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Simple bets to elicit private signals
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This paper introduces two simple betting mechanisms—top-flop and threshold
betting—to elicit unverifiable information from crowds. Agents are offered bets
on the rating of an item about which they received a private signal versus that
of a random item. We characterize conditions for the chosen bet to reveal the
agents’ private signal even if the underlying ratings are biased. We further provide
microeconomic foundations of the ratings, which are endogenously determined
by the actions of other agents in a game setting. Our mechanisms relax standard
assumptions of the literature, such as common prior, and homogeneous and risk
neutral agents.
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1. Introduction

Suppose the manager of a customer-care call center wants to assess her employees
through some customer satisfaction measures. At the end of each call, she invites cus-
tomers to take a one question survey about whether they are satisfied with the services.
She can reward participation with a small prize (voucher or fidelity points), but this is
not enough. She would also like to have the customers think carefully about the question
and provide truthful answers. If she were able to verify the answer, incentivizing truth-
telling would be easy. However, only the customers themselves know whether they are
actually satisfied or not, making it difficult to align rewards with truth-telling. We pro-
pose the following solution. The manager can reformulate the survey question and ask
customers to bet whether the employee they talked to has a higher or lower satisfaction
rate than another randomly selected employee from the call center. Customers who win
the bet receive the prize.

We call the aforementioned method top-flop betting and show that it provides in-
centives for agents to truthfully reveal private information. We consider two cases. In
the first case, the bets are defined on a preexisting satisfaction rating, which may be
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biased as long as it is informative enough (as specified later). In the second case, the rat-
ing is a function of the bets chosen by other customers. Another method introduced in
this paper, which we call threshold betting, induces truth-telling by making customers
bet on which employee (the one they talked to or a random one) is more likely to get a
satisfaction rate exceeding a given threshold.

It is easy to implement top-flop and threshold betting in many settings in which
people receive private binary signals, in the form of tastes or experiences. An applica-
tion, which we use as a leading example, is to elicit whether people liked or disliked a
movie after previewing it. Previewers are offered bets on some future performance mea-
sures of the movie, like the Rotten Tomatoes rating or the number of tickets sold, versus
those of another movie of the same type. To put it simply, our mechanisms ask peo-
ple to bet on the relative performance of the previewed movie. Doing so alleviates the
concern of Keynesian beauty contest type herding, when agents act on what they think
others will think, rather than on their own signals. With a betting mechanism on abso-
lute performance, as in a prediction market, agents’ decisions are jointly determined by
their private signals and their prior expectations about movie performance. Betting on
relative performance, as in our mechanisms, disentangles the private signal from prior
expectations, as we will show.

This paper introduces simple betting mechanisms (top-flop betting and threshold
betting) and determines sufficient conditions for the chosen bets to reveal private sig-
nals. The first part of the paper considers a setting where a single agent receives a sig-
nal about one item and bets on its rating relative to that of another item belonging to
a collection of similar items. In this setting, we assume that the ratings are exogenous
random variables. There are two key conditions for the agent to reveal his signal through
his betting behavior. First, the rating of an item must be more informative about the sig-
nals related to that item than the ratings of other items are. For instance, learning that
the previewed movie grossed more than $500M on its first weekend is more informative
about the probability to like that specific movie than is learning that another movie ex-
ceeded the same milestone. Second, the agent has the same prior for all items of the
collection. That is, the agent has no reason to prefer one movie over the other ex ante.
Our results do not require the agent to be risk-neutral (or even a risk-averse expected-
utility maximizer) but simply to choose the bet giving a higher chance to win. Hence,
our results are valid for any decision model satisfying first-order stochastic dominance.

In the second part of the paper, we consider a game setting with at least four agents
and provide a theoretical foundation for the rating. For a given agent, the rating for
an item in the collection is determined by betting choices of other agents. Similarly to
the single-agent case, each agent in a betting game receives a signal about one item in
the collection. We again establish sufficient conditions for agents to reveal their signals.
Specifically, we do not require that they fully agree on how signals are generated and
how signals of any two agents are related. Agents may think they all have a different prior
probability to like a given movie. They may even disagree about what these probabilities
are. They do agree that the signals of two agents are more positively correlated when the
signals are for the same item than for different items. However, they may disagree on the
exact degree of correlation. The results we obtain are partial implementation results. We
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establish that agents revealing their signal is a Nash equilibrium, but other equilibria are
not excluded.

Several methods have been proposed to reveal unverifiable signals in survey set-
tings (Prelec 2004, Witkowski and Parkes 2012b, Radanovic and Faltings 2013, Baillon
2017, Cvitanić et al. 2019). They provide truth-telling incentives by asking each agent
two questions regarding a single item. One of the questions is directly about the sig-
nal and the other is about predicting other agents’ answers. These methods are based
on a common-prior assumption, requiring that agents differ only in the signal they re-
ceived. With these methods, truthful signal reporting is a Bayesian Nash equilibrium
when agents are risk-neutral. By using more than one item, we can relax the common-
prior assumption and replace it with an assumption about how the items are related.
In other words, in our model, priors may differ across agents, but have to agree across
items.

Witkowski and Parkes (2012a) also introduced a method that relaxed the common-
prior assumption, but it required eliciting priors before agents receive their signals. We
do not require such additional elicitation. In that sense, our mechanism is minimal, as
defined by Witkowski and Parkes (2013). The latter paper proposed a minimal mech-
anism that approximates beliefs with the empirical distribution of signals and delays
payment until the distribution is accurate enough. We do not need such delays. Our
approach also allows us to use a payment rule that is simpler than the aforementioned
mechanisms and is robust to risk aversion, certainty effects, and other behavioral phe-
nomena. Finally, the game-theoretic version of our mechanisms is based on assump-
tions that are close to those of Dasgupta and Ghosh (2013) and Shnayder et al. (2016).
These authors also use cross-item correlations to incentivize truthful signal reporting
(including nonbinary signals for Shnayder et al. 2016), but they require that all agents
get signals for at least two items. The literature is further discussed in Section 4.

We conclude our paper with examples of practical implementations and potential
applications of our methods. We show how threshold betting can be implemented as a
financial derivative (an option) of prediction markets. We also explain how our simple
bets can be used to assess whether people are willing to pay a given amount for product
features that are yet to be developed.

