ea\X∗
a

va1
o

(
{o}

) −
∑

o∈X∗
a\Ea

va2
o

(
{o}

)
. (8)

We next show that the set of Walrasian price vectors is

PW = {
(po )o∈O ∈R

|O| : po ∈ [
va2

o

(
{o}

)
, va1

o

(
{o}

)]
for all o ∈ O

}
. (9)

Consider a price vector (po )o∈O . Suppose first that, for some ô ∈ O, pô < va2
ô

. Then

it is optimal for a2
ô

to pick ô when he faces (po )o∈O ; therefore, (po )o∈O does not support
X∗ and is not a Walrasian price vector. Suppose next that, for some ô ∈ O, pô > va1

ô
({ô}).

Then it not optimal for a1
ô

to pick ô when he faces (po )o∈O ; again, (po )o∈O does not
support X∗ and is not a Walrasian price vector. Finally, suppose that, for all ô ∈ O, pô ∈
[va2

ô
({ô}), va1

ô
({ô})]. Then, for all ô ∈ O, when agents face (po )o∈O , it is optimal for a1

ô
to

pick ô and optimal for all other agents not to pick ô. We have therefore established (9).
By definition, the largest net Walrasian price of agent a ∈ A is

qa = max
(po )o∈O∈PW

[ ∑
o∈Ea\X∗

a

po −
∑

o∈X∗
a\Ea

po

]
,

which combined with (9) yields

qa =
∑

o∈Ea\X∗
a

va1
o

(
{o}

) −
∑

o∈X∗
a\Ea

va2
o

(
{o}

)
.

By (8), we obtain that tVCG
a (X∗ ) = qa(X∗ ). As this holds for all a ∈ A, we conclude that

tVCG
a (X∗ ) = qa(X∗ ). Then, by definition, we have that

DVCG =
∑
a∈A

tVCG
a

(
X∗) =

∑
a∈A

qa
(
X∗) =Q.

Finally, Theorem 2 yields Q ≥ 0.

Proof of Proposition 2. Theorem 2 yields DVCG ≥ Q; hence, we need to show that
Q = ∑

o∈T (X∗ )(po −p
o

)
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As X∗ is a two-sided efficient allocation (i.e., X∗ ∈ X̃ ∗), B̃(X∗ ) ∪ S̃(X∗ ) = Ã(X∗ ), so

Q =
∑

a∈A\Ã(X∗ )

qa
(
X∗) +

∑
b∈B̃(X∗ )

qb
(
X∗) +

∑
s∈S̃(X∗ )

qs
(
X∗).

By Lemma A.2, the price of a vacuously traded object is zero in every Walrasian price
vector; therefore, qa = 0 for all a ∈ A \ Ã(X∗ ) and we have that

Q =
∑

b∈B̃(X∗ )

qb
(
X∗) +

∑
s∈S̃(X∗ )

qs
(
X∗).

Using Claims 4 and 5 and rearranging, we obtain that

Q =
∑

b∈B̃(X∗ )

[
−

∑
o∈X∗

b\Eb
p
o

]
+

∑
s∈S̃(X∗ )

[ ∑
o∈Es\X∗

s

po

]

=
∑

o∈⋃
s∈S̃(X∗ )(Es\X∗

s )

po −
∑

o∈⋃
b∈B̃(X∗ )(X∗

b\Eb )

p
o

.

By Lemma A.2, for any object o ∈ T (X∗ ) \ T̃ (X∗ ), p
o

= po = 0. It follows that

Q =
∑

o∈T̃ (X∗ )∩(
⋃

s∈S̃(X∗ )(Es\X∗
s ))

po −
∑

o∈T̃ (X∗ )∩(
⋃

b∈B̃(X∗ )(X∗
b\Eb ))

p
o

. (10)

The set T̃ (X∗ ) ∩ (
⋃

s∈S̃(X∗ )(Es \X∗
s )) contains all the objects that are nonvacuously sold

by an ex post seller and the set T̃ (X∗ ) ∩ (
⋃

b∈B̃(X∗ )(X
∗
b \ Eb )) contains all the objects

that are nonvacuously bought by an ex post buyer. By construction, every object that
is nonvacuously traded is sold by exactly one seller and bought by exactly one buyer;
hence, we have that

