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Exploiting social influence in networks
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We study binary action network games with strategic complementarities. An
agent acts if the aggregate social influence of her friends exceeds a transfer levied
on the agent by a principal. The principal seeks to maximize her revenue while
inducing everyone to act in a unique equilibrium. We characterize optimal trans-
fers showing that agents who are more popular than their friends receive prefer-
ential treatment. Our main result is that under mild conditions complete core-
periphery networks deliver the highest revenue to the principal. Furthermore, we
show that the revenue is higher in networks where links are allocated unequally
across agents. Hence, the principal benefits from creating “influentials” by linking
well-connected hubs to less popular periphery.

Keywords. Social networks, unique implementation, strategic complementari-
ties, split graphs.
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1. Introduction

The spread of behaviors on social networks is often mediated by external forces exem-
plified by firms or social media platforms. Using various incentive mechanisms, they are
trying to get individuals to purchase products or adopt behaviors at maximal revenue or
minimal cost. When decisions are strategic complements, such mechanisms typically
induce multiple equilibria, and hence are prone to coordination failures. In this pa-
per, we study how external forces can exploit social influence to overcome coordination
failures and which networks are the most accommodating to such efforts.

We use a canonical model of a social network, where nodes represent individuals
(agents), and edges represent links (friendships). An individual decides whether to take
an action such as buying a product or voting for a candidate. Acting creates a positive
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externality on her friends who took the action as well, encouraging them to act. A novel
feature of our model is the degree-dependent network effects: individuals with many
friends are less influenced by any one of them compared to their less popular peers. An
agent acts if the aggregate influence of her friends exceeds a transfer levied on her by a
principal. A set of transfers, or a mechanism, induces a binary action network game.

We study mechanisms that maximize the principal’s revenue while inducing ev-
eryone to act in a unique equilibrium, i.e., optimal mechanisms. The requirement of
uniqueness is a cornerstone of our analysis that captures the concern that the principal
cannot coordinate agents to act in accordance with her preferred equilibrium. Indeed,
experiments show that such an equilibrium tends to unravel (Devetag and Ortmann
(2007)), which makes focusing on it unjustified in environments where the principal
cannot shape individual beliefs, as is arguably the case in real world social networks.

Our model speaks to applications of strategic complementarities in networks. One
example is a firm selling a network good. The principal is a firm who posts an individual
price, and a transfer represents the price net of an intrinsic value of the good. Another
example is when the principal is a social media platform willing to incentivize its users
to adopt a new online application, such as a messenger, by providing a subsidy to each
adopting user. A transfer is given by an adoption cost net of the subsidy. In this case, the
platform minimizes the sum of subsidies, which is equivalent to maximizing the sum of
the transfers. Such campaigns often start with significant persuasive efforts to recruit
community leaders as early adopters with the intention that their public visibility will
induce others to adopt as well. As we shall see, this feature of the incentive mechanism
arises from our analysis of the model.

Our first result characterizes an optimal mechanism. Such a mechanism induces a
cascade of iterative elimination of dominated strategies, leading to the outcome where
everyone acts. But more importantly, the result highlights the role of relative rather than
absolute degree centrality in networks. We show that being more popular than your
friends guarantees preferential treatment from the principal. Such individuals pay lower
transfers (or receive higher subsidies) than the rest and take the role of network leaders,
allowing the principal to exploit their influence by raising transfers of their friends, who
expect leaders to act and are willing to pay these higher transfers.

We apply our characterization of optimal mechanisms to study the properties of net-
works that make achieving coordination easier for the principal. Put differently, we are
interested in networks that guarantee higher revenue. Our motivation is twofold. First,
the principal might have some control over the network. For example, the newsfeed al-
gorithm of Facebook partially determines how active a link between users is. If the ma-
jority of user i’s posts are hidden from user j and vice versa, then a nominal link would
be rather inactive. Likewise, by means of friends suggestions, the platform influences
the likelihood of new links emerging. Second, an interested party might want to com-
pare exogenously given networks. For instance, to predict the commercial success of a
new network product a firm must consider its associated network. Whether the product
is a messenger or a specialized editing software determines the structural properties of
a relevant network, and hence the product’s profitability.
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Our main result is that under mild conditions complete core-periphery networks
guarantee the highest revenue, and hence allow for the most effective coordination. In
these networks, the nodes are partitioned into two subsets, core and periphery. Every
core node is connected to all nodes, and hence is a star, while every periphery node is
connected only to stars. One implication of this result is that core-periphery structures
ubiquitous in real life social networks are vulnerable to manipulation by external forces.

To gain further insights into the interplay between the revenue and a network struc-
ture, we first show that one network always delivers a higher revenue than another if it
has more links with a small-degree agent as at least one of the endpoints. The reason
is that small-degree agents are more susceptible to social influence and the principal
can exploit it by charging them higher transfers. For networks with the same degree
sequence, this implies that the revenue is always higher in a more disassortative net-
work where connections tend to be between small- and high-degree agents. We also
characterize networks that deliver the lowest revenue or, equivalently, require the most
resources to induce action. We show that for a given number of links, these networks
have as many isolated agents as possible, while other agents are tightly connected to
each other. Finally, we discuss several extensions that include heterogeneous social in-
fluence and show that many insights from the original model continue to hold.

1.1 Related literature

The paper builds on a vast literature that studies how locally interacting individuals
coordinate their actions (Contagion (2000), Jackson and Yariv (2007), Sadler (2020a)).
These papers consider games where players face a simple choice of whether to adopt
some behavior or not, and study how adoption levels and dynamics relate to character-
istics of social interaction networks. Using the binary action framework of this literature,
we explore two novel questions: what are the optimal mechanisms for solving coordi-
nation problems and which networks are more susceptible to manipulation by external
forces?

Our analysis of influence mechanisms contributes to the literature on pricing and
influence in networks.1  Candogan, Bimpikis, and Ozdaglar (2012), Bloch and Querou
(2013), and Fainmesser and Galeotti (2016) consider price-discriminating firms selling
network goods and explore how prices and welfare depend on network characteristics.
They assume a unique equilibrium, and hence no coordination problems among con-
sumers. Belhaj and Deroïan (2019) study bilateral contracting in networks aimed at in-
creasing the sum of agents’ effort, and focus on equilibria that maximize the principal’s
objective. Computer science papers investigate the algorithmic aspects of pricing in
networks (Hartline, Mirrokni, and Sundararajan (2008), Arthur, Motwani, Sharma, and

1See Bloch (2016) for a comprehensive survey. An extensive literature on targeting and interventions
in networks uses distinct modeling approaches. Ballester, Calvó-Armengol, and Zenou (2006) studies
“key” players whose removal induces the greatest change in equilibrium aggregate action; Talamàs and
Tamuz (2017) and Galeotti, Golub, and Goyal (2020) consider welfare-maximizing interventions; Bimpikis,
Ozdaglar, and Yildiz (2016), Vohra (2020), and Sadler (2020b) consider influencing agents who update their
beliefs in a DeGroot fashion.
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Xu (2009)) and influence maximization (Kempe, Kleinberg, and Tardos (2003)).2 Unlike
the above papers, we explicitly address coordination problems, adopting the unique im-
plementation approach currently unexplored in the network literature.3

Several network formation models speak to the empirical ubiquity of core-periphery
networks. Hojman and Szeidl (2008) derive periphery-sponsored stars as a unique equi-
librium of a network formation game where individuals benefit from indirect connec-
tions, while Galeotti and Goyal (2010) show that core-periphery networks arise as a con-
sequence of strategic information acquisition and network formation. Belhaj, Bervoets,
and Deroïan (2016) show that such networks maximize welfare when agents choose an
effort level in a game of strategic complements. Our paper is complementary to this
literature highlighting an unexplored property of core-periphery networks.4

The unique implementation approach was pioneered by Segal (1999, 2003), who de-
velops a general contracting model, and Winter (2004), who explores incentives pro-
vision in organizations. Babaioff, Feldman, Nisan, and Winter (2012), Bernstein and
Winter (2012), Halac, Kremer, and Winter (2020), and Halac, Lipnowski, and Rappoport
(2021) are prominent papers in this vein. We contribute to this literature by incorporat-
ing local externalities captured by a social network.