2. Betting on exogenous ratings

2.1 Signals, ratings, and beliefs

We first consider a setting of a single agent (“he”). There is a collection of items K ≡
{1� � � � �K} with K ≥ 2. For one1 fixed l ∈ K, the agent receives a private signal, modeled
as a realization t ∈ T = {0�1} of a random variable T . A center (“she”) wishes to elicit t.
For instance, K is a collection of movies, the agent watches movie l, and the center wants
to know whether he liked it (t = 1) or not (t = 0). Each item k ∈ K has a rating that
reflects its quality and takes values from S , a countable subset of the reals. The ratings

1We assume that if the agent receives signals about other items, the corresponding items are removed
from the collection and that the assumptions introduced below hold conditional on the additional signals.
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are unknown to the agent and to the center when the agent receives t. Furthermore,
neither the agent nor the center can influence the ratings. Hence, ratings are modeled
as bounded2 random variables Yk with generic realization yk ∈ S .

We assume that all the random variables (ratings and signals) are defined on the
same probability space (��F�P). By Kolmogoroff (1933), this can always be assumed.
For simplicity, we avoid measure-theoretic complications and assume that � is count-
able, that F is the sigma algebra of all subsets of � (called events), and that P is countably
additive.3 The random variables (and P) need not describe some objective processes,
but rather the agent’s beliefs. His prior probability of getting signal 1 is P(t = 1) and Hk

denotes the distribution function of his prior about the rating.

Assumption 1 (Identical prior). For any k ∈ K\{l}, Yk and Yl are identically distributed,
with Hk =Hl.

Let H (≡ Hl) be the prior, identical for all items, as defined in Assumption 1. As-
sumption 1 means that the agent has the same expectations about the items in the col-
lection before he receives a signal about item l. In practice, it requires that items are
similar. In the movie example, if the rating is a performance measure such as reviews
or gross revenue, the collection should not mix blockbusters with independent movies
because the agent may have very different expectations of the ratings for the two cate-
gories. Dasgupta and Ghosh (2013) and Shnayder et al. (2016) argued for the identical
prior assumption when the agent is ignorant about the collection and items are ran-
domly assigned. They typically considered agents completing multiple tasks that are
crowd-sourced, such as image labeling, peer assessment in online courses, or reporting
features of hotels and restaurants.

A subset of the rating space, useful for what follows, is S ′ = {y ∈ S : 0 <H(y) < 1}. It
excludes all ratings that are so low or so high that the agent believes they will never occur.
It also excludes the maximum rating level the agent believes may occur (the smallest y
such that H(y) = 1).4 We consider the nontrivial case where the agent believes that more
than one rating level may occur, i.e., S ′ not empty.

Assumption 2 (Comparative informativeness). For all k ∈ K \ {l} and y ∈ S , P(t = 1 |
Yl > y) > P(t = 1 | Yk > y).

In the mechanism design literature, private signals are linked to states of nature by
a signal technology. Here, the possible ratings play the role of the states of nature. The
signal technology is (believed by the agent to be) such that the rating of item l is more

2A real-valued random variable Yk = Yk(ω) defined on the probability space (��F�P) is bounded if
there exists a constant M such that | Yk(ω) |≤M for all ω ∈ �.

3For instance, � may be the Cartesian product of the rating space and the signal space, � =
(
∏

k∈K S)× T .
4The subset S ′ does not coincide with the support of the distribution. For instance, if S = {1� � � � �6} and

the support is {2�4�5}, then S ′ = {2�3�4}. It excludes the highest value of the support, 5, but includes 3
because 0 < H(3) < 1 even though P(Yk = 3) = 0. We use S ′ because, as becomes transparent later, our
mechanisms rely on properties of cumulative distribution functions, not probability (or density) functions.
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positively associated with receiving a signal 1 about l than the rating of item k is.5 Let the
collection of items be, for instance, all movies of a franchise, and let the rating be how
much the movies will earn in the first month after their release. If the agent learns that
movie l = 4 has grossed $20,000,000 so far (so Y4 will be at least that amount), he may
update his probability of liking that movie upward. If, instead, he learns that another
movie, e.g., k = 3, has grossed $20,000,000 so far, he may also update his probability to
like movie 4 upward, but less so. He may even decrease his probability to like movie
4 if he thinks that a great movie 3 means a less good movie 4. Our assumption allows
for biases or distrust of the underlying ratings. For instance, the agent may think that
the rating is biased by the fact that some people see all movies of the franchise anyhow,
good or bad. Assumption 2 holds as long as the biases neither eliminate nor reverse the
stronger relation between a high rating of l and a signal 1 than between a high rating of
k and a signal 1.

Once the agent learns his signal t, he updates his beliefs about the ratings, which
yields the posterior distribution function Ft

k(y) = P(Yk ≤ y | T = t). Assumptions 1 and
2 guarantee that the signal influences his expectations about Yl in a very specific way
relative to any other Yk. For any two cumulative distribution functions F and G with
domain S , we write F �SD G (F �SD G) and say that F (strictly) first-order stochastically
dominates G when F(y) ≤G(y) for all y ∈ S (with F(y) <G(y) for some y).

Lemma 1. Assumptions 1 and 2 imply F1
l (y) �SD F1

k(y) and F0
k(y) �SD F0

l (y) for all k 	= l.

The proof of Lemma 1, as well as all other proofs, is provided in the Appendix. Intu-
itively, a signal t = 1 is more associated with high ratings of item l than with high ratings
of item k and, therefore, shifts posterior F1

l more to the right than posterior F1
k. Note

that we could have immediately assumed the implications of Lemma 1, which would be
more general than Assumptions 1 and 2. The advantage of providing sufficient condi-
tions is to clarify what types of items and ratings can be used. If the agent believes the
rating of l is more positively correlated with the signal than the rating of k is and views all
items of the collection as equivalent, ex ante, in terms of ratings, then his beliefs about
the ratings of l and of any k 	= l once he has received his signal will satisfy the stochastic
dominance properties spelled out in Lemma 1. These properties guarantee that signals
can be identified from beliefs. Before we design bets based on this identification strat-
egy, we introduce an additional assumption that we use in some of our results, in which
we need the random variables Yk and Yl not only to be identically distributed, but also
independent.

Assumption 3 (Independence). For any k ∈ K with k 	= l, Yk and Yl are independent,
and are conditionally independent given T .

