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Appendix A: Optimal mechanisms with large laminar depth

In this section we provide an example where all optimal laminar partitional mecha-
nisms have depth exceeding |�| + 2 (i.e., the depth in the single-agent case; see Propo-
sition 2(i)). There are two players N = {1, 2} with two possible types �1 = �2 = {0, 1}
and four possible actions each A1 = A2 = {0, 1, 2, 3}. For convenience, we order type
profiles and define a function δ : �1 ×�2 → {0, 1, 2, 3} such that δ(0, 0) = 0, δ(0, 1) = 1,
δ(1, 0) = 2, and δ(1, 1) = 3. The players play a zero-sum game. The payoff matrix of the
row player for the type profile θ = (θ1, θ2 ) is ω(I + Pδ(θ) ), where Pk is the permutation
matrix whose (�1, �2 )th entry is 1 if �2 − �1 = kmod(4). The state ω is distributed uni-
formly on [0, 1]. The type profile distribution is such that φ(0, 0) = 0.1, φ(0, 1) = 0.2,
φ(1, 0) = 0.3, and φ(1, 1) = 0.4. The state and the types are distributed independently.
The designer’s payoff is 1 if a1 = a2 and 0 otherwise.

An optimal mechanism is given in Figure 4. As can be seen from this figure, the
depth of the laminar family supporting the optimal information structure is larger than
|�| + 2 = 6. We numerically verified that any other laminar partitional mechanism that
is optimal also has depth greater than 6. Furthermore, when the number of actions is
smaller (and the type space is the same) for any payoff structure, laminar families of
smaller depth suffice. Conversely, when the number of actions is larger, even with the
same type space, it is possible to obtain even deeper laminar families at the optimal
mechanism for variants of this example.

Appendix B: A finite-dimensional formulation for the multi-agent case

In the single-agent case, when the agent has finitely many actions Section 4.1 es-
tablished that it is possible to obtain the optimal mechanism by solving a finite-
dimensional convex program. This simplification was partly driven by two factors:
(i) the agent can perfectly infer the posterior mean from the action recommendation;
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Figure 4. Optimal mechanism. (a) The colors associated with each strategy profile. (b) The
laminar partitional signals that constitute an optimal mechanism. Different shades of green
encode the strategy profiles where the designer achieves nonzero payoff. For all type profiles,
such strategy profiles are associated with smaller states. The laminar partitional signals in this
example have depth 12.

(ii) the posterior mean levels that induce a given action can be characterized explicitly
given the agent’s payoff function. These factors allowed us to remove the recommended
action from the problem and express it purely in terms of posterior means. As these
factors are not present in the multi-agent case, it is unclear whether one can obtain the
optimal mechanism through a solution of a finite-dimensional optimization problem.
We next argue that indeed through the solution of finite-dimensional programs, it is
possible to obtain an optimal mechanism for as long as the agents have finitely many
actions.

Consider the formulation in (OPT). Note that for any given profile θ, the distribution
qθ over type profiles determines the action profiles recommended at different posterior
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mean levels. Since no action profile is recommended with positive probability at two
different posterior mean levels, it means that action profiles are ordered according to
the posterior mean levels that induce them. Denote by δθ this order: δθ(a) ≥ δθ(a′ ) if
the posterior mean that induces a is larger than that associated with a′ when the type
profile is θ.

Following an approach similar to the one in Section 4.1, we can now express the
designer’s problem as

max
{δθ}θ

max
p∈(�|A| )�

z∈R|A|×|�|
+

yi∈R|Ai|×|�|2

∑
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i

za,θpa′,θ ≥ za′,θpa,θ ∀θ, δθ(a) ≥ δθ
(
a′)

za,θ ≤ pa,θ ∀a, θ.