The paper is organized as follows. We begin with the model and an example in Sec-
tion 2. In Section 3, we characterize optimal mechanisms. In Section 4, we compare rev-
enue across networks, while in Section 5 we characterize optimal networks. In Section 6,
we discuss robustness of our results. All proofs are presented in the Appendix.

2. Model

2.1 Setup

There are n individuals (agents) indexed by i = 1, 2, � � � , n. Each individual i decides
whether to act (xi = 1), or not (xi = 0). Individuals interact through a social network,
represented by an undirected graph with a symmetric adjacency matrix G, where gij = 1
if and only if i and j are connected (friends) and gij = 0 otherwise; by convention gii = 0.
We let di denote the number of friends of i, i.e., di = ∑

j gij . Individuals are prone to
social influence that affects their incentives to take the action; they are encouraged to act
when more of their friends do. Specifically, given a network G and an action profile x−i =
(x1, � � � , xi−1, xi+1, � � � , xn ), we normalize the payoff of individual i from abstaining, xi =
0, to zero, i.e., Ui(0, x−i, G) = 0, and let the payoff from taking the action, xi = 1, be

Ui(1, x−i, G) = f (di )
∑
j

gijxj − ti. (1)

2A typical problem is to find k nodes such that if these nodes act, eventually the highest number of other
nodes also choose to act. By contrast, we look for a profile of thresholds such that in the unique equilibrium
everyone acts and the sum of the thresholds is maximal.

3The literature on network goods uses adoption-contingent prices (Weyl (2010), Masaki (2013)), whereas
we study bilateral contracting where transfers are not contingent on actions of others.

4Other notable examples are Bala and Goyal (2000), Goyal and Joshi (2003), Goyal, Van Der Leij, and
Moraga-González (2006), König, Tessone, and Zenou (2014), Hiller (2017), and Herskovic and Ramos (2020).
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The term
∑

j gijxj is the number of friends of i who choose to act, and f (di ) > 0 captures
a social influence exerted on i by each such friend. Hence, the payoff from acting is
linearly increasing in the number of friends who act. We call f a social influence function,
and assume that it is nonincreasing in the number of friends of an individual, i.e., f (m) ≥
f (m + 1) for m ≥ 1. The assumption reflects the idea that someone with more friends
is swayed less by each one of them. The term ti ≥ 0 can be viewed as a threshold; an
individual chooses to act when her aggregate social benefit from acting, f (di )

∑
j gijxj ,

exceeds her threshold ti. Because f (di ) > 0, the resulting simultaneous move game with
complete information has strategic complementarities, and, typically, there are multiple
equilibria.

2.2 External influence

Consider the principal who influences individuals by choosing their thresholds. Specifi-
cally, we interpret a threshold ti as a transfer from individual i to the principal. An influ-
ence mechanism is a profile of transfers, i.e., a vector t = (t1, � � � , tn ). Because the game
between the agents might have multiple equilibrium outcomes, we require that the prin-
cipal chooses the transfers to induce a unique equilibrium where all agents act. For-
mally, an influence mechanism t is incentive-inducing (INI) if x = (1, � � � , 1) is a unique
Nash equilibrium of the simultaneous move game induced by t. Clearly, such influence
mechanisms exist because the principal can make acting a dominant strategy for each
agent i by offering ti = 0. Moreover, if t is INI, then so is each t ′ < t. However, the prin-
cipal also wants to maximize the revenue while inducing action. Influence mechanism
t is optimal if it has the highest revenue among all INI mechanisms, i.e.,

∑
ti ≥ ∑

t ′i for
each INI mechanism5 t ′. The maximal revenue that the principal can achieve while in-
centivizing all agents to act depends on a social network. Networks that deliver a higher
revenue are more attractive to the principal. A network is optimal if its optimal influence
mechanism has the highest revenue across all networks.

In the remainder of this section, we present an example based on a social influence
function naturally arising in certain settings. We use the example to illustrate the con-
struction of optimal influence mechanisms and compare the revenue across networks.

Example 1. Consider the case where individuals directly care about a proportion and
an absolute number of friends who take the action.6 Then the social influence of each
such friend on agent i is given by

f (di ) = α+ 1
di

,

5Note, however, that a set of INI mechanisms is not closed, so an optimal INI mechanism may not exist.
Let I ∈ R

n be a set of INI mechanisms and Ī ∈ R
n be its closure. Formally, we say that influence mecha-

nism t∗ is optimal if t∗ ∈ arg maxt∈Ī
∑

ti. Hence, although our optimal mechanism t∗ may admit multiple
equilibria, for every ε > 0 there exists an INI mechanisms t ′ revenue from which is only ε smaller, i.e.,∑

t∗i − ε = ∑
t ′i .

6The examples of such situations studied in the literature include models of social comparison (Ghiglino
and Goyal (2010)) and conformity (Liu, Patacchini, and Zenou (2014)). For example, Ghiglino and Goyal
(2010) discuss two situations, when local aggregate action matters and when local average matters, and
provide justification for each case. Both cases are subsumed by our model.
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Figure 1. Comparing the principal’s revenues across networks.

where α ≥ 0 is a constant part of the social influence from an acting friend. When α is
small an individual cares mostly about the relative proportion of acting friends, whose
number becomes important as α grows. We begin by illustrating the construction of
optimal influence mechanisms in each of the networks in Figure 1 and then compare
the corresponding revenues.

To begin, note that, in any network, the principal must induce at least one of the
agents to act even when no one else does (otherwise there will be an equilibrium in
which no one acts). Hence, the transfer of one of the agents must be at most zero. Now
consider a complete network in panel (a). All agents are symmetric in the network and,
therefore, we can let agent 1 pay t1 = 0. Moreover, one of the remaining agents must pay
at most α + 1/3; otherwise there is an equilibrium where only agent 1 acts. Again, by
symmetry we can let t2 = α + 1/3. Similarly, to induce one of the two remaining agents
to act when both 1 and 2 act, the principal must ask for a transfer of at most 2α+2/3. Let
t3 = 2α+ 2/3. Finally, agent 4 must pay at most t4 = 3α+ 1. In fact, this is an optimal in-
fluence mechanism for the complete network with the revenue of 6α+ 2. Next, consider
a line network in panel (b). In an optimal influence mechanism, we let t1 = 0 to induce
agent 1 to act when no one else does. Now to induce 2 to act when only 1 does we let
t2 = α+1/2. Furthermore, to induce 3 and 4 to act when 1 and 2 do, we let t3 = t4 = α+1.
The corresponding revenue is 3α + 5/2. Finally, a star network in panel (c) has an op-
timal influence mechanism where t1 = 0 and t2 = t3 = t4 = α + 1. Note that agent 2 can
pay more than in the line network because all her friends now act. The revenue is 3α+3.

Two observations are in order. First, note that the principal achieves a higher rev-
enue in the star network than in the line network, regardless of the influence function f .
We revisit the example in Section 4, where we introduce and characterize a dominance
order on networks with respect to the principal’s revenue. Second, the principal obtains
a higher revenue in the complete network if α > 1/3, and in the star network if α < 1/3.
Both graphs belong to a general class of core-periphery networks. In Section 5, we prove
our main result that an optimal network is indeed a core-periphery. We also show that
the above social influence function results in a “bang bang” solution, where generically
either a star or a complete network is optimal. ♦
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3. Optimal influence mechanisms

We begin our investigation by characterizing optimal influence mechanisms for any net-
work. We show that individuals who have more connections than their friends have are
asked to pay lower transfers. This allows the principal to exploit their influence by ex-
tracting surplus from their friends.