5Assumption 2 also implies P(t = 1) ∈ (0�1) because a degenerate prior gives the same posterior no mat-
ter what Yl and Yk are.
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We could also replace conditional independence in Assumption 3, using the fact that
Yk and Yl are independent, by

P(t = 1 | Yl�Yk)

P(t = 1 | Yl)
= P(t = 1 | Yk)

P(t = 1)
�

In other words, how information about Yk changes the probability of a positive signal is
invariant to information about Yl.

2.2 The bets

Let π be a prize (money, a gift, or an actual pie) that the agent likes. The absence of a
prize is denoted by 0. Let E be an event, an element of F . A bet on E assigns π to E and
0 to the complement of E . The agent has preferences over bets. If we do not explicitly
mention that preferences are strict, we mean weak preferences.

Assumption 4 (Probabilistic sophistication). For any three events E , E ′, and G ∈ F , the
agent prefers a bet on E to a bet on E ′ when he knows that G occurred if and only if P(E |
G) ≥ P(E ′ | G).

Assumption 4 says that the agent is probabilistically sophisticated in the sense of
Machina and Schmeidler (1992), and that preferences are consistent with P , the (subjec-
tive) probability measure that underlies the random variables. He may be risk-neutral or
be a risk-averse expected utility maximizer, or even transform his probabilities as long as
the transformation is strictly increasing in P so as to satisfy stochastic dominance (Kah-
neman and Tversky 1979, Tversky and Kahneman 1992). Assumption 4 implies that the
agent strictly prefers π (a bet on �) to nothing (a bet on ∅).

Definition 1. For an arbitrary k ∈ K \ {l}, a top bet is a bet on {ω ∈ � : Yl(ω) > Yk(ω)}
and a flop bet is a bet on {ω ∈� : Yl(ω) < Yk(ω)}.

The center proposes a top bet and a flop bet to the agent, who may choose one of
them (or reject both).

Lemma 2. Under Assumptions 1–4, the agent, before learning t, is indifferent between the
top and the flop bet, but strictly prefers any of them to nothing.

Ex ante, the agent has the same belief H about the distribution of Yk and Yl (As-
sumption 1), which are also independent (Assumption 3), and there is no reason to pre-
fer betting on one rating being higher rather than the other (Assumption 4). Further-
more, the agent does not expect the ratings to be equal with certainty and, therefore,
expects that both bets have a nonnull chance to yield the prize. The agent wants to par-
ticipate in the betting. When he learns his signal, he has a clear preference for one of the
bets, as established by the next theorem.

Theorem 1. Under Assumptions 1–4, for any k ∈ K \ {l}, the agent strictly prefers the top
bet if t = 1 and the flop bet if t = 0.
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The following corollary makes explicit that the agent does not need to know k, which
can be selected from the collection of items with a random device. We assume here and
whenever we refer to such exogenous random devices that they are independent of all
the random variables described so far and also conditionally independent given T , and
that all elements of the collection have a positive probability of being drawn.

Corollary 1. Theorem 1 remains valid if k is unknown to the agent and, instead, is
randomly drawn from K \ {l}.

Even though the agent does not know which k will be drawn from item collection
K, the collection should still be clearly specified. If the agent can imagine any item,
Assumptions 1–3 are less likely to hold.

Our results for the top and flop bets rely on (conditional) independence of the rat-
ings. The center can also propose another type of simple bets to the agents that still
reveals signals, but without relying on independence, only on the stochastic dominance
conditions established in Lemma 1. For instance, the agent could be asked to bet on
whether the rating of item l or the rating of item k will exceed some threshold. We call
this approach threshold betting.

Definition 2. A threshold-y bet on k is a bet on {ω ∈� : Yk(ω) > y}.

If the ratings are taken from Rotten Tomatoes, a threshold-60 bet would yield the
prize only if the rating of the movie exceeds 60%. Ex ante, the agent is indifferent be-
tween the items on which the threshold-y bets are based.

Lemma 3. Under Assumptions 1 and 4, for any y ∈ S ′ and k ∈ K \ {l}, the agent, before
learning t, is indifferent between a threshold-y bet on k and a threshold-y bet on l, but
strictly prefers either of them to nothing.

Assumptions 1–4 are about the agent’s beliefs and behavior, not about objective fea-
tures of a signal technology. In that sense, they may be difficult to verify. However,
Lemma 3 provides a way to test Assumptions 1 and 4 jointly. Before previewing a movie,
the agent should be indifferent between the bets.

Theorem 2. Under Assumptions 1, 2, and 4, for any y ∈ S andk ∈ K\{l}, the agent strictly
prefers a threshold-y bet on l to a threshold-y bet on k if t = 1 and prefers a threshold-y
bet on k to a threshold-y bet on l if t = 0.

Corollary 2. Theorem 2 remains valid if k is unknown to the agent and will be ran-
domly drawn from K\{l} and/or if y is unknown to the agent and will be randomly drawn
from S .

A challenge of Theorem 2 is to find a value from the support to use as threshold, be-
cause the support, unlike the domain, is subjective. The center can mitigate the problem
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by avoiding extreme values. Corollary 2 solves the challenge by proposing to randomly
draw a value from S after the agent chooses a bet.

Before receiving a signal, the agent is indifferent between top and flop bets
(Lemma 2), and also between threshold-y bets on l and threshold-y bets on k (Lemma 3).
No matter which signal he receives, his winning probability always increases if he
chooses optimally. With threshold-y bets, the winning probability with optimal choices
is P(t = 1)P(Yl > y | t = 1) + P(t = 0)P(Yk > y | t = 0), which strictly exceeds the no-
signal chance of winning P(Yl > y) (= P(Yk > y)).6 The difference between the two
gives us the ex ante value of the signal (in terms of winning chances). The same reason-
ing applies to top-flop betting.

Now imagine that the agent has to pay a cost (or provide an effort) to acquire the sig-
nal. He will compare this cost to the benefit—the increase in the probability of getting π.

Remark 1. The ex ante value of the signal is positive. Hence, under common regularity
assumptions (continuity in utility), there exists a nondegenerate range of costs that the
agent is willing to pay to acquire the signal.