In this optimization problem, pa,θ denotes the probability with which strategy profile a

is induced when the type profile is θ, and mθ,a = za,θ/pa,θ is the corresponding poste-
rior mean level. Note that the {pa,θ, za,θ}a tuple constitutes a reparametrization of Gθ.
For a given order δθ on posterior mean levels, the first two constraints amount to a re-
statement of the MPC constraint Gθ � F . Note that if agents report their types truthfully
and follow the action recommendations, the payoff of agent i for type profile θ and ac-
tion recommendation profile a is given by ui1(a′

i, a−i, θ)za,θ′
i ,θ−i

/pa,θ′
i ,θ−i

+ui2(a′
i, a−i, θ).

This implies that his expected payoff1 is given as in the left hand side of the third con-
straint. Similarly, the right hand side is the payoff from taking action a′

i. Thus, the third

1As explained in the main text, this quantity is actually equal to the expected payoff times
∑

θ−i
φ(θ).

With some abuse of terminology, throughout this Supplement we ignore this normalization and refer to
such quantities as payoffs.
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constraint ensures that if agents report their type truthfully and agent i gets the action
recommendation ai, any deviation reduces his payoff. Suppose that agent i is of type
θi but he misreported his type as θ′

i and received action recommendation ai. Assuming
all agents still truthfully report their types and follow action recommendations, what
is i’s payoff from taking action a′

i? The right hand side of the fourth constraint cap-
tures this quantity. At the optimal solution, the left hand side, yi,θi ,θ′

i ,ai
, equals the max-

imization of this quantity over a′
i, which is the best payoff i can guarantee after the type

report θ′
i and action recommendation ai. Aggregating these terms over all i yields the

right hand side of the fifth constraint, which is the expected payoff of agent i from mis-
reporting his type as θ′

i. The left hand side is the payoff from truthful reporting and
following action recommendations. Thus, the fifth constraint ensures that agent i has
no incentive to misreport his type. The sixth constraint can be equivalently written as
mθ,a = za,θ/pa,θ ≥ mθ,a′ = za′,θ/pa′,θ. This ensures that the {pa,θ, za,θ}a tuple and the
associated distribution Gθ is consistent with δθ in terms of the ranking of the posterior
means of strategy profiles. Finally, the last constraint (together with the nonnegativity
of pa,θ, za,θ) ensures that the posterior means are between 0 and 1.

To solve this problem, we can first fix δθ in the outer problem and solve the associ-
ated inner problem. Then we can search over the orders δθ (of which there are finitely
many) in the outer problem. There are two challenges with this approach. First, the
number of orders to consider in the outer problem can be large. Second, unlike the
formulation in Section 4.1, due to the sixth constraint, the inner problem is not convex.

It turns out that it is possible to overcome both challenges. Let us start with the sec-
ond challenge. Despite the fact that the inner problem is nonconvex, a locally optimal
solution can be obtained using, e.g., gradient ascent. If, at a locally optimal solution, the
nonconvex constraints are not binding, then it follows that the solution is locally optimal
in the problem where these constraints are relaxed. However, the latter problem is con-
vex and local optimality implies global optimality. Thus, the aforementioned solution
is a globally optimal solution to the inner problem. In all our numerical experiments
(including the Cournot example discussed in Section 2.1) this was the case, i.e., when
we obtained a locally optimal solution using a solver, we observed that the nonconvex
constraints did not bind and verified global optimality of said solution.

The first challenge is problem specific, but the search can be drastically reduced in
some cases. For instance, observe that in the Cournot example of Section 4.1, there
are 9 strategy profiles, and naively there are 9! orders to consider. However, due to
the symmetry in the problem it can be readily seen that the posterior means associ-
ated with strategy profiles (ai, aj ) and (aj , ai ) are identical. Furthermore, intuitively,
posterior means associated with larger aggregate supply levels will be larger. That is,
mθ,a > mθ′,a′ if ai + aj > a′

i + a′
j . Once this restriction is imposed together with symme-

try, the number of orders to consider reduces only to two (one where strategy profiles
(0, 2), (2, 0) are associated with higher posterior mean levels than (1, 1), and one with
lower). Thus, solving the inner problem for these two orders and picking the solution
that results in a higher payoff delivers the optimal mechanism. This is, in fact, how we
obtain the optimal mechanisms in Section 2.1 (where we also numerically verify that
imposing the aforementioned condition is without loss). Notably this approach allows
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for constructing the optimal mechanisms without discretization of the state space. Us-
ing the approach described here, the optimal solution to the optimization problem in
Section 2.1 is obtained in ∼ 20 ms for most weighted combinations of CS and FP (using
the off-the-shelf interior point methods of the Knitro solver).