T̃
(
X∗) ∩

( ⋃
s∈S̃(X∗ )

(
Es \X∗

s

)) = T̃
(
X∗) ∩

( ⋃
b∈B̃(X∗ )

(
X∗

b \ Eb
)) = T̃

(
X∗). (11)

Combining (10) and (11) and rearranging yields

Q =
∑

o∈T̃ (X∗ )

po −
∑

o∈T̃ (X∗ )

p
o

=
∑

o∈T̃ (X∗ )

(po −p
o

). (12)

Invoking Lemma A.2 again, we have po = p
o

= 0 for every vacuously-traded object o ∈
T (X∗ ) \ T̃ (X∗ ). By (12), we conclude that Q = ∑

o∈T (X∗ )(po −p
o

), as required.

Proof of Proposition 3. We show that qs(X
∗ ) = po and qb = −p

o
, which implies the

desired result by Theorem 1 and Proposition 2. The largest net Walrasian price of agent
s is

qs = max
(pô )ô∈O∈PW

[ ∑
ô∈Es\X∗

s

pô −
∑

ô∈X ∗
s \Es

pô

]
.
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As s is a single-object trader, s cannot sell any object other than o so Es \ X∗
s = {o}. As

X∗ is two-sided, s is an ex post seller so any object that he buys is traded vacuously
and, by Lemma A.2, has a price of zero in any Walrasian price vector. It follows that
qs = max(pô )ô∈O∈PW po. As all agents are single-object traders, the set of Walrasian prices
contains a largest element; therefore, qs = po.

The largest net Walrasian price of agent b is

qb = max
(pô )ô∈O∈PW

[ ∑
ô∈Eb\X∗

b

pô −
∑

ô∈X ∗
b \Eb

pô

]
.

As b is a single-object trader, b buys at most one object, object o, nonvacuously. As X∗ is
two-sided, b is an ex post buyer and any object he sells is traded vacuously. It follows that
o is the only object that b trades nonvacuously. By Lemma A.2, qb = max(pô )ô∈O∈PW −po.

As all agents are single-object traders, the set of Walrasian prices contains a smallest
element; therefore, qb = −p

o
.

We next introduce a result that is useful to prove Propositions 4 and 5.

Lemma A.4. Consider a homogeneous good market and suppose that there exists an ef-
ficient allocation X∗ ∈ X ∗ such that X∗

a �= O, for all a ∈ A. Then every Walrasian price
vector is uniform.

Proof. Toward a contradiction, suppose there exists a Walrasian price vector p =
(po )o∈O that is not uniform. As not all objects are allocated to the same agent under
X∗, there exist two agents â and a′ and two objects ô and o′ such that ô ∈ X∗

â
, o′ ∈ X∗

a′ ,
and pô < po′ . Then, as agents do not care about the identity of the objects they are
assigned, we have that

va′
((
X∗

a′ \ {
o′}) ∪ {ô}

) −
∑

o∈(X∗
a′ \{o′})∪{ô}

po > va′
(
X∗

a′
) −

∑
o∈X∗

a′

po

so p does not support the efficient allocation X∗, which by Claim 2 contradicts the as-
sumption that p is a Walrasian price vector.

Proof of Proposition 4. By assumption, p, p ∈ PW so PW is nonempty. Then the
largest net Walrasian price of each agent a ∈ A is well-defined and equal to

qa
(
X∗) = max

(po )o∈O∈PW

[ ∑
o∈Ea\X∗

a

po −
∑

o∈X∗
a\Ea

po

]
.