How much (effort) the agent is willing to spend on the signal depends on his whole
utility function. Calculating it would require further assumptions about the decision
model of the agent (beyond Assumption 4). Obviously, we can expect that increasing
the value of the prize increases the maximum cost the agent is willing to pay. What we
claim is that our simple bets can stimulate signal acquisition. In practice, they can be
used to motivate people to look for a piece of information, preview a movie, or carefully
evaluate a product.7

3. Betting on endogenous ratings

3.1 Agents, their signals, and their beliefs

We now consider multiple agents i ∈ I = {1� � � � �Kn}, i.e., n ≥ 2 agents per item. In the
simplest case, with two items, we need a minimum of four agents. In this section, most
variables and objects from the previous section become agent-specific, which is indi-
cated by subscript i. Each agent i gets a signal Ti ∈ T = {0�1} about item li ∈ K. The set
of agents with a signal about k is Ik ≡ {j ∈ I : lj = k} and it has cardinality n. The state
space is � = T Kn, where a state ω is the vector of signals received by the Kn agents. (We
need not specify ratings here, as becomes apparent later.)

Agent i is offered to bet on ratings based on the others’ actions in the games to be
defined in the next subsection. For item k= li, “the others” means Ii�k ≡ Ik \ {i}. In what

6To prove this, we have P(Yl > y) = P(t = 1)P(Yl > y | t = 1) + P(t = 0)P(Yl > y | t = 0) by definition.
Replacing the P(Yl > y | t = 0) by the strictly larger P(Yk > y | t = 0) (according to Theorem 2) establishes
the result.

7If the incentives are too high, the approach can backfire, and the agent may start looking for pieces of
information other than his private signal, distorting what the center aimed to elicit. In the context of belief
elicitation with scoring rules, this problem is discussed by Schotter and Trevino (2014), and a solution is
proposed by Tsakas (2020).
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follows, it is desirable to consider sets of agents with the same cardinality as this set of
others. We, therefore, define for items k 	= li, Ii�k ≡ Ik \ {j} with j = maxIk (any other j
could be chosen as well). We can now define the analog of the random variables Yk of
the preceding section. For all i and k,

Yi�k =
∑
j∈Ii�k

Tj�

The random variable Yi�k is, for agent i, the number of other agents who received
signal 1 for item k. As in the previous section, agent i’s belief Pi, defined over �, gen-
erates a prior distribution Hi�k about Yi�k. The domain of Hi�k is Si = S = {0� � � � � n − 1}
because Yi�k can take values between 0 and n− 1. The set S ′

i is defined similarly as S ′ in
the preceding section.

Example 1. The simplest case of our setting is n = K = 2, involving four agents. State
ω is a quadruplet of signals (t1� t2� t3� t4). With l1 = l2 = 1, l3 = l4 = 2, I1�2 = {3}, and
ω= (t1� t2� t3� t4), we have Y1�1(ω) = t2 and Y1�2(ω) = t3. ♦

Assumption 5 (Common knowledge). Agents share the common belief that Assump-
tion 4 holds for all agents i ∈ I , with all Pis themselves common knowledge.

Assumption 5 means that agents may all have different Pis, but they know that every-
one satisfies first-order stochastic dominance with respect to their own beliefs. Further-
more, if Assumptions 1, 2, and 3 hold for all Pis, then this fact is automatically common
knowledge because the beliefs Pi are themselves common knowledge. Assumptions 1, 2,
and 5 do not require that all agents in Ik have the same probability of getting a signal 1.
Agent i can think everyone is different and even that some people dislike everything
(trolls). What we need is that each agent i perceives Ti and Yi�k to be more associated
when k = li than when k 	= li. Independence (Assumption 3) can now be justified if, for
instance, signals of any two agents i and j are independent when li 	= lj .

3.2 The games

In what follows, we first define interim preferences, i.e., preferences conditional on sig-
nals: what agents believe and prefer if their signal is 0 versus if their signal is 1. Agents
must then decide, ex ante, what they will do for each possible signal. We obtain a
Bayesian game and, finally, define a (Bayesian) Nash equilibrium of this game.

We first define a generic game with the same action set A = {0�1} for all agents, with
ai the action of agent i. The payoff function of the game for agent i is �i : AKn −→ {0�π}.
Each agent chooses a strategy, which is a pair of actions (a0

i � a
1
i ) ∈ A2, where a0 will be

implemented in state ω if Ti(ω) = 0 and a1 will be implemented if Ti(ω) = 1. A strategy
profile, i.e., the strategy of all agents, is denoted by (a0� a1) ∈ (A2)Kn. The implemented
action for agent i in state ω is a

Ti(ω)
i , which we write aωi for short. We similarly denote

aω ∈ AKn as the profile of implemented actions.
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Example 1 (Continued). A strategy profile is of the form ((a0
1� a

1
1)� (a

0
2� a

1
2)� (a

0
3� a

1
3)�

(a0
4� a

1
4)). If the realized state is ω = (0�1�1�0), then the profile of implemented actions

is aω = (a0
1� a

1
2� a

1
3� a

0
4). The payoff function �i of agent i assigns either 0 or π to any such

quadruplet. ♦

The agents have (interim) preferences over strategy profiles, conditional on their sig-
nal and denoted by �i|Ti . Assumption 5, which includes Assumption 4, implies that it is
common knowledge that (a0� a1)�i|Ti (b0� b1) if and only if

Pi

({
ω ∈� : �i

(
aω

) = π
} | Ti

) ≥ Pi

({
ω ∈� : �i

(
bω

) = π
} | Ti

)
� (1)

In (1), the agent first determines which states ω yield π if the strategy profile is (a0� a1)

and if the strategy profile is (b0� b1). The agent then compares the probability (given
his signal) of the states yielding π when the strategy profile is (a0� a1) to the probability
obtained if the strategy profile is (b0� b1). Agent i finally chooses the strategy profile that
gives a higher chance to get π.