Appendix C: Additional details for the example in Section 4.2

Here we revisit the example in Section 4.2. The indirect utility ū(m, θ) of the buyer in
this example is given in Figure 5. When the expected quality m of the good is low, all
types find it optimal to purchase zero units, yielding a payoff of zero. As the expected
quality improves, the purchase quantity increases. In Figure 5, the curve for each type
is piecewise linear, and the kink points of each curve correspond to the posterior mean
levels where the agent increases his purchase quantity. Since the state and, hence, the
posterior mean belong to [0, 1], the purchase quantity of each type is at most two units,
and each curve in the figure has at most two kink points. This is easily seen as the util-
ity any buyer type derives from consuming the third unit of the good is bounded by
(θ + ω) max{5 − 3, 0} ≤ (0.6 + 1) · 2 = 3.2, which is less than the price of 10/3. These
observations imply that in this problem, the agent effectively considers finitely many
actions, namely the quantities in 0, 1, and 2.

The effect of the incentive compatibility constraints on the optimal mechanism are
easily seen from Figure 3. For instance, the high type’s payoff from a truthful type report
is strictly positive. If this were the only relevant type, the designer could choose a strictly
smaller threshold than 0.06 and still ensure purchase of two units whenever state real-
ization is above this threshold, thereby increasing the expected purchase amount of the
high type. However, when the other types are also present, such a change in the signal of
the high type incentivizes this type to deviate and misreport his type as low or medium.
Changing the signals of the remaining types to recover incentive compatibility reduces
the payoff the designer derives from them. The mechanism in Figure 3 maximizes the
designer’s payoff while carefully satisfying such incentive compatibility constraints.

Figure 5. The indirect utility of the agent.
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As discussed in Section 4.2, in the binary action case, it is without loss to focus on
public mechanisms (which do not elicit the agent’s type). In this case, one way to ob-
tain an optimal public mechanism is to solve first for the optimal mechanism with-
out restriction to public ones and then reveal to each type the signals associated with
all types. By contrast, the mechanism illustrated in Figure 3 does not admit such a
payoff-equivalent public implementation. For instance, under this mechanism, the high
type purchases two units whenever the state realization is higher than 0.06. Suppose
that this type of agent had access to the signals of, for instance, the low type as well.
Then he could infer whether the state is in [0.06, 0.16] ∪ [0.94, 1]. Conditional on the
state being in this set, his expectation of the state would be approximately 0.43. This
implies that the expected payoff of the high type from purchasing the second unit is
(0.43 + 0.6) × 3 − 10/3 < 0. Thus, for state realizations that belong to the aforemen-
tioned set, the high type finds it optimal to strictly reduce his consumption (relative to
the one in Figure 3). In other words, observing the additional signal reduces the ex-
pected purchase of the high type (and the other types). Hence, such a public imple-
mentation is strictly suboptimal. As a side note, the optimal public implementation can
be obtained by replacing different types with a single “representative type” and using the
framework of Section 3. More precisely, we can replace the designer’s indirect utility with
v̄(m) = ∑

θ φ(θ) maxa∈A(m,θ) v(a, m, θ) and maximize
∫
v̄(m)dG(m) by choosing a distri-

bution G � F (without any side constraints—since with public signals the designer does
not screen the agent and, hence, the incentive compatible constraints become irrele-
vant). We numerically conducted this exercise and also verified that restricting attention
to public mechanisms yields a strictly lower expected payoff to the designer.

Co-editor Simon Board handled this manuscript.

Manuscript received 24 January, 2022; final version accepted 15 August, 2022; available online 6
September, 2022.


	Appendix A: Optimal mechanisms with large laminar depth
	Appendix B: A ﬁnite-dimensional formulation for the multi-agent case
	Appendix C: Additional details for the example in Section 4.2