Fix a network G. We generalize the construction of the optimal influence mecha-
nisms given in Example 1. We say, an influence mechanism t is tight if it is INI and there
does not exist another INI influence mechanism t ′ such that for some i we have ti < t ′i
and tj = t ′j for all j �= i. In words, if t is tight, then we cannot increase the transfer of any
single agent without violating the requirement of the uniqueness of equilibrium where
all agents choose to act. Clearly, an optimal influence mechanism is tight. It turns out
that there is surjection between a set of permutations of agents and a set of tight influ-
ence mechanisms.7

Lemma 1. An influence mechanism t = (t1, � � � , tn ) is tight if and only if there exists a
permutation π such that for all i,

ti = f (di )
∑

j:π(j)<π(i)

gij , (2)

where π(i) denotes a place of i in the permutation π.

Given a permutation of agents, we can use (2) to construct a tight influence mech-
anism. In this mechanism, every agent transfers to the principal the social benefit ob-
tained from her friends that are earlier in the corresponding permutation. Notice that
despite the fact that in equilibrium everyone acts, in a tight influence mechanism the
principal does not extract the entire social benefit from each agent. For instance, in
Example 1 a permutation that corresponds to the constructed optimal influence mech-
anism in a complete network is (1, 2, 3, 4). Here, the transfer of agent 2 is equal to her
social benefit from agent 1 acting, i.e., α+ 1/3. However, her equilibrium social benefit
from acting is 3α+ 1, and so she is left with a surplus of 2α+ 2/3.

Intuitively, a permutation represents an order in which agents iteratively eliminate
dominated strategies. Indeed, in any incentive-inducing influence mechanism, there
must exist an agent who acts regardless of other agents’ decisions. That is, acting is her
dominant strategy. This agent appears first in the permutation, and so her transfer is
given by her social benefit when no one else acts, namely zero. Similarly, there must exist
one agent for whom acting is a dominant strategy conditional on the first agent acting
(otherwise we would have an equilibrium where all agents but the first one stays still).
This agent is placed second in the permutation, and pays just as much as is her social
benefit given that the first agent is acting, and so on. Hence, for each incentive-inducing
mechanism we can inductively construct a corresponding permutation of agents.

Given the above lemma, finding an optimal mechanism reduces to a simpler prob-
lem of maximizing over permutations. For any permutation π, the revenue in the corre-

7All the proofs are deferred to the Appendix.
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sponding tight influence mechanism t = (t1, � � � , tn ) is
∑
i

ti =
∑
i

f (di )
∑

j:π(j)<π(i)

gij

=
∑

ij:π(j)<π(i)

gijf (di ), (3)

where the last line follows from rearranging the summation. Each link in a network con-
tributes a single term to (3). Specifically, consider a link between i and j. If π(j) < π(i),
then the link contributes f (di ) to (3), and if π(j) >π(i), then the link contributes f (dj ).
Because f is nonincreasing, the contribution of a link between i and j such that di > dj
is maximal when π(i) < π(j). Moreover, the contribution depends only on the relative
positions of i and j in the permutation, and not on the entire permutation. Call a per-
mutation π of agents nonincreasing if among any two connected agents the one with a
strictly higher degree appears earlier in the permutation, i.e., for all agents i and j such
that gij = 1 and di > dj , we have π(i) < π(j). Clearly, the contribution of each link is
maximal in every nonincreasing permutation and for a link between i and j it is given by
max{f (di ), f (dj )}. Hence, we obtain a characterization of an optimal influence mecha-
nism.

Proposition 1. Fix a network G. An influence mechanism t = (t1, � � � , tn ) is optimal if it
is induced by a nonincreasing permutation, i.e., there exists a nonincreasing permutation
π of agents such that t is given by (2). Moreover, the revenue in an optimal influence
mechanism is given by

R(G) =
∑
i<j

gij max
{
f (di ), f (dj )

}
. (4)

Intuitively, the principal arranges agents according to their resilience to social in-
fluence from others. Well-connected individuals are more resilient in a sense that their
incentives to a act increase less when a friend chooses to act compared to their less con-
nected peers. Hence, it is better for the principal to persuade them directly by offering
lower transfers, and instead exploit their social influence on their less connected, and
hence more easily influenced friends, who are asked to pay higher transfers. This means
placing high-degree agents earlier in a permutation. Notice that this is in contrast to
arranging agents according to how influential they are. For example, consider a star net-
work in panel (c) of Figure 1. In a case of a constant social influence function f (di ) = α,
all agents are equally resilient (everyone is influenced in the same way when a friend
chooses to act), but agent 1 is clearly the most influential. However, the revenue is the
same in each permutation.

One interesting observation about the principal’s revenue (4) is that it is decompos-
able as the sum of revenues generated by individual links determined only by the “local”
properties of a network, namely agents’ degrees. This means that changing a network
structure in one place does not affect the values of remote links. Another observation is
that whereas the equilibrium surplus generated by a link between i and j is f (di )+f (dj ),
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the principal extracts max{f (di ), f (dj )}. Thus, only an agent with a smaller degree mat-
ters when evaluating a value of a link for the principal. Finally, note that a transfer itself
is not monotone increasing in an agent’s degree. For example, among the two agents
who have the same degree, the one who has more friends with a lower degree than her-
self is offered to pay a lower transfer, and so gets to keep a higher share of the surplus. In
other words, to pay a lower transfer it is neither necessary nor sufficient to be popular—
instead one needs be more popular than one’s friends.

It is useful to contrast the results here with the revenue-maximizing influence mech-
anisms without the unique implementation requirement. If we assume that the agents
will play an equilibrium that the principal wants, then the transfers must make x =
(1, � � � , 1) an equilibrium. So, each agent i must be willing to act when all her friends
do, i.e., for each i we must have dif (di ) − ti ≥ 0. Hence, it suffices to let

ti = dif (di ) (5)

for each i. Note that these transfers are generally higher than those in (2), allowing the
principal to extract the entire equilibrium surplus of every agent. However, a strategy
profile where no one acts remains an equilibrium. A gap between this higher revenue
and (4) is the principal’s cost of coordinating individuals using transfers.8

4. Revenue comparison across networks

Equipped with the characterization of optimal influence mechanisms, we now develop
an intuition about how a network structure affects the revenue. Note, however, that the
revenue also depends on the shape of the social influence function. Thus, to focus solely
on the role of a network structure, we ask what makes one network more attractive than
another, regardless of the social influence function. While the results here are of interest
in themselves, they also hint at the structure of optimal networks.

We say that a network G dominates a network G′ if and only if the revenue in an
optimal influence mechanism in G is weakly higher than in G′ for each nonincreasing
social influence function, i.e., R(G) ≥ R(G′ ) for each nonincreasing f . A network is un-
dominated if there does not exist another network which dominates it. This introduces
a partial order on networks, which we now relate to a network structure.

Given a network G and a positive integer k, let lG(k) be a number of links in
G such that the lowest degree among the two endpoints of a link is k, i.e., lG(k) =
|{Link between i and j| min{di, dj } = k}|. A function lG captures the distribution of links
by the lowest degree of endpoints. The line network in Figure 1 has lG(1) = 2, lG(2) = 1,
and lG(k) = 0 for each k �= 1, 2, and the star network has lG(1) = 3 and lG(k) = 0 for each
k �= 1. Hence, the distribution in the star network is shifted toward lower values. It turns
out that such shifts in the distribution always increase the revenue.

8It is easy to see that the gap is, at most, 1
2

∑
i dif (di ).
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Proposition 2. A network G dominates a network G′ if and only if

h∑
k=1

lG(k) ≥
h∑

k=1

lG′(k)

for each h= 1, 2, � � �

The above condition resembles the definition of the first-order stochastic domi-
nance. Loosely speaking, G dominates G′ if and only if lG′ first order stochastically dom-
inates lG. The proof also parallels the standard argument that the first-order stochastic
dominance is equivalent to a decision maker preferring one distribution to another re-
gardless of what her utility function is.