With I , �, A, T , Ti, Pi, and �i|Ti , we define a Bayesian game, further assuming com-
mon knowledge of �, I , T , A, and the �is.8 Let (b0

i � b
1
i ;a0� a1) be the strategy pro-

file, which replaces a0
i and a1

i by b0
i and b1

i in (a0� a1). A strategy profile (a0� a1) is a
Nash equilibrium of the Bayesian game if for all i ∈ I , (a0� a1) �i|Ti (b0

i � b
1
i ;a0� a1) for

all (b0
i � b

1
i ) ∈ A2. We say that the Nash equilibrium is strict if, in addition and for all i,

(a0� a1)�i|Ti=0 (b
0
i � a

1
i ;a0� a1) for all b0

i ∈ A \ {a0} and (a0� a1) �i|Ti=1 (a
0
i � b

1
i ;a0� a1) for all

b1
i ∈ A\ {a1}. Strict means that the implemented action is strictly preferred (even though

the not implemented action is only weakly preferred).
We can now define top-flop and threshold-y games. Each agent i is offered bets on

(individualized) ratings Ŷi�k defined as a function of an action profile a ∈ AKn by

Ŷi�k =
∑
j∈Ii�k

aj�

In Section 2, the ratings were exogenous and agents had beliefs about them. In the
present section, we provide a game-theoretic foundation for the ratings, which are en-
dogenously determined by the actions of others. Agents now have beliefs about signals,
which translate into beliefs about ratings Ŷi�k for a given strategy profile. The payoff
function of the game is defined on the Ŷi�ks. We first assign hi to each agent i, given by
hi = li + 1 if li < K and hK = 1.

Definition 3. In a top-flop game, �i assigns π to {a ∈ AKn : ai = 1 & (Ŷi�li > Ŷi�hi)} (top
case) and to {a ∈ AKn : ai = 0 & (Ŷi�li < Ŷi�hi )} (flop case). It assigns 0 to all other elements
of AKn.

8Harsanyi (1968) defines Bayesian games where the difference in beliefs arises from an objective infor-
mation mechanism, which is common knowledge. Interim beliefs may differ, but prior beliefs are the same.
In our case, prior beliefs may also differ. However, the (possibly different) priors are common knowledge,
which still allows agents to infer others’ interim beliefs and preferences. See Osborne and Rubinstein (1994,
Section 2.6.3) for a discussion, and see their Definition 25.1 of a Bayesian game and Definition 26.1 of a Nash
equilibrium of a Bayesian game, which we followed here.
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Ŷ1�1 Ŷ1�2 a1 = 0 a1 = 1

a2 = 0 a3 = 0 0 0
a2 = 0 a3 = 1 π 0
a2 = 1 a3 = 0 0 π

a2 = 1 a3 = 1 0 0

Table 1. Payoff function of agent 1 in a top-flop game with four agents.

The payoff function is defined such that choosing action 1 is equivalent to choosing
a top bet; it pays π if Ŷi�li > Ŷi�hi . Similarly, choosing action 0 is equivalent to choosing a
flop bet, which pays off if Ŷi�li < Ŷi�hi .

Example 1 (Continued). With l1 = l2 = 1, l3 = l4 = 2, agents 1 and 2 get a signal about
item 1, and agents 3 and 4 get a signal about item 2. Furthermore, Ŷ1�1 = a2 and Ŷ1�2 =
a3, which means agent 1 bets on the actions of agents 2 and 3. Table 1 describes �1.

First note that for agent 1, the action of agent 4 does not affect his payment. Second,
he wins π in two cases: (i) if he and agent 2 report 0 while agent 3 reports 1; (ii) if he and
agent 2 report 1 while agent 3 reports 0. Case (i) is a flop bet, where item 2 gets a higher
rating (Ŷ1�2 = 1) than item 1 (Ŷ1�1 = 0). Symmetrically, case (ii) is a top bet. ♦

Theorem 3. If all agents i ∈ I satisfy Assumptions 1–4 and if Assumption 5 holds, then
(a0� a1) with a0

i = 0 and a1
i = 1 for all i ∈ I is a strict Nash equilibrium of a top-flop game.

In the proof (Appendix B), we first establish that if every j 	= i plays (0�1), then Ŷi�k =
Yi�k for all k. By Theorem 1, the best response of agent i is then to choose a flop bet if
Ti = 0 and a top bet if Ti = 1, hence picking strategy profile (0�1). All this is common
knowledge, so the agents’ beliefs are consistent with the Nash equilibrium.

Corollary 3. Under the assumptions of Theorem 3, all agents strictly prefer the equilib-
rium of a top-flop game in which all agents play (0�1) to all agents playing (0�0) or all
agents playing (1�1).

By construction, degenerate strategy profiles where everyone plays (0�0) or every-
one plays (1�1) yields payoff 0. Hence, the equilibrium (0�1) is preferred because it gives
a chance to get π. We now turn to threshold-y betting that we similarly transform into a
game.

Definition 4. In a threshold-y game, for y ∈ {0� � � � � n−2}, �i assigns π to {a ∈ AKn : ai =
1 & (Ŷi�li > y)} and to {a ∈ AKn : ai = 0 & (Ŷi�hi > y)}. It assigns 0 to all other elements of
AKn.

With the payoff functions of a threshold-y game, agent i gets π when playing 1 if item
li exceeds threshold y and when playing 0 if item hi exceeds threshold y. The threshold
can be any value up to n− 1 because Ŷi�k can never exceed n.
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Ŷ1�1 Ŷ1�2 a1 = 0 a1 = 1

a2 = 0 a3 = 0 0 0
a2 = 0 a3 = 1 π 0
a2 = 1 a3 = 0 0 π

a2 = 1 a3 = 1 π π

Table 2. Payoff function of agent 1 in a threshold-0 game with four agents.

Example 2 (Continued). With four agents, only a threshold-0 game is possible.9 Agent
1 still bets on the actions of agents 2 and 3 but �1 is now as in Table 2.

Agent 1 wins π in two cases: (i) if he and agent 2 play 1 (a1 = a2 = 1); (ii) if he plays 0
while agent 3 plays 1 (a1 = 0 and a3 = 1). Case (i) is a bet on the rating of item 1 (= the
action of agent 2) exceeding 0 and case (ii) is a bet on the rating of item 2 (= the action
of agent 3) exceeding 0. The last row of the table differs from the top-flop game. ♦

Theorem 4. If all agents i ∈ I satisfy Assumptions 1, 2, and 4, and if Assumption 5 holds,
then (a0� a1) with a0

i = 0 and a1
i = 1 for all i is a strict Nash equilibrium of a threshold-y

game when y ∈ S ′
i for all i.

Corollary 4. Under the assumptions of Theorem 4, (a0� a1) with a0
i = 0 and a1

i = 1 for
all i is a strict Nash equilibrium of a threshold-y game when y is randomly drawn from S .