Suppose first that there exists an efficient allocation under which not all objects are
allocated to the same agent; that is, there exists X∗ ∈ X ∗ such that X∗

a �= O, for all a ∈ A.
By Lemma A.4, all Walrasian price vectors are uniform so the largest net Walrasian price
of each agent a simplifies to

qa
(
X∗) = max

p∈[p,p]

[∣∣(Ea \X∗
a

)∣∣p− ∣∣(X∗
a \ Ea

)∣∣p]
,
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which is equivalent to

qa
(
X∗) = max

p∈[p,p]

(|Ea| − ∣∣X∗
a

∣∣)p. (13)

If a is a net buyer, |Ea| − |X∗
a| < 0, then the maximization problem in (13) is solved by

setting p as low as possible, that is, p = p. Then qa(X∗ ) = (|Ea| − |X∗
a|)p = −(|X∗

a| −
|Ea|)p. If a is a net seller, |Ea| − |X∗

a| > 0, then the maximization problem in (13) is solved
by setting p = p and qa(X∗ ) = (|Ea| − |X∗

a|)p. If a is a neutral agent, |Ea| − |X∗
a| = 0 and

the maximization problem in (13) is solved by any p ∈ [p, p] and yields qa(X∗ ) = 0.
Suppose now that, under every efficient allocation, all objects are allocated to the

same agent. Let X∗ ∈ X ∗ be any efficient allocation, then there exists an agent b such
that X∗

b = O and X∗
s = ∅ for every agent s �= b. As X∗

b = O, agent b does not sell any
object so his largest net Walrasian price is

qb
(
X∗) = max

(po )o∈O∈PW
−

∑
o∈X∗

b\Eb
po.

By assumption, p is the smallest Walrasian price vector, and as we argued in the main
text, it is uniform.29 Therefore, the largest net Walrasian price of agent b is qb(X∗ ) =
−(|X∗

b | − |Eb|)p. For every agent s �= b, X∗
s = ∅ so s does not buy any object and his

largest net Walrasian price is

qs
(
X∗) = max

(po )o∈O∈PW

∑
o∈Es\X∗

s

po.

By assumption, p is the largest Walrasian price vector and, as we argued in the main
text, it is uniform. Hence, the largest net Walrasian price of agent s is qs(X

∗ ) = (|Es| −
|X∗

s |)p.

Proof of Proposition 5. Suppose first that all agents have decreasing marginal val-
ues. By Proposition B.1 in Appendix B.2, the valuation of every agent satisfies the
gross substitutes condition; hence, by Corollary 1 of Gul and Stacchetti (1999), PW is
a nonempty complete lattice, which implies that p, p ∈ PW .

Suppose now that PW �= ∅ and there exists X∗ ∈ X ∗ such that X∗
a �= O for all a ∈ A. By

Lemma A.4, every Walrasian price vector is uniform, which implies that p, p ∈ PW .

Appendix B: Background material

B.1 Details of examples

In this Appendix, we detail the computations of the largest net Walrasian prices and VCG
transfers in our examples.

29Formally, if there exist two objects o and o′ such that p
o
< p

o′ , then the vector (p̂ô )ô∈O such that
p̂o = p

o′ , p̂o′ = p
o

, and p̂ô = p
ô

for all ô ∈ O \ {o, o′} is a Walrasian price vector, which contradicts the
assumption that p is the smallest Walrasian price vector.
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Example 1 A price vector (po1 , po2 ) is a Walrasian price vector if it supports the effi-
cient allocation (i.e., it is optimal for a1 to choose o2 and for a2 to choose o1), which
requires satisfying the following six conditions:

va1

(
{o2}

) −po2 ≥ 0
(
a1 weakly prefers {o2} to ∅)

va1

(
{o2}

) −po2 ≥ va1

(
{o1}

) −po1

(
a1 weakly prefers {o2} to {o1}

)
va1

(
{o2}

) −po2 ≥ va1

(
{o1, o2}

) −po1 −po2

(
a1 weakly prefers {o2} to {o1, o2}

)
va2

(
{o1}

) −po1 ≥ 0
(
a2 weakly prefers {o1} to ∅)

va2

(
{o1}

) −po1 ≥ va2

(
{o2}

) −po2

(
a2 weakly prefers {o1} to {o2}

)
va2

(
{o1}

) −po1 ≥ va2

(
{o1, o2}

) −po1 −po2

(
a2 weakly prefers {o1} to {o1, o2}

)
.