To get basic intuition, consider again networks in panels (b) and (c) of Figure 1. In
the star network, we have replaced the link between 2 and 4 by the link between 1 and
4. This lowers the degree of agent 2 and raises the degree of agent 1. However, the new
link between 1 and 4 increases the principal’s revenue by the same amount as the link
between 2 and 4, because the lower degree among the two of its endpoints remains the
same. On the other hand, the link between 1 and 2 now contributes more because the
lower degree among the two of its endpoints has decreased: the degree of agent 2 is
lower than before. This holds for all nonincreasing influence functions. Therefore, the
star network is indeed always better for the principal than the line network.

Proposition 2 has especially clear implications for networks with the same degree se-
quence. In this case, we can relate the dominance order to the network disassortativity.
Recall that a degree sequence of a network is a list of degrees of all the nodes in nonin-
creasing order. Given an integer k, let Hk(G) be a number of links among agents with
degrees strictly greater than k, i.e., Hk(G) = |{Link between i and j| min{di, dj } > k}|; and
Lk(G) be a number of links between agents with degrees weakly lower than k, i.e.,
Lk(G) = |{Link between i and j| max{di, dj } ≤ k}|. We say a network G is more disassorta-
tive than a network G′ if Lk(G) ≤ Lk(G′ ) and Hk(G) ≤ Hk(G′ ) for each k ≥ 1. Roughly,
a network is more disassortative if it has fewer links among similar-degree agents. For
example, both networks in Figure 2 have degree sequence (3, 3, 2, 2, 1, 1), but a network
G is more disassortative than a network G′. Indeed, high-degree agents 1 and 2, as well
as small-degree agents 3 and 4 are connected in G′, whereas 1 is connected to 4 and 2 is
connected to 3 in G. One can easily show that G dominates G′. The following corollary
of Proposition 2 generalizes this observation.

Figure 2. A network G is more dissortative than a network G′.
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Corollary 1. Suppose G and G′ have the same degree sequence. Then G dominates G′
if and only if G is more disassortative than G′.

Observe that criss-crossing the two links as in panel (a) of Figure 2 does not change
the degrees and benefits the principal. Indeed now less susceptible to social influence,
high-degree agents 1 and 2 are connected to more susceptible small-degree agents 3
and 4. This allows the principal to more efficiently exploit the influence of high-degree
agents by raising the transfers of their small-degree friends.

We close this section with an example of an undominated network with a given num-
ber of links, which also provides an intuition about the shape of optimal networks. Con-
sider a greedy algorithm that aims to construct a network with the highest revenue given
a number of links E. The algorithm initiates with an empty network and at each step
connects the highest degree agent to the smallest degree agent, terminating when it runs
out of links. Hence, at each step the algorithm maximizes the value of a newly created
link. Formally, at step t, let Et be the number of unused links, let Gt be the current net-
work with the number of links equal to E −Et , let (dti )ni=1 be the degrees of agents in Gt ,
let ît ∈ arg maxi dti and is such that there exists j satisfying gt

ît j
= 0, and let ǐt ∈ arg mini d

t
i .

Initialize at E0 = E and G0 being an empty network, i.e., g0
ij = 0 for all i and j. At step

t ≥ 1:

1. If Et−1 > 0, connect ît−1 with ǐt−1 with whom there is no link in Gt−1, i.e., gt−1
ît ǐt

= 0.

That is, let gt
ît ǐt

= 1 and Et =Et−1 − 1.

2. Terminate if Et−1 = 0 and let Gt = Gt−1.

Corollary 2. If E ≥ n− 1, then the algorithm generates an undominated network.

Note that an undominated network must be connected because an additional link to an
isolated agent always increases the revenue. Thus, the condition E ≥ n− 1. A generated
network is not a unique undominated network with a given number of links. Rather the
algorithm demonstrates the role of disassortativity in the emergence of undominated
networks: they have a special structure where small-degree agents are never connected.

We call a network complete core-periphery network if its nodes can be partitioned
into two subsets, S (stars) and P (periphery), such that nodes in S are connected to all
the nodes, and nodes in P are connected only to the nodes in9 S. A star network and
a complete network are the special cases, and so is the network with two stars and six
periphery nodes in Figure 3. There are n − 1 complete core-periphery networks with n

nodes (up to a permutation of nodes). A network generated by the algorithm is a (pos-
sibly incomplete) core-periphery.10 Note, however, that the greedy algorithm might fail
to generate a network with the highest revenue given a number of links. The reason
is that the algorithm does not account for the fact that the values of the existing links
are affected by the addition of new links. In the following section, we show that un-
der appropriate assumptions on the social influence function an optimal network is a
complete core-periphery.

9These graphs are also known in the literature as complete split graphs or interlinked stars.
10The network may have a single periphery agent that is connected only to a subset of stars.
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Figure 3. A complete core-periphery with 2 stars and 6 periphery nodes.

5. Optimal networks

In this section, we characterize optimal networks. To pin down their precise structure,
we begin by introducing two assumptions about a social influence function. First, we
assume that mf (m) is nondecreasing.

Assumption 1. For each m≥ 1, we have mf (m) ≤ (m+ 1)f (m+ 1).

The assumption is satisfied whenever f falls slower than the reciprocal function x �→
1/x. Hence, in the case of the average comparison model from Example 1 where f (m) =
1/m, the above condition holds with equality.

The influence of each existing friend is diluted with an addition of a new friend.
However, it is natural to think that a marginal dilution is smaller for someone who
has more connections. Our second assumption formalizes the idea, requiring f to be
strongly convex in the following sense.

Assumption 2. For each m≥ 1, we have

f (m) − f (m+ 1) ≥ [
f (m+ 1) − f (m+ 2)

]n+ 2
n

.

Strong convexity means that the absolute values of forward differences of f are de-
creasing at multiple n/(n+ 2) or lower, where n is a total number of agents. Note that in
a large network our strong convexity condition converges to a standard notion of con-
vexity of f . The social influence function in Example 1 satisfies both assumptions.

Proposition 3. Suppose that Assumptions 1 and 2 hold. Then an optimal network is a
complete core periphery.

An optimal influence mechanism for a complete core periphery induces a domi-
nance cascade that starts with the stars, each relying on the stars ahead, and finishes
with the periphery agents relying on all the stars. The principal collects lower trans-
fers from the stars, and exploits the stars’ influence on periphery agents by raising their
transfers. Note that complete core-periphery networks are the most unequal in terms of
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their degree distributions among all similarly dense networks.11 However, the principal
does not necessarily strive to achieve the maximal inequality like in a star network: more
links means more opportunities for the social influence, which may be exploited by the
principal. To explain the role of our assumptions, we next examine an effect of a new
link on the principal’s revenue.

First, consider the case when we do not need to uniquely implement x = (1, � � � , 1)
and are content with it simply being an equilibrium. Acquiring a new friend who acts
has two countervailing effects on an agent’s incentives to act. On the one hand, an agent
experiences the dilution of the social influence from her existing friends who act. Specif-
ically, because f is nonincreasing each friend now exerts weakly lower social influence
on an agent. On the other hand, the agent obtains one more friend who acts, and hence
influences her to act as well. Specifically, according to (5), adding a link between i and j

changes the revenue by

(di + 1)f (di + 1) − dif (di )︸ ︷︷ ︸
Change in ti

+ (dj + 1)f (dj + 1) − djf (dj )︸ ︷︷ ︸
Change in tj

≥ 0.

Assumption 1 guarantees that the change in both transfers is nonnegative. Thus, a new
link always increases the revenue and a complete network is optimal.

In the unique implementation case, the principal extracts a value of a link only from
a smaller degree agent, and so a new link can increase as well as decrease the revenue.
To see why, consider adding a link between 2 and 3 in the star network from Example 1.
The transfers of 1 and 4 are unchanged, but now 2 must pay a lower transfer t2 = α+ 1/2
and 3 can pay a higher transfer t3 = 2α+1. Generally, connecting i and j such that di < dj
has a cost and a benefit. By Assumption 1, a transfer from a smaller degree agent rises,
hence the benefit (

d+
i + 1

)
f (di + 1) − d+

i f (di ) ≥ 0,

where d+
i is the number of i’s friends with a higher degree than i.12 A transfer from a

higher degree agent falls, hence the cost

d+
j

[
f (dj ) − f (dj + 1)

] ≥ 0.