Theorem 4 has two main limitations. First, all agents must think the threshold is
not trivial, i.e., neither too high nor too low. A solution, given by Corollary 4 is to draw
the threshold randomly ex post. Second, unlike in the top-flop game, there exists an
equilibrium that would be preferred by all agents to playing (1�0). If they all play (1�1),
they can all win with certainty. This equilibrium can be excluded by altering �i such
that it is 0 if Ŷi�li = Ŷi�hi = n − 1 (the maximum rating). This modification of the payoff
function is not anodyne and requires us to bring back Assumption 3.10

4. Discussion

4.1 Limitations and related literature

In the exogenous-rating setting, it is important that the agent does not expect the cen-
ter to have control over Yk. A suspicious agent would then enter a game with the center.
Suspicion can be avoided or at least mitigated by using ratings controlled by an indepen-
dent third party or involving a multitude of people. For instance, the rating can be the
price established on a large prediction market at a given time. This would make it clear
that influencing the rating would cost more to the center than paying π to the agent.

Our exogenous-rating setting relates to the literature on canonical contract design
for adverse selection problems as in Mirrlees (1971), Maskin and Riley (1984), and Baron

9Rating Ŷi�k can only be 0 or 1 and, therefore, can only strictly exceed 0.
10The probability of getting π no longer depends on either Ŷi�li if ai = 1 or Ŷi�hi if ai = 0, but on both Ŷi�li

and Ŷi�hi for all ai.
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and Myerson (1982). For instance, in the classical monopoly setting, the principal (the
center in our setting) does not know the agent’s private information, but she can screen
different types of agents by offering them an incentive-compatible menu of contracts,
under which the agent will pick the one revealing his true type. Since the screening is
achieved by leveraging the structure of agents’ preferences, the principal is required to
know the preference for each type and its distribution. Our methods do not require that
because our screening techniques are based mainly on the complementarity between
the rating and the private signal for each agent. This is possible because, in our setting,
agents have no other incentives (to either reveal or hide the signals) than trying to win
the prize.

Our Bayesian game setting relates to a strand of literature in mechanism design, in-
cluding Myerson (1986) and Crémer and McLean (1988). Both mechanisms construct
truth-telling equilibrium by exploiting the correlation of private information across
agents. As in Myerson (1986), truth-telling in our paper is an equilibrium, but need not
be the only one. Hence, undesirable equilibria may also occur, and our Theorems 3 and
4 are partial implementation results. By contrast, Maskin (1999) constructed mecha-
nisms with full implementation, i.e., not only admitting desirable equilibria, but also
excluding undesirable equilibria. Unlike in Crémer and McLean (1988), the person ex-
tracting the information (the center) in our setting does not need to know the prior of
the agents. Our mechanisms are detail-free; they can be implemented without knowing
the details of the signal technology. In that sense, the top-flop and threshold games get
very close to the desiderata of the Wilson doctrine (Wilson 1987).

More recently, Bergemann and Morris spurred a renewed interest in partial and full
implementation problems that do not rely on strong assumptions about agents’ beliefs
(Bergemann and Morris 2005, 2009a, 2009b). This led to the literature on robust imple-
mentation. Our results do not attain robustness in the sense that they do not guarantee
incentive compatibility for all possible beliefs. They allow, however, for a relatively rich
set of beliefs under common knowledge Assumption 5. Our approach in that regard is
closest to that of Ollár and Penta (2017) and Ollár and Penta (2019), who studied partial
and full implementation under sets of beliefs based on common knowledge assump-
tions. Assumption 5 is an instance of the general belief restrictions in Ollár and Penta
(2017).

Bayesian methods to elicit private signals in surveys or on crowd-sourcing platforms
have been proposed by Prelec (2004), Miller et al. (2005), Witkowski and Parkes (2012b),
Radanovic and Faltings (2013), Baillon (2017), and Cvitanić et al. (2019). All these papers
rely on common-prior assumptions, sometimes weakly relaxing them. Our common
knowledge assumption is much weaker, allowing all agents to disagree on the probabil-
ity of observing some signals. Note that for the Nash equilibrium to be credible, the key
point is not so much that agents know the priors of all other agents, but rather that they
know that these priors are well behaved as described by Assumptions 2 and 3.

Witkowski and Parkes (2013) were first to show that using multiple tasks relaxes the
common prior and allows for beliefs to diverge from some “true” signal technology. They
provide a mechanism that is minimal, like ours, and unlike the papers discussed in the
previous paragraph, with the exception of Miller et al. (2005), in that it requires only
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one report (in our case, one bet) from each agent. Their mechanism then uses the em-
pirical signal distribution, to be elicited over time, as a proxy for beliefs and applies a
scoring approach comparable to that of Miller et al. (2005). Our mechanisms do not re-
quire such payment delays, and our payoff rules are simpler and more transparent than
theirs.

Our beliefs assumptions are very close to those of Dasgupta and Ghosh (2013) and
Shnayder et al. (2016). These papers consider a signal correlation matrix and assume
that it describes the beliefs of all agents. However, Shnayder et al. (2016) do point out
that only the structure of the correlations matters and, therefore, heterogeneity in beliefs
would be possible (their footnote 7 and Section 5.4). Unlike the present paper, Dasgupta
and Ghosh (2013) and Shnayder et al. (2016) consider only game settings and require
that each agent receives signals about two items (in their setting, performs two tasks)
whereas our agents receive a signal about only one item.

A major limitation of our paper, which is shared by Dasgupta and Ghosh (2013) but
not by Shnayder et al. (2016), is that we can only handle binary signals. Extending our
results to nonbinary signals is not trivial and would require much heavier assumptions
about beliefs, especially correlations between signals and ratings. With binary signals,
signal 1 being associated with high ratings means that signal 0 is associated with low
ratings. With nonbinary signals, such implications no longer hold. Imagine that signals
are satisfaction levels {1�2�3} and that we have, for each item k, three ratings Y 1

k , Y 2
k , and

Y 3
k (for instance, the number of other agents reporting signals 1, 2, and 3, respectively).