As agents are single-objects traders, va1 ({o1, o2}) = max{va1 ({o1}), va1 ({o2})} so the
third condition is equivalent to po1 ≥ max{0, va1 ({o1}) − va1 ({o2})}; hence, the third and
fourth conditions are jointly equivalent to po1 ∈ [max{0, va1 ({o1})−va1 ({o2})}, va2 ({o1})].
Analogously, the first and last conditions are jointly equivalent to po2 ∈ [max{0,
va2 ({o2}) − va2 ({o1})}, va1 ({o2})]. Finally, it is easy to see that the second and fifth con-
ditions are jointly equivalent to po1 − po2 ∈ [va1 ({o1}) − va1 ({o2}), va2 ({o1}) − va2 ({o2})].
Therefore, a price vector (po1 , po2 ) is a Walrasian price vector if it satisfies the following
three conditions:

po1 ∈ [
max

{
0, va1

(
{o1}

) − va1

(
{o2}

)}
, va2

(
{o1}

)]
po2 ∈ [

max
{

0, va2

(
{o2}

) − va2

(
{o1}

)}
, va1

(
{o2}

)]
po1 −po2 ∈ [

va1

(
{o1}

) − va1

(
{o2}

)
, va2

(
{o1}

) − va2

(
{o2}

)]
.

The price vector (po1 , po2 ) = (max{0, va2 ({o1})−va2 ({o2})}, max{0, va2 ({o2})−va2 ({o1})})
satisfies the first condition since va1 ({o1}) − va1 ({o2}) ≤ va2 ({o1}) − va2 ({o2}) ≤ va2 ({o1})
(as the efficient allocation assigns o1 to a2 and o2 to a1, and va2 ({o2}) ≥ 0), the second
condition since po2 is equal to its lower bound, and the third condition since the differ-
ence po1 −po2 is equal to its upper bound va2 ({o1}) −va2 ({o2}). Therefore, (po1 , po2 ) is a
Walrasian price vector, which means that there exists a Walrasian price vector for which
the difference between the prices of o1 and o2 is va2 ({o1}) − va2 ({o2}). As any price vec-
tor with a larger difference violates the third condition, we conclude that the largest net
Walrasian price of a1 is30

qa1
= max

(po1 ,po2 )∈PW
[po1 −po2 ] = va2

(
{o1}

) − va2

(
{o2}

)
.

Analogous reasoning establishes that the largest net Walrasian price of a2 is

qa2
= max

(po1 ,po2 )∈PW
[po2 −po1 ] = va1

(
{o2}

) − va1

(
{o1}

)
.

30We omit the dependency of largest net Walrasian prices and VCG transfers on an allocation since there
is a unique efficient allocation.
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The VCG transfer of a1 is his externality on a2. When a1 is present, a2 is allocated o1

while when a1 is removed (with his endowment), a2 is allocated o2; therefore, a1’s VCG
transfer is

tVCG
a1

=W ∗−a1,−o2
−W ∗−a1,−o1

= va2

(
{o1}

) − va2

(
{o2}

) = qa1
.

Analogously, the VCG transfer of a2 is his externality on a1, which is

tVCG
a2

=W ∗−a2,−o1
−W ∗−a2,−o2

= va1

(
{o2}

) − va1

(
{o1}

) = qa2
.

Our illustrative example from Section 2 is the special case of Example 1 in which
va1 ({o1}) = 5, va1 ({o2}) = 7, va2 ({o1}) = 3, and va2 ({o2}) = 2. The largest net Walrasian
price and VCG transfer of a1 (Leon) are 3 − 2 = 1 while the largest net Walrasian price
and VCG transfer of a2 (William) are 7 − 5 = 2.

Example 2 A price vector (po1 , po2 ) is a Walrasian price vector if it supports the effi-
cient allocation X∗, which requires satisfying the following six conditions:

12 −po1 −po2 ≥ 0
(
a1 weakly prefers {o1, o2} to ∅)

12 −po1 −po2 ≥ 5 −po1

(
a1 weakly prefers {o1, o2} to {o1}

)
12 −po1 −po2 ≥ 7 −po2

(
a1 weakly prefers {o1, o2} to {o2}

)
0 ≥ 3 −po1

(
a2 weakly prefers ∅ to {o1}

)
0 ≥ 2 −po2

(
a2 weakly prefers ∅ to {o2}

)
0 ≥ 4 −po1 −po2

(
a2 weakly prefers ∅ to {o1, o2}

)
.