While it is clear that convexity of f makes the cost decreasing in a degree, suggesting
that having well-connected hubs is optimal, a more subtle observation is that a stronger
assumption 2 is required to guarantee that the hubs are interlinked.

Now we sketch the proof of Proposition 3. Suppose that in an optimal network agent
i is a friend of a smaller degree agent x. If di < dj , then convexity of f suggests that j

11We can make this statement precise using a notion of majorization. Let d = (d1, � � � , dn ) denote a se-
quences of degrees of agents arranged in a nonincreasing order. Then d majorizes d′ if for each k= 1, 2 � � � , n
we have

∑k
i=1 di ≥ ∑k

i=1 d
′
i, with equality if k = n. Then a sequence of degrees of nodes in a core periphery

majorizes a sequence of degrees of nodes in every network with the same number of edges.
12For clarity, we assume that neither i nor j have friends with the same initial degrees as themselves,

and hence whose relative position in a nonincreasing permutation would change after an addition of a new
link. This is without loss of generality because swapping the positions of the same-degree agents keeps a
permutation nonincreasing.
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would have a lower cost of a link to x, and thus must also be x’s friend. In other words,
the “smaller-degree neighborhoods” of agents are nested. This observation along with
some symmetry arguments implies that there an independent set13 of periphery agents,
and every nonperiphery agent is a hub connected to every periphery agent. Finally, we
show that hubs must form a clique. Assumption 1 guarantees that a benefit of a link be-
tween two hubs outweighs its cost when hubs are in minority. The role of Assumption 2
is to make benefit increasing in di whenever d+

i ≥ n/2. Then when a majority of agents
are hubs, a benefit of a link between them is higher than a benefit of a link between a
hub and a periphery. Thus, it is optimal to connect all hubs.

To illustrate Proposition 3, we briefly return to Example 1. It is clear that if f (di ) = α,
then a complete network is optimal.14 Indeed, there is no dilution and each link has
the same value for the principal regardless of the agents’ degrees. Hence, an optimal
network simply maximizes the number of links. In contrast, when f (di ) = 1/di, the di-
lution is maximal, and a star network is optimal. We characterize optimal networks for
the intermediate cases below.

Corollary 3. Suppose f (di ) = α+ 1/di, where α≥ 0. We have:

(i) if α< 1/(n− 1), then a unique optimal network is a star,

(ii) if α> 1/(n− 1), then a unique optimal network is a complete network,

(iii) if α = 1/(n − 1), then a network is optimal if and only if it is a complete core pe-
riphery.

How does the shape of the social influence function affect a number of stars in an
optimal core periphery? Fix two functions f and h such that assumptions hold. Without
loss of generality, let f (1) = h(1) = 1.15 We say that a function f is flatter than a function
h if

h(k) − h(k+ 1) ≥ f (k) − f (k+ 1),

for all k≥ 1. Given a function f , let s∗(f ) denote the smallest number of stars in a corre-
sponding optimal core periphery.

Proposition 4. Suppose that Assumptions 1 and 2 hold. If f is flatter than h, then
s∗(f ) ≥ s∗(h).

Intuitively, if f is flatter than h, then it admits a weaker dilution effect, and hence a
new link has a lower cost and a higher benefit. Therefore, an optimal network under f
has more links, while remaining a core periphery. So, it must have more stars.

Thus far, we have focused on what makes networks more attractive for the principal.
To better understand how the network structure determines the revenue, we close this

13A set of nodes N is called independent if there is no link between any two nodes in N ; a set of nodes N
is called a clique if every two nodes in N are connected.

14Although Assumption 2 is violated, an optimal network is still a complete core periphery.
15This is without loss since we can always scale the functions in order for this condition to hold.
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Figure 4. Networks G and G′ are resilient, while network G′′ is not.

section with a glimpse of an opposite question—what are the networks that deliver the
lowest revenue? Strategic complementarity implies that an empty network is trivially
such a network, and hence we shall fix the number of links. We say a network with E

links is resilient if its optimal influence mechanism has the lowest revenue across all
networks with E links. Note that if f (di ) = α, then every network is resilient.

Proposition 5. Suppose that f is strictly decreasing and Assumption 2 holds. If there
exists an integer s such that E = (s

2

)
, then a resilient network consists of a clique of s agents

and n − s isolated agents.16 If there exists an integer s such that
(s

2

)
< E <

(s+1
2

)
, then a

resilient network consists of a connected component of s + 1 agents and n− s − 1 isolated
agents.

Panels (a) and (b) in Figure 4 illustrate resilient networks with 6 and 8 links and 6
nodes. When E = (s

2

)
for some s, the result pins down a unique network, whereas it

provides only a partial characterization when
(s

2

)
< E <

(s+1
2

)
for some s. For example,

one can show that a network in panel (c) is not resilient under our assumptions.
In a resilient network, all the social influence is concentrated inside a tightly inter-

connected group, and it has as many as possible isolated agents who pay zero transfers.
We prove the result by showing that if we could reallocate all the links from the smallest
degree agent to others, thus isolating this agent, then we would decrease the revenue.
One way to grasp the intuition is to consider a greedy algorithm to construct a network
with E links, analogous to the algorithm in Section 4. Begin with an empty network. At
each step, connect two highest degree agents and terminate when out of links. Thus, at
each step the algorithm minimizes the value of a newly created link. When E = (s

2

)
for

some s, the algorithm generates a clique of s agents as in the proposition above.17

6. Concluding remarks

In this section, we briefly discuss the robustness of our results. So far, we assumed that
an influence exerted by an agent varies across her friends—popular individuals are in-
fluenced less than others. Alternatively, a strength of influence may depend on the char-
acteristics of the influencer and the same individual may be influenced differently by
every friend. More generally, agents can be heterogeneous with respect to both, their

16These networks are called the dominant group architecture by Goyal and Joshi (2003).
17Note that the algorithm fails to produce a resilient network if

(s
2

)
<E <

(s+1
2

)
.
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susceptibility to the influence from others, as well the influence they have on others.
Some of our main insights extend to these environments.

Given a network G and an action profile x−i = (x1, � � � xi−1, xi+1, � � � , xn ), we let the
payoff of individual i from taking the action be given by

Ui(1, x−i, G) =
∑
j

gijwijxj − ti, (6)

and the payoff from abstaining be Ui(0, x−i, G) = 0. Thus, an agent i is influenced by
an agent j according to a weight wij > 0. Apart from the heterogeneous influences rep-
resented by a matrix (wij )i,j , the model is as in Section 2. Whereas it is straightforward
to confirm that the result analogous to Lemma 1 holds, the general model is no longer
tractable.18 Instead we discuss several interesting special cases.

• Degree-dependent susceptibility: wij = f (di ) for each i and j and f is nonincreasing.
This is our benchmark model from Section 2.

• Degree-dependent influence: wij = f (dj ) for each i and j and f is nonincreasing.
The interpretation is that an agent splits her effort between influencing each of her
friends, and hence someone with more friends will influence each of them less. Op-
timal mechanisms are obtained from nondecreasing permutations of agents, i.e.,
permutations where among the two connected agents the one with a strictly higher
degree appears later in a permutation. Moreover, the revenue is the same as in the
benchmark model (provided the same network and f ). Hence, our optimal network
result holds.19

• Exogenous influence: wij = ωj for each i and j. Individuals are heterogeneous with
respect to their influence on others, but the level of influence is exogenous. We
can interpret it as stemming from public credentials, such as those of political or
religious leaders. Because agents can be ordered with respect to their level of influ-
ence, an optimal mechanism is characterized by permutations where the influential
agents appear earlier. It is clear that in a model where social influence is indepen-
dent of degree, complete networks are trivially optimal.

Appendix

Proof of Lemma 1. Given a permutation π, let t be a corresponding influence mech-
anism defined by (2). We shall show that t is tight. First, we show that t is INI. Note

18The general model does not admit a characterization of optimal mechanisms analogous to Proposi-
tion 1. For example, a natural conjecture would be to order agents with respect to the “influence index”
Wi = ∑

j gijwji. One can check that the conjecture fails in an example with 3 agents where g12 = g23 = 1,
g13 = 0 and w12 = w31 = 1, w21 = w13 = 3. Whereas 1 is the most influential, it is optimal to put 3 at the first
place in the permutation.