An agent with satisfaction level 3 can reasonably increase the probability that Y 3
k is at

least y, but also the probability that Y 2
k is at least y. A possible approach is to split the

agent sample between three groups. Some agents get the possibility to bet on Y 3
k versus

Y 3
l , which can reveal whether their signal was 3 or not 3. Other agents get the possibility

to bet on Y 2
k versus Y 2

l and the last agents bet on Y 1
k versus Y 1

l .
Top-flop and threshold betting can handle many cases of binary signals, but our

setting and assumptions limit the scope of application. For instance, for political elec-
tions, the identical prior assumption is unlikely to hold for any collection of candidates.
Our setting also requires that the ratings are still unknown when agents bet. This may
pose a problem in cases such as hotel reviews (even if the review is restricted to be bi-
nary), when hotels have publicly available ratings. However, the simple bets of this pa-
per could still be used to incentivize honest reporting by test clients in new hotels before
opening.

Throughout the paper, we implicitly assumed that the center, offering the bets or
organizing the games, is willing to pay up to π for each signal. Often, participation in
surveys or experiments is rewarded. What we propose here is to use this reward as prize
π, to make agents reveal their signal instead of rewarding them only for providing any
answer. Our results from the game setting assume that agents cannot communicate. If
they could, a full coalition can make sure they get π with probability 1 if K is even, and
all agents with even items play 1 and all agents with odd items play 0. A way to deter
such coalitions is to make the game zero sum.



Theoretical Economics 16 (2021) Simple bets to elicit private signals 791

4.2 Practical implementation and examples

Organizing top-flop or threshold betting on exogenous ratings is easier to implement
in practice than the respective game versions. Threshold betting can, for instance, be
combined with prediction markets. When people predict the rating of a movie or the re-
sults of a song contest, they do not report their own taste, but their beliefs about others.
Threshold betting, where the rating is defined as the price in the prediction markets for
items l and k at a given time, reveals people’s own taste (under the assumptions and set-
ting of Section 2). A threshold-y bet on prediction market k is a digital option that pays
π if the price reaches y. In other words, top-flop and threshold bets can be implemented
as derivatives of existing markets.

Let us conclude with two other examples. The director of a company considers
where to invest in research and development. There is a set K of possible product fea-
tures that could be developed. The director would like to know for which feature the
consumers would be willing to pay $100 more. These features do not exist yet and, there-
fore, cannot be sold to consumers. Hence, eliciting the willingness-to-pay cannot be in-
centivized, for instance, with the Becker–deGroot–Marschak mechanism (Becker et al.
1964), because it would require actually selling the features. Instead, the director could
implement a top-flop game among a panel of consumers, organized in K subgroups.
Each subgroup of panelists is informed about a feature and have to bet top or flop, not
knowing what the other possible innovative features are. A final example of possible ap-
plication concerns environmental research. It is not always possible to incentivize the
elicitation of the willingness-to-pay to save (or the willingness-to-accept for not saving)
endangered species. Our simple bets can help there as well by providing subgroups of
respondents with information about one (rare) species and ask them whether more peo-
ple would pay a given amount to save the species they were informed about rather than
another random species.

5. Conclusion

This paper introduced two methods—top-flop and threshold betting—to elicit private
signals. The first part of the paper showed how to transform preexisting ratings, which
may be biased or only partially informative, into a mechanism that incentivizes truth-
ful revelation of signals. An agent betting on the ratings need not fully trust them, but
believe only that they are somewhat associated with the signals. In the second part of
the paper, the ratings naturally arise from the other agents’ betting decisions. In retro-
spect, our bets, and, therefore, our mechanisms, look quite simple, but they have been
overlooked so far in favor of more complex approaches. The payment rules of top-flop
and threshold bets are transparent, with a unique, fixed prize assigned to a well defined
event. We established conditions that ensure that top-flop and threshold betting prop-
erly reveal signals. These conditions are milder in terms of individual preferences than
typically assumed in the literature and, therefore, are more likely to be satisfied in prac-
tical applications.
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Appendix A: Proofs for the single-agent setting

A.1 Proof of Lemma 1

The posterior cumulative distribution for item l is F1
l (y) = 1−P(Yl > y | t = 1). By Bayes

rule, we have

P(Yl > y | t = 1) = P(t = 1 | Yl > y)

P(t = 1)
× P(Yl > y)�

By definition, P(Yl > y) = 1 − Hl(y), and by Assumption 1, 1 − Hl(y) = 1 − Hk(y) =
P(Yk > y). Furthermore, Assumption 2 states that P(t = 1 | Yl > y) > P(t = 1 | Yk > y)

if y ∈ S ′. Hence, we have

P(Yl > y | t = 1) >
P(t = 1 | Yk > y)

P(t = 1)
× P(Yk > y)= P(Yk > y | t = 1) (2)

if y ∈ S ′ and

P(Yl > y | t = 1) = P(Yk > y | t = 1) = P(Yk > y) (3)

otherwise. As a conclusion, F1
l �SD F1

k.
We now consider t = 0. By definition,

P(Yl > y | t = 0) = P(Yl > y)− P(Yl > y | t = 1)P(t = 1)
P(t = 0)

and

P(Yk > y | t = 0) = P(Yk > y)− P(Yk > y | t = 1)P(t = 1)
P(t = 0)

�

By Assumption 1, P(Yl > y) = P(Yk > y), and by (2) and (3), F0
k �SD F0

l .

A.2 Proof of Lemma 2

We have

P
({
ω ∈ � : Yl(ω) < Yk(ω)

}) = P

(⋃
s∈S

{
ω ∈� : Yl(ω) = s

} ∩ {
ω ∈� : Yk(ω) > s

})

=
∑
s∈S

P
({
ω ∈ � : Yl(ω) = s

} ∩ {
ω ∈� : Yk(ω) > s

})

=
∑
s∈S

P
({
ω ∈ � : Yl(ω) = s

}) × P
({
ω ∈� : Yk(ω) > s

})

=
∑
s∈S

P(Yl = s)× (
1 −Hk(s)

)
�

The second equality comes from events {ω ∈ � : Yl(ω) = s} for any two s being dis-
joint. Independence (Assumption 3) implies the third equality. Because Yl and Yk are
identically distributed, P(Yl = s) = P(Yk = s) and Hk(s) = Hl(s) for all s, and, therefore,
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P({ω ∈ � : Yl(ω) < Yk(ω)}) = P({ω ∈ � : Yl(ω) > Yk(ω)}). By Assumption 4, the agent is
indifferent between the top and the flop bet.