The third and fourth conditions imply that po1 ∈ [3, 5]. The second and fifth condi-
tions imply that po2 ∈ [2, 7]. The first and last conditions imply that po1 + po2 ∈ [4, 12];
however, the lower bounds po1 ≥ 3 and po2 ≥ 2 imply that po1 + po2 ≥ 4 and the up-
per bounds po1 ≤ 5 and po2 ≤ 7 imply that po1 + po2 ≤ 12. Therefore, a price vector
(po1 , po2 ) is a Walrasian price vector if po1 ∈ [3, 5] and po2 ∈ [2, 7]. As a1 buys both ob-
jects, his largest net Walrasian price is

qa1
= max

(po1 ,po2 )∈PW
[−po1 −po2 ] = −3 − 2 = −5.

As a2 sells both objects, his largest net Walrasian price is

qa2
= max

(po1 ,po2 )∈PW
[po1 +po2 ] = 5 + 7 = 12.

The VCG transfer of a1 is his externality on a2. When a1 is present, a2 is not allocated
any object while when a1 is removed, a2 is allocated both objects; therefore, a1’s VCG
transfer is

tVCG
a1

=W ∗
−a1,−{o1,o2} −W ∗−a1, · = 0 − 4 = −4 > −5 = qa1

.
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Analogously, a1 is allocated both objects when a2 is present and none when a2 is absent;
hence, a2’s VCG transfer is

tVCG
a2

=W ∗−a2, · −W ∗
−a2,−{o1,o2} = 12 − 0 = 12 = qa2

.

Example 3 A price vector (po1 , po2 ) is a Walrasian price vector if it satisfies the follow-
ing six conditions:

9 −po2 ≥ 0
(
a1 weakly prefers {o2} to ∅)

9 −po2 ≥ 3 −po1

(
a1 weakly prefers {o2} to {o1}

)
9 −po2 ≥ 12 −po1 −po2

(
a1 weakly prefers {o2} to {o1, o2}

)
4 −po1 ≥ 0

(
a2 weakly prefers {o1} to ∅)

4 −po1 ≥ 4 −po2

(
a2 weakly prefers {o1} to {o2}

)
4 −po1 ≥ 9 −po1 −po2

(
a2 weakly prefers {o1} to {o1, o2}

)
.

The third and fourth conditions imply that po1 ∈ [3, 4]. The first and last conditions
imply that po2 ∈ [5, 9]. The second and fifth conditions imply that po2 − po1 ∈ [0, 6],
which is always satisfied when po1 ∈ [3, 4] and po2 ∈ [5, 9].

Therefore, a price vector (po1 , po2 ) is a Walrasian price vector if po1 ∈ [3, 4] and po2 ∈
[5, 9]. As a1 sells o1 and buys o2, his largest net Walrasian price is

qa1
= max

(po1 ,po2 )∈PW
[po1 −po2 ] = 4 − 5 = −1.

As a2 sells o2 and buys o1, his largest net Walrasian price is

qa2
= max

(po1 ,po2 )∈PW
[po2 −po1 ] = 9 − 3 = 6.

The VCG transfer of a1 is his externality on a2. When a1 is present, a2 is allocated o2

while when a1 is removed, a2 is allocated o1; therefore, a1’s VCG transfer is

tVCG
a1

=W ∗−a1,−o2
−W ∗−a1,−o1

= 4 − 4 = 0 > −1 = qa1
.

Analogously, a1 is allocated o2 when a2 is present and o1 when a2 is absent; hence, a2’s
VCG transfer is

tVCG
a2

=W ∗−a2,−o1
−W ∗−a2,−o2

= 9 − 3 = 6 = qa2
.