19If f is nondecreasing, then an optimal influence mechanism in a model with degree-dependent sus-
ceptibility (influence) is obtained from a nondecreasing (nonincreasing) permutation of agents. Moreover,
in both cases an optimal network is complete because there is no trade-off between introducing new con-
nections and diluting the influence of the existing friends.
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that ti is sufficient to induce i to act given that all agents preceding i in π act, no matter
what the other agents do. Thus, an agent on the first place in the permutation, π−1(1),
acts no matter what the others do. By induction suppose that for k= 1, � � � , n− 1 agents
π−1(1), � � � , π−1(k) act. Then an agent π−1(k+ 1) also acts. Hence, each agent acts and
t is INI.

Second, we show that increasing a transfer of any single agent creates an equilibrium
where some of the agents do not act. For agent j, let

Fj = {
i|∃j1, � � � , jm such that gjj1 = gj1j2 = · · · = gjmi = 1

and π(j) <π(j1 ) < · · · <π(jm ) <π(i)
}

.

If we increase the transfer of agent π−1(n), then she would strictly prefer not to act.
Moreover, she strictly prefers not to act if any of her friends do not act. By induction
suppose that for k = 1, � � � , n − 1, each agent π−1(k + 1), � � � , π−1(n) strictly prefers not
to act if all her friends following her in π and at least one of her friends preceding her
in π does not act. If we increase the transfer of agent π−1(k), then there would exist an
equilibrium where agent π−1(k) and all agents in Fπ−1(k) do not act, while everyone else
does. Therefore, t is tight.

Given a tight t, we construct a permutation π such that t is given by (2). First, there
must exist an agent a1 such that ta1 = 0, otherwise there would exist an equilibrium
where no one acts. Let π(a1 ) = 1 and proceed to inductively define π. Suppose that
for k = 1, � � � , n − 1, each of the agents a1, � � � , ak acts if agents with a lower index than
theirs act, and correspondingly π(ai ) = i and tai ≤ f (dai )

∑i−1
j=1 gaij for i = 1, � � � , k. Then

there exists an agent ak+1 who weakly prefers to act when a1, � � � , ak act and others do
not. Otherwise, there would exist an equilibrium where a1, � � � , ak act and others do not,
contradicting that t is INI. Hence, we must have

tak+1 ≤ f (dak+1 )
k∑

i=1

gak+1ai . (7)

Let π(ak+1 ) = k + 1. If at any step of the induction argument there are several such
agents, then pick the one with the lowest index. Moreover, suppose that for k = 1, � � � , n
and some agent ak we have that (7) holds with a strict inequality. But then t cannot be
tight because by slightly increasing tak , we can increase the revenue while keeping the
mechanism INI. Thus, we have established a surjection from a set of permutations to a
set of tight influence mechanisms.

Proof of Proposition 2. First, we will need the following standard result (Abel’s
lemma). Let a1, � � � , an, b1, � � � , bn be real numbers. Set Ak = ∑k

j=1 aj . Then

n∑
k=1

akbk =
n−1∑
k=1

Ak(bk − bk+1 ) +Anbn. (8)
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Also, note that we can rewrite (4) as

R(G) =
∑
k

lG(k)f (k). (9)

Now suppose that
∑k

j=1 lG(j) ≥ ∑k
j=1 lG′(j) for each k = 1, 2, � � � . We shall show that G

dominates G′, i.e., R(G) ≥ R(G′ ) for each nonincreasing f . Using (9), this is equivalent
to

∑
k[lG(k) − lG′(k)]f (k) ≥ 0 for each nonincreasing f . By (8), we get

d̂∑
k=1

[
lG(k) − lG′(k)

]
f (k) =

d̂−1∑
k=1

Ak

[
f (k) − f (k+ 1)

] +A
d̂
f (d̂),

where Ak = ∑k
i=1[lG(i) − lG′(i + 1)], and d̂ is the highest degree among the nodes in

G and G′. The above expression is nonnegative for each nonincreasing f , because by
assumption, Ak ≥ 0 for each k= 1, 2, � � �

Suppose that G dominates G′. For the sake of contradiction, suppose that there

exists a positive integer k̄ such that
∑k̄

j=1 lG(j) <
∑k̄

j=1 lG′(j). Take f such that f (k) =
f (k+ 1) for each k �= k̄, and f (k̄) > f (k̄+ 1). Then we have

d̂∑
k=1

[
lG(k) − lG′(k)

]
f (k) = Ak̄

[
f (k̄) − f (k̄+ 1)

]
.

However, by assumption Ak̄ < 0, and we obtain the desired contradiction.

Proof of Corollary 1. Suppose G dominates G′. Fix h= 1, 2, � � � . Note that

h∑
k=1

lG(k) =E −Hh(G), (10)

where E is the total number of links, which is the same in both networks. Thus, by
dominance we have E − Hh(G) ≥ E − Hh(G′ ), implying that Hh(G) ≤ Hh(G′ ). Let Dh

be the sum of degrees of agents with a degree weakly lower than h, which is also the
same in both networks. Note that

Dh = 2Lh(G) +E −Lh(G) −Hh(G)

= 2Lh

(
G′) +E −Lh

(
G′) −Hh

(
G′).

Combining it with the above, we get Lh(G) ≤Lh(G′ ). Finally, if G is more disassortative
than G′, then from (10) it immediately follows that G dominates G′.

Proof of Corollary 2. For brevity, we consider only the case where there exists an
integer s such that E = 1

2 s(s− 1) + s(n− s), i.e., the algorithm generates a complete core
periphery with s stars. Note that a complete core periphery with s stars maximizes the
number of links in a network given that there are n − s agents with degree less than or
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equal to s. Moreover, the maximal number of links is increasing in s. Now for the sake of
contradiction suppose that a core periphery with s stars is dominated by G, and hence
the number of links in G must be greater or equal to E. Then by Proposition 2 there
exists d < n − 1 such that Ld(G) + Md(G) > s(n − s) and Ls(G) +Ms(G) ≥ s(n − s). Let
nd(G) denote the number of nodes in G with degree higher than d. From the above, we
get nd(G) < s. Hence, the number of links in G must be less than E, a contradiction.

Proof of Proposition 3

We prove the result with help of four lemmas. Fix an optimal network G. Without loss
of generality, assume that if gij = 1 and di > dj , then i < j, and hence the identity per-
mutation, id, is nonincreasing and induces an optimal influence mechanism. Let Ni

denote a set of friends of agent i, i.e., Ni = {j|gij = 1}. For a permutation π and an
agent i, let Nπ,−

i ⊆ Ni denote a subset of i’s friends who follow i in permutation π, i.e.,
Nπ,−

i = {j|gij = 1 and π(j) > π(i)}. We say that agents in Nπ,−
i are influenced by i. Let

dπ,−
i = |Nπ,−

i | and dπ,+
i = |Ni \Nπ,−

i |. We call agent i a sink if Nπ,−
i = ∅.

Lemma 2. Fix four different agents i, j, x, and y such that max{dx, dy } < min{di, dj }. If
gix = gjy = 1, then either giy = 1, or gjx = 1, or both.

Proof. For the sake of contradiction, suppose that giy = gjx = 0. Consider replacing a
link between j and y by a link between i and y. Since the benefits of the two links are the
same, the corresponding change in the revenue is given by the change in the cost of a
link, given by

did,+
i f (di ) + did,+

j f (dj ) − did,+
i f (di + 1) − did,+

j f (dj − 1).

Similarly, the change in the revenue from replacing a link between i and x by a link be-
tween j and x is

did,+
i f (di ) + did,+

j f (dj ) − did,+
i f (di − 1) − did,+

j f (dj + 1).