By Assumption 4, the agent would prefer a bet on ∅ to the top bet or to the flop
bet if and only if P({ω ∈ � : Yl(ω) > Yk(ω)}) = 0 or P({ω ∈ � : Yl(ω) < Yk(ω)}) = 0. We
have just shown that P({ω ∈ � : Yl(ω) > Yk(ω)}) = P({ω ∈ � : Yl(ω) < Yk(ω)}). Hence,
the agent would prefer a bet on ∅ if and only if P({ω ∈ � : Yl(ω) = Yk(ω)}) = 1. This
implies P({ω ∈ � : Yl(ω) = Yk(ω)} | t = 1) = 1 and, therefore, F1

l (y) = F1
k(y). The latter

contradicts F1
l (y) �SD F1

k(y), and according to Lemma 1, it is, therefore, incompatible
with Assumptions 1 and 2. As a consequence, under Assumptions 1–4, the agent must
strictly prefer any of the bets he is offered to nothing.

A.3 Proof of Theorem 1

Assume t = 1. Then we have

P
({
ω ∈ � : Yl(ω) < Yk(ω)

} | t = 1
)

= P

(⋃
s∈S

{
ω ∈� : Yl(ω) = s

} ∩ {
ω ∈� : Yk(ω) > s

} | t = 1
)

=
∑
s∈S

P
({
ω ∈� : Yl(ω) = s

} ∩ {
ω ∈� : Yk(ω) > s

} | t = 1
)

=
∑
s∈S

P
({
ω ∈� : Yl(ω) = s

} | t = 1
) × P

({
ω ∈� : Yk(ω) > s

} | t = 1
)

=
∑
s∈S

P(Yl = s | t = 1)× (
1 − F1

k(s)
)
� (4)

The second equality comes from events {ω ∈ � : Yl(ω) = s} being disjoint for any two s.
Conditional independence (Assumption 3) implies the third equality:

P
({
ω ∈ � : Yl(ω) > Yk(ω)

} | t = 1
)

=
∑
s∈S

P(Yk = s | t = 1)× (
1 − F1

l (s)
)

>
∑
s∈S

P(Yk = s | t = 1)× (
1 − F1

k(s)
)

≥
∑
s∈S

P(Yl = s | t = 1)× (
1 − F1

k(s)
)

= P
({
ω ∈� : Yl(ω) < Yk(ω)

} | t = 1
)
� (5)

The first equality comes from (4) (reversing l and k) and the next inequality comes from
Lemma 1 because F1

l (s) �SD F1
k(s) means that F1

l (s) ≤ F1
k(s) with strict inequality for

some s. Notice that stochastic dominance also implies that Yl can be obtained from
Yk by moving probability mass from low values of S to high values of S . The weights
(1 −F1

k(s)) are lower for high values of S than for low values and, therefore, replacing Yk
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by Yl decreases the whole sum, which justifies the fourth line of the equation. The final
line is obtained from (4).

Together with Assumption 4, (5) implies that the agent prefers the top bet when his
signal is t = 1. The proof from t = 0 is symmetric.

A.4 Proof of Corollary 1

If k is randomly chosen in K \ {l}, with the random device being independent of all ran-
dom variables and conditionally independent given T , then the winning probability of
the top and flop bets does not change, and the preferences given in Theorem 1 still hold.

A.5 Proof of Lemma 3

Under Assumption 1, Hk(y) = Hl(y) > 0 for all y ∈ S ′. This, together with Assumption 4,
gives the result.

A.6 Proof of Theorem 2

From Lemma 1, we know that F1
l (y) �SD F1

k(y) and F0
k(y) �SD F0

l (y) for all k 	= l. More
precisely, the proof shows F1

l (y) < F1
k(y) for all y ∈ S ′, and by symmetry, F0

l (y) > F0
k(y).

We obtain, for all y ∈ S ′, P(Yl > y | t = 1) > P(Yk > y | t = 1) and P(Yl > y | t = 0) <
P(Yk > y | t = 0). Assumption 4 then implies the preferences described in the theorem.

A.7 Proof of Corollary 2

If k is randomly chosen in K \ {l}, with the random device being independent of all ran-
dom variables and conditionally independent given T , then the winning probability of
bets does not change and the preferences given in Theorem 1 remain.

If y is drawn from S , either y ∈ S ′ and the strict preferences mentioned in Theorem 2
hold or the events are equally likely and the agent would be indifferent. Hence, before
knowing y, the strict preferences mentioned in Theorem 2 hold.

Appendix B: Proofs for the game setting

B.1 Proof of Theorem 3

Consider (b0
i � b

1
i ;a0� a1) with a0

j = 0 and a1
j = 1 for all j 	= i and (b0

i � b
1
i ) ∈ A2. Hence, in

state ω, Ŷi�k = ∑
j∈Ii�k a

Tj(ω)

j = ∑
j∈Ii�k Tj(ω), which implies Ŷi�k = Yi�k(ω) for all k, and

noticeably for li and hi. Assumptions 1–4 hold and, therefore, applying Theorem 1, agent
i strictly prefers a1

i = 1 to b1
i = 0 (when b0

i is fixed) if Ti = 1 and strictly prefers a0
i = 0

to b0
i = 1 (when b1

i is fixed) if Ti = 0. Thus, Pi(Ti = 0 | Ti = 1) = Pi(Ti = 1 | Ti = 0) = 0
implies that the agent is indifferent between a0

i = 1 and b0
i = 0 (when b1

i is fixed) if Ti = 1,
and is indifferent between a1

i = 0 and b1
i = 1 (when b0

i is fixed) if Ti = 0. Hence, under
Assumption 5, it is common knowledge that a best response of i to a0

j = 0 and a1
j = 1 for

all j 	= i is a0
i = 0 and a1

i = 1, and, therefore, (a0� a1) is a Nash equilibrium. It is a strict
Nash equilibrium because we showed that (0�1) is strictly preferred to (1�1) given Ti = 0
and (0�1) is strictly preferred to (1�0) given Ti = 1.
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B.2 Proof of Corollary 3

Note that the strategy profiles with b0
i = b1

i = 0 for all i give payment 0 to everyone. The
same is true for b0

i = b1
i = 1. By contrast, the equilibrium in Theorem 3 is strict, which

would not be possible if the payment was 0.

B.3 Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3, simply using Theorem 2 instead
of Theorem 1.

B.4 Proof of Corollary 4

The proof of Corollary 4 is similar to that of Corollary 2.
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