Example 4 A price vector (po1 , po2 ) is a Walrasian price vector if it satisfies the follow-
ing six conditions:31

3 −po2 ≥ 0
(
a1 weakly prefers {o2} to ∅)

31We consider here the efficient allocation in which a1 is allocated o2 and a2 is allocated o1. The calcula-
tions are analogous for the other efficient allocation in which a1 is allocated o1 and a2 is allocated o2, and
as predicted by Claim 2, yield the same set of Walrasian price vectors.
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3 −po2 ≥ 3 −po1

(
a1 weakly prefers {o2} to {o1}

)
3 −po2 ≥ 4 −po1 −po2

(
a1 weakly prefers {o2} to {o1, o2}

)
4 −po1 ≥ 0

(
a2 weakly prefers {o1} to ∅)

4 −po1 ≥ 4 −po2

(
a2 weakly prefers {o1} to {o2}

)
4 −po1 ≥ 6 + ε−po1 −po2

(
a2 weakly prefers {o1} to {o1, o2}

)
.

The second and fifth conditions imply that po1 = po2 , the third and fourth conditions
imply that po1 ∈ [1, 4], and the first and last conditions imply that po2 ∈ [2 +ε, 3]. There-
fore, the set of Walrasian price vectors contains all price vectors such that po1 = po2 ∈
[2 + ε, 3]. As a2 buys an object from a1, the largest net Walrasian prices are

qa1
= max

(po1 ,po2 )∈PW
po1 = 3 and qa2

= max
(po1 ,po2 )∈PW

−po1 = −2 − ε.

The VCG transfer of a1 is his externality on a2. When a1 is present, a2 is allocated
one object while when a1 is removed, a2 is not allocated anything; therefore, a1’s VCG
transfer is

tVCG
a1

=W ∗−a1,−o2
−W ∗

−a1,−{o1,o2} = 4 − 0 = 4 > 3 = qa1
.

When a2 is present, a1 is allocated one object while when a2 is removed, a1 is allocated
both objects; therefore, a2’s VCG transfer is

tVCG
a2

=W ∗−a2,−o1
−W ∗−a2, · = 3 − 4 = −1 >−2 − ε = qa2

.

The largest net Walrasian prices of both agents are strictly smaller than their VCG
transfers, and as a result, the sum of the largest net Walrasian prices (3 − 2 − ε = 1 − ε)
is strictly smaller than the VCG deficit (4 − 1 = 3).

B.2 Gross substitutes valuations

For any agent a and any price vector p = (po )o∈O , let

Da(p) =
{
Y ⊆O : va(Y ) −

∑
o∈Y

po ≥ va(Z ) −
∑
o∈Z

po for all Z ⊆ O
}

be the set of bundles that are optimal for a to pick when he faces the price vector p.

Definition B.1 (Kelso and Crawford, 1982). The valuation va of agent a ∈ A satisfies the
gross substitutes condition if for any two price vectors p = (po )o∈O and p′ = (p′

o )o∈O
with p′ ≥ p, and any bundle Y ∈ Da(p), there exists a bundle Z ∈ Da(p′ ) such that {o ∈
Y : po = p′

o} ⊆ Z.

Definition B.2. In a homogeneous good market, agent a ∈ A has decreasing marginal
values if, for any bundles Y1, Y2, Y3 ⊆ O with |Y1| + 2 = |Y2| + 1 = |Y3|, we have that

va(Y2 ) − va(Y1 ) ≥ va(Y3 ) − va(Y2 ).
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Proposition B.1. In a homogeneous good market, an agent has decreasing marginal
values if and only if his valuation satisfies the gross substitutes condition.

Proof. (Only if ): Delacrétaz et al. (2019) show that in a homogeneous good market
all valuations with decreasing marginal values are assignment valuations. Hatfield and
Milgrom (2005) show that all assignment valuations satisfy the gross substitutes condi-
tion.

(If ): In a homogeneous good market, agent a ∈ A having decreasing marginal
values is equivalent to a having decreasing marginal returns: for any two bundles
Y , Z ⊆ O with Y ⊆ Z and any object o ∈ Y , va(Y ) − va(Y \ {o}) ≥ va(Z ) − va(Z \ {o}).
When valuations are monotone, Gul and Stacchetti (1999, Lemmas 1 and 6) show
that the gross substitutes condition implies the decreasing marginal returns condi-
tion.
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