Because G is optimal, each replacement must weakly decrease the revenue:

did,+
i

(
f (di ) − f (di + 1)

) − did,+
j

(
f (dj − 1) − f (dj )

) ≤ 0,

did,+
j

(
f (dj ) − f (dj + 1)

) − did,+
i

(
f (di − 1) − f (di )

) ≤ 0.

Combining the inequalities, we get

f (dj ) − f (dj + 1)
f (di − 1) − f (di )

≤ did,+
i

did,+
j

≤ f (dj − 1) − f (dj )
f (di ) − f (di + 1)

. (11)

By convexity, we have

f (dj ) − f (dj + 1) ≤ f (dj − 1) − f (dj ),

f (di ) − f (di + 1) ≤ f (di − 1) − f (di ),
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with equality only when the right-hand sides are zero. Clearly, if at least one right-hand
side is not zero, then (11) is inconsistent. Hence, one of the two replacements must
strictly decrease total revenue. Alternatively, if both RHSs are zero, then the cost of
adding a link between i and y and a link between j and x on top of the existing links
is zero, and hence it strictly increases the revenue.

Lemma 3. There exists a nonincreasing permutation π of agents such that

Nπ,−
π−1(1)

⊇Nπ,−
π−1(2)

⊇ · · · ⊇Nπ,−
π−1(n)

. (12)

Proof. We shall construct a permutation π by inductively defining a permutation πk

for 1 ≤ k ≤ n and letting π = πn. A permutation πk will satisfy three properties: (i) πk

is nonincreasing, (ii) Nπk,−
π−1
k (1)

⊇ N
πk,−
π−1
k (2)

⊇ · · · ⊇ N
πk,−
π−1
k (k)

, and (iii) π−1
k (l) = l for l > k. Be-

gin with an identity permutation id, letting π1 = π2 = id. Indeed, because agent 1 is the
highest degree agent she has zero cost of a link, and thus must be connected to each
node, implying that Nid,−

1 ⊇ Nid,−
2 . For the induction step, suppose that for 1 ≤ k < n

there is a permutation πk satisfying the three properties above. We construct a per-
mutation πk+1. Suppose that π−1

k (k) = x. First, we show that either N
πk,−
x ⊇ N

πk,−
k+1

or N
πk,−
x ⊆ N

πk,−
k+1 . For the sake of contradiction, suppose there exist i and j such that

i ∈ N
πk,−
x , i /∈ N

πk,−
k+1 and j ∈ N

πk,−
k+1 , j /∈ N

πk,−
x . If i �= k + 1, then by Lemma 2 we have

either gxj = 1, or g(k+1)i = 1, or both, a contradiction. So, suppose that i = k+ 1. By the
induction assumption, Nπk,−

x ⊆ N
πk,−
π−1
k (l)

for each l < k, and hence each node that follows

and is connected to x is also connected to each node before x in πk. Hence, k+ 1 must
have strictly more friends preceding it in πk than x, i.e., dπk,+

k+1 > d
πk,+
x . Moreover, it has

a weakly lower degree than x because πk is nonincreasing. Now consider replacing a
link between k + 1 and j by a link between x and j. It follows that the revenue must
increase because the benefit accrued to j is the same but the cost of a link is lower for
x than for k + 1. Therefore, if i = k + 1, then N

πk,−
x ⊇ N

πk,−
k+1 , a contradiction. Thus, we

have established that either N
πk,−
x ⊇ N

πk,−
k+1 or N

πk,−
x ⊆ N

πk,−
k+1 . Now if Nπk,−

x ⊇ N
πk,−
k+1 ,

then let πk+1 = πk. On the other hand, if Nπk,−
x ⊆ N

πk,−
k+1 , then define πk+1 in the fol-

lowing way. Move x one position further in the permutation, i.e., let π−1
k+1(k + 1) = x.

Then, by the same argument as above either Nπk,−
π−1
k (k−1)

⊇ N
πk,−
k+1 or Nπk,−

π−1
k (k−1)

⊆N
πk,−
k+1 . If

N
πk,−
π−1
k (k−1)

⊇ N
πk,−
k+1 , then let π−1

k+1(k) = k + 1, and π−1
k+1(l) = π−1

k (l) for l �= k, k + 1. On

the other hand, suppose that Nπk,−
π−1
k (k−1)

⊆ N
πk,−
k+1 and π−1

k (k− 1) = z. Then, by the same

argument as above, z is not connected to k+ 1. Now let π−1
k+1(k) = z, and if Nπk,−

π−1
k (k−2)

⊇
N

πk,−
k+1 , then let π−1

k+1(k−1) = k+1, and π−1
k+1(l) = π−1

k (l) for l �= k−1, k, k+1. Continue
moving k + 1 to the top of the permutation in this way until a set of agents influenced
by it is nested in the set of agents influenced by an agent preceding it in πk. Each step
of the above procedure is well-defined, and in the end, it produces a permutation πk+1

satisfying the properties. Iterating the procedure yields πn, and finally letting π = πn we
obtain the required permutation.
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Lemma 4. If k≤m, then (k+ 1)f (m+ 1) − kf (m) is:

(i) nonincreasing in k, given m, and

(ii) nondecreasing in m, given k≥ n/2.

Proof. Part (i) follows from f being a nonincreasing function. To prove (ii) note that by
strong convexity, for n/2 ≤ k≤m we have

f (m) − f (m+ 1) ≥ [
f (m+ 1) − f (m+ 2)

](
1 + 1

k

)
.

Rewriting, we get

(
f (m+ 1) − f (m+ 2)

)
(k+ 1) ≤ kf (m) − kf (m+ 1),

(k+ 1)f (m+ 1) − kf (m) ≤ (k+ 1)f (m+ 2) − kf (m+ 1).

Lemma 5. Fix a nonincreasing π and agents i and j such that di = dj =m, dπ,+
i = dπ,+

j =
k. If 2k<m, then gij = 1.

Proof. For the sake of contradiction, suppose that gij = 0. Consider the change in the
revenue due to adding a link between i and j:

kf (m+ 1) + (k+ 1)f (m+ 1)︸ ︷︷ ︸
After adding a link

− 2kf (m)︸ ︷︷ ︸
Before adding a link

.

Rewriting, we find that a new link increases the revenue if

f (m+ 1) − 2k
(
f (m) − f (m+ 1)

)
> 0.

By Assumption 1, we have

f (m+ 1) − 2k
(
f (m) − f (m+ 1)

) ≥ f (m+ 1) − 2k
m

f (m+ 1).

Hence, the revenue increases when 2k<m, contradicting the optimality of G.

Now we are ready to prove Proposition 3.

Proof of Proposition 3. Take a nonincreasing permutation π satisfying (12), and let
π−1(k) = sk for k= 1, � � � , n. We show that each nonsink is connected to each sink. First,
we show that each sink is connected to the same set of nonsinks. For the sake of con-
tradiction, suppose that x and y are two sinks and nonsink sj connects to x but not to
y. Then by (12) each sk such that k ≤ j connects to x and each sl such that l ≥ j does
not connect to y. Hence, there are strictly fewer agents connected to y than to x, i.e.,
dx > dy . Moreover, by (12) it follows that each agent connected to y also connects to x.
Then take all agents connected to x and not to y. Removing the links from these agents
to x must decrease the revenue. But then adding the links from these agents to y creates
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the same benefit as adding them to x, but has a lower cost by convexity. Hence, each
agent connected to x must also connect to y, a contradiction. Second, notice that there
cannot exist a nonempty set of nonsinks not connected to sinks because the last such
agent in π must be herself a sink.

It remains to show that all nonsinks are connected. Let sk be the last nonsink in
sequence (s1, s2, � � � , sn ). First, we show that sk−1 connects to sk. For the sake of con-
tradiction, suppose not. Then Nπ,−

sk−1 = Nπ,−
sk and x ∈ Nπ,−

sk−1 if and only if x is a sink.
Suppose, first, that dsk−1 < dsk . Then by an argument similar to the above, there exists
sj , j < k − 1, such that sk−1 /∈ Nπ,−

sj and sk ∈ Nπ,−
sj . Take all such agents. By symme-

try, adding links between these agents and sk−1 reduces the total revenue, because the
costs are lower and the benefit is the same as when adding links between these nodes
and sk. It follows that sk−1 and sk are symmetric. Now by Lemma 5, sk−1 must be con-
nected to sk if dπ,+

sk < dπ,−
sk , where dπ,−

sk is also the number of sinks. Instead suppose that
dπ,+
sk−1 = dπ,+

sk ≥ dπ,−
sk−1 = dπ,−

sk . Then

dπ,+
sk

+ dπ,−
sk

≤ n− 2,

2dπ,−
sk

≤ n− 2,

dπ,−
sk

≤ n/2 − 1,

where the second inequality follows from dπ,+
sk ≥ dπ,−

sk . Hence, there are weakly fewer
sinks than n/2 − 1 and, therefore, the in-degree of each sink must be strictly greater
than n/2 because it is connected to each nonsink. Take any sink x, and consider the
benefit created by a link between sk−1 and x. It is given by d+

x f (dx ) − (d+
x − 1)f (dx − 1).

We compare this benefit to the one created by instead connecting sk−1 to sk, given by
(d+

sk
+ 1)f (dsk + 1) − d+

sk
f (dsh ). We have

(
d+
sk

+ 1
)
f (dsk + 1) − d+

sk
f (dsh ) >

(
d+
x + 1

)
f (dsk + 1) − d+

x f (dsh ),

>
(
d+
x + 1

)
f (dx + 1) − d+

x f (dx ),

where the first inequality follows because x connects to each nonsink, and sk is at least
not connected with sk−1, and so we have d+

sk
< d+

x , and the second inequality follows
from Lemma 4 because d+

x > n/2 and dsk ≥ dx. Therefore, it is profitable to add a link
between sk−1 and sk instead of a link between sk−1 and x, and thus sk−1 and sk must be
connected. Finally, suppose that nonsink sj and sj+1 are not connected, and all nonsinks
after j + 1 connect to the following nonsinks. The argument above applies, and hence
the two nonsinks must be connected.

Remaining proofs

Proof of Corollary 3. By Proposition 3, an optimal network is a complete core pe-
riphery. The revenue in such a network with s stars is

s(s − 1)
2

f (n− 1) + (n− s)sf (s). (13)
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Substituting the expression for f , we get a quadratic As2 +Bs + n, where A= 1
2(n−1) − α

2

and B = α(n − 1
2 ) − 2n−1

2(n−1) . If α < 1
n−1 , then the function is convex and the maximum is

achieved either when s = 1 or s = n − 1. Substituting the values, we find that s = 1, in
other words a star, is optimal. If α> 1

n−1 , then the function is concave and is maximized

at s∗ = − B
2A . Some algebra reveals that s∗ is constant in α and is equal to n− 1

2 . Thus, the
maximum in integer values is achieved when s = n or s = n−1, both cases corresponding
to a complete network. Finally, when α = 1

n−1 , then the revenue is independent of s.

Proof of Proposition 4. Let f be flatter than h. For s = 2, 3, � � � , n− 1, we have

f (s) = 1 −
s−1∑
i=1

[
f (i) − f (i+ 1)

]
.

Let δs = f (s) − h(s) for s = 1, 2, � � � , n− 1. From the above, we get

δs =
s−1∑
i=1

([
h(i) − h(i+ 1)

] − [
f (i) − f (i+ 1)

])
,

where each term is positive by assumption. Thus, δs ≥ 0 and is nondecreasing.
For f , let Gs

f denote the revenue in a complete core periphery with s stars given by
(13). We show that Gs

f −Gs
h is nondecreasing in s. We have

Gs
f −Gs

h − (
Gs+1

f −Gs+1
h

) = s(s − 1)
2

δn−1 + (n− s)sδs

− · · · − (s + 1)s
2

δn−1 − (n− s − 1)(s + 1)δs+1

= −sδn−1 + (n− s)sδs − (n− s − 1)(s + 1)δs+1

≤ −sδn−1 + (n− s)sδs − (n− s − 1)(s + 1)δs

= −sδn−1 + (2s − n+ 1)δs

≤ −sδs + (2s − n+ 1)δs

= (s − n+ 1)δs

≤ 0.

The first two inequalities follow from δs being nondecreasing. Finally, fix s∗(h) and con-
sider moving from h to f . From the above, it follows that the revenue in a complete core
periphery with s∗(h) stars increases weakly more than in any complete core periphery
with fewer stars. Hence, a complete core periphery with fewer stars cannot be optimal
under f .

Proof of Proposition 5. Suppose that G is a resilient network with E links. Let i be
an agent with the smallest positive degree and C be a subset of agents with positive
degrees, excluding i. It suffices to show that

(|C|
2

)
<E. For the sake of contradiction, sup-

pose that E ≤ (|C|
2

)
, and so it is possible to isolate i by sequentially deleting an existing
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link between each pair i and j, and replacing it by a link between some pair in C. Con-
sider a link reallocation procedure. At step t, let Gt be the current network and (dti )ni=1
be the degrees of agents in Gt . At each step t ≥ 1, we conduct one of the two types of link
reallocation:

1. If there exists j, k ∈ C such that gt−1
ij = 1 and gt−1

jk = 0, then let gtij = 0, gtjk = 1, and

gtxy = gt−1
xy for each pair x, y different from i, j or j, k.

2. If there exists j ∈ C such that gt−1
ij = 1, but does not exist k ∈ C such that gt−1

jk = 0,

then take any pair m, l ∈ C such that gt−1
ml = 0 and let gtij = 0, gtml = 1, and gtxy = gt−1

xy

for each pair x, y different from i, j or m, l.

The procedure first exhausts all reallocations of type (1) and then of type (2). Initialize
at G =G0 and terminate if dt−1

i = 0.
Consider type (1) reallocation at step t. A value of a link between j and k in Gt cannot

exceed the value of a link between j and i in G, because type (1) reallocations do not de-
crease the degrees of agents in C, and thus min{dt−1

j , dt−1
k } ≥ di. Moreover, the revenue

generated by each other link in Gt−1 does not increase in Gt because we have increased
k’s degree. Consider type (2) reallocation at step t. A value of a link between m and l in
Gt cannot exceed the value of a link between j and i in G. Indeed, as mentioned before,
type (1) reallocations do not decrease the degrees of agents in C, and type (2) realloca-
tions can decrease a degree only of agents adjacent to i. However, type (2) reallocation
decreases the degree of j and increases the degrees of m and l. First, we evaluate the in-
crease in the revenue due to the decrease in j’s degree. Note that agents connected to i

in Gt−1 have the highest degree in Gt−1 equal to |C|. Let St−1 be a set of such agents. Be-
cause the degree of j decreases by one, the revenue generated by each of |St−1| − 1 links
between agents in St−1 \ j and j increases by f (|C| − 1) − f (|C|), while the revenue from
each other link adjacent to j does not change because j remains the highest degree agent
in Gt . Hence, we have a total increase in the revenue of (|S| − 1)[f (|C| − 1) − f (|C|)].
Second, we evaluate the decrease in the revenue due to the increases in the degrees of
m and l. Consider the revenue generated by each of 2|St−1| links between m and l and
each h ∈ St−1. It must decrease by at least f (|C| − 2) − f (|C| − 1) by convexity, because
the highest degree of m and l in Gt−1 is |C| − 2. Hence, the revenue decreases by at least
2|S|[f (|C| − 2) − f (|C| − 1)]. Thus, the net change in the revenue after reallocation (2) at
step t is negative because

2|S|[f (|C| − 2
) − f

(|C| − 1
)]

>
(|S| − 1

)[
f
(|C| − 1

) − f
(|C|)],

by convexity. Therefore, it follows that after each reallocation the total value that links
between agents in C contribute to the revenue decreases. When the procedure termi-
nates at step T , the value of each reallocated link is not higher in GT than in G. There-
fore, the revenue in GT is not higher than in G. Thus,

(|C|
2

)
<E.
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